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The Wilson loop operator in the UðNÞk × UðNÞ−k Aharony-Bergman-Jafferis-Maldacena theory at large

N and fixed level k has a dual description in terms of a wrapped M2-brane in the M-theory given by the

product of four-dimensional anti de Sitter space ðAdS4Þ and S7=Zk. We consider the localization result for

the 1
2
-Bogomol’nyi-Prasad-Sommerfield circular Wilson loop expectation value W in this regime and

compare it to the prediction of the M2-brane theory. The leading large N exponential factor is matched as

expected by the classical action of the M2-brane solution with AdS2 × S1 geometry. We show that the

subleading k-dependent prefactor in W is also exactly reproduced by the one-loop term in the partition

function of the wrapped M2-brane (with all Kaluza-Klein modes included). This appears to be the first case

of an exact matching of the overall numerical prefactor in the Wilson loop expectation value against the dual

holographic result. It provides an example of a consistent quantum M2-brane computation, suggesting

various generalizations.

DOI: 10.1103/PhysRevLett.130.201601

The existence of a consistent quantum supermembrane

(or M2-brane) theory remains an enigma (see, e.g., [1,2]).

The corresponding 3D world-volume theory is formally

nonrenormalizable, apparently requiring a specific defini-

tion like a built-in cutoff. Nevertheless, some simple

semiclassical computations to one-loop order can still be

done in a straightforward way, as one-loop corrections in

3D field theory are free of logarithmic UV divergences, see,

e.g., [3–6] or more recent work in [7].

In this Letter, we present a nontrivial example of one-

loop calculation in the M2-brane theory, which provides

further evidence that the quantization of the supermem-

brane might be under good control, at least within the

semiclassical expansion.

The AdS4=CFT3 duality between the UðNÞk × UðNÞ−k
Aharony-Bergman-Jafferis-Maldacena (ABJM) theory [8]

andM theory on the direct product of four-dimensional anti

de Sitter space ðAdS4Þ and S7=Zk provides a remarkable

opportunity to shed light on the properties of the quantum

M2-brane theory by testing its predictions against exact

results in 3D superconformal gauge theory. In the large N
limit with k fixed, the holographic dual of a Wilson loop

in the fundamental representation is expected to be an

M2-brane wrapping theM-theory circle direction. Note that

this limit is different from the standard large N ‘t Hooft

limit, where N and k are taken to be large with λ ¼ N=k
fixed, and in which Wilson loops are described by funda-

mental strings in type IIA string theory in AdS4 × CP
3.

For fixed k, the large N expansion of the Wilson loop

operator in the ABJM theory corresponds to the expansion

in the large effective M2-brane tension R3T2 ∼
ffiffiffiffiffiffi

Nk
p

,

where R is the curvature radius of AdS4 × S7=Zk and

T2 ¼ ð1=ð2πÞ2l3PlÞ.
Our starting point will be an analytic expression for the

expectation value of 1
2
-supersymmetric circular Wilson loop

in the ABJM theory derived using supersymmetric locali-

zation in [9] (see also [10–17]),
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where AiðzÞ is the Airy function, and C ¼ 2=ðπ2kÞ. This
expression resums all of the perturbative 1=N corrections at

fixed k [19].

In order to compare to the semiclassical expansion in

the M2-brane world-volume theory, one is to expand (1) at

large N with fixed k, which gives
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As wewill show in the section below, the exponential factor

in (2) is reproduced by the classical action of the M2-brane

with AdS2 × S1 world volume, while the k-dependent

prefactor ð2 sinð2π=kÞÞ−1 is matched precisely by the

one-loop correction coming from the functional determi-

nants of the quantum fluctuations around this M2-brane

solution.

Higher-order 1=ð
ffiffiffiffi

N
p

Þn terms in (2) are expected to

represent higher-loop corrections in the semiclassical

expansion of the partition function of the quantum

M2-brane theory, and checking this is a very interesting

but challenging future problem.

