
FAST AND ACCURATE ARTIFICIAL COMPRESSIBILITY ENSEMBLE ALGORITHMS

FOR COMPUTING PARAMETERIZED STOKES-DARCY FLOW ENSEMBLES

NAN JIANG∗ AND HUANHUAN YANG †

Abstract. Accurate simulations of the Stokes-Darcy system face many difficulties including the coupling of flows in two
different subdomains via interface conditions, the incompressibility constraint for the free flow and uncertainties in model
parameters. In this report, we propose and study efficient, decoupled, artificial compressibility (AC) ensemble schemes based
on a recently developed SAV approach for fast computation of Stokes-Darcy flow ensembles. The proposed algorithms (1) do
not require any time step condition and (2) decouple the computation of the velocity and pressure in the free flow region, and (3)
result in a common coefficient matrix for all realizations after spatial discretization for which efficient iterative linear solvers such
as block CG or block GMRES can be used to greatly reduce the computational cost. We prove the long time stability under two
parameter conditions, without any timestep constraints. In particular, for one single simulation, they are unconditionally stable
schemes. Several numerical tests are presented to demonstrate the efficiency of the algorithms and illustrate their applications
in realistic flow problems.

1. Introduction. The Stokes-Darcy model arises in many geophysical and biological applications, such
as the coupling of surface and groundwater flows, oil filters and blood filtration through vessel walls. Its
numerical approximation has been a subject of intensive study for recent decades, see [6, 8, 15, 16, 19, 25,
46, 60, 63, 64, 73, 80] and the references therein. Despite the fact that highly accurate numerical methods
have become available, accurate simulations and predictions of the coupled flows are still infeasible in many
engineering and industrial applications due to inherent uncertainties in the physical parameters and high
demand for computer resources for uncertainty quantification (UQ). For many popular UQ methods, e.g.,
multilevel Monte Carlo method [2], quasi Monte Carlo method [58], centroidal Voronoi tessellations [77], Latin
hypercube sampling [38], non-intrusive polynomial chaos methods [37, 76], stochastic collocation methods
[1, 88, 74, 24], the computational burden lies in repeated simulations of the underlying physical model within
a prescribed simulation time window. For instance, in numerical weather prediction, the simulation needs to
be finished in a certain amount of time for the prediction to be useful. In such simulations, spatial resolution
is often sacrificed to balance the need of computing a sufficient number of realizations and the limitation of
available computer resources.

To undertake this challenge, efficient ensemble algorithms [47, 48, 43, 35, 36] have recently been proposed
to facilitate fast and accurate simulations of flow ensembles. These are specially designed algorithms that
compute all the realizations at one pass resulting in linear systems with a common coefficient matrix that can
be efficiently solved with block solvers, such as block CG [22], block GMRES [23]. This ensemble timestepping
idea has been extensively tested in different flow problems and shown to be highly efficient in terms of both
storage and computational time, e.g., Navier-Stokes equations [33, 34, 32, 42, 43, 45, 54, 55, 83, 84], natural
convection [20, 21, 44], fluid-fluid interaction [12], MHD flows [7, 53]. Moreover it is competitive in accuracy
in comparison to traditional numerical methods. For Stokes-Darcy flows with random hydraulic conductivity,
fast ensemble methods were developed in [39, 51, 52, 49, 50].

Timestep restrictions remain a significant limiting factor in practical simulations of fluid flows through
highly heterogeneous porous media. Partitioned methods are growing popular due to their ability to reduce
the size of the discrete problems and thus less computer resources for a prescribed accuracy. But they have to
face extra timestep constraints from the decoupling step [63, 64], which degrade quickly as the porous media
become increasingly heterogeneous. In the setting of ensemble simulations, this difficulty remains and may
worsen as the fluctuation of the parameter appears in the timestep condition and a larger fluctuation may
result in a stricter timestep condition [51, 39, 52]. Thus it is desirable to design a more robust decoupling
strategy to avoid such situations and ensure the partitioned schemes achieve their expected efficiency. In [56],
a new decoupling strategy was proposed based on the scalar auxiliary variable (SAV) idea, where a SAV was
introduced to handle the lagged coupling terms in the Stokes-Darcy model. This leads to a modified partial
differential equation (PDE) system which is equivalent to the original Stokes-Darcy model, and an efficient,
fully decoupled discrete system can be derived and proved to be long time stable without any timestep
constraints. It is worth noting in [49] an unconditionally stable numerical scheme was developed based
on a combination of the Crank-Nicolson Leapfrog (CNLF) timestepping and an artificial compressibility

∗Department of Mathematics, University of Florida, Gainesville, FL 32611, jiangn@ufl.edu.
†Department of Mathematics, Shantou University, Guangdong, China 515063, huan2yang@stu.edu.cn.

1

drj
dt

= − 1

T
rj +

1

exp(− t
T)

(cI(uj , φj)− cI(uj , φj)) , (1.3)

where cI(u, φ) is the coupling term from the Stokes-Darcy system, defined by

cI(u, φ) = g

∫

I

φu · n̂f ds.

To decouple the original Stokes-Darcy system into two subphysics problems, one usually needs to lag
the coupling term cI(u, φ) to the previous time steps and this inevitably results in a timestep condition
to ensure long time stability [63, 64] if no other stabilization/decoupling techniques are considered. The
introduction of the zero term cI(uj , φj) − cI(uj , φj) in (1.3) makes it possible to cancel out the same term
in the partitioned scheme with lagged coupling terms.

One other difficulty in numerical solution of the Stokes-Darcy equations is the incompressibility con-
straint in the free flow region. The projection-type methods are the most frequently employed techniques
to overcome this difficulty, which feature lagging the pressure term to the previous time steps and then
projecting the intermediate velocity into the divergence-free space in a later step, [29]. They were first
introduced by Chorin [10] and Temam [86] in the late sixties and have been intensively studied since then
[17, 26, 30, 31, 81, 82, 87] and widely used in the practice. Unlike the projection-type methods, the artificial
compressibility methods (AC) which were also first studied in the sixties by Chorin [11], Temam [85, 86],
Kuznetsov, Vladimirova and Yanenko [59], are less studied in the literature and have only recently received
increasing attention. The AC methods relax the incompressibility constraint by adding a perturbation, e.g.,
εpt, to the mass conservation equation which facilities decoupling the computation of velocity and pressure
in time marching schemes, see [13, 9, 62, 27, 28, 14, 39, 67, 78] for recent developments. We will incorporate
the AC technique with our SAV decoupling strategy to develop highly efficient ensemble simulation schemes.
It is worth noting the outstanding feature of the AC schemes is that the pressure can be updated directly
without solving a Poisson’s equation which avoids the spurious oscillations in the boundary layer of pressure
due to artificial boundary conditions.

Define the function spaces:

Velocity: Xf := {v ∈
(
H1(Df)

)d
: v = 0 on ∂Df\I},

Pressure: Qf := L2(Df)

Hydraulic Head: Xp := {ψ ∈ H1(Dp) : ψ = 0 on ∂Dp\I}.

We next present two SAV decoupled artificial compressibility ensemble algorithms that based on the
Backward Euler (BE) and the second order backward differentiation formula (BDF2) respectively, for fast
computation of the Stokes-Darcy flow ensembles.

Algorithm 1.1 (SAV-BEAC-En). Find (un+1
j , pn+1

j , φn+1
j) ∈ Xf × Qf × Xp and rn+1

j satisfying for
any (v, ψ) ∈ Xf ×Xp,

(
un+1
j − unj

∆t
, v

)

f

+ ν(∇un+1
j ,∇v)f +

∑

i

∫

I

η̄i(u
n+1
j · τ̂i)(v · τ̂i) ds−

(
pn+1
j ,∇ · v

)
f

(1.4)

+
∑

i

∫

I

(ηi,j − η̄i)(u
n
j · τ̂i)(v · τ̂i) ds+

rn+1
j

exp(− tn+1

T)
cI(v, φ

n
j) = (fn+1

f,j , v)f ,

α(pn+1
j − pnj) +∇ · un+1

j = 0, in Df , (1.5)

gS0

(
φn+1
j − φnj

∆t
, ψ

)

p

+ g(K̄∇φn+1
j ,∇ψ)p + g((Kj − K̄)∇φnj ,∇ψ)p (1.6)

−
rn+1
j

exp(− tn+1

T)
cI(u

n
j , ψ) = g(fn+1

p,j , ψ)p,

3

rn+1
j − rnj

∆t
= − 1

T
rn+1
j +

1

exp(− tn+1

T)

(
cI(u

n+1
j , φnj)− cI(u

n
j , φ

n+1
j)

)
, (1.7)

where K̄ =
1

J

J∑

j=1

Kj , ηi,j =
αBJS√
τ̂i · Kj τ̂i

, and η̄i =
1

J

J∑

j=1

ηi,j .

Algorithm 1.2 (SAV-BDF2AC-En). Find (un+1
j , pn+1

j , φn+1
j) ∈ Xf ×Qf ×Xp and rn+1

j satisfying for
any (v, ψ) ∈ Xf ×Xp,

(
3un+1

j − 4unj + un−1
j

2∆t
, v

)

f

+ ν(∇un+1
j ,∇v)f +

∑

i

∫

I

η̄i(u
n+1
j · τ̂i)(v · τ̂i) ds−

(
pn+1
j ,∇ · v

)
f

(1.8)

+
∑

i

∫

I

(ηi,j − η̄i)((2u
n
j − un−1

j) · τ̂i)(v · τ̂i) ds+
rn+1
j

exp(− tn+1

T)
cI(v, 2φ

n
j − φn−1

j) = (fn+1
f,j , v)f ,

α∆t(3pn+1
j − 4pnj + pn−1

j) +∇ · un+1
j = 0, in Df , (1.9)

gS0

(
3φn+1

j − 4φnj + φn−1
j

2∆t
, ψ

)

p

+ g(K̄∇φn+1
j ,∇ψ)p + g((Kj − K̄)∇(2φnj − φn−1

j),∇ψ)p (1.10)

−
rn+1
j

exp(− tn+1

T)
cI(2u

n
j − un−1

j , ψ) = g(fn+1
p,j , ψ)p,

3rn+1
j − 4rnj + rn−1

j

2∆t
= − 1

T
rn+1
j +

1

exp(− tn+1

T)

(
cI(u

n+1
j , 2φnj − φn−1

j)− cI(2u
n
j − un−1

j , φn+1
j)

)
. (1.11)

For Algorithm 1.2, one needs to use another numerical method to compute (u1j , p
1
j , φ

1
j) to start the

algorithm. This can be done with any non-ensemble or ensemble one step method, such as the standard BE
or Crank-Nicolson method, or the SAV-BEAC-En method presented in Algorithm 1.1.

The rest of this paper is structured as follows. In Section 2 we prove the long time stability of both
algorithms without any timestep conditions. The fully decoupled, algorithmic implementation of the schemes
and related linear algebra are discussed in Section 3. In Section 4 we use manufactured analytic solutions to
demonstrate the convergence rates of the proposed schemes, and use several realistic flow problems to test
the performance and demonstrate efficiency of the presented ensemble algorithms. Section 5 concludes the
discussions.

