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Wilson Loops at Large N and the Quantum M2-Brane
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The Wilson loop operator in the U(N), x U(N)_, Aharony-Bergman-Jafferis-Maldacena theory at large
N and fixed level k has a dual description in terms of a wrapped M2-brane in the M-theory given by the
product of four-dimensional anti de Sitter space (AdS,) and S”/Z;. We consider the localization result for

the %—Bogomol’nyi—Prasad—Sommerﬁeld circular Wilson loop expectation value W in this regime and
compare it to the prediction of the M2-brane theory. The leading large N exponential factor is matched as
expected by the classical action of the M2-brane solution with AdS, x S! geometry. We show that the
subleading k-dependent prefactor in W is also exactly reproduced by the one-loop term in the partition
function of the wrapped M2-brane (with all Kaluza-Klein modes included). This appears to be the first case
of an exact matching of the overall numerical prefactor in the Wilson loop expectation value against the dual
holographic result. It provides an example of a consistent quantum M?2-brane computation, suggesting

various generalizations.
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The existence of a consistent quantum supermembrane
(or M2-brane) theory remains an enigma (see, e.g., [1,2]).
The corresponding 3D world-volume theory is formally
nonrenormalizable, apparently requiring a specific defini-
tion like a built-in cutoff. Nevertheless, some simple
semiclassical computations to one-loop order can still be
done in a straightforward way, as one-loop corrections in
3D field theory are free of logarithmic UV divergences, see,
e.g., [3-6] or more recent work in [7].

In this Letter, we present a nontrivial example of one-
loop calculation in the M2-brane theory, which provides
further evidence that the quantization of the supermem-
brane might be under good control, at least within the
semiclassical expansion.

The AdS,/CFT; duality between the U(N), x U(N)_,
Aharony-Bergman-Jafferis-Maldacena (ABJM) theory [8]
and M theory on the direct product of four-dimensional anti
de Sitter space (AdS,) and S7/Z; provides a remarkable
opportunity to shed light on the properties of the quantum
M2-brane theory by testing its predictions against exact
results in 3D superconformal gauge theory. In the large N
limit with & fixed, the holographic dual of a Wilson loop
in the fundamental representation is expected to be an
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M2-brane wrapping the M-theory circle direction. Note that
this limit is different from the standard large N ‘t Hooft
limit, where N and k are taken to be large with A = N/k
fixed, and in which Wilson loops are described by funda-
mental strings in type IIA string theory in AdS, x CP?.

For fixed k, the large N expansion of the Wilson loop
operator in the ABJM theory corresponds to the expansion
in the large effective M2-brane tension R3T, ~ v/Nk,
where R is the curvature radius of AdS, x S7/Z, and
T, = (1/(2n)*¢h).

Our starting point will be an analytic expression for the
expectation value of %—supersymmetric circular Wilson loop
in the ABJM theory derived using supersymmetric locali-
zation in [9] (see also [10-17]),

S Ai[c—%(N—ﬁ—;—k)}

- 2sin(3) A [cH(v=4-3)]

(W (1)
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where Ai(z) is the Airy function, and C = 2/(z?k). This
expression resums all of the perturbative 1/N corrections at
fixed k [19].

In order to compare to the semiclassical expansion in
the M2-brane world-volume theory, one is to expand (1) at
large N with fixed k, which gives
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As we will show in the section below, the exponential factor
in (2) is reproduced by the classical action of the M2-brane
with AdS, x §' world volume, while the k-dependent
prefactor (2sin(2z/k))~! is matched precisely by the
one-loop correction coming from the functional determi-
nants of the quantum fluctuations around this M2-brane
solution.

Higher-order 1/(v/N)" terms in (2) are expected to
represent higher-loop corrections in the semiclassical
expansion of the partition function of the quantum
M2-brane theory, and checking this is a very interesting
but challenging future problem.