AdS2 × S1 M2-brane in AdS4 × S7=Zk.—The AdS4 ×

S7=Zk metric is given by (φ≡ φþ 2π) [20],

ds2 ¼ R2

4
ds2AdS4 þ R2ds2

S7=Zk
; ð3Þ

ds2AdS4 ¼
1

z2
ð−dt2 þ dz2 þ dx21 þ dx22Þ; ð4Þ

ds2
S7=Zk

¼ ds2
CP3 þ

1

k2
ðdφþ kAÞ2: ð5Þ

The 11D supergravity background also includes the 4-form

field strength

F4 ¼ dC3 ¼ −
3

8

R3

z4
dt ∧ dx1 ∧ dx2 ∧ dz: ð6Þ

The radius R in units of the 11D Planck length lPl is related

to the parameters N and k of the dual ABJM gauge

theory by

�

R

lPl

�

6

¼ 25π2Nk: ð7Þ

The world-volume action for a probe M2-brane in this

background is given by [21–23]

SM2 ¼ T2

Z

d3σ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

− det g
p

þ T2

Z

C3 þ fermionic terms;

ð8Þ

where the M2-brane tension is

T2 ¼
1

ð2πÞ2
1

l
3
Pl

: ð9Þ

Classical M2-brane solution.—The action (8) admits a

simple classical solution given by the M2-brane wrapping

the M-theory circle direction [the φ angle in (3)] and

occupying the AdS2 subspace of AdS4 spanned by the

coordinates t, z in (4). The resulting membrane has

the AdS2 × S1 world-volume geometry and is dual to the

1
2
-BPS Wilson loop along the t direction at the boundary of

AdS4. By an appropriate Wick rotation and coordinate

transformation, one may obtain in the same way the

solution dual to the circular Wilson loop, for which the

AdS2 factor is just the Euclidean hyperbolic disk with

circular boundary.

The value of the classical action (8) for this AdS2 × S1

solution is simply given by

SclM2 ¼ T2R
3
1

4
volðAdS2Þ

2π

k
; ð10Þ

where ð1=4Þ comes from the AdS4 radius in (3), and the

2π=k is the length of theM-theory φ circle in (5). Using (7)

and (9), and the well-known value of the regularized volume

of the unit-radius hyperbolic disk volðAdS2Þ ¼ −2π, this

gives (we always assume k > 0)

SclM2 ¼ −π

ffiffiffiffiffiffiffi

2N

k

r

: ð11Þ

Thus, e−S
cl
M2 precisely matches the exponential in the

localization prediction (2) [25].

In the next section, we will also compute the one-loop

correction to the M2-brane partition function due to the

quantum fluctuations about this classical solution and will

reproduce precisely the prefactor in (2).

Let us note that, in the case of the 1
2
-BPS Wilson loop

along the infinite straight line, one should use in (10) the

regularized volume of AdS2 in Poincaré coordinates, which

is zero, thus getting SclM2 ¼ 0, consistent with hW1
2
i ¼ 1 in

this case. All quantum corrections also vanish here since

the AdS2 space is homogeneous and hence the quantum

M2-brane free energy is proportional to volðAdS2Þ to all

orders [27].

One-loop correction.—Starting with the action (8), one

may expand it near a classical solution to quadratic order

fixing a 3D reparametrization and κ-symmetry gauge to get

an action for 8þ 8 physical 3D fluctuation fields. The

resulting spectrum of the quantum fluctuations around the

above AdS2 × S1 solution was obtained in Ref. [30], which
we follow below (see also [31]).

It is natural to chose a static gauge identifying two

membrane coordinates σ1, σ2 in (8) with the AdS2
directions and the third σ3 with the S1 angle φ. After a

Kaluza-Klein (Fourier) expansion of the 3D fields in the

periodic coordinate σ3, one obtains a tower of bosonic and

fermionic fluctuations that can be viewed as 2D fields

propagating on the (unit-radius) AdS2 background. Thus,

one gets an equivalent 2D theory with an infinite number of

fields.

The bosonic fluctuations in the two transverse directions

within AdS4 give a tower of complex scalar fields ηn (two

real scalars for each n) with masses
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m2
ηn
¼ 1

4
ðkn − 2Þðkn − 4Þ; n ∈ Z; ð12Þ

while from the fluctuations in the six CP
3 directions one

finds a tower of three complex fields ζsn (s ¼ 1, 2, 3) with

masses

m2
ζsn
¼ 1

4
knðknþ 2Þ; n ∈ Z: ð13Þ

For the fermionic fluctuations, the Kaluza-Klein (KK)

reduction leads to a tower of eight two-component spinors

ϑAn (A ¼ 1;…; 8) for each value of the KK mode number n,
with masses given by (n ∈ Z) [32]

mϑan
¼ kn

2
� 1 ð3þ 3 modesÞ; mϑin

¼ kn

2
ð2 modesÞ:

ð14Þ

The above masses explicitly depend on the integer k, which
is the inverse radius of the φ circle in (5). Thus, in the type

IIA string limit k → ∞, all KK modes with n ≠ 0 become

infinitely heavy.

