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Abstract. Hydrodynamics coupled phase field models have intricate difficulties to solve numer-
ically as they feature high nonlinearity and great complexity in coupling. In this paper, we propose
three second order, linear, unconditionally stable decoupling methods based on the Crank—Nicolson
leap-frog time discretization for solving the Allen-Cahn—Navier-Stokes (ACNS) phase field model
of two-phase incompressible flows. The ACNS system is decoupled via the artificial compression
method and a splitting approach by introducing an exponential scalar auxiliary variable. We prove
all three algorithms are unconditionally long time stable. Numerical examples are provided to verify
the convergence rate, unconditional stability, and computational efficiency.
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1. Introduction. Phase field or diffuse interface models are widely used to study
the interfacial dynamics in many scientific and engineering applications [1, 9, 10,
15]. This topic has received an increasing amount of attention from the research
community in mathematical and numerical analysis in the past decade. In particular,
the ACNS phase field model is popularly used to describe the motion of a mixture
of two incompressible fluids [30, 45]. It features a nonlinear system consisting of
the incompressible Navier—Stokes (NS) equations coupled with the Allen—Cahn (AC)
equations. In the model, a continuous phase field function ¢ is introduced to label
different fluid components while their sharp interface is implicitly tracked by a thin
but smooth transition layer, i.e. the diffuse interface. By studying the evolution of the
phase field function, one can avoid explicit interface tracking and perform simulations
on a fixed mesh grid, rendering a convenient numerical approach to simulate various
interfacial problems. The dynamics of the phase field variable is described by the
Allen—Cahn equation, obtained by the gradient flow method, namely, minimizing the
total free energy in the space of L2.

There exist many effective numerical schemes for each component of the ACNS
system, for instance, the projection method [5, 31, 11, 13] and the artificial com-
pression method [7, 3, 25, 12, 6] for the incompressible Navier-Stokes equations; the
convex splitting method [32, 2, 17], the Lagrange multiplier approach [14], the In-
variant Energy Quadratization (IEQ) method [44], and the Scalar Auxiliary Variable
approach (SAV) [34, 42] for the phase-field type models. For solving a hydrodynamics
coupled phase field model, however, a simple combination of the methods from each
component may not produce an accurate, efficient, and unconditionally long time sta-
ble scheme. The main challenges lie in the high nonlinearity in the Allen—Cahn and
Navier—Stokes equations, the coupling between the phase field variable ¢ and velocity
u through a phase induced stress term in the NS equations and a fluid induced trans-
port term in the Allen—-Cahn equations, and the coupling between the fluid velocity
u and pressure p in the Navier—Stokes equations.
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Due to the intricate complexity of the ACNS system, most of the schemes devel-
oped in the literature are either first-order time accurate [35, 36], or nonlinear and
coupled schemes [15, 40], or fully decoupled but without provable energy stability anal-
ysis [8, 18], see an overview also in [15, 41]. The first method to have all the desired
characteristics (i.e., linear, unconditionally energy stable, fully-decoupled, and second-
order accurate in time ) for solving the NS equations coupled with mass-conserved
Allen—Cahn phase field model is based on the second-order backward differentiation
formula (BDF2) for time stepping and the projection method for velocity and pres-
sure decoupling [41]. Nevertheless, the projection method is only first-order accurate
for the pressure due to the artificial boundary conditions applied to the pressure, and
one needs to solve a Poisson equation in each time step to update the pressure. De-
veloping other alternative efficient and unconditionally long time stable, higher order
time stepping methods is still in great need.

While existing methods are based on either the Crank—Nicolson or the BDF2
time stepping, we focus on the Crank—Nicolson leap-frog time discretization (CNLF
[26, 19, 20, 21]) to develop three efficient, linear, unconditionally long time stable
decoupling schemes. The CNLF method is commonly used in the atmospheric and
oceanic simulations for its high accuracy, but has been less theoretically studied in
the literature, and used for other engineering applications. Herein we design three
numerical schemes based on CNLF for the the phase field model and relevant applica-
tions. In the first scheme, we adopt an idea of Lagrange multiplier of [14] to linearize
the Allen—Cahn equations, then combine it with the artificial compression technique
for decoupling the velocity and pressure in the NS equations. Unlike the most fre-
quently employed projection type methods which were first introduced by Chorin [5]
and Temam [39] in the late 1960s, the artificial compression methods which were also
first studied in the sixties by Chorin [4], Temam [38, 39], Kuznetsov, Vladimirova
and Yanenko [24], are less studied in the literature and have only recently received
increasing attention. The artificial compression methods relax the incompressibil-
ity constraint in the NS equations by adding a perturbation, e.g., €d;p, to the mass
conservation equation which facilitates decoupling the computation of velocity and
pressure in time marching schemes, see [7, 3, 25, 12, 6] for recent developments. It is
worth noting the outstanding feature of the artificial compression methods is that the
pressure can be updated directly without solving a Poisson equation which avoids the
spurious oscillations in the boundary layer of pressure due to artificial boundary con-
ditions required in a projection method. We will derive a linear and unconditionally
stable scheme that is partially decoupled. Despite the fact that the computation of
the phase field variable is still coupled with that of the velocity, we only need to solve
a linear system in reduced size without the use of Picard/Newton iterations, which
greatly reduces the computational cost.

The second idea is to incorporate the artificial compression technique with an
SAV decoupling strategy for developing highly efficient, fully decoupled schemes. The
SAV approach was first studied in [33, 34] for gradient flows. It introduces a new
scalar auxiliary variable that can be used to form a modified system of the underlying
partial differential equation (PDE) system so that the nonlinear part can be can-
celed out in stability analysis, leading to unconditionally stable methods for solving
nonlinear systems [27, 29]. Following the new decoupling strategy studied in [22] for
the Stokes-Darcy equations using the SAV idea, we find it is also possible to cancel
out the coupling terms that usually lead to the time step constraints in a typical
decoupling method for the ACNS model. This is achieved by introducing a scalar
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auxiliary variable to handle the lagged coupling terms in the ACNS model, namely
the phase induced stress term in the NS equations and the fluid induced transport
term in the Allen—Cahn equations. A modified PDE system which is equivalent to the
original ACNS model is then formulated, and an efficient, fully decoupled discretiza-
tion method can be derived and proved to be long time stable without any time step
constraints. The SAV decoupling strategy studied here can be easily extended to
other popular time stepping methods and produce a family of unconditionally stable
numerical schemes.