AdS, x S' M2-brane in AdS, x S7/Z,.—The AdS, x
S7/Z, metric is given by (p = ¢ + 27) [20],

R2
ds* = stid& + des§7/zk, (3)
1
dsigs, = 2 (=df* + dz* + dx} + dx3), (4)
1
ds§7/zk = dstp: + 2 (dop + kA)>. (5)

The 11D supergravity background also includes the 4-form
field strength

3R?
F4:dC3:—§Z—4dl/\dx1 /\d.xZ/\dZ. (6)

The radius R in units of the 11D Planck length £p; is related
to the parameters N and k of the dual ABJM gauge

theory by

R\6

() = 27’ Nk. (7)
Cpi

The world-volume action for a probe M2-brane in this
background is given by [21-23]

Svo =T / d*c\/—detg+ T, / C; + fermionic terms,
(8)
where the M2-brane tension is

I 1

T, :Wf_gn' )

Classical M2-brane solution.—The action (8) admits a
simple classical solution given by the M2-brane wrapping
the M-theory circle direction [the ¢ angle in (3)] and
occupying the AdS, subspace of AdS, spanned by the
coordinates ¢, z in (4). The resulting membrane has
the AdS, x S' world-volume geometry and is dual to the

%—BPS Wilson loop along the ¢ direction at the boundary of
AdS,. By an appropriate Wick rotation and coordinate
transformation, one may obtain in the same way the
solution dual to the circular Wilson loop, for which the
AdS, factor is just the Euclidean hyperbolic disk with
circular boundary.

The value of the classical action (8) for this AdS, x S!
solution is simply given by

Ssl, = T,R? ivol(AdSz)z—Ij, (10)
where (1/4) comes from the AdS, radius in (3), and the
27/ k is the length of the M-theory ¢ circle in (5). Using (7)
and (9), and the well-known value of the regularized volume
of the unit-radius hyperbolic disk vol(AdS,) = —2z, this
gives (we always assume k > 0)

2N
S = —m\[ (11)

Thus, e 5w precisely matches the exponential in the
localization prediction (2) [25].

In the next section, we will also compute the one-loop
correction to the M2-brane partition function due to the
quantum fluctuations about this classical solution and will
reproduce precisely the prefactor in (2).

Let us note that, in the case of the %—BPS Wilson loop
along the infinite straight line, one should use in (10) the
regularized volume of AdS, in Poincaré coordinates, which
is zero, thus getting Sﬁ}lz = 0, consistent with <W% y=1in
this case. All quantum corrections also vanish here since
the AdS, space is homogeneous and hence the quantum
M2-brane free energy is proportional to vol(AdS,) to all
orders [27].

One-loop correction.—Starting with the action (8), one
may expand it near a classical solution to quadratic order
fixing a 3D reparametrization and k-symmetry gauge to get
an action for 8 4+ 8 physical 3D fluctuation fields. The
resulting spectrum of the quantum fluctuations around the
above AdS, x S! solution was obtained in Ref. [30], which
we follow below (see also [31]).

It is natural to chose a static gauge identifying two
membrane coordinates oy, o, in (8) with the AdS,
directions and the third o5 with the S' angle ¢. After a
Kaluza-Klein (Fourier) expansion of the 3D fields in the
periodic coordinate 63, one obtains a tower of bosonic and
fermionic fluctuations that can be viewed as 2D fields
propagating on the (unit-radius) AdS, background. Thus,
one gets an equivalent 2D theory with an infinite number of
fields.

The bosonic fluctuations in the two transverse directions
within AdS, give a tower of complex scalar fields 7, (two
real scalars for each n) with masses
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1
mh = Z(kn —2)(kn—4),

nez, (12)
while from the fluctuations in the six CP? directions one
finds a tower of three complex fields {3 (s = 1, 2, 3) with
masses

1
mzm zzkn(kn—&—Z), ne-Z. (13)
For the fermionic fluctuations, the Kaluza-Klein (KK)
reduction leads to a tower of eight two-component spinors
94 (A =1, ..., 8) for each value of the KK mode number #,
with masses given by (n € Z) [32]

k k
Mga = i (3 4+ 3 modes), My = 7n (2 modes).

2
(14)

The above masses explicitly depend on the integer k, which
is the inverse radius of the ¢ circle in (5). Thus, in the type
ITA string limit kK — oo, all KK modes with n # 0 become
infinitely heavy.