For n ¼ 0, this spectrum coincides (as expected upon

double-dimensional reduction [33]) with the spectrum of

bosonic and fermionic fluctuations around the correspond-

ing AdS2 string solution in the type IIA superstring theory

on AdS4 × CP
3 [18,34]: we get two scalars of m2 ¼ 2, six

scalars of m2 ¼ 0, 3þ 3 fermions of m ¼ �1, and 2

fermions of m ¼ 0.

One can also check that the full spectrum is consistent

with 2D supersymmetry. The bosonic and fermionic masses

in a N ¼ 1 supermultiplet in AdS2 containing one real

scalar and a Majorana fermion are related as (see, e.g., [35])

m2
B ¼ mFðmF − 1Þ: ð15Þ

Indeed, the bosonic and fermionic modes listed above can

be grouped so that their masses satisfy this relation.

A stronger consistency test of the spectrum is obtained

by checking the vanishing of the vacuum energy in

Lorentzian AdS2 in global coordinates (as that happens

also in the simple case of the flat toroidal M2-brane [3,36]).

The vacuum energies for massive bosons and fermions in

AdS2 are given by (see, e.g., [28])

EBðmBÞ ¼ −
1

4

�

m2
B þ 1

6

�

; EFðmFÞ ¼
1

4

�

m2
F −

1

12

�

:

We find that the total vacuum energy in the present case is

zero separately for each KK level n,

Etot ¼
X

∞

n¼−∞

Etot
n ; ð16Þ

Etot
n ¼ −

1

4

�

2

4
ðkn − 2Þðkn − 4Þ þ 6

4
knðknþ 2Þ

− 3

�

kn

2
þ 1

�

2

− 3

�

kn

2
− 1

�

2

− 2

�

kn

2

�

2

þ 2

�

¼ 0:

ð17Þ

Using the above spectrum, we can derive the one-loop

correction to the partition function of the M2-brane theory

expanded around the Euclidean AdS2 × S1 solution with

circular boundary. The semiclassical partition function is

given by

ZM2 ¼ Z1e
−Scl

M2

�

1þO

�

1

R3T2

��

; ð18Þ

where the one-loop term Z1 is the ratio of the determinants

of the corresponding fluctuation operators

Z1 ¼
Y

n∈Z

Zn;F

Zn;B

;

Zn;F ¼
�

det

�

−∇2 þ Rð2Þ

4
þ
�

kn

2
þ 1

�

2
��3

2

�

det

�

−∇2 þ Rð2Þ

4
þ
�

kn

2
− 1

�

2
��3

2

det

�

−∇2 þ Rð2Þ

4
þ k2n2

4

�

2

;

Zn;B ¼ det

�

−∇2 þ ðkn − 2Þðkn − 4Þ
4

��

det

�

−∇2 þ knðknþ 2Þ
4

��

3

: ð19Þ

Here Rð2Þ ¼ −2 is the curvature of AdS2 [37]. The n ¼ 0

factor in (19) is of course the same as the one-loop partition

function [18,34] for the fluctuations near the corresponding

type IIA AdS2 string world sheet ending on a circle at the

boundary of AdS4 × CP
3.

The functional determinants in (19) may be computed by

the standard AdSd spectral zeta-function techniques (as was

done in the similar AdS2 string case in, e.g., [18,28,29]).

For a massive boson, one has

Γ1B
¼ 1

2
log detð−∇2 þm2

BÞ

¼ −
1

2
ζð0;m2

BÞ logðΛ2Þ − 1

2
ζ0ð0;m2

BÞ; ð20Þ
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where Λ is a 2D UV cutoff, and

ζBð0;m2
BÞ ¼

m2
B

2
þ 1

6
;

ζ0Bð0;m2
BÞ ¼ −

1

12
−
log2

12
þ logA−

Z

m2
B
þ1

4

0

dxψ

�

ffiffiffi

x
p

þ 1

2

�

:

ð21Þ

Here A is the Glaisher constant and ψðxÞ ¼ Γ
0ðxÞ=ΓðxÞ.