The rest of this article is organized as follows. In Section 2, we briefly intro-
duce the ACNS model. In Section 3, the CNLFAC numerical scheme is presented
and proved to be unconditionally long time stable. In Section 4, the fully decoupled
ACSAV scheme is proposed and proved to be unconditionally stable. Details for its
efficient implementation are also provided; Another version of ACSAV that treats
the convection term fully explicitly in the NS equations is presented in Section 5.
In Section 6, we perform various numerical simulations to demonstrate the stabil-
ity, feasibility, and computational efficiency of the three proposed algorithms. Some
concluding remarks are made in Section 7.

2. The ACNS model. Consider the modeling of a mixture of two immiscible,
incompressible fluids in a bounded Lipschitz domain  in R? (d = 2,3). To label
the two different fluids, a phase-field variable (macroscopic labeling function) ¢ is

introduced, i.e.
= 1, for fluid 1,
9(@,t) = —1, for fluid 2,

with the discontinuity of the function smoothed by a thin, smooth transition region
of width O(n) (n < 1). The total energy W of the system is a sum of the kinetic
energy and the Ginzburg-Landau type of Helmholtz free energy:

W= [ (G 2T+ pi6)) Jas,

where u is the fluid velocity, A is related to the surface tension parameter. The
second term in the expression of W contributes to the tendency of mixing between
the materials, while the third term, the double-well bulk energy F(¢) = 477 (% —1)2,
represents the tendency of separation. As a consequence of the competition between
the two types of interactions, a diffusive interface with thickness proportional to the
parameter 1 will form in equilibrium.

Assuming a generalized Ficks law holds and the fluid is incompressible, the gov-
erning equations of the Allen-Cahn-Navier-Stokes model are derived by minimizing
the total energy in the space of L? [30, 45]. It writes as

hdp+u-Vo=—Mp, (2.1)
é

n= 5 = N0+ £(0), (2:2)

Ou+ (u-V)u —vAu+ Vp = uVe, (2.3)

V-u=0, (2.4)

where f(¢) = F'(¢) = G :1) , o= M is the variational derivative or chemical
potential, p is the pressure, M is the relaxation or mobility parameter of the phase

function, and v is the viscosity parameter.
3



We assume the following boundary conditions for the simplicity of the presentation
of the analysis:

uloo =0, Ondlog =0, Onploa =0.

The analysis can extended to other boundary conditions with minor modification.

Throughout this paper the L2(Q2) norm of scalars, vectors, and tensors will be
denoted by || - || with the usual L? inner product denoted by (-,-). By taking the L?
inner product of (2.1) with p, (2.2) with —9;¢, (2.3) with u, and then using (2.4) and
summing up the resulted identities we can easily get

aw
Cr =~ M=Vl

This means the total energy of the ACNS system is dissipative.

3. CNLFAC method for the ACNS model. In this section we introduce
the Crank—Nicolson leap-frog artificial compression method (CNLFAC) in the semi-
discrete form and prove it is unconditionally long time stable.

In the ACNS equations, the function f(¢) = n%((;ﬁ?’ — ¢) is nonlinear and usually
results in nonlinear semi-discrete schemes that require Picard/Newton iterations for
computation. This makes the computation expensive and takes more simulation time.
For differential equations that involve nonlinearity, linear schemes are usually desir-
able but difficult to design due to stability and convergence issues. For ACNS, only a
few fully linear time stepping schemes are available and most of them are conditionally
stable. A recent paper by Han et al [15] proposed an unconditionally stable, second
order, linear scheme for the ACNS equations adopting an idea of Lagrange multiplier
of [14]. Here we adopt the same idea and combine it with an artificial compression
method based on the Crank—Nicolson leap-frog time stepping method. With the arti-
ficial compression method the computation of the velocity and pressure is decoupled
reducing the size of the linear systems to be solved. Moreover, the pressure can be
updated directly without solving any partial differential equations further reducing
the computational cost. The proposed CNLFAC method is second-order accurate for
all three variables: the phase field ¢, the fluid velocity u, and the fluid pressure p.

Let ¢ = n%((bQ — 1) and thus f(¢) = ¢q. Taking the derivative of ¢ with respect
to t gives Oyq = n%(b@t(b, which can be discretized by the Crank—Nicolson leap-frog
scheme as

qn+1 _ qnfl 2 n¢n+1 _ (bnfl
CO2At TN

oAt 2 At
By introducing the variable ¢, the total energy can be written as
1 Vo>  n?
W:/ <—|u|2+)\(| d +1¢?) ) du. (3.1)
Q \2 2 4

We will use ¢ as an intermediate variable in our algorithm so that a fully linear
scheme could be devised. Let ¢, = nAt, n=0,1,2,--- | N, where N = T/At, denote
a uniform partition of the interval [0, T]. We now propose an unconditionally stable,
second order, linear, artificial compression method given by

ALGORITHM 3.1. Given v~ L, u™, p"~ 1, p®, ¢" 1, o", "%, ¢°, find u™t?t,
p L o™t and g™t satisfying

A(anrl +¢n71 B

o (32)

. n+1 n—1
gt ( )=
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¢t gl = %én (¢n+1 _ ¢n—1) , (3.3)

un—i—l _ un—l
n un+1 +un—1 1 n un+1 _|_ un—l
un+l _|_un—1 1 .
/ANl [ — n = an+l no__
v ( 5 ) + Vp" + M(b Vo 0,
alAt (pt —pn ) + V. u" =0, 3.5
(

where

. n+1l _ in—1 n+1 n—1
grt = 2 mf +(u ;r” )-W", a>0, B>0.

Note that we could rewrite (3.3) as
n ne1, 2 n(mn e
"' =¢q 1+ﬁ¢ (¢ R 1)a (3.6)

and replace ¢"™! in (3.2) so that (3.2) becomes

¢ =AM (AWH ;an_l) +AMg" (nlm” (" —o"™") + q"‘1> =0.