2. Stability Analysis. We denote the L2(Df/p) norms by ‖·‖f/p and the corresponding inner products
are denoted by (·, ·)f/p. Let | · |2 denote the 2-norm of either vectors or matrices. Let kj,min(x), k̄min(x)
be the minimum eigenvalue of the hydraulic conductivity tensor Kj(x), K̄(x) respectively, and ρ′j(x) be the

spectral radius of the fluctuation of hydraulic conductivity tensor Kj(x)−K̄(x). Since both Kj(x) and K̄(x)
are symmetric, |Kj(x) − K̄(x)|2 = ρ′j(x). We then define the following quantities that will be used in our
proof.

η′max
i = max

j
max
x∈I

|ηi,j(x)− η̄i(x)| , η̄min
i = min

x∈I
η̄i(x), k̄min = min

x∈Dp

k̄min(x), ρ′max = max
j

max
x∈Dp

ρ′j(x).

2.1. Stability of SAV-BEAC. We prove long time stability of Algorithm 1.1 under two parameter
conditions, without any timestep conditions.

Theorem 2.1 (Long time stability of Algorithm 1.1). If the following two parameter conditions hold,

η′max
i ≤ η̄min

i , ρ′max < k̄min, (2.1)

then Algorithm 1.1 is long time stable: for any N ≥ 1,

1

2
‖uNj ‖2f +

α

2
∆t‖pNj ‖2 +∆t

N−1∑

n=0

α

2
‖pn+1

j − pnj ‖2 +
gS0

2
‖φNj ‖2p +∆t

∑

i

η̄min
i

2

∫

I

(uNj · τ̂i)2 ds (2.2)

4

+∆t
gρ′max

2
‖∇φNj ‖2p +

1

2
|rNj |2 + 1

2

N−1∑

n=0

|rn+1
j − rnj |2 +

∆t

T

N−1∑

n=0

|rn+1
j |2

≤ 1

2
‖u0j‖2f +

α

2
∆t‖p0j‖2 +

gS0

2
‖φ0j‖2p +∆t

∑

i

η̄min
i

2

∫

I

(u0j · τ̂i)2 ds+∆t
gρ′max

2
‖∇φ0j‖2p

+
1

2
|r0j |2 +∆t

N−1∑

n=0

C2
P,f

2ν
‖fn+1

f,j ‖2f +∆t

N−1∑

n=0

gC2
P,p

2(k̄min − ρ′max)
‖fn+1

p,j ‖2p.

Proof. Setting v = un+1
j , ψ = φn+1

j in Algorithm 1.1, testing (1.5) by q = pn+1
j , multiplying (1.7) by

rn+1
j , and adding all four equations yields

1

2∆t
‖un+1

j ‖2f − 1

2∆t
‖unj ‖2f +

1

2∆t
‖un+1

j − unj ‖2f + ν‖∇un+1
j ‖2f +

∑

i

∫

I

η̄i(u
n+1
j · τ̂i)(un+1

j · τ̂i) ds (2.3)

+
α

2
‖pn+1

j ‖2 − α

2
‖pnj ‖2 +

α

2
‖pn+1

j − pnj ‖2 +
gS0

2∆t
‖φn+1

j ‖2p −
gS0

2∆t
‖φnj ‖2p +

gS0

2∆t
‖φn+1

j − φnj ‖2p

+ g(K̄∇φn+1
j ,∇φn+1

j)p +
rn+1
j

exp(− tn+1

T)
cI(u

n+1
j , φnj)−

rn+1
j

exp(− tn+1

T)
cI(u

n
j , φ

n+1
j)

+
1

2∆t
|rn+1

j |2 − 1

2∆t
|rnj |2 +

1

2∆t
|rn+1

j − rnj |2 +
1

T
|rn+1

j |2 −
rn+1
j

exp(− tn+1

T)

(
cI(u

n+1
j , φnj)− cI(u

n
j , φ

n+1
j)

)

= (fn+1
f,j , un+1

j)f + g(fn+1
p,j , φn+1

j)p −
∑

i

∫

I

(ηi,j − η̄i)(u
n
j · τ̂i)(un+1

j · τ̂i) ds− g((Kj − K̄)∇φnj ,∇φn+1
j)p.

Applying Cauchy-Schwarz and Young’s inequalities to the source terms, for any β > 0 we have

(fn+1
f,j , un+1

j)f + g(fn+1
p,j , φn+1

j)p (2.4)

≤
C2

P,f

2ν
‖fn+1

f,j ‖2f +
1

2
ν‖∇un+1

j ‖2f +
gC2

P,p

4βk̄min
‖fn+1

p,j ‖2p + βgk̄min‖∇φn+1
j ‖2p.

For the other terms on the right hand side of (2.3) we have the following bounds.

−
∑

i

∫

I

(ηi,j − η̄i)(u
n
j · τ̂i)(un+1

j · τ̂i) ds ≤
∑

i

[
η′max
i

2

∫

I

(unj · τ̂i)2 ds+
η′max
i

2

∫

I

(un+1
j · τ̂i)2 ds

]
,

− g
(
(Kj − K̄)∇φnj ,∇φn+1

j

)
p
≤ gρ′max

2
‖∇φnj ‖2p +

gρ′max

2
‖∇φn+1

j ‖2p.

Using above estimates, equation (2.3) becomes

1

2∆t
‖un+1

j ‖2f − 1

2∆t
‖unj ‖2f +

1

2
ν‖∇un+1

j ‖2f +
∑

i

[
η̄min
i

2
− η′max

i

2

] ∫

I

(un+1
j · τ̂i)2 ds (2.5)

+
∑

i

η̄min
i

2

[∫

I

(un+1
j · τ̂i)2 ds−

∫

I

(unj · τ̂i)2 ds
]
+
∑

i

[
η̄min
i

2
− η′max

i

2

] ∫

I

(unj · τ̂i)2 ds

+
α

2
‖pn+1

j ‖2 − α

2
‖pnj ‖2 +

α

2
‖pn+1

j − pnj ‖2 +
gS0

2∆t
‖φn+1

j ‖2p −
gS0

2∆t
‖φnj ‖2p

+ (1− β − ρ′max

k̄min
)gk̄min‖∇φn+1

j ‖2p +
gρ′max

2

(
‖∇φn+1

j ‖2p − ‖∇φnj ‖2p
)

+
1

2∆t
|rn+1

j |2 − 1

2∆t
|rnj |2 +

1

2∆t
|rn+1

j − rnj |2 +
1

T
|rn+1

j |2 ≤
C2

P,f

2ν
‖fn+1

f,j ‖2f +
gC2

P,p

4βk̄min
‖fn+1

p,j ‖2p.

5

Assuming both of the two parameter conditions in (2.1) are satisfied, and taking β = 1
2 (1−

ρ′

max

k̄min
), inequality

(2.5) reduces to

1

2∆t
‖un+1

j ‖2f − 1

2∆t
‖unj ‖2f +

∑

i

η̄min
i

2

[∫

I

(un+1
j · τ̂i)2 ds−

∫

I

(unj · τ̂i)2 ds
]
+
α

2
‖pn+1

j ‖2 − α

2
‖pnj ‖2 (2.6)

+
α

2
‖pn+1

j − pnj ‖2 +
gS0

2∆t
‖φn+1

j ‖2p −
gS0

2∆t
‖φnj ‖2p +

gρ′max

2

(
‖∇φn+1

j ‖2p − ‖∇φnj ‖2p
)

+
1

2∆t
|rn+1

j |2 − 1

2∆t
|rnj |2 +

1

2∆t
|rn+1

j − rnj |2 +
1

T
|rn+1

j |2 ≤
C2

P,f

2ν
‖fn+1

f,j ‖2f +
gC2

P,p

2(k̄min − ρ′max)
‖fn+1

p,j ‖2p.

Summing (2.6) from n = 0 to N − 1 and multiplying through by ∆t we get (2.2).

2.2. Stability of SAV-BDF2. We prove long time stability of Algorithm 1.2 under two parameter
conditions, without any timestep conditions.

η′max
i ≤ η̄min

i

3
, ρ′max <

k̄min

3
. (2.7)

Theorem 2.2 (Long time stability of Algorithm 1.2). If the two parameter conditions in (2.7) hold,
then the Algorithm 1.2 is long time stable: for any N ≥ 2,

‖uNj ‖2f + ‖2uNj − uN−1
j ‖2f +

N−1∑

n=1

‖un+1
j − 2unj + un−1

j ‖2f +∆t

N−1∑

n=1

2ν‖∇un+1
j ‖2f (2.8)

+ ∆t
∑

i

2η̄min
i

∫

I

(uNj · τ̂i)2 ds+∆t
∑

i

2η̄min
i

3

∫

I

(uN−1
j · τ̂i)2 ds+ 2α∆t2‖pNj ‖2f + 2α∆t2‖2pNj − pN−1

j ‖2f

+ 2α∆t2
N−1∑

n=1

‖pn+1
j − 2pnj + pn−1

j ‖2f + gS0‖φNj ‖2p + gS0‖2φNj − φN−1
j ‖2p

+ gS0

N−1∑

n=1

‖φn+1
j − 2φnj + φn−1

j ‖2p + 6gρ′max∆t‖∇φNj ‖2p + 2gρ′max∆t‖∇φN−1
j ‖2p + |rNj |2

+ |2rNj − rN−1
j |2 +

N−1∑

n=1

|rn+1
j − 2rnj + rn−1

j |2 + 4∆t

T

N−1∑

n=1

|rn+1
j |2

≤ ‖u1j‖2f + ‖2u1j − u0j‖2f +∆t
∑

i

2η̄min
i

∫

I

(u1j · τ̂i)2 ds+∆t
∑

i

2η̄min
i

3

∫

I

(u0j · τ̂i)2 ds

+ 2α∆t2‖p1j‖2f + 2α∆t2‖2p1j − p0j‖2f + gS0‖φ1j‖2p + gS0‖2φ1j − φ0j‖2p + 6gρ′max∆t‖∇φ1j‖2p

+ 2gρ′max∆t‖∇φ0j‖2p + |r1j |2 + |2r1j − r0j |2 +∆t

N−1∑

n=1

2C2
P,f

ν
‖fn+1

f,j ‖2f +∆t

N−1∑

n=1

2gC2
P,p

k̄min − 3ρ′max

‖fn+1
p,j ‖2p.

