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Abstract. We describe an efficient domain decomposition-based framework for nonlinear mul-
tiscale PDE problems. The framework is inspired by manifold learning techniques and exploits the
tangent spaces spanned by the nearest neighbors to compress local solution manifolds. Our frame-
work is applied to a semilinear elliptic equation with oscillatory media and a nonlinear radiative
transfer equation; in both cases, significant improvements in efficacy are observed. This new method
does not rely on a detailed analytical understanding of multiscale PDEs, such as their asymptotic
limits, and thus is more versatile for general multiscale problems.
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1. Introduction. Homogenization is a body of theory and methods that studies
differential or differential-integro equations with rapidly oscillating coefficients. It
can be traceed back to the famous work of Bensoussan, Lions, and Papanicolaou
[22] and builds on several other important developments [1, 12, 17, 38, 39, 50, 51,
58]. Generally speaking, the goal of homogenization is to derive asymptotic limiting
equations as accurate surrogates of the original equations that do not have scale
separations. The core technique is asymptotic analysis.

1.1. Goal. There are a number of famous examples that use homogenization
techniques, such as elliptic equations with rapidly oscillating media [22], the Schrodinger
equation with small rescaled Planck constant [48], the neutron transport equation
with small Knudsen number [21, 52|, the compressible Euler equation with small
Mach number [67, 68, 83], and Boltzmann-type equations in the fluid regime [14]. All
these examples have the form

(1.1) News = f,
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where N ¢ is a partial differential operator that depends explicitly on the small param-
eter . The term f on the right-hand side represents the external information—the
source terms, the boundary conditions, the initial conditions, and so on—which does
not depend on €. Due to the e-dependence of N¢, the PDE is rather stiff: the solutions
either exhibit high oscillations (such as the Schrédinger equation with small value of
the rescaled Planck constant, or the elliptic equation with rough media) or present
boundary /initial layers within which solutions change rapidly (such as the Knudsen
layer in kinetic systems). The oscillations and layers themselves usually do not carry
any interesting physical information; one is more interested in extracting physically
meaningful quantities from the solutions directly, with these details omitted. Thus,
it is important to evaluate the limiting behavior of (1.1) as € — 0. There are two
contrasting approaches in the literature that enable this task: one is analytical and
the other is numerical.

The analytical approach seeks the asymptotic limit of the PDE (1.1) defined as
follows:

(1.2) N = f .

The term “asymptotic limit” refers to the fact that for any reasonable f, in a certain
space with a certain metric, we have

(1.3) [|[u® —u*|| =0 ase—0.

A classical way to derive this limit is to perform Hilbert expansion in terms of €. Here,
we define the ansatz

u® = ug + euy + ug + -+,

substitute into (1.1), and then balance the two sides in terms of e. Typically, at some
level of the expansion, a closure is performed to derive the effective operator N*.
This framework is highly effective and general; we will give explicit examples in later
sections.

On the numerical side, we look for cheap solvers that compute the asymptotic
limits. A typical requirement for classical numerical solvers to be accurate is that
the discretization has to resolve the smallness of €. This can lead to high numerical
and memory costs, which are sometimes beyond reasonable computational resources.
The focus of “numerical homogenization” or “asymptotic preserving” is thus to design
schemes that capture asymptotic limits of the solutions with relaxed (and thus more
efficient) discretization requirements. One technique is to explore analytical results
and translate them into the discrete setting: first, the asymptotic limiting equations
are derived, and then a “macrosolver” for the limiting equation and a “microsolver”
that solves the original equation are combined in some way. This strategy has been
applied to deal with Boltzmann-type equations, the Schrodinger equation, and ellip-
tic equations with highly oscillatory media, for the tasks of designing “asymptotic
preserving” schemes, finding semiclassical limits, and performing “numerical homog-
enization.” There is a significant drawback to this approach, however: the design of
the numerical method is based completely on analytical understanding, so numerical
development necessarily lags behind analytical progress. This fact significantly limits
the role of multiscale computation.

This observation motivates the question that we address in this paper. Given a
system of the form (1.1), knowing it has an asymptotic limit (1.2) but not knowing
the specific form of this limit, can we design an efficient, accurate solver?
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1.2. Approach. In this paper, we propose a numerical approach based on “com-
pression.” Classical methods require the use of N, ~ 6% grid points to achieve ac-
curacy and stability in solving (1.1) for some power « > 0. Note that N, blows up
to infinity as e — 0. By contrast, the limiting equation (1.2) is independent of e,
so we typically require only N, grid points (a number that is independent of €) to
solve this system. Thus, the information carried in N, degrees of freedom can poten-
tially be “compressed” into N, degrees of freedom, provided that we can tolerate an
asymptotic error of order € in the solution (see (1.3)).

How can we design an approach to solving (1.1) that exploits compression? Our
roadmap consists of three steps: (a) identify the solution set that can be compressed,;
(b) compress the set into a smaller effective solution set; and (c) for a given new data
point f(z), single out the solution from the effective set. We call the steps (a) and
(b) the offline stage and step (c¢) the online stage.

For linear equations, this roadmap has been followed by several authors [23, 26,
27, 28]. When the setup is linear, the solution set is a space, and thus information is
entirely coded in representative basis functions. These basis functions can be found
in the offline stage, and a Galerkin formulation can then be used to identity the linear
combination of the basis for a given f(x) in the online stage. To find the representative
basis functions, one can utilize the random sampling technique developed for finding
low-rank structures of matrices in [54], where the authors proved that a few random
samples are able to reconstruct the low-rank column space with high probability; see
[27].

In this article, we develop a roadmap in the nonlinear setting. The extension is
not straightforward. Since the solution set is not a space in the nonlinear setup, the
notion of “basis function” does not even exist. Instead, we seek an N,-dimensional
approximating manifold in an N.-dimensional space. For every given f(z), there is
a corresponding numerical solution u to the original equation (1.1) in the N, space.
Within e distance there exists its homogenized solution v* to the limiting equation
(1.2). Since u* relies on only N, degrees of freedom, as f(x) varies, the variations of
u* form a manifold of dimension at most N,.

By using this argument, we formulate the homogenization problem (in the non-
linear setting)as a manifold-learning problem. Suppose we can generate a few con-
figurations of f(x) and compute the associated numerical solutions; can we learn to
represent the solution manifold? Further, given a completely new configuration of
f(x), can we quickly identify the corresponding solution? These two questions are
addressed in the offline and online stages, respectively.

Many different approaches have been proposed for manifold learning based on
observed point clouds. They typically look for key features that the points share
either locally (as in local linear embedding (LLE) [82], multiscale SVD [8, 76], local
tangent space alignment [88]) or globally (as in the use of heat kernels [19, 33]). The
strategy we propose here is not a direct application of any of these ideas, but it uses
elements of the LLE and multiscale SVD approaches. Specifically, we seek local linear
approximations to the solution map and cover the solution manifold with a number
of these tangent space “patches.”

We define the solution map as follows:

(1.4) S feX—-ue).

It maps the source term and initial/boundary conditions captured in f(z) to the
solution of the equation (1.1). To find the solution manifold, we randomly sample
a large number of configurations f; in X and compute the solution u{ = S°f; € Y
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associated with each of these configurations. These solutions form a point cloud
in a high-dimensional space Y. We subdivide the set of configurations {f;} into a
number of small neighborhoods, and we look for the tangential approximation to
the mapping (1.4) on each of these neighborhoods. Given a configuration f, we
identify the neighborhood to which it belongs and interpolate linearly to obtain the
corresponding solution.

We summarize our online-offline strategy as follows. (Some modifications de-
scribed in section 2 will reduce the cost of implementation.)

Offline: Randomly sample f;(x), ¢ =1,..., N, and find solutions u§ = S¢f;;
Online: Given f(z):
Step 1: Identify the k-nearest neighbors of f(x), call them f;,,j = 1,2,...,k, with

fi, being the nearest neighbor;
Step 2: Compute

€ 1 as o€ . : _ € _ € € _ . €
S¢~uj +U-c, with U= |uf, —uf ... uf —uj|,

where c is a set of coefficients that fits f — f;; with a linear combination of
fij _fil fOI‘j = 2,37...,k'.