Therefore adding the intermediate variable ¢ does not increase the computational
cost. One still only needs to solve for the primary variables u,p, and ¢ while ¢ is
updated directly using the formula (3.6) in the procedure.

In this algorithm, the artificial compression is incorporated by adding a small
perturbation of 9;p to the mass conservation equation, and discretized as 2aAt? -
%, see (3.5). So the scheme has O(At?) consistency error. The pressure
p" 1 can then be updated directly without solving any additional partial differential
equations.

THEOREM 3.2 (Stability of Algorithm (3.1)). Taking o and 3 such that a8 > 1,

then for any N > 2

N-1

A i in+12 i N |12 é N—1)2 L772 N2 N—-1(2
£ I8+ (VO + SITeN T2 )+ Sl + 1)
n=1
N-1 n+1 n—1
u +u 1 _
A8 UIE P (e )
n=1

A A An?
< (FIV6 + JIVOIR ) + 221 2+ 1P
1 1
2t 2819 w2 4 L (0 1 2809 - 00p?)

1 1 1
+ 50 ([P + 1P°1%) + AP, V- ul) = SAHR, V - uh),

Proof. Taking the inner product of (3.2) with % gives

1 . 1 . unJrl_’_unfl
A2 n+1 n
16 = 5 (90, e



A (Lyganriz _ Liggn-12
+ 5 (§IvemE - 19 (3.7

n+1 + qn—l

nq n+1 n—1 _
m(‘b AR )—0

Taking the inner product of (3.3) with )\nz% gives

n+1 n—1
(¢>“(¢"“ o), ) (3.8)

An?

2 (Il = g =

2A¢

Taking the inner product of (3.4) with “Hl;ium gives

m(||Un+lH2+25||V'U”+1||2) 4At (lu™ M2 + 28]V - w1 ?) (3.9)
n+1 n—1 1
UV = S (o, ¥ V)

1 . un+1+un—1
- n+1 n ~- = _
+ i <¢5 Vo™, ) 0.

2

Taking the inner product of (3.5) with Wfpn_l yields
1 n+1(2 n—12 1 n ,nt+l n—1
Lol ([ ) + L (Tt ) =0 (30)

By adding (3.7), (3.8), (3.9) and (3.10) we have

A1 1 _
e+ ( Vet 4 11967 ) - 27 (3197 + 196 1?)

n+1 + un—l

n n— u
H2 g ) + vV -

7 2
+ 27 (g || (3.11)

1
N (Hun+1H2_’_2ﬁHV un+1|| )

ey (I P + 281V - w"|1?)

4At

(™ * + 281V - u™?) = — ("M + 28]V - u" )

4At 4At
+ 30 ("7 = ) + Sat (" ~ ")
n % (V . un7pn+l +p”—1) — % (pn7 AVARTAEE T v un_l) =0.

The last two terms of (3.11) can be rewritten as

% (v . un’pn+l +pn—1) o % (pn’ v . un-i—l + V . un—l)
1

=5 [0 V) = (", V] - % (", V™) = (" V)]

Then summing up (3.11) from n = 1 to n = N — 1 and multiplying through by At
gives

= A A iy
A0S 18P + (FITOVIP + IVON ) + 2l P 4 1)
n=1
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N-1

+ At Z V||V

n=1

un+1 + un—l
2

124 5 (1™ ? + 2619 - o)
7 (P 4+ 2809 - uN2) + 0t (N7 + [ P)
+ %At(pN,V-uN_l) - %At(pN_l,V~uN) (3.12)
= (G106 + 319601 ) + 21t + 16°1)
.

1
(Il I1* + 2811V - 1) + 7 (l®l* + 2811V - u”[]?)

N

1 1 1
+ 504At2 (Ilp* 1% + [12°(1%) + §At(p1, V-ul) — §At(p°, V-u').

The last two terms on the left hand side of (3.12) can be bounded as, for V5 > 0,

1 1
EAt(pN,V SN — iAt(prl,V u™) (3.13)
ﬁ N—-12 1 2 N 12 B N2 1 2 N—1)2
<Pyv. — At v ~ At .
<GV AR+ DIV 4 Al
So if o > 45, (3.12) reduces to
=1 A A
At Y il + (§1964 P + 190V ) (3.14)
n=1
)\772 _ N-1 un+l_|_un—1 1 B
2+ 102 + A ST I P (VIR )
n=1

A A An?
< (FIVOH+ FIVOIR ) + 12+ 141
1 1
L (2 2809 2) 4 () + 2809 - 0)2)

1 1 1
+ gaAtz (Ilp*1% + [12°(1%) + §At(p1, V) - 5At(p°, V-ul).

4. ACSAYV method for the ACNS model. Inspired by the new decoupling
strategy proposed in [22], we now proceed to incorporate the artificial compression
technique with an SAV decoupling strategy for developing a highly efficient, fully
decoupled scheme. This is achieved by introducing a scalar auxiliary variable to
handle the lagged coupling terms in the ACNS model, namely the phase induced
stress term in the NS equations and the fluid induced transport term in the Allen—
Cahn equations. An artificial compression based scalar auxiliary variable scheme
(ACSAV) is then derived and proved to be long time stable without any time step
constraints.

Define a scalar auxiliary variable r(t) by

(1) = eap( 7).
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Then we have

dr 1 1
dt:—TT+mm(%%A(W~V@u—w-vm@dm (4.1)

To decouple the phase field variable ¢ and fluid velocity u, one usually needs to lag
the coupling terms u - V¢ in (2.1) and uV¢ in (2.3) to the previous time steps and
this inevitably results in a time step condition to ensure long time stability. The

introduction of the zero term / ((u Vo) — (u- Vqﬁ),u) dx in (4.1) makes it possible
o)

to cancel out the same term in the partitioned scheme with lagged coupling terms.
The governing equations of the Allen-Cahn-Navier-Stokes (ACNS) system are
then equivalent to:

r(t)

Ohb+ ——u Vo = M, (1.2)
exp(—7)
1= M-A¢ +q9), (4.3)
0hq = b0, (4.4)
Oou+ (u-V)u —vAu+ Vp = ﬁqub, (4.5)
exp(—7)
V.-u=0, (4.6)
d 1 1
d—z = _Tr+ea7p(—t)/9 ((u-VqS)u—(u-VqS)u) dz. (4.7)
T