Proof. Setting v = un+1
j , ψ = φn+1

j in Algorithm 1.2, testing (1.9) by q = pn+1
j , multiplying (1.11) by

rn+1
j , adding all four equations and using the estimate (2.4) yields

1

4∆t
‖un+1

j ‖2f +
1

4∆t
‖2un+1

j − unj ‖2f − 1

4∆t
‖unj ‖2f − 1

4∆t
‖2unj − un−1

j ‖2f (2.9)

+
1

4∆t
‖un+1

j − 2unj + un−1
j ‖2f + ν‖∇un+1

j ‖2f +
∑

i

∫

I

η̄i(u
n+1
j · τ̂i)(un+1

j · τ̂i) ds+
α∆t

2
‖pn+1

j ‖2f

+
α∆t

2
‖2pn+1

j − pnj ‖2f − α∆t

2
‖pnj ‖2f − α∆t

2
‖2pnj − pn−1

j ‖2f +
α∆t

2
‖pn+1

j − 2pnj + pn−1
j ‖2f

6

+
gS0

4∆t
‖φn+1

j ‖2p +
gS0

4∆t
‖2φn+1

j − φnj ‖2p −
gS0

4∆t
‖φnj ‖2p −

gS0

4∆t
‖2φnj − φn−1

j ‖2p

+
gS0

4∆t
‖φn+1

j − 2φnj + φn−1
j ‖2p + g(K̄∇φn+1

j ,∇φn+1
j)p +

rn+1
j

exp(− tn+1

T)
cI(u

n+1
j , 2φnj − φn−1

j)

−
rn+1
j

exp(− tn+1

T)
cI(2u

n
j − un−1

j , φn+1
j) +

1

4∆t
|rn+1

j |2 + 1

4∆t
|2rn+1

j − rnj |2

− 1

4∆t
|rnj |2 −

1

4∆t
|2rnj − rn−1

j |2 + 1

4∆t
|rn+1

j − 2rnj + rn−1
j |2 + 1

T
|rn+1

j |2

−
rn+1
j

exp(− tn+1

T)

(
cI(u

n+1
j , 2φnj − φn−1

j)− cI(2u
n
j − un−1

j , φn+1
j)

)

≤
C2

P,f

2ν
‖fn+1

f,j ‖2f +
1

2
ν‖∇un+1

j ‖2f +
gC2

P,p

4βk̄min
‖fn+1

p,j ‖2p + βgk̄min‖∇φn+1
j ‖2p

−
∑

i

∫

I

(ηi,j − η̄i)((2u
n
j − un−1

j) · τ̂i)(un+1
j · τ̂i) ds− g((Kj − K̄)∇(2φnj − φn−1

j),∇φn+1
j)p.

Using the inequality (2a− b)2 ≤ 6a2 + 3b2, we have

−
∑

i

∫

I

(ηi,j − η̄i)((2u
n
j − un−1

j) · τ̂i)(un+1
j · τ̂i) ds (2.10)

≤
∑

i

[
η′max
i

∫

I

(unj · τ̂i)2 ds+
η′max
i

2

∫

I

(un−1
j · τ̂i)2 ds+

3η′max
i

2

∫

I

(un+1
j · τ̂i)2 ds

]

and

− g
(
(Kj − K̄)∇(2φnj − φn−1

j),∇φn+1
j

)
p
≤ gρ′max‖∇φnj ‖2p +

gρ′max

2
‖∇φn−1

j ‖2p +
3gρ′max

2
‖∇φn+1

j ‖2p. (2.11)

Using above estimates, equation (2.9) becomes

1

4∆t
‖un+1

j ‖2f +
1

4∆t
‖2un+1

j − unj ‖2f − 1

4∆t
‖unj ‖2f − 1

4∆t
‖2unj − un−1

j ‖2f (2.12)

+
1

4∆t
‖un+1

j − 2unj + un−1
j ‖2f +

1

2
ν‖∇un+1

j ‖2f +
∑

i

[η̄min
i

2
− 3η′max

i

2

] ∫

I

(un+1
j · τ̂i)2 ds

+
∑

i

η̄min
i

2

[∫

I

(un+1
j · τ̂i)2 ds−

∫

I

(unj · τ̂i)2 ds
]
+
∑

i

[η̄min
i

3
− η′max

i

] ∫

I

(unj · τ̂i)2 ds

+
∑

i

η̄min
i

6

[∫

I

(unj · τ̂i)2 ds−
∫

I

(un−1
j · τ̂i)2 ds

]
+
∑

i

[η̄min
i

6
− η′max

i

2

] ∫

I

(un−1
j · τ̂i)2 ds

+
α∆t

2
‖pn+1

j ‖2f +
α∆t

2
‖2pn+1

j − pnj ‖2f − α∆t

2
‖pnj ‖2f − α∆t

2
‖2pnj − pn−1

j ‖2f +
α∆t

2
‖pn+1

j − 2pnj + pn−1
j ‖2f

+
gS0

4∆t
‖φn+1

j ‖2p +
gS0

4∆t
‖2φn+1

j − φnj ‖2p −
gS0

4∆t
‖φnj ‖2p −

gS0

4∆t
‖2φnj − φn−1

j ‖2p

+
gS0

4∆t
‖φn+1

j − 2φnj + φn−1
j ‖2p +

(
1− β − 3ρ′max

k̄min

)
gk̄min‖∇φn+1

j ‖2p +
3gρ′max

2

(
‖∇φn+1

j ‖2p − ‖∇φnj ‖2p)

+
gρ′max

2

(
‖∇φnj ‖2p − ‖∇φn−1

j ‖2p) +
1

4∆t
|rn+1

j |2 + 1

4∆t
|2rn+1

j − rnj |2

− 1

4∆t
|rnj |2 −

1

4∆t
|2rnj − rn−1

j |2 + 1

4∆t
|rn+1

j − 2rnj + rn−1
j |2 + 1

T
|rn+1

j |2

≤
C2

P,f

2ν
‖fn+1

f,j ‖2f +
gC2

P,p

4βk̄min
‖fn+1

p,j ‖2p.

7

Now if the two parameter conditions in (2.7) both hold, and taking β = 1
2 (1 − 3ρ′

max

k̄min
), inequality (2.12)

reduces to

1

4∆t
‖un+1

j ‖2f +
1

4∆t
‖2un+1

j − unj ‖2f − 1

4∆t
‖unj ‖2f − 1

4∆t
‖2unj − un−1

j ‖2f (2.13)

+
1

4∆t
‖un+1

j − 2unj + un−1
j ‖2f +

1

2
ν‖∇un+1

j ‖2f +
∑

i

η̄min
i

2

[∫

I

(un+1
j · τ̂i)2 ds−

∫

I

(unj · τ̂i)2 ds
]

+
∑

i

η̄min
i

6

[∫

I

(unj · τ̂i)2 ds−
∫

I

(un−1
j · τ̂i)2 ds

]
+
α∆t

2
‖pn+1

j ‖2f +
α∆t

2
‖2pn+1

j − pnj ‖2f − α∆t

2
‖pnj ‖2f

− α∆t

2
‖2pnj − pn−1

j ‖2f +
α∆t

2
‖pn+1

j − 2pnj + pn−1
j ‖2f +

gS0

4∆t
‖φn+1

j ‖2p +
gS0

4∆t
‖2φn+1

j − φnj ‖2p

− gS0

4∆t
‖φnj ‖2p −

gS0

4∆t
‖2φnj − φn−1

j ‖2p +
gS0

4∆t
‖φn+1

j − 2φnj + φn−1
j ‖2p

+
3gρ′max

2

(
‖∇φn+1

j ‖2p − ‖∇φnj ‖2p) +
gρ′max

2

(
‖∇φnj ‖2p − ‖∇φn−1

j ‖2p) +
1

4∆t
|rn+1

j |2

+
1

4∆t
|2rn+1

j − rnj |2 −
1

4∆t
|rnj |2 −

1

4∆t
|2rnj − rn−1

j |2 + 1

4∆t
|rn+1

j − 2rnj + rn−1
j |2 + 1

T
|rn+1

j |2

≤
C2

P,f

2ν
‖fn+1

f,j ‖2f +
gC2

P,p

2(k̄min − 3ρ′max)
‖fn+1

p,j ‖2p.

Summing (2.13) from n = 1 to N − 1 and multiplying through by 4∆t yields (2.8).

Remark 2.3. For the first order method (SAV-BEAC-En), the parameter conditions in (2.1) indicate
that the fluctuation needs to be smaller than the mean. Usually they are easy to fulfill in UQ applications
in which the magnitude of the fluctuation is generally much smaller than the magnitude of the uncertain
parameter. The parameter conditions in (2.7) for the second order method (SAV-BDF2AC-En) are a bit
stricter than the ones for the first order method, but can still be easily satisfied in many practical UQ
problems. If they are not satisfied for a large ensemble, one can split the large ensemble into smaller ones to
make these conditions satisfied, and apply the ensemble algorithm to each smaller ensemble.

3. Solution Algorithms and Numerical Implementation. The proposed algorithms SAV-BEAC-
En and SAV-BDF2-En have the scalar variables rj coupled with the primitive variables, which needs to
be decoupled for fast computation of the intended systems. In this section, we present corresponding fully
decoupled solution algorithms that are equivalent to Algorithm 1.1 and Algorithm 1.2 respectively. Detailed
numerical implementation and related linear algebra will also be discussed.

3.1. Solution Algorithms. Let

Sn+1
j =

rn+1
j

exp(− tn+1

T)
, un+1

j = ûn+1
j + Sn+1

j ŭn+1
j , φn+1

j = φ̂n+1
j + Sn+1

j φ̆n+1
j (3.1)

3.1.1. SAV-BEAC-En. Instead of solving (1.4)-(1.7), we solve the following four subproblems for

ûn+1
j , φ̂n+1

j , ŭn+1
j ,φ̆n+1

j respectively.

(BE sub-problem 1): Find ûn+1
j ∈ Xf satisfying ∀ v ∈ Xf ,





1

∆t

(
ûn+1
j , v

)
f
+ ν(∇ûn+1

j ,∇v)f +
∑

i

∫

I

η̄i(û
n+1
j · τ̂i)(v · τ̂i) ds+

1

α

(
∇ · ûn+1

j ,∇ · v
)
f

= (fn+1
f,j , v)f +

1

∆t

(
unj , v

)
f
−
∑

i

∫

I

(ηi,j − η̄i)(u
n
j · τ̂i)(v · τ̂i) ds+

(
pnj ,∇ · v

)
f
, in Df ,

ûn+1
j = an+1

j , on ∂Df\I.
8

(BE sub-problem 2): Find φ̂n+1
j ∈ Xp satisfying ∀ ψ ∈ Xp,





gS0

∆t

(
φ̂n+1
j , ψ

)
p
+ g(K̄∇φ̂n+1

j ,∇ψ)p

= g(fn+1
p,j , ψ)p +

gS0

∆t

(
φnj , ψ

)
p
− g((Kj − K̄)∇φnj ,∇ψ)p, in Dp,

φ̂n+1
j = bn+1

j , on ∂Dp\I.

(BE sub-problem 3): Find ŭn+1
j ∈ Xf satisfying ∀ v ∈ Xf ,





1

∆t

(
ŭn+1
j , v

)
f
+ ν(∇ŭn+1

j ,∇v)f +
∑

i

∫

I

η̄i(ŭ
n+1
j · τ̂i)(v · τ̂i) ds+

1

α

(
∇ · ŭn+1

j ,∇ · v
)
f

= −cI(v, φnj), in Df ,

ŭn+1
j = 0, on ∂Df\I.