Similarly, for a massive fermion,

Γ1F
¼ −

1

2
log det

�

−∇2 þ Rð2Þ

4
þm2

F

�

¼ −
1

2
ζFð0;mFÞ logðΛ2Þ − 1

2
ζ0Fð0;mFÞ; ð22Þ

ζFð0;mFÞ ¼ −
m2

F

2
þ 1

12
;

ζ0Fð0;mFÞ ¼ −
1

6
þ 2 logAþ jmFj þ

Z

m2
F

0

dxψð
ffiffiffi

x
p

Þ: ð23Þ

Using these expressions we can first verify the cancellation

of the logarithmically divergent part of the one-loop free

energy Γ1 ¼ − logZ1 in (19). Indeed, from the above

calculation of the vacuum energy, one can see that the

sum over the bosonic and fermionic masses at each KK

level n satisfies
Pðm2

B −m2
FÞ ¼ −2. Then the total coef-

ficient of the logarithmic divergence in the sum of the

corresponding terms in (20), (21) and (22), (23) over the

spectrum is

ζtotð0Þ ¼
1

2

X

n∈Z

ð−2þ 4Þ ¼
X

n∈Z

1¼ 1þ 2ζRð0Þ ¼ 0; ð24Þ

where we have used the Riemann zeta-function regulari-

zation to evaluate the (linearly divergent) sum. Note that the

contribution of all massive KK modes at nonzero n levels

cancels 1 coming from the n ¼ 0 modes, i.e., cancels the

logarithmic UV divergence that was present in the similar

computation in the AdS4 × CP
3 superstring regime [18].

The vanishing of the logarithmic divergence in the free

energy was actually expected, as the M2-brane theory we

started with is three dimensional, and there are no loga-

rithmic divergences in the corresponding functional deter-

minants in 3D. The reduction to 2D with all KK modes

included cannot produce logarithmic divergences that were

not present in the 3D formulation [38].

The one-loop free energy is thus finite and is given by

Γ1 ¼ − logZ1 ¼ −
1

2
ζ0totð0Þ; ð25Þ

where according to (19),

ζ0totð0Þ ¼
X

n∈Z

ζ0totð0; nÞ;

ζ0totð0; nÞ ¼ 2ζ0B

�

0;
ðkn − 2Þðkn − 4Þ

4

�

þ 6ζ0B

�

0;
knðknþ 2Þ

4

�

þ 3ζ0F

�

0;
kn

2
þ 1

�

þ 3ζ0F

�

0;
kn

2
− 1

�

þ 2ζ0F

�

0;
kn

2

�

: ð26Þ

Summing up the bosonic and fermionic contributions,

some remarkable simplifications occur. Combining the

contributions of the positive and negative modes (so that

below n ≥ 0), we find the following result [39]:

ζ0totð0; nÞ þ ζ0totð0;−nÞ ¼

8

>

>

>

<

>

>

>

:

−2 log ðk2n2
4

− 1Þ; kn > 2;

log π2; kn ¼ 2;

− log 9
4
; kn ¼ 1;

0; n ¼ 0:

If we assume that k > 2, only the n ¼ 0 and kn > 2 cases

in (27) occur, and the complete one-loop free energy is

given by the following simple result:

Γ1 ¼
X

∞

n¼1

log

�

k2n2

4
− 1

�

¼ 2
X

∞

n¼1

log
kn

2
þ
X

∞

n¼1

log

�

1 −
4

k2n2

�

: ð27Þ

Using again the Riemann zeta-function regularization

[ζRð0Þ ¼ − 1
2
; ζ0Rð0Þ ¼ − 1

2
logð2πÞ], we get

2
X

∞

n¼1

log
kn

2
¼ 2ζRð0Þ log

k

2
− 2ζ0Rð0Þ ¼ − log

k

4π
: ð28Þ

The second sum in (27) is finite and given by

X

∞

n¼1

log

�

1 −
4

k2n2

�

¼ log
Y

∞

n¼1

�

1 −
4

k2n2

�

¼ log

�

k

2π
sin

�

2π

k

��

: ð29Þ

Here we used Euler’s expression for the sine as a product of

its zeros, sinðπxÞ ¼ πx
Q

∞
n¼1ð1 − ðx2=n2ÞÞ.