For n = 0, this spectrum coincides (as expected upon
double-dimensional reduction [33]) with the spectrum of
bosonic and fermionic fluctuations around the correspond-
ing AdS, string solution in the type IIA superstring theory
on AdS, x CP? [18,34]: we get two scalars of m? = 2, six
scalars of m? =0, 343 fermions of m = +1, and 2
fermions of m = 0.

One can also check that the full spectrum is consistent
with 2D supersymmetry. The bosonic and fermionic masses
in a N’ =1 supermultiplet in AdS, containing one real
scalar and a Majorana fermion are related as (see, e.g., [35])

m% = mp(mp —1). (15)
!

Indeed, the bosonic and fermionic modes listed above can
be grouped so that their masses satisfy this relation.

A stronger consistency test of the spectrum is obtained
by checking the vanishing of the vacuum energy in
Lorentzian AdS, in global coordinates (as that happens
also in the simple case of the flat toroidal M2-brane [3,36]).
The vacuum energies for massive bosons and fermions in
AdS, are given by (see, e.g., [28])

1 1 1 1
Batmg) == (w45 ). Erne) = (3 - 35).

We find that the total vacuum energy in the present case is
zero separately for each KK level n,

Etot — Z E®t, (16)

n=—oo

112 6
tot _ __ |~ — — —
EP = 1 [4 (kn —2)(kn —4) + 4kn(kn +2)

() (1) 2(R) o -0
(17)

Using the above spectrum, we can derive the one-loop
correction to the partition function of the M2-brane theory
expanded around the Euclidean AdS, x S! solution with
circular boundary. The semiclassical partition function is
given by

'C| 1
ZM2 = Z] e_SNIIZ |:1 + 0<>:| , (18)

RT,

where the one-loop term Z; is the ratio of the determinants
of the corresponding fluctuation operators

R® kn ANE R® kn 2\ 13 R2  k2n2\2
Z,. 5= V24— —+1 V24— —=1 A v/
n

Z, 5 = det —V2+w det( —V?
" ( 4 )[ (

Here R® = —2 is the curvature of AdS, [37]. The n =0
factor in (19) is of course the same as the one-loop partition
function [18,34] for the fluctuations near the corresponding
type IIA AdS, string world sheet ending on a circle at the
boundary of AdS, x CP?.

The functional determinants in (19) may be computed by
the standard AdS, spectral zeta-function techniques (as was

+kn(kn+2))r‘ (19)

|
done in the similar AdS, string case in, e.g., [18,28,29]).
For a massive boson, one has

1
I, = Elog det(=V? + m3)

1 1
= —5(0mp) log(A?) = 5¢'(0;mp),  (20)
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where A is a 2D UV cutoff, and

2
my)="51
CB(O’mB> 2 6’
1 log2 rast 1
102 — — - 08~ _ !
{p(0;my) 21 +logA / dxw(x/)_c—l—2>
(21)
Here A is the Glaisher constant and y(x) =I"(x)/I'(x)

Similarly, for a massive fermion,

1 5 R®? 5
FlF:—Elogdet -V +T+mF

1 1
= —ECMO; mp) log(Az) - ECHO; mg), (22)

2
. _omp 1
gF(O9mF)_ 2 +12

I n?
Cr(Omp) == g+ 2tog At g + [ (R (23

Using these expressions we can first verify the cancellation
of the logarithmically divergent part of the one-loop free
energy 'y = —logZ; in (19). Indeed, from the above
calculation of the vacuum energy, one can see that the
sum over the bosonic and fermionic masses at each KK
level n satisfies > (m% — m%) = —2. Then the total coef-
ficient of the logarithmic divergence in the sum of the
corresponding terms in (20), (21) and (22), (23) over the
spectrum is

;Z —244)=) 1=142(0)=0, (24)

nez nez

gtot (0)

where we have used the Riemann zeta-function regulari-
zation to evaluate the (linearly divergent) sum. Note that the
contribution of all massive KK modes at nonzero n levels
cancels 1 coming from the n = 0 modes, i.e., cancels the
logarithmic UV divergence that was present in the similar
computation in the AdS, x CP? superstring regime [18].