We now propose an unconditionally stable, second order, linear, fully decoupled
ACSAV method given by

ALGORITHM 4.1. Given u™~', u™, p"~1, p*, ¢" 2, ¢"~L, o", ¢" 1, ¢7, r" 71,
™, a >0, 8>0, findu"tt, pntl ontl gt and vt satisfying

¢n+1 _ ¢n71 n+1 + 7,.nfl

"LVt = —Mp" 4.
2At 2exp(— t") ut- Vo i (4.8)
. ¢n+1 + ¢n 1 n+1 + qn—l "
[t = A=A 2 +4 5 "), (4.9)
n+1 n—1 n+1 n—1
" —q ¢ ¢
- [ S 4.1
2At 2¢ 2A¢ ’ (4.10)
un+l _ o n—1

U " n+1 +un—l
oA T 'V)< 2 )

1 n+1 n—1
+ 5(v ~u™) (“;’“) —BALT'V (V- uth =V (4.11)
n+1 n—1 n+1 n—1
2exp(—)
1 3¢n 4¢n 1_~_¢n 2 rh "
+ U Ve, (4.12)
( 2At exp(—5)
alt (pttt —pt ) + V- ut =0, (4.13)
Tn+1 _ ,rn—l 1 7"”+1 + ,,,.71,—1 1 /
— == - [ (W V™" dx (4.14)
2A¢t T 2 e:z:p(f%) Q
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1 un+1+_un—1
_ _ Vo) - " dx.
e o)n

Note that we could rewrite (4.10) as (3.6) and replace ¢"*! in (4.9) so that (4.9)
becomes

n+1 n—1
ﬂn — )\(_A%) + )\(qnfl 4 %(ﬁn (¢n+1 _ ¢n71) )d)n (4'15)

Therefore, as in the CNLFAC scheme, adding the intermediate variable ¢ does not
increase the computational cost. Although the variables ¢"+! and u™*! are coupled
with #”*! in Algorithm 4.1, we will present later that an efficient splitting procedure
can be employed to separate the computation of "+ from ™! and u"*! from r"t!
resulting in a fully decoupled scheme for computing ¢"*1, u?*t, pnt1.

THEOREM 4.2. [Stability of Algorithm (4.1)] Taking o and 8 such that af > 1,
then for any N > 3

= A A A
At 3 P+ (FIV6N 12 + V12 4+ 201 + 1P
n=2

N-1

1 1 w1
+ NP+ SN TP+ A [ V————— |
4 4 ~ 2
N-1
1 LA £ro” !
ZW 1+ NP Z| ? (4.16)

| >

(3

+

An
V621 + FIV6 ) + (I + 1)

—_

1
(l?l* + 281V - w1%) + 5 (e |* + 281V - u' %)

4
1
2

1
@A (P11 + 1pM1%) + (2 + 1)
1 1
+ iAt(pg, V-oul) - iAt(pl, V- u?).

Proof. Taking the inner product of (4.8) with g”, the inner product of (4.9)

with —%, the inner product of (4.10) with %% and then adding
the equations together gives
rtt4nt 2, +12 —12
W(U”'V¢",ﬁ”)+M||ﬁ”H 4At(||V<l5" 17 = 1IVe" 1%
+ 2L (g = ) =0, (417)

Taking the inner product of (4.11) with % gives
1

s (2 2819 w4 7) = T (a2 + 28V - ) (4.18)
n+1 n—1 1
AV G 01T T Y )
n+1 n—1 n+1 n—1
+r U +u
— - nv n, .
2exp(—1%) W've 2 )
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Taking the inner product of (4.13) with % yields
1 n+1(2 n—12 1 n . n+l n—1
Lol (R = I ) + 5 (T ) 0. (419)

Taking the product of (4.14) with % yields

1 n+1)2 n—12 I AT
B GO e ) WA A
n+1 n—1
+r / _
=L T (Ve E da
2exp(—%) Ja
n+1 n—1 n+1 n—1
S / Y Gy e (4.20)
2exp(—7) Ja 2

By adding (4.17), (4.18), (4.19) and (4.20) we have

Anp?

: At(ﬂq"w? — )

(™= + 28]V - u”H)

MIa™* + (Vo2 — Vo) +

4At 1l

- n+1(2 Lant1
+ g (17 + 2607 - )2)

4At
n+1 n—1
+u 1 e
1+ Sadt (" = ")

2

1 1 ottt
n+1)12 _ |,.n—1|2 = 2

g (R = )

1 1

+§(V'un,pn+l +pn—l) _i(pn’v_un—i—l_"_V.un—l) =0.

+V||V

(4.21)

The last two terms on the left hand side of (4.21) can be rewritten as

(Va7 = 5 (T V)

N | =

= % (", V) = (" Vu ] = S [0, V) = (0" Vo u)]

Then summing up (4.21) from n = 2 to n = N — 1 and multiplying through by At
gives

A _ An? _
AtMZIIu 2+ (U9 + F196%412) + 2l + 1)

+1

4

1 _ _
(™)1 + 28V - u™|?) + Z(IIUN PP+ 28]V - wNHP)
n+1
+u" 1 _
Z IV ey Laad (Y + Y R)
N—-1

1 LA —|—7"" :
K(IT 2+ [ ZI ? (4.22)

AN,V ) LAY T )
10



A A An?
= (§I9612 + IV ) + 21 + ')

1 1

12 4 281 212) + & () + 2809 - ul)?)
1 1

+ 50 ([Ip%* + IP'1%) + (I + %)
1 1

+ §At(p2, V-u') - iAt(pl, V- u?).

The last two terms on the left hand side of (4.22) can be bounded as

1 1
éAt(pNa V- uNil) - §At(pN717 V- U‘N)

/8 N—-1)2 1 211N 12 6 N 12 1 21, N—12
<Ziv. At Ziv. At .
< ZI9 N + AR + 21V |2 + AR

So if a > 45, (4.22) reduces to
N-1
. A A _ An? _
At 3 P+ (FIVON 12 + IV 2 4+ 201 + 1P
n=2
N-1
1 un+1 +un—1
T A TG ERWIV | A
n=2
N 1
1 n+1+ n—1
+Z(|TN|2+|7,N 1 2 Z Tr r |2
A )\172
< (JIvere+ ||v¢1||2) AT 12 4 ')
1 1
212+ 2819 2%) + 5 (2 + 289 ')
1 1
+§aAt2(||p2||2+Hp1H2) + 3P+ )
1
+ =At(p*, V- ut) - fAt( V).