In Step 2 we used the fact that the solution manifold is of low dimension locally.
To make the strategy mathematically precise, we need to address several questions,
including the following.

e How should we sample f;(x) during the offline step?

e What metric should we use to quantify distance?

e Since computing each solution map u{ = Sf; is expensive, is there any way
to reduce the cost further?

We discuss these questions in the following sections. We stress that the manifold
learning technique that we investigate in this paper works best when the intrinsic di-
mensionality of the problem is significantly smaller than the typical required degrees
of freedom, and this holds true for all homogenizable problems where the discretiza-
tion of the limiting equation eliminates the e-dependence. For problems without e-
dependence and in which the dimension of the numerical solution is only moderately
large, the approach that we take is not expected to reduce the cost.

1.3. The layout of the paper. We discuss the general recipe of the algorithm
in section 2 and then show how the approach can be applied to two examples (a
semilinear elliptic equation and a nonlinear radiative transfer equation coupled with a
temperature term) in section 3 and section 4, respectively. In both sections, we review
the relevant homogenization theory for the equations, study the low-rank structure of
the tangential solution spaces, and present numerical evidence for the efficacy of our
approach.

2. Framework. Our approach is a domain decomposition algorithm that makes
use of Schwarz iteration.

After decomposing the domain into multiple overlapping patches, the Schwarz
method solves the PDE in each patch, conditioned on agreement of the solutions in
the overlapping regions, which are boundary regions for the adjacent patches. At the
initial step, these boundary conditions are unknown, so some initial guess is made.
Subsequently, the solution of PDEs on each patch alternates with updates of the solu-
tion on the overlapping regions until convergence is obtained with respect to certain
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criteria. The cost of the entire process is determined by the number of iterations
and by the cost of the local solves, noting that, as with any domain decomposition
method, the local solves can be performed in parallel. The approach is efficient when
the local solves can be performed much more efficiently on the available computing
resources than a solver that does not decompose the domain. The optimal domain
partitioning depends on the conditioning of the problem and is often specific to the
problem under study. Comprehensive descriptions of the Schwarz method appear in
[84, 85].

This basic Schwarz iteration does not fully address the issue of e-dependence that
we discussed in section 1, since local solvers still necessarily depend on €. As a step
toward making use of compression, we take the viewpoint that the purpose of the
local solution step is to implement a boundary-to-boundary map, taking one part of
the boundary conditions on a patch and using the solution of the resulting PDE to
update the boundary conditions for its neighboring patches. We propose to learn the
boundary-to-boundary maps in an “offline” stage by running the local solvers as many
times as needed to attain the desired accuracy in this map. This offline stage comes
with a high overhead cost, but the computation is done only once, and we hope that
the cost of the online stage is greatly reduced by having the boundary-to-boundary
maps available. Note that this “offline” learning process is distinct from the offline
stage discussed in section 1. With the application of domain decomposition, it is the
local behavior that needs to be learned instead of the full u€.

In the linear setting, building the boundary-to-boundary maps is quite straight-
forward. It amounts roughly to finding all discrete Green’s functions, with the degree
of freedom being determined by the number of grid points on the patch boundary,
with one Green’s function per grid point. In the nonlinear setting, the boundary-to-
boundary map is nonlinear, so we can no longer build a linear basis, and we turn to a
manifold-learning approach to approximate the map. Specifically, in the offline stage,
we would sample randomly some configurations and find the corresponding image
under the map. The resulting point cloud in high-dimensional space can be viewed
as samples of the manifold, which we can then learn by means of local approximate
tangential planes. In the online stage, these tangential planes are used as surrogates
to local boundary-to-boundary maps.

Before presenting details of the offline and online stage computations, we specify
the setup and notation. We consider the following nonlinear PDE with Dirichlet
boundary conditions in a domain £ C R2:

{Niue -0  inQ,

2.1
(2.1) u® = ¢ on 0},

where, as usual, € indicates the small scale of the problem. For simplicity, we will
assume throughout a square geometry Q = [0, L]2. The domain (2 is decomposed into
overlapping rectangular patches defined by

(22) Q= U Qm» with €, = (9552795533) X (y(l) Z/gg)y

mo)
meJ

where m = (my, ms2) is a multi-index and J is the collection of the indices

J:{m:(ml,mg): m1:1,...,M1,m2:1,...,M2}.

This setup is illustrated in Figure 1. For each patch we define the associated partition-
of-unity function x,,, which has x,,(z) > 0 and
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F1G. 1. The plot on the left shows the domain decomposition for a square geometry. Each patch
is labeled by a multi-index m = (m1, m2). The adjacent patches of Qy, are defined to be the patches
on its north/south/west/east sides. The plot on the right demonstrates the use of local enlargement
to dampen boundary effects.

(2.3) Xm(x) =0 onxe NQ,, me(x)zl Vr e Q.

We set 0€2,,, to be the boundary of patch €2, and denote by .4 (m) the collection of
indices of the neighbors of 2,,,. In this particular 2D case, we have

(2.4) A (m) ={(m1 £1,me)} U{(m1,ma£1)} C J.

Assume that the equation (2.1) is well-posed, meaning that given ¢ in some function
space X, there exists a unique solution u€ in another function space )). Assume further
that the local nonlinear equation on patch 2, defined by

Neus, =0 in Q,,
us, = om on 09),,

is well-posed, given local boundary condition ¢,, in some function space &,,,, and that
the solution uf, lives in space V,,. We further define the following operators.
o S, denotes the solution operator that maps local boundary condition ¢, to
the local solution uy,:

St X = Vmy Spydm = Ui,

e T! denotes the trace operator for all [ € 4 (m):

I uf = ufloa,na, 1€ A (M),

which takes the value of uj restricted on the boundary 02, N ;. Here we
assume that the space ) allows for trace.
e P, denotes the boundary update operator, mapping EBleN(m) X to X

Ifnngle on 9, Ny, e AN(m),

m o 1 N =
P (¢l < (m)) {¢|8er‘189 on an n 8(2 .
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Note that on the points in 0€2,,, N9S2, the boundary condition from the whole
domain 2 is imposed.
The offline and online stages of the algorithm essentially construct and evaluate
P, as we now show.

2.1. Offline stage. The goal of the offline stage is to construct a dictionary to
approximate P,, for every m € J. To eliminate any boundary layer effect, we enlarge
each local patch slightly by adding a margin around its edges (except for the edges
that correspond to only part of the boundary of the whole domain). The enlarged
domains are denoted by €2,,, and illustrated in Figure 1. B

We denote by &, the space of boundary conditions on 9, equipped with norm
Il - |I, and define a ball in X, as follows:

B(Rm; A?m) = {56 A?m : ||$H < Rn}.
First, we draw IN samples randomly from the ball, as follows:
a;nL,ieB(RnL; -jgm), Z:1,7N

(The specific measure used in drawing depends on the particular problem being con-
sidered; we will make it more precise in the examples below.) For these samples we
obtain local solutions y, ; from the following PDEs:

(2.5) N ~
uﬁm = Om,i on 0.

{Niﬂ;m =0 inQ,,
We build a dictionary from these solutions by confining them in the interior §2,, and

the boundary 09,,:

(26) jm = {¢m,z = am,i 8Qm}¢1\;1 .

N ~
Qm Si=1> B = {¢m,i = Um,i

Since the problems that we consider are homogenizable, meaning that the solution
manifold is of low dimension, the value of N can be relatively small.

Remark 2.1. Two remarks are in order. B

e How do we sample? That is, how do we find a measure i, on X, for drawing
samples? To make the setting more precise, we discretize the space &, and
equip it with norm || - ||, and define a measure 2, on the ball B(Ry,; &%),
Denoting the dimension of X,, by p, we sample the magnitude and the angle
separately, that is, we take the measure as a product u!*, = Horm @ LS, m, With
tr.m being the radial part on (0, R,,) and pg,, being the measure on the
unit sphere S77 = {¢ € X" : ||¢||, = 1} C RP. The angular measure 1Sm
is chosen to be the uniform, and the radial part p, ,, has a density function
flr)y = %TD . The number D here plays the role of effective dimension; it
should depend on the expected dimension of solution manifold. Note that if
we take D = p — 1, the measure ph is exactly the uniform measure on the
full ball B(R,,; X") C RP. The question of selecting D in a rigorous way is
left to future research. (See Appendices A and B for further details on this
issue.)

e How to prepare the physical boundary condition? To respect the boundary
condition on 92, the boundary patches (2, that touch the physical boundary
need to be treated differently. For each sample ¢,, ;, the physical boundary

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/03/23 to 175.159.122.207 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1100 SHI CHEN, QIN LI, JIANFENG LU, AND STEPHEN J. WRIGHT

condition is enforced on the set 92, N92. Random sampling is done only on
the remaining part of the patch boundary, that is, 9§2,,\0€Q. See Appendices
A and B for details.