(BE sub-problem 4): Find φ̆n+1
j ∈ Xp satisfying ∀ ψ ∈ Xp,





gS0

∆t

(
φ̆n+1
j , ψ

)
p
+ g(K̄∇φ̆n+1

j ,∇ψ)p = cI(u
n
j , ψ), in Dp,

φ̆n+1
j = 0, on ∂Dp\I.

Now we need to derive an equation for Sn+1
j .

Sn+1
j =

rn+1
j

exp(− tn+1

T)
=⇒ rn+1

j = exp(− t
n+1

T
)Sn+1

j . (3.2)

Multiplying (1.7) by rn+1
j gives

rn+1
j − rnj

∆t
· rn+1

j +
1

T
|rn+1

j |2 −
rn+1
j

exp(− tn+1

T)

(
cI(u

n+1
j , φnj)− cI(u

n
j , φ

n+1
j)

)
= 0. (3.3)

Plugging (3.2) into (3.3) gives

(
1

∆t
+

1

T
)(rn+1

j)2 − 1

∆t
rnj r

n+1
j − Sn+1

j

(
cI(u

n+1
j , φnj)− cI(u

n
j , φ

n+1
j)

)
= 0

=⇒ (
1

∆t
+

1

T
)exp(−2tn+1

T
) (Sn+1

j)2 − 1

∆t
rnj exp(−

tn+1

T
)Sn+1

j

− Sn+1
j

(
cI(û

n+1
j + Sn+1

j ŭn+1
j , φnj)− cI(u

n
j , φ̂

n+1
j + Sn+1

j φ̆n+1
j)

)
= 0

At last, we obtain the equation for Sn+1
j as

Sn+1
j

(
An+1

j Sn+1
j +Bn+1

j

)
= 0 =⇒ Sn+1

j = −
Bn+1

j

An+1
j

. (3.4)

where

An+1
j = (

1

∆t
+

1

T
)exp(−2tn+1

T
)− cI(ŭ

n+1
j , φnj) + cI(u

n
j , φ̆

n+1
j)

Bn+1
j = − 1

∆t
rnj exp(−

tn+1

T
)− cI(û

n+1
j , φnj) + cI(u

n
j , φ̂

n+1
j).

After getting ûn+1
j , ŭn+1

j , φ̂n+1
j , φ̆n+1

j , Sn+1
j can be computed directly using formula (3.4), and then we

have

un+1
j = ûn+1

j + Sn+1
j ŭn+1

j , φn+1
j = φ̂n+1

j + Sn+1
j φ̆n+1

j , pn+1
j = pnj − 1

α
∇ · un+1

j . (3.5)

9

3.1.2. SAV-BDF2AC-En. Instead of solving (1.8)-(1.11), we solve the following four subproblems for

ûn+1
j , φ̂n+1

j , ŭn+1
j , φ̆n+1

j respectively.

(BDF2 sub-problem 1): Find ûn+1
j ∈ Xf satisfying ∀ v ∈ Xf ,





3

2∆t

(
ûn+1
j , v

)
f
+ ν(∇ûn+1

j ,∇v)f +
∑

i

∫

I

η̄i(û
n+1
j · τ̂i)(v · τ̂i) ds+

1

3α∆t

(
∇ · ûn+1

j ,∇ · v
)
f

= (fn+1
f,j , v)f +

2

∆t

(
unj , v

)
f
− 1

2∆t

(
un−1
j , v

)
f

−
∑

i

∫

I

(ηi,j − η̄i)((2u
n
j − un−1

j) · τ̂i)(vh · τ̂i) ds+
(
4

3
pnj − 1

3
pn−1
j ,∇ · v

)

f

, in Df ,

ûn+1
j = an+1

j , on ∂Df\I.

(BDF2 sub-problem 2): Find φ̂n+1
j ∈ Xp satisfying ∀ ψ ∈ Xp,





3gS0

2∆t

(
φ̂n+1
j , ψ

)
p
+ g(K̄∇φ̂n+1

j ,∇ψ)p

= g(fn+1
p,j , ψ)p +

2gS0

∆t

(
φnj , ψ

)
p
− gS0

2∆t

(
φn−1
j , ψ

)
p
− g((Kj − K̄)∇(2φnj − φn−1

j ,∇ψ)p, in Dp,

φ̂n+1
j = bn+1

j , on ∂Dp\I.

(BDF2 sub-problem 3): Find ŭn+1
j ∈ Xf satisfying ∀ v ∈ Xf ,





3

2∆t

(
ŭn+1
j , v

)
f
+ ν(∇ŭn+1

j ,∇v)f +
∑

i

∫

I

η̄i(ŭ
n+1
j · τ̂i)(v · τ̂i) ds+

1

3α∆t

(
∇ · ŭn+1

j ,∇ · v
)
f

= −cI(v, 2φnj − φn−1
j), in Df ,

ŭn+1
j = 0, on ∂Df\I.

(BDF2 sub-problem 4): Find φ̆n+1
j ∈ Xp satisfying ∀ ψ ∈ Xp,





3gS0

2∆t

(
φ̆n+1
j , ψ

)
p
+ g(K̄∇φ̆n+1

j ,∇ψ)p = cI(2u
n
j − un−1

j , ψ), in Dp,

φ̆n+1
j = 0, on ∂Dp\I.

Now we need to derive an equation for Sn+1
j .

Sn+1
j =

rn+1
j

exp(− tn+1

T)
=⇒ rn+1

j = exp(− t
n+1

T
)Sn+1

j . (3.6)

Multiplying (1.11) by rn+1
j gives

3rn+1
j − 4rnj + rn−1

j

2∆t
· rn+1

j +
1

T
|rn+1

j |2 (3.7)

−
rn+1
j

exp(− tn+1

T)

(
cI(u

n+1
j , 2φnj − φn−1

j)− cI(2u
n
j − un−1

j , φn+1
j)

)
= 0.

Plugging (3.6) into (3.7) gives

(
3

2∆t
+

1

T
)(rn+1

j)2 − 2

∆t
rnj r

n+1
j +

1

2∆t
rn−1
j rn+1

j

− Sn+1
j

(
cI(u

n+1
j , 2φnj − φn−1

j)− cI(2u
n
j − un−1

j , φn+1
j)

)
= 0

=⇒ (
3

2∆t
+

1

T
)exp(−2tn+1

T
) (Sn+1

j)2 − 2

∆t
rnj exp(−

tn+1

T
)Sn+1

j +
1

2∆t
rn−1
j exp(− t

n+1

T
)Sn+1

j

10

− Sn+1
j

(
cI(û

n+1
j + Sn+1

j ŭn+1
j , 2φnj − φn−1

j)− cI(2u
n
j − un−1

j , φ̂n+1
j + Sn+1

j φ̆n+1
j)

)
= 0.

At last, we obtain the equation for Sn+1
j as

Sn+1
j

(
An+1

j Sn+1
j +Bn+1

j

)
= 0 =⇒ Sn+1

j = −
Bn+1

j

An+1
j

. (3.8)

where

An+1
j = (

3

2∆t
+

1

T
)exp(−2tn+1

T
)− cI(ŭ

n+1
j , 2φnj − φn−1

j) + cI(2u
n
j − un−1

j , φ̆n+1
j)

Bn+1
j = − 2

∆t
rnj exp(−

tn+1

T
) +

1

2∆t
rn−1
j exp(− t

n+1

T
)− cI(û

n+1
j , 2φnj − φn−1

j) + cI(2u
n
j − un−1

j , φ̂n+1
j).

After getting ûn+1
j , ŭn+1

j , φ̂n+1
j , φ̆n+1

j , Sn+1
j can be computed directly using formula (3.8), and then we

have

un+1
j = ûn+1

j + Sn+1
j ŭn+1

j , φn+1
j = φ̂n+1

j + Sn+1
j φ̆n+1

j , pn+1
j =

4

3
pnj − 1

3
pn−1
j − 1

3α∆t
∇ · un+1

j . (3.9)

3.2. Algebraic Systems. The proposed SAV-BDF2AC-En scheme will be compared to other schemes
such as SAV-BDF2AC-NonEn and SAV-BDF2-En stated below for computational efficiency check. Specifi-
cally, the SAV-BDF2AC-NonEn method is using AC decoupling but without ensemble technique; the SAV-
BDF2-En method is an ensemble scheme without using AC decoupling.

Algorithm 3.1 (SAV-BDF2AC-NonEn). Find (un+1
j , pn+1

j , φn+1
j) ∈ Xf ×Qf ×Xp and rn+1

j satisfying
∀ (v, ψ) ∈ Xf ×Xp,

(
3un+1

j − 4unj + un−1
j

2∆t
, v

)

f

+ ν(∇un+1
j ,∇v)f +

∑

i

∫

I

ηi,j(u
n+1
j · τ̂i)(v · τ̂i) ds−

(
pn+1
j ,∇ · v

)
f

+
rn+1
j

exp(− tn+1

T)
cI(v, 2φ

n
j − φn−1

j) = (fn+1
f,j , v)f ,

α∆t(3pn+1
j − 4pnj + pn−1

j) +∇ · un+1
j = 0,

gS0

(
3φn+1

j − 4φnj + φn−1
j

2∆t
, ψ

)

p

+ g(Kj∇φn+1
j ,∇ψ)p −

rn+1
j

exp(− tn+1

T)
cI(2u

n
j − un−1

j , ψ) = g(fn+1
p,j , ψ)p,

3rn+1
j − 4rnj + rn−1

j

2∆t
= − 1

T
rn+1
j +

1

exp(− tn+1

T)

(
cI(u

n+1
j , 2φnj − φn−1

j)− cI(2u
n
j − un−1

j , φn+1
j)

)
.

Algorithm 3.2 (SAV-BDF2-En). Find (un+1
j , pn+1

j , φn+1
j) ∈ Xf × Qf × Xp and rn+1

j satisfying
∀ (v, q, ψ) ∈ Xf ×Qf ×Xp,

(
3un+1

j − 4unj + un−1
j

2∆t
, v

)

f

+ ν(∇un+1
j ,∇v)f +

∑

i

∫

I

η̄i(u
n+1
j · τ̂i)(v · τ̂i) ds−

(
pn+1
j ,∇ · v

)
f

+
∑

i

∫

I

(ηi,j − η̄i)((2u
n
j − un−1

j) · τ̂i)(v · τ̂i) ds+
rn+1
j

exp(− tn+1

T)
cI(v, 2φ

n
j − φn−1

j) = (fn+1
f,j , v)f ,

(q,∇ · un+1
j)f = 0,

gS0

(
3φn+1

j − 4φnj + φn−1
j

2∆t
, ψ

)

p

+ g(K̄∇φn+1
j ,∇ψ)p + g((Kj − K̄)∇(2φnj − φn−1

j),∇ψ)p

−
rn+1
j

exp(− tn+1

T)
cI(2u

n
j − un−1

j , ψ) = g(fn+1
p,j , ψ)p,

11

3rn+1
j − 4rnj + rn−1

j

2∆t
= − 1

T
rn+1
j +

1

exp(− tn+1

T)

(
cI(u

n+1
j , 2φnj − φn−1

j)− cI(2u
n
j − un−1

j , φn+1
j)

)
.