2

Implementation of the ACSAV algorithm. As mentioned before, in the
original form of Algorithm 4.1, the variables ¢"! and u”*! are coupled with r™*1.
Here we present an efficient splitting procedure to separate the computation of ¢m+!
from r?*! and v™*! from r?t!. We will introduce a new scalar V"1 to decompose
#"! into two parts yielding two subproblems for the two components ¢nt1, ¢ntl
respectively, which do not contain r"*!. Similarly, we do a decomposition for u"*1.
A separate equation for updating V"1 (hence 1) will be derived.

Let

r +1+,rn 1

Vn+1 _
2exp(—%)

¢n+1 qgn+1+vn+1q‘§n+17 un+1 :an-i-l_"_vn-&-lﬁn—i-l. (423)

Then instead of solving (4.8), (4.15), and (4.14), we solve the following two subprob-
11



lems for ¢"+1, g+l respectively.

g£n+1 o ¢)n71 Y <A g£n+1 + ¢)n1>

2At 2
(ACSAV Subproblem 1)

+AMg" (7712¢” (¢3"+1 - ¢"—1) + q"_l) =0.

(5n+1
2At

J)nJrl

+u™ Vo™ — AM <A ) + AM " (7712¢"¢3"+1> =0.

(ACSAV Subproblem 2)

Instead of solving (4.11), (4.12), and (4.14), we solve the following two subproblems
for 4™t 4! respectively.

,&nJrl _ unfl N ﬁnJrl + unfl 1 " ,&nJrl + unfl
T TV <2> Vo ><2)

~n+1 n—1
RSN B

(ACSAV Subproblem 3)

—BALTIV (V@ =V u ) —wA (

on+1 ~n+1 1 “n+1
U2At + v)u2 3V un)u2
g+l (ACSAV Subproblem 4)
—BALTIV (V-4 —vA < > ="V

Now we can derive an equation for V"1, From (4.23), we have
t'ﬂ
il = 2exp(—?)V"Jrl — L (4.24)

From the decomposition of "1 and equation (4.8) we have the splitting of " as

ﬂn —_ I[Ln+1 + Vn+1ﬂn+l,

where
At = —% (W) , (4.25)
= —% (éz +um- v¢"> . (4.26)
Plugging the expression (4.24) of 7"*! into (4.20) gives
(3  plean(= ) (V)2 = Ceap(~ )ty

_ (Vn+1)2/(un . ng”)ﬁ”“ dx+Vn+1/(un . W)")ﬂ”“ dx
Q Q
on+41 ~n+1 n—1
—(V”+1)2/(L ~V¢")'/L”dx—V”+1/(7u e " da
o 2 Q 2
12



Then we can compute V™! by solving

Artlyntl g prtl = g, (4.27)

n+1 1 1 2t" n nyvn+1 ,anJrl n n
A :(KtJrf)@ffp(*T)* Q(U V") p" T da + Q( 5 V¢ ) - u"da,

(4.28)
n—1 n ~n+1 n—1
+u
Bn+1:_T7 7 _/ v An+1d /uivnnd
s — [ vt [ (g o) da
(4.29)
THEOREM 4.3. The scalar equation (4.27) admits a unique solution.
Proof. Taking the inner product of (4.26) with "1, we get
1 .
= [ v e = MR ¢ S @G (430)
Q 2A¢t

Plugging (4.26) into ACSAV Subproblem 2, and taking its inner product with o,
we obtain

n in A n in
CRNTDE ||V¢ 2+ ?Hfb P2 (4.31)
Adding (4.30) and (4.31), we have

- [T e = M IV IR > 0. (432
Q

4At‘ 2AtH¢

Taking the inner product of ACSAV Subproblem 4 with ﬁTﬂ, we get

’l\ln+l n 1 > V’Vl AL
[ 590w do = P+ 9 R+ T 0. (43)

From (4.32), (4.33) and the expression of A"*! in (4.28), we conclude that
A" > 0.

Therefore, the scalar equation A"tV "+ 1 B+l — 0 admits a unique solution. O
To summarize, Algorithm 4.1 can be implemented in the following way:

e Step 1: Solve ¢"! and ¢"+! from ACSAV Subproblem 1 and 2 separately;
Step 2: Compute 4" and "™ by (4.25) and (4.26);
Step 3: Solve 4"t and "+ from ACSAV Subproblem 3 and 4 separately;
Step 4: Calculate V"1 from (4.27);
Step 5: Calculate ¢t and u"*! from (4.23) ;
Step 6: Calculate p"*! from (4.13).

5. ACSAV method with explicit convection term for the ACNS model.
The nonlinear convection term in the NS equations can be made explicit in time dis-
cretization using the scalar auxiliary variable presented in Section 4. We now present
another version of the ACSAV method that treats the convection term fully explicitly.

13



This method is also unconditionally long time stable, second-order accurate, linear,
and fully decoupled.
With ulgpo =0 and V - u = 0 we have

1 1
/(u~V)u-udx:f/ u-ﬁ|u|2ds—7/(V~u)|u|2daﬁ:0.
Q 2 Joq 2 Ja

So the ACNS system is equivalent to
Equation (4.2) — (4.4), Equation(4.6),

Opu + L_)L(UNV)U—I/AU—I—V;D: L_)LNVQS, (5.1)
exp(—) exp(—7)

dr 1 1

Pt + m /Q ((u Vo)u— (u-Vo)u+ (u-Vu- u) dz. (5.2)

The ACSAV method with explicit convection term then writes

ALGORITHM 5.1. Given u™ 1, u™, p"~1, p”, "2, "L, ¢", ¢" %, 7, v~ L, v,
a>0, >0, findutt, prtl ¢n Tt ¢t and vt satisfying equation (4.8)-(4.10),
equation (4.12), equation (4.13), and

un+1 _ unfl ,rn+1 + ,r.nfl
_ nv n _ At*lv V n+1_v' n—1
2At + 2exp(—4) (u Ju" =8 (V- ™)
u7n+1 +un—1 rn—&-l +rn—1
VA ————— |+ VP = ——————u"V", 5.3
7,.nJrl _ 7,,nfl 1 T,nJrl + 7,.nfl 1 /
=~ + = (u™ - Vo™)a" de,
2At T 2 eaxp(—%) Jo
1 / un+1 + un—l
— _ -Vo") - p"tdx
-5 Jo T 2 )
1 n+1 n—1
+ / (u" - V)u" - e A (5.4)
exp(—7) Jo 2

THEOREM 5.2 (Stability of Algorithm (5.1)). Taking o and 8 such that o8 > 1,
then for any N > 3 the inequality (4.16) holds.