2.2. Online stage. The online stage finds a particular solution u for given
boundary data ¢, based on information accumulated in the offline stage. This process
is carried out through a Schwarz iteration to update local boundary conditions on
each patch.

Denote by ¢ = [..., (r) ,...] the collection of local boundary conditions at
the nth iteration, with m being the patch index. At each iteration, we need to obtain

%’J“) = Po". For each m € J, let ¢, :om be the gth L?-nearest neighbor of ¢5,T{)
in B, q=1,2,...,k. These neighbors, sﬁ%ported on 09, lie (approximately) on a
local tangential plane centered at ¢m7i§n):

m,ig") - d)m,ig") T qﬁm,if@") - ¢m,i<1")

Also associated with this plane is our formulation of the solution space centered around

(3

(2.7) o = ¢

(n):

m,iq
| |
(2.8) \Ijg’;) = wm,ig") — ¢m7i(1n) Ql)mJ&n) — ¢m,i§">
| |
Locally, the map between these two planes is approximately linear, and thus to find
%H—l) = P,0o™, we look for a linear interpolation of QS%L) on @57?) and map this
interpolation to \115,’; ). More precisely, we look for cgff ) that solves the least-squares
problem

(2.9) 05,?) = argmin, cgr-1 HQSS,?) — cbmﬂ,gn) — @%’)vaLQ(an) ,

and define the approximate solution to be

(2.10) u = 8,0 xqp oy + T
m,iy

In summary, the map P,,¢™ is a composition of mel(n), l € A(m)) with | €
A (m), where

(2.11) St = Po($™, 1€ N (m)) =T, 861, on 0 N

m

Once a preset error tolerance is achieved, at some step n (usually because the local
boundary condition barely changes), the global solution is patched up as follows:

(2.12) u™ = Z Xmu%l) )

meJ

where u5,’$> is the local solution (2.10) and x,, : € — R is the smooth partition of
unity associated with the partition.

We summarize the procedure in Algorithm 2.1.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/03/23 to 175.159.122.207 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

MANIFOLD LEARNING AND NONLINEAR HOMOGENIZATION 1101

Algorithm 2.1 Multiscale solver for nonlinear homogenizable equations
(2.1).
1: Given the radius R,,, the number of nearest neighbors k, the tolerance 4,

and the initial guess of boundary conditions (bﬁ,?) on each patch m € J.

2: Domain Decomposition:

3: Decompose 2 into overlapping patches: @ = J,,,c ; Qm, and enlarge each
patch to obtain (Zm.

4: Offline Stage: Prepare local dictionaries on interior patches €2,,.

5:  Step 1: For each m € J;, generate N samples (Em’i from B(R; /'?m);

6:  Step 2: For all 4, call function

Ui = LocPDESOL(Qn, dymi) ;

7:  Step 3: Collect local dictionaries according to (2.6) for %, and .#,.
8: Onmnline Stage: Schwarz iteration.
9:  while Y, ¢4 — ¢4 Vllz2(0q,,) > 0 do

10: for m € J do

11: Search for k-nearest neighbors of ¢$ﬁ ) in B

12: Solve cgff ) from the least-squares problem (2.9);

13: Update ¢\ ™) by (2.11).

14: end for

15: n+<n+1

16: end while
17: return Global solution u(™ defined by (2.12).

1: function LocPDESoL (Local domain ,,, Boundary condition ¢, )
Perform the standard finite difference or finite element methods to solve
the local nonlinear equation (2.5);
: return Local solution u,,
4: end function

w

Remark 2.2. The Johnson—Lindenstrauss lemma [65] indicates that the search for
d -dimensional k nearest neighbors in a data set of size N, with distance error §, can be
done in query time O (kdl(’?QN) and storage cost NOWog(1/8)/6%) 1 O (d(N+ l°§2N)) [11,
62]. In addition, a cost of O(k?d) is incurred at each iteration, due to L? minimization
for each patch via QR factorization. In our setting, d is equal to the degrees of freedom
on the boundary 9€,,.

Remark 2.3. To avoid notational complexity, the discussion above does not con-
sider the physical boundary 0. If a patch contains part of 9€2, then that particular
section of the patch is not updated. The true boundary condition ¢ is enforced in
every iteration. The derivation is straightforward and is omitted from the discussion.

3. Example 1: Semilinear elliptic equations with highly oscillatory me-
dia.In this section, we apply the methodology described above to solve semilinear
elliptic equations. Semilinear elliptic equations with multiscale structures arise in a
variety of situations, for instance, in nonlinear diffusion generated by nonlinear sources
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[66] and in the gravitational equilibrium of stars [24, 75]. As fundamental models in
many areas of physics and engineering, these equations have received considerable
attention.

We consider the equation

(3.1) —Vz-(A(x, f) Vmue)—I—f(uE):O, zeN,
' u(x) = ¢(x), x € 0f.
The physical domain is Q € R? with d > 1, and the Dirichlet boundary condition is
given as ¢(z). The permeability A(z,y) = (ai;(2,y))axd : 2 x R — R4 depends on
both the slow variable z and the fast variable y = /e and is highly oscillatory. The
function f : R — R describes the nonlinear source term. The solution u€ presents one
component in a chemical reaction or one species of a biological system.

The well-posedness of equation (3.1) is classical. We assume that the permeability
A is a symmetric matrix with L°°-coefficients satisfying the standard coercivity con-
dition, and that the nonlinear function f is locally Lipschitz continuous and increas-
ing. Then, assuming the boundary 0 is smooth enough, given boundary condition
¢ € HY2(99) N L>=(0N), the problem (3.1) has a unique H'-solution satisfying the
maximum principle. We refer the reader to [30, 49] for details.

3.1. Homogenization limit. The semilinear elliptic equation (3.1) has a ho-
mogenization limit as ¢ — 0. We suppose that A(z,y) is smooth and periodic in y
with period I = [0,1]%; then as e — 0, the solution u¢ converges to a limit u* that
satisfies the same class of semilinear elliptic equations with an e-independent effective
permeability A*(z) = (a};(7))axd:

(3.2) —Vg - (A*(2)Vau*) + f(u*) =0, z€Q,
' u*(z) = ¢(x), x €.

This equation (in particular, the effective permeability A*(z)) can be derived by
expanding equation (3.1) into different orders of e. Rigorous proofs are given in [20,
22, 80]. We cite the following theorem as a reference.

THEOREM 3.1 (section 16.3 in Chapter 1 of [22]; see also [7]). Assume the
boundary O is smooth. Given ¢(x) € HY/2(0Q) N L>(99Q), let uc be the unique
solution to the semilinear elliptic equation (3.1) in HY(Q) N L>®(Q). Assume that the
permeability A(z,y) is periodic in y with period I = [0,1]? and that A(z,-) € C*(I).
Then the solution u® converges weakly in H'(Q) as € — 0 to u* (the solution to (3.2)),
where the permeability A*(z) = (aj;(z))axa is defined by

(3-3) az;(z) = /IZ ki (€, Y) (Oki + By, Xi) (015 + Dy, x5)dy -
k.l

Here, for each fized coordinate j =1,2,...,d, the function x;(x,y) is the solution of
the following cell problem with periodic boundary condition on I:

(3.4) Vy - (A2, y)Vy(x;(z,y) +y;)) =0.