We then use the finite element method for spatial discretization. Let S2
h(Ω) and S

1
h(Ω) denote the space

of P2 and P1 finite element functions on domain Ω respectively. The basis functions of S2
h(Df)

2, S1
h(Df),

and S2
h(Dp) are {χu

j }Nu

j=1, {χ
p
j}

Np

j=1, and {χφ
j }

Nφ

j=1 respectively. The finite element solutions will be represented
by vectors of nodal values, denoted in bold. A superscript n will be applied to mark the n−th time step, and
a subscript j will denote the j-th sample. Let Muu, Mp, and Mφ denote the mass matrices for velocity u,
pressure p, hydraulic head φ, respectively; the matrices Suu and Sφ are the stiffness matrices of the Poisson
operator corresponding to S2

h(Df)
2 and S1

h(Dp), respectively. We also define matrices Duu, Duup, Cuuφ,
Bjuu, and Sjφ whose entries are given as follows

[Duu]kl = (∇ · χu
l ,∇ · χu

k)f , [Duup]kl = (χp
l ,∇ · χu

k)f , [Cuuφ]kl =

∫

I

χφ
l (χ

u
k · n̂f)

[Bjuu]kl =

∫

I

ηj(χ
u
l · τ̂)(χu

k · τ̂), [Sjφ]kl = (Kj∇χu
l ,∇χu

k)p.

The mean matrices Buu = 1
J

J∑
j=1

Bjuu, Sφ = 1
J

J∑
j=1

Sjφ will also be used in ensemble algorithms.

The algebraic systems of different schemes that will be considered in efficiency test are listed below.
1. SAV-BDF2AC-En:

AuACû
n+1
j = b̂n+1

j , AuACŭ
n+1
j = b̆n+1

j , Aφφ̂
n+1
j = ĉn+1

j , Aφφ̆
n+1
j = c̆n+1

j , Mpp
n+1
j = dn+1

j

with

AuAC =
3

2∆t
Muu + νSuu +Buu +

1

3α∆t
Duu, Aφ =

3S0

2∆t
Mφ + Sφ,

b̂n+1
j = fn+1

f,j +Muu(
2
∆tu

n
j − 1

2∆tu
n−1
j)− (Bjuu −Buu)(2u

n
j − un−1

j) +Duup(
4

3
pn
j − 1

3
pn−1
j),

b̆n+1
j = −gCuuφ(2φ

n
j − φn−1

j),

ĉn+1
j = fn+1

p,j +Mφ(
2S0

∆t φ
n
j − S0

2∆tφ
n−1
j)− (Sjφ − Sφ)(2φ

n
j − φn−1

j),

c̆n+1
j = CT

uuφ(2u
n
j − un−1

j),

dn+1
j = Mp(

4

3
pn
j − 1

3
pn−1
j)− 1

3α∆t
DT

uupu
n+1
j .

2. SAV-BDF2AC-NonEn:

A
(j)
uACû

n+1
j = ên+1

j , A
(j)
uACŭ

n+1
j = b̆n+1

j , A
(j)
φ φ̂n+1

j = ĥn+1
j , A

(j)
φ φ̆n+1

j = c̆n+1
j , Mpp

n+1
j = dn+1

j

with

A
(j)
uAC =

3

2∆t
Muu + νSuu +Bjuu +

1

3α∆t
Duu, A

(j)
φ =

3S0

2∆t
Mφ + Sjφ,

ên+1
j = fn+1

f,j +Muu(
2
∆tu

n
j − 1

2∆tu
n−1
j) +Duup(

4

3
pn
j − 1

3
pn−1
j),

ĥn+1
j = fn+1

p,j +Mφ(
2S0

∆t φ
n
j − S0

2∆tφ
n−1
j).

3. SAV-BDF2-En:

AuNoAC

(
ûn+1
j

p̂n+1
j

)
=

(
m̂n+1

j

0

)
, AuNoAC

(
ŭn+1
j

p̆n+1
j

)
=

(
b̆n+1
j

0

)
,

Aφφ̂
n+1
j = ĉn+1

j , Aφφ̆
n+1
j = c̆n+1

j ,

12

with

AuNoAC =

(
3

2∆tMuu + νSuu +Buu −Duup

−DT
uup 0

)
,

m̂n+1
j = fn+1

f,j +Muu(
2
∆tu

n
j − 1

2∆tu
n−1
j)− (Bjuu −Buu)(2u

n
j − un−1

j).

As one can see, the ensemble scheme results in a common coefficient matrix for all realizations. The
J simulations can be simultaneously handled by a direct linear solver such as LU factorization when the
problem is of small scale and by block iterative solvers when it is in large-scale. In contrast, the non-ensemble
scheme needs to handle J systems for different realizations one by one.

In next section, we will use iterative solvers to observe the computational efficiency of the three schemes

stated above. Specifically, for the SPD matrix A
(j)
uAC, the classical CG solver with multigrid preconditioner

is enough. For the common matrix AuAC, however, the block conjugate gradient (Block CG [75, 71, 41])
solver will be applied to reduce redundant information from different samples. We perform similarly for Aφ

and A
(j)
φ . As for the coefficient matrix AuNoAC, CG can not be applied due to matrix indefinity, two feasible

choices are minimum residual method (MINRES) with block diagonal preconditioner
(

3
2∆tMuu + νSuu +Buu 0

0 Mp

)

and generalized minimum residual method (GMRES) with block triangular preconditioner
(

3
2∆tMuu + νSuu +Buu −Duup

0 −Mp

)
.

In our work, the later performs better in terms of both the number of iterations and the CPU time. For more
details on preconditioner, one can refer to [18]. While ensembling technique is used in addition, we take the
block GMRES algorithm with deflation [5, BFGMRESD(m)] to achieve J realizations simultaneously. To
sum up, the algebraic solvers for above schemes are listed below in the table:

Coeffcient matrix iterative solver preconditioner solver of preconditioner

AuAC Block CG Multigrid Multigrid

A
(j)
uAC CG Multigrid Multigrid

AuNoAC Block GMRES Block Triangular Multigrid preconditioned CG

Aφ Block CG Multigrid Multigrid

A
(j)
φ CG Multigrid Multigrid

Remark 3.3. Although ill-conditioning of AuAC is a disadvantage, this ill-conditioning is not severe
when measured by the condition number at the solution, also called effective condition number. This has been
studied recently by Layton and Xu in [65]. The matrix AuAC has condition number

κ = O(c∆t−1 + c(ν, η̄)h−2 + c(α)∆t−1h−2).

The effective condition number for a general system Ac = b is defined as κ∗(c) = ‖A−1‖‖Ac‖
‖c‖ . Note that the

relative error in solving Ac = b is bounded by κ∗(c) multiplying the relative residual. For the linear system

AuACû
n+1
j = b̂n+1

j , one can prove that

κ∗(ûn+1
j) ≤ c∆t−1 + c(ν, η̄)h−2 + c(α)∆t−1h−1

‖∇ · ûn+1
j ‖

‖ûn+1
j ‖

by following the steps in [65]. Since the solution is approximately incompressible,
‖∇·ûn+1

j
‖

‖ûn+1

j
‖

can be small.

Therefore, the effective condition number κ∗(ûn+1
j) can be much smaller than the standard condition number

κ, as observed in [65].

13

4. Numerical Tests. In this section, we perform numerical experiments to validate the convergence
rate of the proposed SAV-BEAC-En and SAV-BDF2AC-En algorithms, then study the computational effi-
ciency of SAV-BDF2AC-En with stochastic hydraulic conductivity, and finally make a realistic application.
For spatial discretization, Taylor-Hood elements (P2-P1) for the Stokes problem and piecewise quadratic
finite elements (P2) for the Darcy problem are used. In all simulations, the AC parameter α is set to be one.
Our MATLAB implementation is based on the data structure of iFEM package.

Table 4.1: Fluid velocity: errors at T = 5 and convergence rates of the SAV-BEAC-En algorithm (J = 3)
with ∆t = h.

∆t ‖uh − u‖E,1
H1 Rate ‖uh − u‖E,2

H1 Rate ‖uh − u‖E,3
H1 Rate

1/8 8.518× 10−2 - 8.594× 10−2 - 8.749× 10−2 -
1/16 4.226× 10−2 1.01 4.239× 10−2 1.02 4.282× 10−2 1.03
1/32 2.090× 10−2 1.02 2.092× 10−2 1.02 2.108× 10−2 1.02
1/64 1.038× 10−2 1.01 1.038× 10−2 1.01 1.046× 10−2 1.01
1/128 5.168× 10−3 1.01 5.170× 10−3 1.01 5.207× 10−3 1.01

Table 4.2: Fluid pressure: errors at T = 5 and convergence rates of the SAV-BEAC-En algorithm (J = 3)
with ∆t = h.

∆t ‖ph − p‖E,1
L2 Rate ‖ph − p‖E,2

L2 Rate ‖ph − p‖E,3
L2 Rate

1/8 9.186× 10−2 - 8.986× 10−2 - 9.022× 10−2 -
1/16 4.657× 10−2 0.98 4.514× 10−2 0.98 4.576× 10−2 0.98
1/32 2.335× 10−2 1.00 2.272× 10−2 0.98 2.333× 10−2 0.97
1/64 1.168× 10−2 1.00 1.142× 10−2 0.98 1.181× 10−2 0.98
1/128 5.841× 10−3 1.00 5.729× 10−3 1.00 5.943× 10−3 0.99

Table 4.3: Hydraulic head: errors at T = 5 and convergence rates of the SAV-BEAC-En algorithm (J = 3)
with ∆t = h.

∆t ‖φh − φ‖E,1
H1 Rate ‖φh − φ‖E,2

H1 Rate ‖φh − φ‖E,3
H1 Rate

1/8 7.551× 10−2 - 4.424× 10−2 - 4.563× 10−2 -
1/16 3.761× 10−2 1.01 2.174× 10−2 1.03 2.271× 10−2 1.01
1/32 1.865× 10−2 1.01 1.067× 10−2 1.03 1.131× 10−2 1.01
1/64 9.263× 10−3 1.01 5.269× 10−3 1.02 5.643× 10−3 1.00
1/128 4.614× 10−3 1.01 2.617× 10−3 1.01 2.817× 10−3 1.00

4.1. Convergence test. A model problem on Df = (0, 1)×(1, 2) and Dp = (0, 1)×(0, 1) with interface
I = [0, 1]×{1} is considered, in which the physical parameters, g, ν, S0, αBJS, are set to be one. The hydraulic
conductivity tensor is set as a diagonal matrix diag(k11, k22) with k11 and k22 being constants. The initial
conditions, boundary conditions, and the forcing terms are constructed from the exact solution given by

u(x, y, t) = (u1(x, y, t), u2(x, y, t)),

u1(x, y, t) =
(
x2(y − 1)2 + exp(y/

√
k11)

)
cos(t),

u2(x, y, t) =
(2
3
x(1− y)3 + k22(2− π sin(πx)

)
cos(t),

14

Table 4.4: Fluid velocity: errors at T = 5 and convergence rates of the SAV-BDF2AC-En algorithm (J = 3)
with ∆t = h.