The vanishing of the logarithmic divergence in the free
energy was actually expected, as the M2-brane theory we
started with is three dimensional, and there are no loga-
rithmic divergences in the corresponding functional deter-
minants in 3D. The reduction to 2D with all KK modes
included cannot produce logarithmic divergences that were
not present in the 3D formulation [38].

The one-loop free energy is thus finite and is given by

1
I=-logZ = _Ec{ot(o)’ (25)

where according to (19),

Ctol Zé’tol 0 n

nez
aot(o; I’l) = 24’% <0’(kn—2)4(kn—4)>

+ 6% ( Lk? 2>) + 3¢5, (o;%" + 1>

k k
+ 3¢, <0; 7” - 1> + 20", <0; 2”> . (26)

Summing up the bosonic and fermionic contributions,
some remarkable simplifications occur. Combining the
contributions of the positive and negative modes (so that
below n > 0), we find the following result [39]:

~2log (2~ 1), kn>2,
Clot(03 1) + iy (05 —n) = log 7*, kn=2

_log%7 kn g 1’

0, n=0.

If we assume that k > 2, only the n = 0 and kn > 2 cases
in (27) occur, and the complete one-loop free energy is
given by the following simple result:

S
—ZZlog——i-Zlog( 22) (27)

Using again the Riemann zeta-function regularization

[Cr(0) = —3.((0) = —1log(27)], we get
N k k
2 ; 1og7” = 2 (0)log 5 — 204(0) = —log ;. (28)

The second sum in (27) is finite and given by
- 4
Zlog( o 2) logH<1 __k2n2>

— log [% sin (2—0] (29)

Here we used Euler’s expression for the sine as a product of
its zeros, sin(zx) = zx [[2 (1 — (x?/n?)).

Combining (28) and (29), we get the final result for the
one-loop partition function for k > 2,

1
Z] = e_rl = A o (30)
2sin(%%)
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which is thus in precise agreement with the localization
result in (2).

Let us now discuss the special cases of k = 1, 2 which
require a separate treatment [40]. For k = 1, all of the cases
listed in (27) occur in the sum over the KK modes, i.e.,

k=t ! log9 llog 2 + Eoo:log (n2 1> (31)
1 =;logy—logx -1
2 74 2 o 4

The infinite sum here can be evaluated in a similar
way: Y5 log((n2/4) — 1) = 2%, log(n/2) + Y%
log(1 — (4/n?)) = log(16z) —log 6, and from (31) we get
=1 =log4, ie.,

1
Zk=t = 32
1 4 ( )

Similarly, I'f=% = —1log(z?) + Y%, log (n* = 1) = 0,
Z=2 =1, (33)

These results cannot be directly compared to localization,
as the result (1) of [9] is singular for k = 1, 2 [44]. It might
be that the derivation of (1) in [9] is to be reconsidered
specifically for k = 1, 2. The matching in these special
cases thus remains an open problem.

Concluding remarks.—Extending the above computa-
tion to higher loops in the semiclassical expansion of the
partition function (18) would allow one to compare the
quantum M2-brane prediction with the subleading terms in
the expansion of the localization expression at large N. For
instance, the term of order 1/ V/N in (2) should come from a
two-loop calculation in the M2-brane theory (recall that
(1/R*T,) ~ (1/+/N)). One issue with this computation is
whether the two-loop correction will be UV finite.

The cancellation of logarithmic divergences (despite
apparent nonrenormalizability) may happen due to the
large amount of supersymmetry of the supermembrane
theory (cf. [48]). An example of a cancellation of two-loop
UV divergences in a formally nonrenormalizable theory is
provided by the successful computation of the subleading
(1/+/2) correction to the cusp anomalous dimension
f(A) = apVA+ a; + (ay/V/A) +--- in the AdSsx S’
superstring theory [49-51], which matched the correspond-
ing term in the strong-coupling expansion of f(1) derived
on the N =4 supersymmetric Yang-Mills (SYM) side
using integrability [52] (the analogous two-loop computa-
tion in the case of the AdS, x CP? string was done in [53]).