To solve (3.1), the discretization has to resolve ¢, but in the limit (3.2), the
discretization is independent of e. This suggests significant opportunities for cost
savings: The information contained in O(1/¢) degrees of freedom can be expressed
with O(1) degrees of freedom.
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The literature for numerical homogenization is rich, particularly for the linear
setting when f = 0. Relevant approaches include the multiscale finite element method
(MSFEM) [44, 58, 59], the heterogeneous multiscale method (HMM) [4, 39, 40], the
generalized finite element method [12, 13], upscaling based on harmonic coordinates
[79], elliptic solvers based on H-matrices [18, 53], the reduced basis method [2, 3], the
use of localization [77], and the methods based on random SVD [26, 27, 28], to name
a few. The analytical understanding of the homogenized equation is essential in the
construction of these methods [7]. When randomness presents, one can also look for
low-dimensional representation of the solutions in the random space [32, 56, 57, 74].

The literature for nonlinear problems is not as rich. There are several works
on quasilinear problems, all of which can be seen as extensions of classical meth-
ods, including the MSFEM [29, 42, 43], the HMM [5, 40], the generalized finite ele-
ment method [41], the local orthogonal decomposition method [55], the reduced basis
method [3], and the nonlocal multicontinuum approach [31]. These solvers must be
designed carefully for specific nonlinear equations. By contrast, our method makes use
of the low-rankness of the solution sets and could be applied with minor modification
to different equations.

3.2. Low dimensionality of the tangent space. We now study the structure
of the tangent space of the solution manifold, verifying in particular the low dimension
assumption. We choose some point ©® on the solution manifold and then randomly
pick a neighboring solution point u€. These two points are solutions to (3.1) computed
from distinct nearby boundary configurations ¢ and ¢, that is,

(3.5) Uloa =, uloa=0¢, with [[¢—olL~@a =O().

By varying ¢ around ¢, one can build a small point cloud around uc.

duc = u® — u®, we have immediately that

Denoting

(3.6) —Vo - (A(z, L) Vous) + f(@ +6uf) — f(u) =0, ze,
' Suc(z) = d(z) — o(x), x € 0N.

In the small-é regime, this collection of solution differences du® spans the tangent
plane. We claim this tangent plane is low-dimensional, so that it inherits the homog-
enization effect of the original equation. We have the following result.

THEOREM 3.2. Let 6u® solve (3.6). Assume A(z,y) = (ai;(x,y))dxa s periodic in
y with period I = [0,1]%. The equation has homogenization limit when e — 0, meaning
there exists a limiting permeability A*(z) = (aj;(x))axd, determined by A(z,y) via
(3.3) and (3.4), so that Ju® — du* and du* solves

(37) —V. - (A*(2)Vou*) + f(@* + ou*) — f(@w*) =0, x€Q,
| $u () = B(x) — B(x), v e o,

where u* solves

(3.8) {v

u*(x)

8

(A (x)V, ')+ f(@) =0, 2€Q,
:a(x)’ x € 0N.

Further, for small 8, (3.7), in the leading order of &, becomes

(3.9) VY, (AN (@) Vaout) + (@ (x))ut = 0.

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/03/23 to 175.159.122.207 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

1104 SHI CHEN, QIN LI, JIANFENG LU, AND STEPHEN J. WRIGHT

Proof. By applying Theorem 3.1 to the equation for u®, which is

Vo (A(z, L) Voou) + f(u) =0, z€Q,
§uc(x) = ¢(x), x € 08,
we have, by comparing with equation (3.1) for u¢, that u° converges weakly to u*,

which solves (3.8), and that u¢ converges weakly to u*, which solves (3.2). From the
definition du® = u¢ — ¢, we find that du® converges to du*, which solves (3.7). d

This theorem suggests that for the discretized equation, because of the existence
of the homogenized limit, the tangent plane of the discrete solution is approximately
low-rank. The space spanned by {du€} can be approximately spanned by {éu*}, which
solves the limiting equation (3.7) without dependence on small scales.

3.3. Implementation. We apply Algorithm 2.1 to equation (3.1) with f(u) =
u? and = [0, L]? C R?, that is,

Vg - (a (m,%) qu) +ud=0, 2€Q=10,L)>
(3.10) {u(x) = ¢(x), x € 0f.

We use the domain decomposition strategy of section 2 to solve this system. Since
Q is convex and the coefficient a(z,z/€) belongs to L>(Q2), we can show, using the
monotone method [9, 30], that the equation is well-posed, having a unique solution if
we set

X =HY20Q)NL®092), Y=HY(Q)NL®Q).
In the offline stage, we generate N samples for each enlarged patch ﬁm, as follows:
gm,iGB(Rm;‘jEm)7 i=1,...,N.

(The measure we use for sampling is discussed in Appendix A.) We equip the ball
with the H'/2-norm:

(3.11) B(Ry; X)) = {6 € X : 19ll111/2(00,,) < Ron} -

We compute the H'/2(9Q)-norm numerically using the Gagliardo seminorm [35]:

_ 2
1117200 = V PR R I v e T

For these boundary configurations, we solve the equation

— . z Y 73 ~
(3.12) { Va (a(%e)vzum,z)ﬂwm,z 0, z€Qp,

Um (%) = ¢m.i(2), x € 0y,

and build two sets of dictionaries by confining the solutions in the interior 2, and
the boundary 09, as follows:

(313) Im = {¢m,i = am,i [Z97% }11\;1 .

N ~
Qum Ji=1> B = {¢7n,i = Um,i

In the online stage, local boundary conditions are updated according to (2.10) at each
iteration, with coefficients computed from (2.9). The local tangent space is found by
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searching for the k-nearest neighbors in the dictionary %,,, mapped to the dictionary
I (see (3.13)). We use the L?-norm to measure the distance between the newly
generated solutions and the older solution set.

Once a preset error tolerance is achieved (at step n, say), the global solution is
patched up from the local pieces, as follows:

.1 W = 3 )
meJ

where ugﬁ) is the local solution on (2, at the nth step, and x,, : 2 — R is a smooth

partition of unity.

3.4. Numerical tests. We present numerical results for (3.10) in this subsec-
tion. We use L = 1, yielding the domain Q = [0, 1], and define the oscillatory media
as follows:

2 + 1.8sin(27wz/¢) 2 4 sin(2my/€)
2+ 1.8cos(2my/e) 2+ 1.8cos(2mz/e)

a(z,y,z/€,y/€) = 2+ sin(2mzx) cos(2my) +

The boundary condition is

¢(z,0) = —sin(27mz) , ¢(z,1) = sin(27z) ,
¢(0,y) = sin(2my) , ¢(1,y) = —sin(27y) .

To form the partitioning, the whole domain (2 is divided equally into 4 x 4 nonover-
lapping squares, and then each square is enlarged by Az, = .0625 on the sides that
do not intersect with OS2 to create overlap. We thus have M, = My = 4, with Q,, for
m = (my1,ma), my =1,2,3,4 and ms = 1,2, 3,4, defined by

Q= [max (mﬂl/[—:l - A:EO,O) , min (% + Azx,, 1)}

X [max (ml\z/[—;l foo,O) , min (% +Amo,1>} , m=(mi,mg) €J.

Denote Q,,, = [zﬁ}),azﬁi)] X [yi,}), yg)}. The partition of unity function y,, is defined

by normalizing the bump functions on the overlapping domains. More precisely, we
first define a bump function f,, : 2 — R supported on 2, as follows:

1 1

xp (_ —lr=z am 1 |y— ) ’ (l’,y) S me

fm(z,y) = ==zl T=Ty=ym/Bn
0 otherwise,

@) _ (2)_, (1) (1) 4 (2) (1) 4,2
where z,, = Im 2lm . Ym = Yrm 2ym Q= Zm —;w'rn ,and 3, = Y= ;y'rn . The
partition of unity x., : € — R is then obtained by

fm(z,y)

Xm(T,y) = D

meJ fm(xa y) .