∆t ‖uh − u‖E,1
H1 Rate ‖uh − u‖E,2

H1 Rate ‖uh − u‖E,3
H1 Rate

1/8 2.039× 10−2 - 2.039× 10−2 - 2.039× 10−2 -
1/16 5.033× 10−3 2.02 5.036× 10−3 2.02 5.041× 10−3 2.02
1/32 1.254× 10−3 2.01 1.255× 10−3 2.01 1.256× 10−3 2.00
1/64 3.131× 10−4 2.00 3.133× 10−4 2.00 1.137× 10−4 2.00
1/128 7.825× 10−5 2.00 7.831× 10−5 2.00 7.841× 10−5 2.00

Table 4.5: Fluid pressure: errors at T = 5 and convergence rates of the SAV-BDF2AC-En algorithm (J = 3)
with ∆t = h.

∆t ‖ph − p‖E,1
L2 Rate ‖ph − p‖E,2

L2 Rate ‖ph − p‖E,3
L2 Rate

1/8 2.219× 10−2 - 2.215× 10−2 - 2.216× 10−2 -
1/16 5.438× 10−3 2.03 5.494× 10−3 2.01 5.565× 10−3 1.99
1/32 1.352× 10−3 2.01 1.371× 10−3 2.00 1.395× 10−3 2.00
1/64 3.374× 10−4 2.00 3.428× 10−4 2.00 3.494× 10−4 2.00
1/128 8.433× 10−5 2.00 8.572× 10−5 2.00 8.744× 10−5 2.00

Table 4.6: Hydraulic head: errors at T = 5 and convergence rates of the SAV-BDF2AC-En algorithm (J = 3)
with ∆t = h.

∆t ‖φh − φ‖E,1
H1 Rate ‖φh − φ‖E,2

H1 Rate ‖φh − φ‖E,3
H1 Rate

1/8 4.928× 10−3 - 4.960× 10−3 - 5.131× 10−3 -
1/16 9.405× 10−4 2.39 8.889× 10−4 2.48 8.944× 10−4 2.52
1/32 2.085× 10−4 2.17 1.821× 10−4 2.29 1.758× 10−4 2.35
1/64 4.999× 10−5 2.06 4.133× 10−5 2.14 3.859× 10−5 2.19
1/128 1.233× 10−5 2.02 9.895× 10−6 2.06 9.049× 10−6 2.09

p(x, y, t) = (2− π sin(πx)) sin(0.5πy) cos(t),

φ(x, y, t) = (2− π sin(πx))(1− y − cos(πy)) cos(t).

We perform J = 3 realizations simultaneously in this convergence test. Each realization is chosen by setting
a different hydraulic conductivity tensor from others, i.e. the j-th samples of k11 and k22 are

kj11 = 1− 0.1(j − 1), kj22 = 1 + 0.1(j − 1), j = 1, 2, 3.

To check the temporal convergence rate, we consecutively refine the time step size ∆t, from initial
time step size ∆t = 1/8 to final size ∆t = 1/128, and alway choose h = ∆t. In this setup, the expected
error is O(h2 + ∆t) = O(∆t) for SAV-BEAC-En and O(h2 + ∆t2) = O(∆t2) for SAV-BDF2AC-En. The
approximation errors at final time T = 5 by the SAV-BE-En scheme are listed in Table 4.1, 4.2, and 4.3,
for the fluid velocity u, fluid pressure p, and hydraulic head φ respectively, illustrating that the SAV-BE-En
algorithm is first order in time convergence. We also list the results by the SAV-BDF2AC-En scheme in
Table 4.4, 4.5, and 4.6, from which we see the expected second order convergence is apparent.

4.2. Stochastic example. Next, we apply the SAV-BDF2AC-En algorithm for solving the stochastic
Stokes-Darcy model with a random hydraulic conductivity tensor K(x, y, ω) that depends on spatial variables.
Here ω ∈ Ω, where (Ω,F ,P) is a complete probability space. The hydraulic conductivity K(x, y, ω) is set to

15

(a) SAV-BDF2AC-En

(b) SAV-BDF2AC-NonEn (c) SAV-BDF2-En

Fig. 4.1: Streamlines and plots of E[u], E[−K∇φ], E[p], E[φ] at T = 5.0 by different schemes using sparse-
grid method with J = 241 collocation points, h = 1/50,∆t = 1/100.

be a diagonal stochastic tensor diag(k11(x, y, ω), k22(x, y, ω)) that has continuous and bounded correlation
function. To be specific, the entries k11(x, y, ω) and k22(x, y, ω) are given by the Karhunen-Loève expansion

k11(x, y, ω) = k22(x, y, ω) = a0 + σ
√
λ0Y0(ω) +

nf∑

i=1

σ
√
λi[Yi(ω) cos(iπx) + Ynf+i(ω) sin(iπx))], (4.1)

where λ0 = 1
2

√
πLc, λi =

√
πLcexp(− 1

4 (iπLc)
2) for i = 1, · · · , nf , and Y0, · · · , Y2nf

are indepdendent and

identically uniformly distributed in the interval [−
√
3,
√
3], so they have zero mean and unit variance. In

this expriment, we take nf = 2, so there are totally 5 random variables Y0, Y1, · · · , Y4. The other quantities
are set as Lc = 0.25, a0 = 1, σ = 0.15.

Other physical parameters in the model and the computational domain are set as in Subsection 4.1. As
for the initial condition and Dirichlet boundary condition, they are given by

u(x, y, t, ω) = (u1(x, y, t, ω), u2(x, y, t, ω)),

u1(x, y, t, ω) = Y0(ω)
(
y2 − 2y + 1)

)
cos(t),

u2(x, y, t, ω) = Y1(ω)
(
x2 − x

)
cos(t),

φ(x, y, t, ω) = Y2(ω)y cos(t).

The model associates with forcing terms ff = (Y3(ω)xy, Y3(ω)xy), fp = Y4(ω)xy.
The stochastic Stokes-Darcy problem is then solved by a sparse-grid collocation method, since it is non-

intrusive and superior to the Monte Carlo method in terms of the curse of dimensionality. In numerical

16

Table 4.7: Computational performance using sparse-grid method with J = 241 collocation points, h =
1/50,∆t = 1/100, T = 5.0. Below nitr denotes the number of iterations in using iterative linear solver and
tcpu denotes the CPU time in seconds.

SAV-BDF2AC-En SAV-BDF2AC-NonEn SAV-BDF2-En

nitr for u & p at t = 5 28 & 5 28×241 & 5×241 9
tcpu for u & p at t = 5 14 s & 0.9 s 0.57×241 s & 0.01×241 s 45 s

nitr for φ at t = 5 7 8×241 7
tcpu for φ at t = 5 7.1 s 0.01×241 s 7.0 s

Average tcpu per time step 27.6 s 0.58×241 s 61.8 s

Total CPU time 13923.1 s 62152.1 s 31008.9 s

A

B

C

D E

F
G

H

D
p

D
p

D
p

D
f

Fig. 4.2: Domains with curvy interface for simulating the subsurface flow in a karst aquifer.

implementation, the J = 241 collocation points are computed by the Smolyak formula utilizing Guassian
quadrature. It ensures computational efficiency of integrating multidimensional functions by referring to
a univariate Guassian quadrature. Taking h = 1/50 and ∆t = 1/100, the numerical solutions at T = 5
by three different schemes, SAV-BDF2AC-En, SAV-BDF2AC-NonEn, and SAV-BDF2-En, are illustrated in
Figure 4.1. In each subfigure, the streamlines of the expectations of fluid flow velocity u and porous media
flow velocity v = −K∇φ are plotted in the left, and the expectations of fluid flow pressure p and hydraulic
head φ are plotted in the right. Figure 4.1 shows that all the schemes achieve almost identical simulations.

A particular test on computational efficiency of using these three algorithms is also reported in Table 4.7.
It is apparent that the SAV-BDF2AC-En method takes much less CPU time than the SAV-BDF2AC-NonEn
algorithm. This thanks to the design that the algebraic systems in the ensemble scheme share a constant
matrix by all realizations, so the 241 linear systems in each time step can be simultaneously solved by block
iterative solvers. As compared to SAV-BDF2-En, the proposed SAV-BDF2AC-En scheme still outperforms
the coupled method in terms of CPU time, thanks to the splitting of velocity and pressure.

4.3. Realistic application. We then apply the proposed SAV-BDF2AC-En scheme to a more realistic
simulation of the subsurface flow in a karst aquifer. As shown in Figure 4.2, the free flow domain Df with
curvy boundary ABCDEFGH is a T-shape conduit associating a curvy interface with the porous media
flow Dp. The two domains form a unit square, and A = (0, 0.8), B = (0, 0.55), C = (0.55, 0.4), D = (0.7, 0),
E = (0.85, 0), F = (0.75, 0.45), G = (1, 0.5), and H = (1, 0.7). The model parameters g, ν, and S0 are equal
to one, and αBJS = 0.1. In the simulation, we set the source terms to be zero and φ = 0 on ∂Dp\I. The
hydraulic conductivity tensor is set to be mI with various magnitude m in our experiments. The inflow and

17

outflow boundary conditions for u are given as

u =





(s1, 0) on AB
(0, s2) on DE
(s3, 0) on GH

,

where s1, s2 and s3 are constants.
With different hydraulic conductivity values, the numerical solutions of the Stokes-Darcy problem at

T = 1.0 solved by SAV-BDF2AC-En (h = 0.022 and ∆t = 0.01) are illustrated in Figure 4.3. There the
computed expectations of u, v = −K∇φ, p, and φ for different scenarioes are presented. In all cases, the
inflow conditions are fixed by setting s2 = 1 and s3 = −1, and the outflow condition is given by s1 = −1.5.
To test the effect of hydraulic conductivity on the solution, we set the magnitude m to be 1, 10−2, and 10−4.
The corresponding simulations are plotted from top to bottom. It is obvious that when m decreases, the flow
speed in porous media is significantly reduced. The same phenomenon is also observed in Figure 4.4, which
corresponds to the case s1 = −0.2. Moreover, the larger hydraulic conductivity in Figure 4.3(a) causes the
water easier to be pushed out of the conduit; the smaller conductivities in Figure 4.3(c) and (d) cause water
to flow into the conduit near the outflow boundary.

Compared with the case s1 = −1.5 in Figure 4.3, one can observe from Figure 4.4 that the less outflow
rate causes more water to be pushed out of the conduit into the porous media, especially through the AH
boundary. This is generally what happens during a rain season. In other words, comparing Figure 4.3(c)
and 4.4(c) concludes that the more outflow rate causes more water to flow into the conduit from the porous
media, which often happens during a dry season.