An alternative possibility could be that the M2-brane
theory has a built-in UV cutoff A~&p~' ~T; 173,
However, then a logarithmically divergent term would
scale as log(RA) = (1/6)1og(Nk) + --- [see Eq. (7],
but there is no such log N term in the localization expansion
of the Wilson loop in (2) [54]. This suggests that the

logarithmic divergences may cancel at higher loops in the
M2-brane theory, at least for such a %—BPS observable.

Let us now comment on the 10D type IIA string theory
limit, which corresponds to k and N both taken to be large,
with the ‘t Hooft coupling 1 = N/k kept fixed. In this
regime, the 11D background (3) reduces to AdS, x CP?3,
and a Wilson loop operator is dual to an open string ending
on a loop at the boundary of AdS,. The corresponding type
ITA string coupling constant g, and the effective string
tension 7 = (1/27)(R2/¢?) are then [8]

5/4
g = VIO V2 Ny
N 2 k

Note that, to be in the g, << 1 and 4 > 1 regime, we need to
assume that k < N < k.

As was pointed out in [18], the string partition function
computed near the AdS, minimal surface representing the
%—BPS circular Wilson loop in both type IIB AdSs x S° and
type IIA AdS, x CP? theories has an expansion in small
g, and then in large tension T of the following universal
form [56]:

eZ/rT \/T

A

+ ¢y <g—7§>2[1 +O(T™)] +} (35)

{co[l +O(T™ Y] + ¢, g—% 1+ 0(T™1)]

w T

1
2

) =

In our present case, we can see that this is consistent
with the structure of the corresponding large N, large k
expansion of (1), according to which one should get
co = (1/v/2x), ¢, = (x/12)cy, etc. The presence of the
overall /T factor was shown in [18] to originate from the
leading one-loop string sigma model correction on the disk
[it is related to the n = O contribution in (24)]. The precise
value of the one-loop coefficient ¢, = (1/+/27) was not so
far derived directly on the string side (that appears to
require a careful normalization of the measure in the
superstring path integral). Remarkably, the M?2-brane
one-loop computation described above effectively deter-
mines this coefficient and, moreover, the coefficients of all
of the leading large tension terms at higher genus (disk with
handles). Indeed, comparing (35) to the corresponding
large N, large k expansion of (1), the leading large tension
terms in (35) can be seen [57] to arise from a resummed
expression,

(Wy) I S
’ Zsin[\/g\i—%}

where \/(7/2)(g,/v/T)=2x(1/N) = (2z/k). Here the sine
factor is just the same as the one found in (2) and (30) [the
exponential factor is also the same as in (18) and (11)].

I+ 0T, (36)
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Thus, the one-loop M2-brane correction happens to
describe the leading large tension terms at all orders in
the genus expansion in the type IIA string theory [58].

One natural generalization of our calculation is to
consider the %—BPS Wilson loop [10,61]. In this case, the
localization result derived in [9], expanded in the large N,
fixed k limit, gives

(W) = 28#(2_) @eﬂx/% o). (37)

k

Note that there is an extra factor i/2N/k compared to the
%—BPS case. The origin of this factor should be similar to
what was discussed in the corresponding string case, where
it was argued [10] that the string solution should be
smeared over a CP! in CP3, leading to two zero modes
and hence an overall factor (v/7T)? ~ /1 in the partition
function [13,18]. For the M2-brane, we similarly expect
that the solution relevant to the (1/6)-BPS case should be
smeared over a CP!, leading again to an extra tension-

dependent prefactor ~v/N. It would be interesting to study
the fluctuation spectrum of the corresponding M2-brane in
detail and reproduce from a one-loop calculation the
remaining normalization factor in (37).

Another interesting extension would be to explore the
defect conformal field theory (CFT) defined by the %—BPS
Wilson loop in the large N, fixed k limit. The corresponding
problem in the type IIA string regime was studied in [62].
In particular, in that case, one finds that the 8+ 8
fluctuation modes about the AdS, string solution form a
short supermultiplet containing the displacement operator.
The same multiplet appears for the M2-brane as the n = 0
mode in the KK reduction. It would be interesting to
understand the interpretation of the higher KK modes from
the defect CFT point of view and compute their boundary
correlation functions [63].
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