A standard finite-volume scheme with uniform grid is used for discretization, the corre-
sponding nonlinear discrete system being solved by Newton’s method. The reference

solutions are computed on the fine mesh with h = 2712 = ﬁ. Unless otherwise
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specified, other computations are performed with mesh size h =279 = é Denoting
the numerical solution by u;; ~ u(z;,y;), we use the classical discrete L*-norm,
P
_ 2
lull2 = h Z |uij|?
1,j=0
and the energy norm,
p p—1 u w 2 p p—1 u w 2
_ i+1,5 — Yig i,j+1 T Yig
llulle = h E Git1/2g | g + E E @igt1/2 ||
j=0i=0 i=0 j=0

and define the relative errors accordingly by

X Uypef — U, L2 . Uref — U £
relative L? error = e approx| ,  relative energy error = [ure approx|

l|tret]| 2 [|uret|le

We first describe numerical experience with the offline stage. Each interior patch €2,
is enlarged by a margin Ax}, to dampen the boundary effects. The resulting buffered
patch ,, is concentric with €,,; see Figure 2. In the plots shown below, we study
the patch indexed by m = (2,2). N

To build the local dictionary, we generate 64 samples randomly in B(Rgz2, X22),
where Rz 2 = 20. (The sampling scheme is discussed in Appendix A.) We compute the
local solutions with these boundary conditions on €15 5, for several choices of buffer
size Axyp, and subtract the solutions from the reference solution, confined to Qg 5.
This procedure forms the tangent space centered around the reference solution in this
particular patch. In Figure 3a we plot the singular value decay of this tangent space
for e = 274, It is clear that the singular values decay exponentially, with a larger buffer
margin Axy, leading to a faster decay rate. This observation suggests that the tangent
space is approximately low dimensional. We then project the reference solution onto
the space spanned by its closest neighbors. As the number of neighbors increases, the
relative error decays exponentially, as seen in Figure 3b. When the buffer margin is
Az, = 274, we achieve 99% accuracy with 30 neighbors. By comparison, the degrees
of freedom for this patch are determined by the total number of grid points on the
boundary of this patch — 768 in this particular case.

[/ .5 . A A

PR P —
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1
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Fg : 1

1 : : 1
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F1G. 2. Buffered domain decomposition.
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(a) (b)

F1G. 3. (a) The singular value decay of the tangent space (centered around the reference solution)
on patch Qg o for different values of the buffer margin Axy,. (b) The relative error of the projection
of the reference solution onto the space spanned by the nearest k neighbors on 22 2. The distance
is measured in L?(Q2,2). € = 274 in both plots.

Fic. 4. Computed solutions. Left panel shows the reference solution obtained with fine grids of
width h = 2712, Middle and right panels show the numerical error |u — Upef| obtained with k = 5
and k = 30, respectively.

In the online stage, we set the stopping criterion to be

> sl = ¢V 2o,y < 1077,

where the upper index (n) indicates the evaluation of the solution in the nth iteration
on AX,,, which is the boundary of €,,. The initial guesses for all local boundary
conditions are chosen (trivially) to be ¢£2)|8Qm\39 =0 and ¢§2) loq,,.noa = dlaq,,noq-

In Figure 4, we compare the numerical solutions using the space spanned by k = 5
and k = 40 nearest neighbors. The buffer margin is Az, = 274, and we set € = 274,
We also document the error behavior as a function of k, €, and Axyp. In Figure 5, we
plot the error decay as a function of k (the number of neighbors used in the online
stage) for different values of ¢ and Azy. The decay is independent of ¢, indicating
the rank structure is not influenced by small scales in the equation. As the number
of neighbors k increases, the global relative L? and energy errors decay exponentially
provided a buffer zone is present. When Az}, = 0 (no buffer), the boundary layer
effect is strong, and convergence is not obtained, meaning that the local solution
cannot be well approximated from the dictionary.
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F1G. 5. The top row of plots shows the global L? error as a function of k with different ¢ and
buffer zone size Axy,. The bottom row of plots shows the global energy error. The three columns of
plots represent Axy, = 24,2750, respectively.

TABLE 1
CPU time comparison between our reduced method with k = 5,10,20,30,40 and classical
Schwarz method.

CPU Time (s) (e =27%)

Offline Online
Reduced model £ =5 135.6914 0.173712
Reduced model £ = 10 0.305707
Reduced model k£ = 20 0.462857
Reduced model k£ = 30 0.696785
Reduced model k£ = 40 1.124082
Classical Schwarz — 187.7705

We show CPU times in Table 1, comparing the reduced model for different values
of k with the classical Schwarz iteration for ¢ = 2=% and Az, = 2% The same
stopping criterion is used for all variants. The online stage of each reduced model is
significantly faster than the classical Schwarz iteration. Even with k& = 40 neighbors
involved in the local solution reconstruction, our method requires 1.12s, compared
to 187.8s required by the classical Schwarz method. While the offline preparation is
expensive in general, it is still cheaper in this example than the classical Schwarz iter-
ation for solving a single problem. Because the dictionary can be reused, our method
has a strong advantage in situations where many solutions corresponding to different
boundary conditions are needed. This is a typical situation in inverse problems, where
in order to determine the unknown media, many boundary configurations are imposed
and numerical solutions are computed to compare with measurements [25].

4. Example 2: Nonlinear radiative transfer equation. Here we study the
application of Algorithm 2.1 to a nonlinear radiative transfer equation. Radiative
transfer is the physical phenomenon of energy transfer in the form of electromagnetic
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radiation, and the radiative transfer equations describe the absorption or scattering of
radiation as it propagates through a medium. The equations are important in optics,
astrophysics, atmospheric science, remote sensing [78], and other applications.

We denote by I¢(z,v) the distribution function of photon particles at location
x moving with velocity v in the physical domain D C R? and the velocity domain
V = §2. Also denote by T¢(x) the temperature profile across domain D. We consider
a nonlinear system of equations that couples the photon particle distribution with the
temperature profile. The steady state equations are
41 ev-VyI¢=B(T¢) — I¢ for (z,v) e =D x V,
(4.1) A, T¢ = B(T¢) — (I¢) forz € D,

with the velocity-averaged intensity given by
(42) (1)@) = [ T o)n(w).

Here, p(v) is a normalized uniform measure on V, and B(T') is a nonlinear function
of T, typically defined as

(4.3) B(T) = oT*,

where o is a scattering coefficient [70, 86]. The parameter € is called the Knudsen
number, standing for the ratio of the mean free path and the typical domain length.
When the medium is highly scattering and optically thick, the mean free path is small,
with € < 1. The scattering coefficient o is independent of e.

We consider a slab geometry. We assume the y and z directions to be homo-
geneous; then since v = (cosf,sinfsing,sinfcosy), the v, component becomes
cos@ € [—1,1]. The problem is simplified to

(4.4)

{W¢F=Bﬁﬂ—F (#,0) € K = [a,0] x [-1,1],

02T = B(T<) — (I7)

with (I)(z) = 1 [1, I(z,v)dv.

We provide incoming boundary conditions that specify the distribution of photons
entering the domain. The boundary condition itself has no e-dependence; we have

(4.5) If(z,v) = I(z,v) onT_, T(x)=Ty(z) ondD.

Here I'1 collect the coordinates at the boundary with velocity pointing into or out of
the domain,

Iy ={(z,v): 2 €9D,txv-n, >0},

and n, denotes the unit outer normal vector at = € 0S2.

4.1. Homogenization limit. Equations (4.1) have a homogenization limit. As
e — 0, the right-hand side of the equations dominates, and by balancing the scales
we obtain

I¢~ (I6) ~ o(T) ~ T* ~ o (T*)*.
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To find the equation satisfied by T™, we expand equations (4.1) up to second order
in e. Rigorous results are shown in [15, 16, 69, 72]. We cite the following theorem,
which captures the results needed here.

THEOREM 4.1 (modification of Theorem 3.2 in [69]). Let D C R? be bounded,
and let OD be smooth. We assume that the boundary conditions (4.5) are positive
and that T, € HY?(0D) N L>®(dD) and I, € L>(I'_); then the nonlinear radiative
transfer equation (4.1) has a unique positive solution (I¢,T¢) € L>=(K) x L>=(D). If
we assume further that (I, Tp) > v > 0 and I, = B(T}) a.e. on I'_, then the solution
in the limit as € — 0 converges weakly to (B(T*),T*), where the limiting temperature
T* is the unique positive solution to the following PDE:

(4.6) A (T*+B(T*)/3)=0 for 2z€D,

equipped with Dirichlet boundary data T*|sp = Tp. The convergence of T€ is in
HY(D) weak, and the convergence of I¢ is in L°°(K) weak- .