Combining (28) and (29), we get the final result for the

one-loop partition function for k > 2,

Z1 ¼ e−Γ1 ¼ 1

2 sinð2π
k
Þ ; ð30Þ
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which is thus in precise agreement with the localization

result in (2).

Let us now discuss the special cases of k ¼ 1, 2 which

require a separate treatment [40]. For k ¼ 1, all of the cases

listed in (27) occur in the sum over the KK modes, i.e.,

Γ
k¼1
1 ¼ 1

2
log

9

4
−
1

2
log π2 þ

X

∞

n¼3

log

�

n2

4
− 1

�

: ð31Þ

The infinite sum here can be evaluated in a similar

way:
P

∞
n¼3 logððn2=4Þ − 1Þ ¼ 2

P

∞
n¼3 logðn=2Þ þ

P

∞
n¼3×

logð1− ð4=n2ÞÞ ¼ logð16πÞ− log 6, and from (31) we get

Γ
k¼1
1 ¼ log 4, i.e.,

Zk¼1
1 ¼ 1

4
: ð32Þ

Similarly, Γk¼2
1 ¼ − 1

2
logðπ2Þ þ

P

∞
n¼2 log ðn2 − 1Þ ¼ 0,

Zk¼2
1 ¼ 1: ð33Þ

These results cannot be directly compared to localization,

as the result (1) of [9] is singular for k ¼ 1, 2 [44]. It might

be that the derivation of (1) in [9] is to be reconsidered

specifically for k ¼ 1, 2. The matching in these special

cases thus remains an open problem.

Concluding remarks.—Extending the above computa-

tion to higher loops in the semiclassical expansion of the

partition function (18) would allow one to compare the

quantum M2-brane prediction with the subleading terms in

the expansion of the localization expression at large N. For

instance, the term of order 1=
ffiffiffiffi

N
p

in (2) should come from a

two-loop calculation in the M2-brane theory (recall that

ð1=R3T2Þ ∼ ð1=
ffiffiffiffi

N
p

Þ). One issue with this computation is

whether the two-loop correction will be UV finite.

The cancellation of logarithmic divergences (despite

apparent nonrenormalizability) may happen due to the

large amount of supersymmetry of the supermembrane

theory (cf. [48]). An example of a cancellation of two-loop

UV divergences in a formally nonrenormalizable theory is

provided by the successful computation of the subleading

ð1=
ffiffiffi

λ
p

Þ correction to the cusp anomalous dimension

fðλÞ ¼ a0
ffiffiffi

λ
p

þ a1 þ ða2=
ffiffiffi

λ
p

Þ þ � � � in the AdS5 × S5

superstring theory [49–51], which matched the correspond-

ing term in the strong-coupling expansion of fðλÞ derived
on the N ¼ 4 supersymmetric Yang-Mills (SYM) side

using integrability [52] (the analogous two-loop computa-

tion in the case of the AdS4 × CP
3 string was done in [53]).

An alternative possibility could be that the M2-brane

theory has a built-in UV cutoff Λ ∼ lPl
−1 ∼ T

−1=3
2 .

However, then a logarithmically divergent term would

scale as logðRΛÞ ¼ ð1=6Þ logðNkÞ þ � � � [see Eq. (7)],

but there is no such logN term in the localization expansion

of the Wilson loop in (2) [54]. This suggests that the

logarithmic divergences may cancel at higher loops in the

M2-brane theory, at least for such a 1
2
-BPS observable.