5. Conclusions. We have presented two fast and accurate algorithms that can be used to compute
an ensemble of the Stokes-Darcy flows at one pass. The proposed algorithms are developed based on a
SAV idea and the AC technique to fully decouple the primitive variables, leading to smaller algebraic linear
systems and thus great savings in computer storage and CPU time. They also exploit the efficiency of
solving linear systems with a common coefficient matrix and multiple right hands. For this purpose, very
efficient block solvers such as block CG and block GMRES methods can be used to significantly reduce
the CPU time of computing an ensemble of Stokes-Darcy flows. We proved the proposed algorithms are
long time stable without any timestep conditions. Unconditional stability is generally difficult to achieve for
partitioned numerical schemes of coupled flow problems. But the recently developed SAV idea puts forth a
way to design such schemes. After introducing auxiliary scalar variables into the Stokes-Darcy equations, we
also present efficient implementation methods to decouple the auxiliary scalar variables from computation of
other primitive variables. Numerical tests show that our proposed algorithms are very fast in computing an
ensemble of Stokes-Darcy equations compared to a non-ensemble numerical method or an ensemble scheme
without AC technique, while maintaining comparable accuracy.

Declarations.

Funding. Nan Jiang was partially supported by the US National Science Foundation grants DMS-
1720001 and DMS-2120413. Huanhuan Yang was supported in part by the National Natural Science
Foundation of China under grant 11801348, the key research projects of general universities in Guang-
dong Province (grant no. 2019KZDXM034), and the basic research and applied basic research projects in
Guangdong Province (Projects of Guangdong, Hong Kong and Macao Center for Applied Mathematics,
grant no. 2020B1515310018).

Conflicts of interest. The authors declare that they have no conflict of interest.

Availability of data and material. Parts of the data and materials are available upon reasonable
request.

Code availability. Parts of the code are available upon reasonable request.

REFERENCES

[1] I. Babus̆ka, F. Nobile and R. Tempone, A stochastic collocation method for elliptic partial differential equations with
random input data, SIAM Journal on Numerical Analysis, 45 (2007), 1005-1034.

18

Vec Value
0
0.0789515
0.157903
0.236855
0.315806
0.394758
0.473709
0.552661
0.631612
0.710564
0.789515
0.868467
0.947418
1.02637
1.10532
1.18427
1.26322
1.34218
1.42113
1.50008

(a) E[u] and E[v] with s1 = −1.5, m = 1 (b) E[p] and E[φ] with s1 = −1.5, m = 1
Vec Value
0
0.0789515
0.157903
0.236855
0.315806
0.394758
0.473709
0.552661
0.631612
0.710564
0.789515
0.868467
0.947418
1.02637
1.10532
1.18427
1.26322
1.34218
1.42113
1.50008

(c) E[u] and E[v] with s1 = −1.5, m = 10−2 (d) E[p] and E[φ] with s1 = −1.5, m = 10−2

Vec Value
0
0.0789515
0.157903
0.236855
0.315806
0.394758
0.473709
0.552661
0.631612
0.710564
0.789515
0.868467
0.947418
1.02637
1.10532
1.18427
1.26322
1.34218
1.42113
1.50008

(e) E[u] and E[v] with s1 = −1.5, m = 10−4 (f) E[p] and E[φ] with s1 = −1.5, m = 10−4

Fig. 4.3: Simulations with outflow condition s1 = −1.5. Left: expectations of fluid flow velocity u and porous
media flow velocity v = −K∇φ; right: expectations of fluid flow pressure p and hydraulic head φ. From top
to bottom: conductivity magnitude m = 1, 10−2, 10−4.

[2] A. Barth and A. Lang, Multilevel Monte Carlo method with applications to stochastic partial differential equations,
International Journal of Computer Mathematics, 89 (2012), 2479-2498.

[3] J. Bear, Hydraulics of Groundwater, McGraw-Hill, New York, 1979.
[4] G. Beavers and D. Joseph, Boundary Conditions at a Naturally Impermeable Wall, J. Fluid Mech., 30 (1967), 197-207.

19

Vec Value
0
0.0527856
0.105571
0.158357
0.211143
0.263928
0.316714
0.3695
0.422285
0.475071
0.527856
0.580642
0.633428
0.686213
0.738999
0.791785
0.84457
0.897356
0.950142
1.00293

(a) E[u] and E[v] with s1 = −0.2, m = 1 (b) E[p] and E[φ] with s1 = −0.2, m = 1
Vec Value
0
0.0631334
0.126267
0.1894
0.252533
0.315667
0.3788
0.441934
0.505067
0.5682
0.631334
0.694467
0.7576
0.820734
0.883867
0.947001
1.01013
1.07327
1.1364
1.19953

(c) E[u] and E[v] with s1 = −0.2, m = 10−2 (d) E[p] and E[φ] with s1 = −0.2, m = 10−2

Vec Value
0
0.0526343
0.105269
0.157903
0.210537
0.263172
0.315806
0.36844
0.421075
0.473709
0.526343
0.578978
0.631612
0.684247
0.736881
0.789515
0.84215
0.894784
0.947418
1.00005

(e) E[u] and E[v] with s1 = −0.2, m = 10−4 (f) E[p] and E[φ] with s1 = −0.2, m = 10−4

Fig. 4.4: Simulations with outflow condition s1 = −0.2. Left: expectations of fluid flow velocity u and porous
media flow velocity v = −K∇φ; right: expectations of fluid flow pressure p and hydraulic head φ. From top
to bottom: conductivity magnitude m = 1, 10−2, 10−4.

[5] H. Calandra, S. Gratton, J. Langou, X. Pinel, X. Vasseur, Flexible Variants of Block Restarted GMRES Methods
with Application to Geophysics, SIAM Journal on Scientific Computing, vol. 34, no. 2, (2012), 714-736.

[6] Y. Cao, M. Gunzburger, X. He and X. Wang, Parallel, non-iterative, multi-physics domain decomposition methods
for time-dependent Stokes-Darcy systems, Mathematics of Computation, 83 (2014), 1617-1644.

20

[7] J. Carter and N. Jiang, Numerical Analysis of A Second Order Ensemble Method for Evolutionary Magnetohydrody-
namics Equations at Small Magnetic Reynolds Number, Numerical Methods for Partial Differential Equations, 38
(2022), 1407-1436.

[8] W. Chen and M. Gunzburger, D. Sun and X. Wang, Efficient and long-time accurate second-order methods for the
Stokes-Darcy system, SIAM Journal on Numerical Analysis, 51 (2013), 2563-2584.

[9] R.M. Chen, W. Layton and M. McLaughlin, Analysis of variable-step/non-autonomous artificial compression methods,
Journal of Mathematical Fluid Mechanics, 21 (2019), 30.

[10] A.J. Chorin, Numerical solution of the Navier-Stokes equations, Mathematics of computation, 22 (1968), 745-762.
[11] A.J. Chorin, A numerical method for solving incompressible viscous flow problems, Journal of Computational Physics, 2

(1967), pp. 12-26.
[12] J. Connors, An ensemble-based conventional turbulence model for fluid-fluid interactions, Int. J. Numer. Anal. Model.,

15 (2018), 492-519.
[13] V. DeCaria, W. Layton and M. McLaughlin, A conservative, second order, unconditionally stable artificial compres-

sion method, Computer Methods in Applied Mechanics and Engineering, 325 (2017), pp. 733-747.
[14] V. DeCaria, T. Illiescu, W. Layton, M. McLaughlin and M. Schneier, An artificial compression reduced order

model, SIAM Journal on Numerical Analysis, 58 (2020), pp. 565-589.
[15] M. Discacciati, E. Miglio and A. Quarteroni, Mathematical and numerical models for coupling surface and ground-

water flows, Appl. Numer. Math., 43 (2002), 57-74.
[16] M. Discacciati and A. Quarteroni, Convergence analysis of a subdomain iterative method for the finite element ap-

proximation of the coupling of Stokes and Darcy equations, Computing and Visualization in Science, 6 (2004), 93-103.
[17] W. E and J.-G. Liu, Projection method I: Convergence and numerical boundary layers, SIAM Journal on Numerical

Analysis, 32 (1995), 1017-1057.
[18] H. Elman, D. Silvester, and A. Wathen, Finite Elements and Fast Iterative Solvers: with Applications in Incompress-

ible Fluid Dynamics, 2nd edition, Oxford University Press, New York, 2014.
[19] V. Ervin, E. Jenkins and S. Sun, Coupling nonlinear Stokes and Darcy flow using mortar finite elements, Appl. Numer.

Math., 61 (2011), 1198-1222.
[20] J. Fiordilino, A second order ensemble timestepping algorithm for natural convection, SIAM Journal on Numerical

Analysis, 56 (2018), 816-837.
[21] J. Fiordilino and S. Khankan, Ensemble timestepping algorithms for natural convection, International Journal of

Numerical Analysis and Modeling, 15 (2018), 524-551.
[22] Y. T. Feng, D. R. J. Owen and D. Peric, A block Conjugate Gradient method applied to linear systems with multiple

right hand sides, Comp. Meth. Appl. Mech., 127 (1995), 1-4.
[23] E. Gallopulos and V. Simoncini, Convergence of BLOCK GMRES and matrix polynomials, Lin. Alg. Appl., 247 (1996),

97-119.
[24] B. Ganis, H. Klie, M. Wheeler, T. Wildey, I. Yotov and D. Zhang, Stochastic collocation and mixed finite elements

for flow in porous media, Computer Methods in Applied Mechanics and Engineering, 197 (2008), 3547-3559.
[25] V. Girault, D. Vassilev and I. Yotov, Mortar multiscale finite element methods for Stokes-Darcy flows, Numerische

Mathematik, 127 (2014), 93-165.
[26] K. Goda, A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows,

Journal of Computational Physics, 30 (1979), 76-95.
[27] J. Guermond and P. Minev, High-order time stepping for the incompressible Navier-Stokes equations, SIAM Journal

on Scientific Computing, 37 (2015), pp. A2656-A2681.
[28] J. Guermond and P. Minev, High-order adaptive time stepping for the incompressible Navier-Stokes equations, SIAM

Journal on Scientific Computing, 41 (2019), pp. A770-A788.
[29] J.L. Guermond, P. Minev and J. Shen, An overview of projection methods for incompressible flows, Computer Methods

in Applied Mechanics and Engineering, 195 (2006), 6011-6045.
[30] J.L. Guermond and J. Shen, Velocity-correction projection methods for incompressible flows, SIAM Journal on Numerical

Analysis, 41 (2003), 112-134.
[31] J.L. Guermond and J. Shen, On the error estimates for the rotational pressure-correction projection methods, Mathe-

matics of Computation, 73 (2004), 1719-1737.
[32] M. Gunzburger, T. Iliescu and M. Schneier, A Leray regularized ensemble-proper orthogonal decomposition method

for parameterized convection-dominated flows, IMA Journal of Numerical Analysis, 40 (2020), 886-913.
[33] M. Gunzburger, N. Jiang and M. Schneier, An ensemble-proper orthogonal decomposition method for the nonstationary

Navier-Stokes equations, SIAM Journal on Numerical Analysis, 55 (2017), 286-304.
[34] M. Gunzburger, N. Jiang and M. Schneier, A higher-order ensemble/proper orthogonal decomposition method for

the nonstationary Navier-Stokes equations, International Journal of Numerical Analysis and Modeling, 15 (2018),
608-627.