Remark 4.2. Without appropriate boundary conditions I, = B(T},), boundary
layers of width O(e) may emerge as € — 0. It is conjectured in [69] that the boundary
layers in the neighborhood of each point & € 0D can be characterized by the following
one-dimensional Milne problem for y € [0, 00):

where y = % represents a rescaling of the layer. The solutions that are bounded
at infinity are used to form the Dirichlet boundary conditions for (4.6): At the limit
as y — oo, B(T) = (I) = I, and one uses T'(&) = T'(00).

According to Theorem 4.1, in the zero limit of €, I€ loses its velocity dependence
and is proportional to (7T€)* that satisfies a semilinear elliptic equation. Since the
information in the velocity domain is lost, we expect low dimensionality of the (dis-
cretized) solution set. For the slab problem for RTE (radiative transfer equation)
(4.4), the number of grid points needed for a satisfactory numerical result is N, N,,
with both N, and N, scaling as O(%) for numerical accuracy. Thus, for every given
configuration of boundary conditions, the numerical solution is one data point in an
N, N,-dimensional space — a space of very high dimension. However, when € is small,
the solutions are approximately given by the limiting elliptic equation (4.6), and the
number of grid points needed is a number N that has no dependence on e. This
implies that the point clouds in the O(1/e?)-dimensional space can be essentially rep-
resented using O(1) degrees of freedom: The solution manifold is approximately low
dimensional. (Savings are even greater for problems with higher physical/ velocity
dimensions.)

The use of a limiting equation to speed up the computation of kinetic equations is
not new. For Boltzmann-type equations (for which RTE serves as a typical example),
one is interested in designing algorithms that automatically reconstruct the limiting
solutions with low computational cost. The algorithms that achieve this property
are called “asymptotic-preserving” (AP) methods [34, 36, 37, 46, 47, 60, 63, 64, 71,
73], because the asymptotic limits are preserved automatically. There are many suc-
cessful examples of AP schemes, but most of them depend strongly on the analytical
understanding of the limiting equation. The solver of the limiting equation is built
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into the Boltzmann solver in order to drag the numerical solution to its macroscopic
description. Such a design scheme limits the application of AP methods significantly.
Many kinetic equations have unknown limiting behavior, making the use of AP de-
signs impossible. By contrast, Algorithm 2.1 does not rely on any explicit information
about the limiting equation and is able to deal with general kinetic equations with
small scales.

4.2. Low dimensionality of the tangent space. As for the example of section
3, we start by studying some basic properties of the local solution manifold and its
tangential plane.

We first randomly pick a point (76 ,Te) on the solution manifold around which to
perform tangential approximation. Nearby points (I¢,7¢) are obtained by solutions
to the RTE (4.4) with respect to perturbed boundary conditions. The boundary
conditions for (76 ,Te) and (I¢,T¢), respectively, are

(4.7) |-, T lop) = 1o, Ts), Ilr_ T lop) = (I, T) ,
and we assume close proximity, in the sense that
(4.8) 11y = Ll L2, ) + Ts — Thll2 = O(6) -

Using the notation §1¢ := I€ — I° and 6T° := T° — T for the difference of the two
solutions, we find that this difference satisfies the equations

I¢ = B(T" + 6T¢) — B(T") — §I¢
(49) {61}8305 (T + 6T°) — B(T) — 61I¢,

€2026T¢ = B(T" 4 0T¢) — B(T") — (6I°),
with boundary conditions

(5IE|F_ :Tb_-[b, 5T6|8D:Tb_Tb~

By varying I, and T}, (subject to (4.8)), we obtain a list of solutions (67¢,d7°) that
spans the tangent plane of the solution manifold surrounding (I ‘ ,TE). It will be
shown below that this plane is low dimensional. We have the following result.

THEOREM 4.3. Let (01°,0T°) solve (4.9). As e — 0, we have (61°,0T°) —
(8I*,6T%) so that 6I* = (5I*) = B(T + 6T*) — B(T"), and 6T* solves

(4.10) 02 o + AB(T" +6T") - §B(T")] =0.
Here the reference state T solves
(4.11) &2 |T" +1B(T)| = 0.

Both equations are equipped with appropriate Dirichlet-type boundary conditions. Fur-
thermore, for small §, the leading order equation is

(4.12) A, {(1 n %B’(T*)) 5T*} ~0.

Proof. Apply Theorem 4.1 (in one dimension) to the equation for (76 ,Te) to
obtain
ewd, I =B(I)-T,
02T = B(I') - (I'),
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and equation (4.4) for (I¢, T¢). Together, these equations show that (I°,T°) converges
weakly to (I" ,T") which solves (4.11), and also that (I¢,T€) converges weakly to
(I* ,T*) which solves (4.6). Taking the difference for (I*,T°) and (I¢,T¢), we find
that (61¢,0T¢) converges to (61*,dT*), which solves (4.10). 0

In one dimension, the elliptic problem only has two degrees of freedom, determined
by the two Dirichlet boundary conditions. This suggests that in the limit as € — 0,
for relatively small §, the tangent plane spanned by (§1¢,07¢) is asymptotically two-
dimensional and is parameterized by the two boundary conditions for §7¢. (A similar
reduction holds in higher dimensions, but we leave the implementation to future work.)

4.3. Implementation of the algorithm. In RTE, the domain setup needs
some extra care, and we need to re-perform partitioning. The physical boundaries
are no longer the boundaries at which the Dirichlet conditions are imposed, and the
general framework in section 2 for the PDE with Dirichlet boundary conditions on
the physical boundaries has to be changed accordingly. For the (14 1)D case, we set

K=DxV=][0,L] x [-1,1]; then T_ = {(0,v) : v > 0} U{(1,v) : v < 0},
with boundary conditions
Ielr‘f =g9= (g(l)(ov ')’9(2)([‘7 ))’ TE<O) = 9(1)’ TG(L) =0 )

where ¢! is supported only on v > 0, while ¢ is supported only on v < 0. For
notational simplicity, we write

wi= (19T, ulr_=¢=(g"(0,),gP(L,),01,0?).

To partition the domain, we divide K into M overlapping patches:

M
(4.13) K=JKm, with Km=Dp XV =[tm,sm] x [~1,1],

m=1

where t,, and s,, are left and right boundaries for the mth patch, satisfying

O=t1 <ta<s1<tzg< - <syo<ty<sy_1<sy=1L.

The size of the mth patch in the x direction is denoted as d,,, = t,,, — $,,. For each
patch, we define the local incoming boundary coordinates as follows:

(4.14) L = {(tm,v) : v >0} U{(8m,v) : v < 0}.

See Figure 6 for an illustration of the configuration.
In this particular setup, according to [72], if ¢ is in the space

X=L*T_) xR} = {(9,0(1),9(2)) |geL3T_); oW, 0? > o} ,
then there exists a unique positive solution in the space

Y = H}(K) x H'(D) = {(I,T) | I € H}(K),T € H'(D)} ,

where H3(K) is the space of functions for which the following norm is finite:

1 20y = M| 2 iy + 10021 [| 2y -
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v Km—] Km+1
— — ————
1 1 : | :
: | : 1
1 | | 1
1 b | 1
1 | | 1
1 ! | 1
1 ! | 1
i —_— | 1
] 1 | 1
] 1 | 1
] , | 1 1
] — 1 | 1
] 1 | 1
] 1 1 1
tm-I: In : tm+1: :
T T
i :sm-I i S : Sm+1 X

| i N :
1 | | 1
1 : | :

: | o ; — I,
i 1 1 1
] 1 1 1
| 1 | — 1
] 1 | 1
1 1 i 1
] 1 | 1
1 | i 1

Ko

F1G. 6. Domain decomposition for nonlinear RTE and the incoming boundary of the local patch.

Note that the trace operators Tou = u|p, are well-defined maps from H31(K) to
L?(T'1) (see, for example, [6]).
To proceed, we define several operators. We denote spaces associated with each
patch m as follows:
X o= LT, ) x RE = {(9,00,09)) | g € LDy, ), 60,0 > 0},

Y 1= HY(Km) x H(Dy) = {(1.T) | I € HY(K,,), T € H' (D)} .