Let us now comment on the 10D type IIA string theory

limit, which corresponds to k and N both taken to be large,

with the ‘t Hooft coupling λ ¼ N=k kept fixed. In this

regime, the 11D background (3) reduces to AdS4 × CP
3,

and a Wilson loop operator is dual to an open string ending

on a loop at the boundary of AdS4. The corresponding type

IIA string coupling constant gs and the effective string

tension T ¼ ð1=2πÞðR2
s=l

2
sÞ are then [8]

gs ¼
ffiffiffi

π
p ð2λÞ5=4

N
; T ¼

ffiffiffiffiffi

2λ
p

2
; λ ¼ N

k
: ð34Þ

Note that, to be in the gs ≪ 1 and λ ≫ 1 regime, we need to

assume that k ≪ N ≪ k5.
As was pointed out in [18], the string partition function

computed near the AdS2 minimal surface representing the
1
2
-BPS circular Wilson loop in both type IIB AdS5 × S5 and

type IIA AdS4 × CP
3 theories has an expansion in small

gs and then in large tension T of the following universal

form [56]:

hW1
2
i ¼ e2πT

ffiffiffiffi

T
p

gs

	

c0½1þOðT−1Þ� þ c1
g2s

T
½1þOðT−1Þ�

þ c2

�

g2s
T

�

2

½1þOðT−1Þ� þ � � �



: ð35Þ

In our present case, we can see that this is consistent

with the structure of the corresponding large N, large k
expansion of (1), according to which one should get

c0 ¼ ð1=
ffiffiffiffiffiffi

2π
p

Þ, c1 ¼ ðπ=12Þc0, etc. The presence of the

overall
ffiffiffiffi

T
p

factor was shown in [18] to originate from the

leading one-loop string sigma model correction on the disk

[it is related to the n ¼ 0 contribution in (24)]. The precise

value of the one-loop coefficient c0 ¼ ð1=
ffiffiffiffiffiffi

2π
p

Þ was not so
far derived directly on the string side (that appears to

require a careful normalization of the measure in the

superstring path integral). Remarkably, the M2-brane

one-loop computation described above effectively deter-

mines this coefficient and, moreover, the coefficients of all

of the leading large tension terms at higher genus (disk with

handles). Indeed, comparing (35) to the corresponding

large N, large k expansion of (1), the leading large tension

terms in (35) can be seen [57] to arise from a resummed

expression,

hW1
2
i ¼ 1

2 sin
h

ffiffi

π
2

p gs
ffiffiffi

T
p

i e2πT ½1þOðT−1Þ�; ð36Þ

where
ffiffiffiffiffiffiffiffiffiffiffiffi

ðπ=2Þ
p

ðgs=
ffiffiffiffi

T
p

Þ¼2πðλ=NÞ¼ð2π=kÞ. Here the sine
factor is just the same as the one found in (2) and (30) [the

exponential factor is also the same as in (18) and (11)].
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Thus, the one-loop M2-brane correction happens to

describe the leading large tension terms at all orders in

the genus expansion in the type IIA string theory [58].

One natural generalization of our calculation is to

consider the 1
6
-BPS Wilson loop [10,61]. In this case, the

localization result derived in [9], expanded in the large N,

fixed k limit, gives

hW1
6
i ¼ i

2 sinð2π
k
Þ

ffiffiffiffiffiffiffi

2N

k

r

eπ
ffiffiffiffi

2N
k

p
ð1þ � � �Þ: ð37Þ

Note that there is an extra factor i
ffiffiffiffiffiffiffiffiffiffiffi

2N=k
p

compared to the
1
2
-BPS case. The origin of this factor should be similar to

what was discussed in the corresponding string case, where

it was argued [10] that the string solution should be

smeared over a CP
1 in CP

3, leading to two zero modes

and hence an overall factor ð
ffiffiffiffi

T
p

Þ2 ∼
ffiffiffi

λ
p

in the partition

function [13,18]. For the M2-brane, we similarly expect

that the solution relevant to the ð1=6Þ-BPS case should be

smeared over a CP
1, leading again to an extra tension-

dependent prefactor ∼
ffiffiffiffi

N
p

. It would be interesting to study

the fluctuation spectrum of the corresponding M2-brane in

detail and reproduce from a one-loop calculation the

remaining normalization factor in (37).

Another interesting extension would be to explore the

defect conformal field theory (CFT) defined by the 1
2
-BPS

Wilson loop in the largeN, fixed k limit. The corresponding

problem in the type IIA string regime was studied in [62].

In particular, in that case, one finds that the 8þ 8

fluctuation modes about the AdS2 string solution form a

short supermultiplet containing the displacement operator.

The same multiplet appears for the M2-brane as the n ¼ 0

mode in the KK reduction. It would be interesting to

understand the interpretation of the higher KK modes from

the defect CFT point of view and compute their boundary

correlation functions [63].
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