Proof. Following the steps in the proof of Theorem 4.2 exactly, we obtain (4.16).
|

Implementation of the ACSAV method with explicit convection term.
The implementation of the ACSAV method with explicit convection term (ACSAV-
ECT) is very similar to the original ACSAV algorithm. We will solve ACSAV Subprob-
lem 1 and 2 for (;AS"‘H, é”“ respectively, and then solve the following two subproblems
for a7+, 4! respectively.

ﬂnJrl _ unfl
SAT BALTIV (V- att — v -
ﬂnJrl +un71
A <2> 4Vp" =0,  (ACSAV-ECT Subproblem 3)
ntl e
sap T V)ut - BALTIV (V-4 TY) —vA ( > = pu"Ve".

(ACSAV-ECT Subproblem 4)
14



prtl g pn—1

Plugging the expression (4.24) of #"*! into (5.4)-“—F— gives
1 2t™ 1 t"

(Alt )exp( 7 )(Vn+1)2 Eel‘p(—?) n—lvn—H (5.5)

= V"“/Q(u"~v¢”)ﬂ"“ da + (V)2 /( - V")t da,

~n+1 n—1
—yrtt /Q(iu —|2—u V") -t dr — (V)2

) - p"dx

,&n—i—l + 1 v/,L+1

+V"+1/(u"-V)u"-fdm+ (vrthy2
Q

\

[\
&
8

Then we can compute V™! by
Anflyntl g pntl — (5.6)

where

= (b (-3 = [ vt s [ (5 ven e
At T T o o

2
— /Q(u" -V)u™ - vn2+l dex, (5.7)
Bl 7”;&1 exp(f%) _ /Q(u” VM)At dr + /Q(MJrl J2ru" - Vo) p"dx
_ /Q(un v M dz. (5.8)

THEOREM 5.3. The scalar equation (5.6) admits a unique solution.
Proof. We have (4.32) already. Then taking the inner product of ACSAV-ECT

Subproblem 4 with %ﬂ, we get

,&n—f—l an-{-l
/( V") - u"dr — / (u™ - V)u™ - dx
o 2 Q 2
1 3 (5.9)
_ = lsn+1 2 un+1 2 vn+12
= a I+ g A IV a "+ ||V |
> 0.

From (4.32), (5.9) and the expression of A"t in (5.7), we conclude that
A" > 0.

Therefore the scalar equation (5.6) admits a unique solution. O

6. Numerical Experiments. In this section, we first verify the convergence
order of the proposed CNLFAC scheme (Algorithm 3.1), ACSAV scheme (Algorithm
4.1), and the ACSAV-ECT scheme (Algorithm 5.1) with numerical examples. Then
several numerical tests of the phase field fluid model are performed to verify the
stability, effectiveness, and efficiency of these schemes.

Since the simulations by the ACSAV algorithm and the ACSAV-ECT algorithm
are extremely close, in sec. 6.2-6.4 we only report the results for two algorithms:
CNLFAC and ACSAV. Computatinoal efficiency will be reported in sec. 6.5 for all
three algorithms.
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6.1. Convergence test. The studied phase field model does not have a natural
forcing term, which makes it difficult to construct a solution to be used in a conver-
gence test. Herein we verify the convergence rate of the algorithms by computing
the Cauchy difference, as is done in [15]. Specifically, we run the simulations on four

successively refined meshes with mesh size h = M%,l = 1,..,4. We also take a
constant ratio of the time step and mesh size so that At = %h. Then we compute

the Cauchy difference of the solutions at two successive levels, namely vl”jll — ot

at time t"*t! = (n 4+ 1)At = 0.1, for v = ¢, uy, us,p, | = 1,2,3, 4.
The initial condition for the phase variable ¢ is set as

#° = 0.24 cos(2mz) cos(2my) + 0.4 cos(mx) cos(3my).

For velocity and pressure, we solve the following Stokes problem with the Taylor-Hood
element pair P? — P! and use the solution as the initial condition (u°, p°):

—vAu+ Vp = p°ve°,
V-u=0,

where ;¥ = A\(—Ag¢® + f(¢°)). Note that the initial condition (u°,p°) obtained from
solving this problem satisfies the discrete inf-sup condition, which guarantees stability
of the simulation in the first step.

The proposed CNLFAC algorithm is 3-level, the ACSAV algorithm and ACSAV-
ECT algorithm are 4-level, so a 2-level method is needed to initialize the first two or
three steps in time. We use the following first order, implicit algorithm to carry out
this computation [10].

ALGORITHM 6.1 (2-level, first order scheme for ACNS). Given u™ and ¢", find

u™t pntland o™t satisfying
P =AM (A" — fo(7T,0™M)) =0, (6.1)
u71,+1 —un 1 .
IR Va1 — p Ayt 4 vpntt 4 qu"“ -Vom =0, (6.2)
V-u"tt =0, (6.3)
where

n+1 n
in+1 _ (rb B (b
o= At

fole™ ") =

+ "t Ve,

i(¢n+1)2+ (¢n)2 ¢n+1 +¢n B i
772 2 2 772

o

Algorithm 6.1 contains implicit nonlinear term fo(¢"*!, ¢"), which only appears in
the first equation. So we use a Picard iteration algorithm to decouple the computation
of ¢ and u and apply Newton’s method to the first nonlinear equation for the update
of ¢. This procedure is listed in Algorithm 1.