Then we have the following operator definitions for each patch m. (For simplicity of
notation, we set 0 = 1 in the definition (4.3) of B(T).)

e The solution operator S,, : X, — YV, satisfies S;,¢,, = U, Where u,, =

(I5,,Tc,) solves the RTE on patch K, with boundary condition

b = (g, 05, 0)):

ewd IS, = (Te)* —I¢,,
ERTy, = (To)" = (I5),

m

(z,v) € Km,

with T (ty) = 05, T¢ (sm) = 6, and

L lr,, - = gm(@,v) = (95 (x,0), 92 (2,0)) -

e The restriction operator 7). ; from patch K, to the boundaries of adjacent
patches, namely, K, N T'ypt1,— and Dy, N ODyyp1,—, is defined as follows:

Igfﬂ“m = (I,

D77L08D7n+1,7)7 m=1,..., M—1,

I g um = (Ifn‘lcmmrm_l_,_,T;|Dmmapm_ly_), m=2,...,M.

€
KmMTg1,— Tm

e The boundary update operator P,, : X;—1 & X1 — Ap, is defined for
m # 1 and m # M by

(4.15) Pl bm-1,bm+1) = (T Sim10m—1, T S 1O 1)-
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For the two “end” patches K7 and KCj; that intersect with physical boundary
I'_, boundary conditions are updated only in the interior of the domain:
Pr:X x Xy — A1, Pi(d, ¢2) = (dlr_nr, L1 S2¢2),
Par: Xyp—1 X X = Xy, Porr(bar—1,¢) = (T Sy 1dar—1, dlr_ary ) -
As suggested by Algorithm 2.1, in the offline stage, we construct local dictionaries on

interior patches from a few random samples, enlarging each interior patch slightly to
eliminate the boundary layer effect. Define C,;, and D,,, such that

Ko C Ky =Dy XV,

where D,, C ﬁm C D expands the boundary of D,, to both sides by a margin
of Azy. Denoting by I'y, — the boundary coordinates corresponding to D,,, we let
X = L*(Lyy—) x R? capture the boundary conditions on 0D,,.

We draw N samples ¢, ;, ¢ =1,2,..., N, randomly from the set

By (Rin; X)) = {6 = (Ip,Tp) € Xy, : ||6ll 5, < Rn, Ip >0, Tz > 0}

(The sampling procedure is discussed in in Appendix B.) The local solutions , ; =

(It 1 T, ;) solve
Evaﬂlfrsni = (T;z )t - f;n i) (z,v) € e
~ ~ =~ 1‘7/U m
(4.16) 0Ty, i = (T — (i),

(Iren,i|1~‘my_’Tfn,i|aﬁm) :(bmﬂ'v 1= laQa--'vN-

The solutions to these equations, confined to the original patch C,, and its boundary
I';,, are used to construct two dictionaries,

(4'17) Im = {d’m,i}zNzlv B = {Qsm,i}g\;lv

where

G = (I ilicms Toilon) s Gmyi = Loy ilr T ilop,) -

In the online stage, at each iteration we seek neighbors to interpolate for local so-
lutions. We use the L2?-norm to measure the distance between the newly generated
solutions and the older solution set. Denote by (;557? ) the solution at the nth iteration
in patch C,,,, and define by

{d)m,i((zn) 5 q = 1, 2, ey k;}

its k-nearest neighbors in %,,, for some chosen positive integer k, with the indices
2}(1") being ordered so that ¢ . is the nearest neighbor. Then we define the local
sl

tangential approximation S, 5,? ) by

(4.18) uly) = Smdl =, o + W)
91

m m

where U7 and ¢ are defined as in (2.8) and (2.9). The local solution is then
updated as follows:

(419) Bt =P (00 1, 0 ) = (T S 16 TS 10T

m—1> m—1*m
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For m =1 and m = M, to avoid updating the physical boundary, we set

Pi(6,05) = (¢lr_r,_, T3S205M)
PM(Gf)g\Z),l@) = (I]\A//{ 18M71¢M717¢|F,HFM,,)-

Once the convergence is achieved (at iteration n, say), we assemble the final solution
as

M
(420) Ufinal = u(n) = Z X"LU,E:Z) 5
m=1
with x,, : © — R being the smooth partition of unity associated with the partition
of IC.

4.4. Numerical tests. In the numerical tests, we take the domain to be
K=DxV=][0,L] x [-1,1] =[0,3] x [-1,1].

To form the patch K,, = D,,, XV, the domain D is divided into M =7 nonoverlapping
patches whose widths are dy = d; = 2(1\/{“_1) 0.25 and d; — = 0.5, i =
2,...,M — 1. Each patch is then enlarged by Az, = .125 on both s1des (except the
ones adjacent to the physical boundary, which are enlarged only on the “internal”
sides), so we have

Dy = (o, o —I—Axo) » D= (L= gty — Avos3)

The region of overlap between adjacent patches K,, has size 2Az, x [—1,1]. The
partition of unity functions over each patch IC,, are obtained using the method of
subsection 3.4

Denote the spatial grid points by 0 = 29 < 1 < -+ < zn,-1 < &y, = L, which
is a uniform grid with step size Ax = NLI The velocity grid points are denoted by
-1 <v <wve <--- <wn,—1 < vy, <1 for some even value of V,. We use the
Gauss—Legendre quadrature points for the v;. The numerical solutions are denoted
by IV ~ I(x;,v;) and T* ~ T(x;). To quantify the numerical error, we denote the
discrete L2-norm of u = ([I*],[T"]) by

N, z—1 N,
< Az
ull3 —Zwy IO]|2+ZU)J 5 P+ Z > wiAx|TP
=1 j=1
Az N,.—1
7‘TO|2 |TN |2_|_ Z AJT|TZ|2

=1

where w; is the Gauss-Legendre weight, and the relative error u,.r between a reference
solution and an approximate solution uapprox is defined by

||urcf - uapprox”2
||uref||2

relative L? error =

We solve the PDE using finite differences. The intensity equation is discretized in
space by a classical second-order exponential finite difference scheme [61, 81], and
the temperature equation is approximated by the standard three-point scheme. The
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resulting nonlinear system is then solved by fixed point iteration [69, 72], where in
each evaluation of the fixed point map, the monotone iterative method is exploited
to solve the semilinear elliptic equation. For computations with e = 2% and ¢ = 276,
we further use Anderson acceleration to boost the convergence of fixed point iteration
[10, 45, 87].

We use extremely fine discretization with Az = 271 = 1 and N, = 210 =
1024. The discretization is fine enough for us to view it as the reference solution. All
other computations are done with coarser mesh Az =27 = -4 and N, = 27 = 128.

The boundary condition ¢ = (g™, g®, 6 () is defined as follows:

g (0,v > 0) = 3+sin(2mv), ¢P (L =3,v<0)=2+sin(2mv),
9(0) =0V =2, 4(L) =602 =3.

The enlarged patches needed in the offline stage, denoted by /Em, are obtained by
enlarging each respective IC,, by the quantity Axp. The configuration of the domain
and the partition are seen in Figure 7, where Az}, = .125.

On the buffered interior patch KC,,, we sample N = 64 configurations of boundary
conditions in By (R,,; X,). On the discrete level, this process finds 64 boundary
conditions ¢ so that

Ny N,

2
1617 =D wilg® (s,0)* + D wilg® (o)l + 6D + 18P < Ry
Jj=1 j:]\;v_;’_l

We set R,, = 25 in our experiments.