[35] M. Gunzburger, N. Jiang and Z. Wang, An efficient algorithm for simulating ensembles of parameterized flow problems,
IMA Journal of Numerical Analysis, 39 (2019), 1180-1205.

[36] M. Gunzburger, N. Jiang and Z. Wang, A second-order time-stepping scheme for simulating ensembles of parameterized
flow problems, Computational Methods in Applied Mathematics, 19 (2019), 681-701.

[37] S. Hosder, R. Walters and R. Perez, A non-intrusive polynomial chaos method for uncertainty propagation in CFD
simulations, AIAA-Paper 2006-891, 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January 2006,
CD-ROM.

[38] J.C. Helton and F.J. Davis, Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems,
Reliability Engineering and System Safety, 81 (2003), 23-69.

[39] X. He, N. Jiang and C. Qiu, An artificial compressibility ensemble algorithm for a stochastic Stokes-Darcy model with
random hydraulic conductivity and interface conditions, International Journal for Numerical Methods in Engineering,

21

121 (2020), 712-739.
[40] W. Jager and A. Mikelic, On the Boundary Condition at the Interface Between a Porous Medium and a Free Fluid,

SIAM J. Appl. Math., 60 (2000), 1111-1127.
[41] H. Ji and Y. Li, A breakdown-free block conjugate gradient method, BIT Numerical Mathematics, 57(2) (2017), 379-403.
[42] N. Jiang, A higher order ensemble simulation algorithm for fluid flows, Journal of Scientific Computing, 64 (2015),

264-288.
[43] N. Jiang, A second-order ensemble method based on a blended backward differentiation formula timestepping scheme for

time-dependent Navier-Stokes equations, Numerical Methods for Partial Differential Equations, 33 (2017), 34-61.
[44] N. Jiang, A pressure-correction ensemble scheme for computing evolutionary Boussinesq equations, Journal of Scientific

Computing, 80 (2019), 315-350.
[45] N. Jiang, S. Kaya, and W. Layton, Analysis of model variance for ensemble based turbulence modeling, Computational

Methods in Applied Mathematics, 15 (2015), 173-188.
[46] N. Jiang, M. Kubacki, W. Layton, M. Moraiti and H. Tran, A Crank-Nicolson Leapfrog stabilization: unconditional

stability and two Applications, Journal of Computational and Applied Mathematics, 281 (2015), 263-276.
[47] N. Jiang and W. Layton, An algorithm for fast calculation of flow ensembles, International Journal for Uncertainty

Quantification, 4 (2014), 273-301.
[48] N. Jiang and W. Layton, Numerical analysis of two ensemble eddy viscosity numerical regularizations of fluid motion,

Numerical Methods for Partial Differential Equations, 31 (2015), 630-651.
[49] N. Jiang, Y. Li and H. Yang, An artificial compressibility Crank-Nicolson leap-frog method for the Stokes-Darcy model

and application in ensemble simulations, SIAM Journal on Numerical Analysis, 59 (2021), 401-428.
[50] N. Jiang, Y. Li and H. Yang, A second order ensemble method with different subdomain time steps for simulating

coupled surface-groundwater flows, accepted in Numerical Methods for Partial Differential Equations, in press, 2022.
[51] N. Jiang and C. Qiu, An efficient ensemble algorithm for numerical approximation of stochastic Stokes-Darcy equations,

Computer Methods in Applied Mechanics and Engineering, 343 (2019), 249-275.
[52] N. Jiang and C. Qiu, Numerical analysis of a second order ensemble algorithm for numerical approximation of stochastic

Stokes-Darcy equations, Journal of Computational and Applied Mathematics, 406 (2022), 113934.
[53] N. Jiang and M. Schneier, An efficient, partitioned ensemble algorithm for simulating ensembles of evolutionary MHD

flows at low magnetic Reynolds number, Numerical Methods for Partial Differential Equations, 34 (2018), 2129-2152.
[54] N. Jiang, A. Takhirov and J. Waters, Robust SAV-ensemble algorithms for parametrized flow problems with energy

stable open boundary conditions, Computer Methods in Applied Mechanics and Engineering, 392 (2022), 114709.
[55] N. Jiang and H. Yang, Stabilized scalar auxiliary variable ensemble algorithms for parameterized flow problems, SIAM

Journal on Scientific Computing, 43(4) (2021), A2869-A2896.
[56] N. Jiang and H. Yang, SAV decoupled ensemble algorithms for fast computation of Stokes-Darcy flow ensembles, Com-

puter Methods in Applied Mechanics and Engineering, 387 (2021), 114150.
[57] L. Ju, W. Leng, Z. Wang and S. Yuan, Numerical investigation of ensemble methods with block iterative solvers for

evolution problems, Discrete and Continuous Dynamical Systems - Series B, 25 (2020), 4905-4923.
[58] F. Kuo, C. Schwab and I. Sloan, Quasi-Monte Carlo finite element methods for a class of elliptic partial differential

equations with random coefficients, SIAM J. Numer. Anal., 50 (2012), 3351-3374.
[59] B. Kuznetsov, N. Vladimirova and N. Yanenko, Numerical Calculation of the Symmetrical Flow of Viscous Incom-

pressible Liquid around a Plate (in Russian), Studies in Mathematics and its Applications, Moscow: Nauka, 1966.
[60] M. Kubacki and M. Moraiti, Analysis of a second-order, unconditionally stable, partitioned method for the evolutionary

Stokes-Darcy model, Int. J. Numer. Anal. Model., 12 (2015), 704-730.
[61] W. Layton, Introduction to the Numerical Analysis of Incompressible Viscous Flows, Society for Industrial and Applied

Mathematics (SIAM), Philadelphia, 2008.
[62] W. Layton and M. McLaughlin, Doubly-adaptive artificial compression methods for incompressible flow, Journal of

Numerical Mathematics, 28 (2020), 175-192.
[63] W. Layton and H. Tran and C. Trenchea, Analysis of long time stability and errors of two partitioned methods for

uncoupling evolutionary groundwater-surface water flows, SIAM J. Numer. Anal., 51 (2013), 248-272.
[64] W. Layton and H. Tran and X. Xiong, Long time stability of four methods for splitting the evolutionary Stokes-

Darcy problem into Stokes and Darcy subproblems, Journal of Computational and Applied Mathematics, 236 (2012),
3198-3217.

[65] W. Layton and S. Xu, Conditioning of linear systems arising from penalty methods, Arxiv, 2022,
https://arxiv.org/abs/2206.06971

[66] N. Li, J. Fiordilino and X. Feng, Ensemble time-stepping algorithm for the convection-diffusion equation with random
diffusivity, Journal of Scientific Computing, 79 (2019), 1271-1293.

[67] Y. Li, Y. Hou and Y. Rong, A second-order artificial compression method for the evolutionary Stokes-Darcy system,
Numerical Algorithms, 84 (2020), 1019-1048.

[68] X. Li, J. Shen and Z. Liu, New SAV-pressure correction methods for the Navier-Stokes equations: stability and error
analysis, Mathematics of Computation, 91 (2022), 141-167.

[69] Y. Luo and Z. Wang, An ensemble algorithm for numerical solutions to deterministic and random parabolic PDEs,
SIAM Journal on Numerical Analysis, 56 (2018), 859-876.

[70] Y. Luo and Z. Wang, A multilevel Monte Carlo ensemble scheme for random parabolic PDEs, SIAM Journal on Scientific
Computing, 41 (2019), A622-A642.

[71] JF McCarthy, Block-conjugate-gradient method, Physical Review D, 40 (1989), 2149.
[72] M. Mohebujjaman and L. Rebholz, An efficient algorithm for computation of MHD flow ensembles, Computational

Methods in Applied Mathematics, 17 (2017), 121-137.
[73] M. Mu and X. Zhu, Decoupled Schemes for a Non-Stationary Mixed Stokes-Darcy Model, Math. Comp., 79 (2010),

707-731.

22

[74] F. Nobile, R. Tempone and C. G. Webster, A sparse grid stochastic collocation method for partial differential equations
with random input data, SIAM Journal on Numerical Analysis, 46 (2008), 2309-2345.

[75] DP O’Leary, The block conjugate gradient algorithm and related methods, Linear Algebra and its Applications, 29 (1980),
pp. 293-322.

[76] M. Reagan, H.N. Najm, R.G. Ghanem and O.M. Knio, Uncertainty quantification in reacting-flow simulations through
non-intrusive spectral projection, Combustion and Flame, 132 (2003), 545-555.

[77] V. Romero, J. Burkardt, M. Gunzburger and J. Peterson, Comparison of pure and ”Latinized” centroidal Voronoi
tessellation against various other statistical sampling methods, Reliability Engineering and System Safety, 91 (2006),
1266-1280.

[78] Y. Rong, W. Layton and H. Zhao, Numerical analysis of an artificial compression method for Magnetohydrodynamic
flows at low magnetic Reynolds numbers, Journal of Scientific Computing, 76 (2018), pp. 1458-1483.

[79] P. Saffman, On the boundary condition at the interface of a porous medium, Stud. Appl. Math., 1 (1971), 93-101.
[80] L. Shan, H. Zheng and W. Layton, A decoupling method with different subdomain time steps for the nonstationary

Stokes–Darcy model, Numer. Methods for Partial Differential Eq., 29 (2013), 549-583.
[81] J. Shen, On error estimates of projection methods for Navier-Stokes equations: first-order schemes, SIAM Journal on

Numerical Analysis, 29 (1992), 57-77.
[82] J. Shen, On error estimates of projection methods for Navier-Stokes equations: second-order schemes, Mathematics of

Computation, 65 (1996), 1039-1065.
[83] A. Takhirov, M. Neda, and J. Waters, Time relaxation algorithm for flow ensembles, Numerical Methods for Partial

Differential Equations, 32 (2016), 757-777.
[84] A. Takhirov and J. Waters, Ensemble algorithm for parametrized flow problems with energy stable open boundary

conditions, Computational Methods in Applied Mathematics, 20 (2020), 531-554.
[85] R. Temam Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (I),

Arch. Rational. Mech. Anal., 33 (1969), pp. 135-153.
[86] R. Temam, Sur l’approximation de la solution des equations de Navier-Stokes par la méthode des fractionnarires II,

Archive for Rational Mechanics and Analysis, 33 (1969), 377-385.
[87] J. van Kan, A second-order accurate pressure-correction scheme for viscous incompressible flow, SIAM Journal on

Scientific and Statistical Computing, 7 (1987), 870-891.
[88] D. Xiu and J.S. Hesthaven, High-order collocation methods for differential equations with random inputs, SIAM Journal

on Scientific Computing, 27 (2005), 1118-1139.

23