We now test the convergence rates of the CNLFAC, ACSAV, and ACSAV-ECT
schemes. The parameters in this problem are n = 0.1, M = 10, A\ = 0.0001,» = 0.8.
The stabilization parameters are set as

a=1, 3=0.25.
16



Algorithm 1 Picard iteration for Algorithm 6.1

1: procedure (GIVEN u™, ¢", FIND u"*!, pntl AND ¢"T1)

2 u™tl 0

3 u?efnlp —un

4: while ||u"*! — u?e‘,’;fpﬂ > tolerance do

5 Solve (6.1) with u"*! = uj.f - using Newton’s method and get ¢"+
6 Then solve (6.2)-(6.3) with ¢" ! and get u"*?

7 n+1 « yntl

utemp

TABLE 6.1
Cauchy differences of numerical solutions computed by the CNLFAC scheme with inputs n =
0.1, M =10, A = 0.0001,» = 0.8.

LIV = Ve [ rate [ [Vupi" = Va1 [ rate [ [lppi" —pp [ | rate

1 3.7409e-01 — 2.5467e-05 — 5.4504e-05 —

2 9.7100e-02 1.95 6.7258e-06 1.92 1.2777e-05 2.09

3 2.4751e-02 1.97 1.4333e-06 2.23 1.7790e-06 2.84

4 6.2438e-03 1.99 2.1241e-07 2.75 3.6667e-07 2.28
TABLE 6.2

Cauchy differences of numerical solutions computed by the ACSAV scheme with inputsn = 0.1, M =
10, A = 0.0001,v = 0.8.

[Vorr —Vor 1 | rate || [Vupgy — Va1 | vate || [pigs —pp 1 | rate

! I+1 141

1 3.7412e-01 — 2.9741e-05 — 2.4582e-05 —

2 9.7102e-02 1.95 7.0300e-06 2.08 7.5678e-06 1.70

3 2.4751e-02 1.97 1.4496e-06 2.28 1.7154e-06 2.14

4 6.2438e-03 1.99 2.1416e-07 2.76 3.6739e-07 2.22
TABLE 6.3

Cauchy differences of numerical solutions computed by the ACSAV-ECT scheme with inputs n =
0.1, M =10, A = 0.0001,» = 0.8.

L Vo — Ve | rate | [Vurgy — Va1 [ rate [ pps —pp ' | rate
1 3.7412e-01 — 2.9747e-05 — 2.4589e-05 —

2 9.7101e-02 1.95 7.0320e-06 2.08 7.5611e-06 1.70
3 2.4751e-02 1.97 1.4501e-06 2.28 1.7144e-06 2.14
4 6.2438e-03 1.99 2.1425e-07 2.76 3.6585e-07 2.23

Here we use the P2 finite element space for variable ¢, and the P2-P1 finite element
spaces for v and p. From the consistency error, one would expect second order con-
vergence rate for ¢ in H' semi-norm, v in H' semi-norm, and p in L? norm, since the
numerical error is O(h? + At?) = O(At?).

The Cauchy differences of numerical solutions computed by the CNLFAC scheme
are listed in Table 6.1, for the phase field ¢, the fluid velocity u, and the fluid pressure
p, illustrating that the CNLFAC algorithm is second order in time convergent. For
the ACSAV scheme, the Cauchy differences are listed in Table 6.2, also showing
second order in time convergent. Very similar results for the ACSAV-ECT scheme are
presented in Table 6.3. Note that for the pressure projection scheme, which requires
artificial boundary conditions for the pressure, the rate of convergence for pressure p
is first order, whereas, the artificial compression method we employ here avoids the
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(a) CNLFAC. (b) AVSAV.

Fic. 6.1. Total free energy computed by the CNLFAC algorithm and the ACSAV algorithm.

requirement of artificial boundary conditions for p.

6.2. Stability on simulating spinodal decomposition. In this section, we
perform several tests on simulating the spinodal decomposition of binary fluids by
referring to [16] and [41] and show that our schemes satisfy the energy law, which in
turn illustrates the long-time stability of our schemes.

The initial condition for the velocity and pressure is zero in the computational
domain © = [0, 27]2. The phase field variable ¢ is initially treated as a random field

¢" = ¢ +r(z,y)

with a mean component ¢ = 0.0 and random r € [-0.001,0.001]. The parameter
values are set as n = 0.1, A = 0.01, M = 100, v = 1.0. Under the Allen—Cahn
dynamics, the mixture undergoes a rapid phase separation, in which phases of the
same composition rapidly aggregate, then develops to a slower coarsening process in
which smaller droplets are graduately absorbed by larger ones.

In order to verify that the CNLFAC and ACSAV algorithms maintain energy
stability without any time step condition, we plot the evolution chart of the total
free energy (3.1) computed with various time step sizes, as shown in Fig. 6.1. In
Fig.6.1(a), all the energy curves have a trend of monotonic decay, which confirms
the unconditional stability of CNLFAC algorithm. Similarly, Fig.6.1(b) shows the
monotonic evolution of the energy for all time step sizes, so the unconditional stability
of the ACSAV algorithm is illustrated. We set the time step to be At = 0.01, we plots
snapshots of the curves of ¢ at different times using both CNLFAC and ACSAV
algorithms, respectively. In Fig. 6.2(b) and Fig. 6.2(a), we observe that the final
equilibrium solutions in both algorithm simulations are circular.

In addition, Fig. 6.3 plots the evolutions of the auxiliary variable V™! computed
in the ACSAV algorithm with different time step sizes ranging from 0.01 to 0.00125.
The magnitude of V™! is always close to 1, which implies the ACSAV algorithm is
stable and convergent.

6.3. Shrinking circular bubble. We refer to [41] to simulate the shrinking
process of a circular bubble in the computational domain 2 = [0,27]2. The initial
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(a) Snapshots are taken by CNLFAC algorithm at ¢ = 0.15, ¢t = 0.3, ¢t = 0.75, t = 1.0, t = 2.0 and
t =3.0.

n r Y VW W S

) Snapshots are taken by ACSAV algorithm at t = 0.15, ¢t = 0.3, t = 0.75, t = 1.0, t = 2.0 and
=3.0.

F1G. 6.2. The 2D dynamical evolution of the profile ¢ of the spin decomposition instances under
the CNLFAV and ACSAV algorithms.

1.2 T T T :
—8— At=0.01
1145 - —F— At=0.01/2 | |
—— At=0.01/22
11 —h— At=0.01/2°] |
* L )
c> 1.05
1k—‘+a—‘ﬁk‘—
0951 |
0.9 :
0 2 4 6 8 10

Time

FIG. 6.3. The evolution of V" t1 computed in the ACSAV algorithm.

conditions are given as follows:

°(z,y) = 1+ > tanh(~— Vi - fg; +(y —ui)?

i=1

u(z,y) =0, p’(z,y) =0

where 71 = 1.4, 710 =05, 21 =7 — 0.8, xo = 7+ 1.7, y; = y» = 7. The configuration
profile of the initial condition of ¢ is given in the first pictures of Fig. 6.4 and Fig. 6.5.
It shows two circles with different radii in the initial time step. The parameters of
the problem are n = 0.04, A =0.01, M =10, v = 1.

We use CNLFAC and ACSAV algorithms to solve the ACNS system with time
step size At = 0.025. Fig. 6.4 and Fig. 6.5 depict the profile state of the phase
field variable ¢ at different times until steady state occurs. Due to the influence of
roughening, the small circle is absorbed by the large circle, and the volume of the
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F1c. 6.4. The variable ¢ computed by CNLFAC algorithm att =0, t = 0.5, t = 0.75, t = 1.0
and t = 1.25. The parameters are n = 0.04, A\ = 0.01, M = 10,v = 1, At = 0.025,Q = [0, 27] X [0, 27].

FiG. 6.5. The variable ¢ computed by ACSAV algorithm att =0,t=0.5,t=0.75, t = 1.0 and
t = 1.25. The parameters are n = 0.04,\ = 0.01, M = 10,v = 1, At = 0.025,Q = [0, 27] X [0, 27].

small circle gradually decreases. At ¢ = 1.25, the small circle disappears.

6.4. Shape relaxation. In this section, we refer to [15] to simulate the merging
process of two circular bubbles using the ACNS system.

In the numerical experiment, the domain is set as Q = [0,1.5] x [0,1.5] and the
initial conditions are given by

¢ (w,y) =1+ Ztanh(” — V(- w;")z + v - v)?,

u(z,y) =0, p’(z,y) =0

where r; = 0.25, ro = 0.25, 1 = 0.5, x5 = 1, y; = y2 = 0.75. In this simulation, the
parameters are n = 0.02, A = 0.01, M =10, v =1, At = 0.005.

Fig. 6.6 shows the merging process of two circular bubbles simulated by the CNL-
FAC algorithm. We find that, because of the surface tension, two adjacent circles
quickly join together, gradually merge, and relax into a circle with the least sur-
face energy. Fig. 6.7 illustrates a similar process simulated by the ACSAV scheme.
Apparently, simulations by the two schemes are almost identical.

6.5. Computational efficiency. In this subsection, we present the CPU time
for simulating spinodal decomposition in sec. 6.2 and shape relaxation in sec. 6.4, by
using the CNLFAC, ACSAV, and ACSAV-ECT algorithms.

The CPU time are reported in Table 6.4. To be specific, the CPU time for
simulating spinodal decomposition is counted with 7' = 5, At = 0.01, h = 27/80; and
the CPU time for simulating shape relaxation is counted with T' = 0.9, At = 0.005,h =
1.5/80. From Table 6.4 one can see that the ACSAV algorithm has a significant
improvent on computational efficiency as compared to the CNLFAC scheme, as the
CPU time can be reduced to 26%. The ACSAV-ECT scheme features a further
reduction on computational time, since the execution time is 7% of that for CNLFAC
method. Overall, the ACSAV-ECT scheme outperforms the other schemes since it is
much faster while preserving similar accuracy.
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F1G. 6.6. The process of merging and relaring of two kissing circles obtained by the CNLFAC
algorithm. From left to right, top to bottom, t =0, t = 0.1, t =0.2, t = 0.3, t = 0.5 and t = 0.6,
n=0.02, A=0.01, M =10, v =1, At = 0.005.

FiG. 6.7. The process of merging and relaxing of two kissing circles obtained by the ACSAV
algorithm. From left to right, top to bottom, t =0, t = 0.1, t =0.2, t = 0.3, t = 0.5 and t = 0.6,
n=0.02, A=0.01, M =10, v =1, At = 0.005.
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TABLE 6.4
CPU times for simulating spinodal decomposition in sec. 6.2 and shape relaxation in sec. 6.4. The
CPU time is also quantified in percentage relative to the CNLFAC scheme.

Scheme CPU time for sec. 6.2 | PCT || CPU time for sec. 6.4 | PCT
CNLFAC 7356.9s 100% 2701.0s 100%
ACSAV 1912.8s 26.0% 640.2s 24%
ACSAV-ECT 515.5s 7.0% 177.9s 6.6%

7. Conclusion Remarks. In this paper, we have proposed three linear, uncon-
ditionally long time stable, second order, decoupling methods for solving the ACNS
system. The first method, namely the CNLFAC scheme, is based on the Crank—
Nicolson leap-frog time discretization, the Lagrange multiplier method for linearizing
the Allen—Cahn equations, and an artificial compression technique for decoupling the
velocity and pressure in the NS equations. The second scheme, namely ACSAV, is
formulated by incorporating an SAV decoupling strategy into the CNLFAC method
so that the Allen—-Cahn and Navier—Stokes equations are numerically decoupled and
a highly efficient, fully decoupled scheme is built. The third is another version of AC-
SAV with explicit convection term, i.e. ACSAV-ECT. We prove that all three schemes
are unconditionally stable without any time step conditions. Numerical experiments
are performed to verify that our schemes are of second order accuracy in time and un-
conditionally stable. Efficiency tests show that the ACSAV and ACSAV-ECT schemes
can significantly reduce the execution time as compared to the CNLFAC scheme.

It is worth noting that there are very few second order, unconditionally sta-
ble, fully decoupled numerical schemes for solving hydrodynamics coupled phase field
models. The idea here (CNLF+AC+SAV) serves as a template for designing un-
conditionally stable and fully decoupled schemes for solving other related phase field
models, such as the Cahn-Hilliard-Navier—Stokes equations, the Cahn-Hilliard-Hele—-
Shaw system, and phase field fluid models of variable densities.
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