To demonstrate the linearity of the updating map P,,, we choose the patch K3 =
[0.625,1.375] x [—1,1], which overlaps K3 at [0.625,0.875] x [—1,1]. For Az, = 273
and € = 276, we compute local solutions on the buffered domain K3 with 64 different
configurations and evaluate T at 0.625 and 1.375 (the two ending points of K3) and
at 0.875 (the point that intersects with 9Ks). In Figure 8, we plot T°(0.875) as
a function of 7(0.625) and T'(1.375). We observe that it is a slowly varying two-
dimensional manifold and is locally almost linear. Thus, 7°(0.875) can be determined

uniquely by the pair of values (7°(0.625),7T(1.375)). Further, we plot W

a
1)
S
)
S

225 2.75

i
o

S
=

IR I &

0 0.5 0.625 137515 30

Fic. 7. Configuration of patches (including enlarged patches) in the decomposed domain.
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F1G. 8. The plot on the left shows the point cloud (T(0.625),T(1.375),7(0.875)) and its fit-
ting plane. We observe that the manifold is approzimately two-dimensional, so that T(0.875) can
be uniquely determined by (7°(0.625),T(1.375)). The middle and right panels show the quantities
@)= (D @)% 00 D (@) =T (@)

(I) ()2 T(x)*
constant, with I = T*.

at x = 0.875, respectively, showing that the solution is nearly

104
[ —
—o—c=2"
e=21
106 —a—e=2" 10 =1
—o—e=272
e=2-
8 8 B—c=2"
107 10’
10710 L L L L L L L L L 1040
12 4 6 8 10 12 14 16 18 20 12 4 6 8 10 12 14 16 18 20
k k
(a) Az, =272 (b) Azy, =273

F1G. 9. The relative error of the L? projection of the reference solution onto the space spanned
by the nearest k modes on the patch KCa.

and W at x = 0.875, showing that the relative variation is nearly zero. This
means that I is essentially constant at = 0.875, with I = 7. These calculations
suggest that the entire solution on this patch is uniquely determined by 7(0.625) and
T(1.375), implying that the local degrees of freedom for the solution in the entire patch
is only two, so that the local solution manifold is approximately two-dimensional.

To verify that the local dictionary represents the solution manifold adequately,
we confine the reference solution in patch Ko and project it onto the space spanned
by its nearest k modes in the local dictionary. We evaluate the resulting relative error
as a function of k, plotting the result in Figure 9. For ¢ = 27% and Az, = .125,
we observe a sharp decay in the error when k£ > 3, meaning that the local reference
solution can be represented to acceptable accuracy by two local dictionary modes,
and suggesting once again that the local solution manifold is two-dimensional.

The sample number N and the radius R, are two crucial parameters that in-
fluence the effectiveness of the method. We check how the approximation capability
of the local dictionary depends on the two parameters over the local patch Ko. In
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F1G. 10. The plot on the left shows the average error of the L? projection of 100 test samples
onto the space spanned by the nearest five modes. The test samples are generated from the same
distribution as the dictionary. The plot on the right shows the relative error of the L? projection of
the reference solution onto the space spanned by the nearest five modes on patch Ko. The number
of samples is N = 64 for all Ry,.

Figure 10a, we show the projection error as N increases for different R,,. The error of
the dictionary saturates as IV increases, and it can be used as a criterion for deciding
the size of the local dictionary. In Figure 10b, we show the relative projection error
of the reference solution onto the local tangent space using dictionaries with different
R,,. It can be seen that the radius R,, must be large enough to obtain a good local
basis.

In the online computation, we set the stopping criterion to be

D el =gl <1072,
m

where dn(lf ) is the boundary condition on the patch IC,,, at the nth iteration. We take
the initial boundary condition on each patch to be trivial, setting ¢£2) \pm__\p_ =0,
except on the real physical boundary condition, where it is set to the prescribed
Dirichlet conditions.

In Figure 11, we compare the reference solution with our numerical solution com-
puted using k& = 5 and buffer zone Az, = 272. When ¢ = 1, the equation is far
away from its homogenization limit, and the numerical solution is far from the refer-
ence, but for e = 279 the numerical solution is captured rather well using just k = 5
neighbors.

In Figure 12 we document the relative error for various values of k and Axy,.
When ¢ is small, and for buffer width Az} sufficiently large, we need only k = 2
neighbors to produce a solution of acceptable accuracy. Without the buffer zone to
dampen the boundary layer effect, however, the low dimensionality of the solution
manifold cannot be captured, even for small e.

We also compare the cost of our reduced method with the classical Schwarz it-
eration. CPU times for both methods are summarized in Table 2 for ¢ = 274 and
e = 279, with buffer size Az}, = .125. The online cost of the reduced method is about
1000 times cheaper than the classical Schwarz iteration when ¢ = 274 and 4000 times
cheaper when € = 276, Even considering the large overhead cost in the offline stage,
the reduced order method is still cheaper than Schwarz iteration.
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F1G. 11. The first two columns of plots show the reference solution and numerical solution for
e =1, and the last two columns compare the solutions for e = 276.
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F1G. 12. The relative L? error in one trial as a function of k, for various values of Az, and e.

Finally, we reiterate that due to the nonlinear nature of the equations, the con-
cept of “basis function” is not well defined. The reduced model method for linear
equations was proposed in [26, 28], where random sampling is used to construct the
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TABLE 2
CPU time comparison between reduced model methods with k = 3,5,10, 15,20 (size of each local
dictionary N = 64).

CPU Time (s)

e=2"" e=2"
Offline Online Offline Online
Reduced model k£ =3 394.3911 0.181324 904.7498 0.215390
Reduced model k£ =5 0.301761 0.222538
Reduced model k£ = 10 0.379348 0.282070
Reduced model k£ = 15 0.548689 0.346633
Reduced model k& = 20 0.586276 0.532603
Classical Schwarz — 458.0987 — 2183.7079

F1G. 13. The left column of plots is the solution with € = 2%, and the right column is the
solution from a linear combination of the full set of “Green’s functions.”

boundary-to-boundary map P, by following the idea of randomized SVD [54]. If
we translate this approach into nonlinear homogenization, using Green’s functions in
a brute-force manner, the numerical results are poor. By the “Green’s functions”
we mean the solution to the equation with delta boundary conditions (counterparts
of Green’s functions in the linear setting). The numerical results are presented
in Figure 13, which compares the ground-truth solution with the Green’s function
interpolation.

5. Conclusion. Multiscale physical phenomena are often described by PDEs
that contain small parameters. it is generally expensive to capture small-scale effects
using numerical solvers. There is a vast literature on improving numerical performance
of PDE solvers in this context, but most algorithms are equation-specific, requiring
analytical understanding to be built into algorithmic design.

We have described numerical methods that can capture the homogenization limit
of nonlinear PDEs with small scales automatically, without analytical prior knowledge.
This work can be seen as a nonlinear extension of our earlier work [27] for linear PDEs.
Elements of our algorithm include a domain decomposition framework and Schwarz
iteration. The method is decomposed into offline and online stages, where in the
offline stage, random sampling is employed to learn the low-rank structure of the
solution manifold, while in the online stage, the reduced manifolds serve as surrogates
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of local solvers in the Schwarz iteration. Since the manifolds are prepared offline and
are of low dimension, the method exhibits significant speedup over naive approaches,
as we demonstrate using computational results on two examples.

Appendix A. Sampling method for the semilinear elliptic equation. We
explain here the sampling method for the semilinear elliptic equation in subsection 3.4.
To enforce the boundary condition on the physical boundary, patches that intersect
this boundary should be treated differently from patches inside the domain. (We call
the patch Q,, an “interior patch” if it satisfies 0€2,,, N 92 = &; otherwise, we call it a
“boundary patch.”)

A.1. Sampling for interior patches. For the interior patch Bﬁm, each sample
in B(Rum; X) is decomposed into radial and angular parts ¢ = rX, with the two
parts r and X sampled independently. The radial part r is generated so that ( R%)D
is uniformly distributed in the unit interval [0, 1], where D is a preset integer. ’(We
choose D = 5 and R,, = R = 20 in our tests.) The angular part X is an N,,-
dimensional vector uniformly distributed in the set {X € RV : || X||;/» = 1}, where

N, is the number of grid points on 9, and the norm | - |l1/2 is defined by

. 2 P
Iollyz = [hD_I6:P+2 > =25
i=1 ij=1 1" J

i#]
HereN(/; = (gl)f\]: " is any discrete boundary condition, and z; denotes the grid point
on 0€),,.

In order to generate X, let Y1,..., Yy, ~ N(0,1) be independent and identically
distributed (i.i.d.( standard Gaussian random variables. Define the weight matrix

W = (Wi;)n,.xN,, by

N,
_ 2h* o _ ___2Rr®
Wi=h+) g2op. Wi=-pZop,

j=1

J#i
and suppose that its Cholesky decomposition is W = CTC. Then the vector Z =
C~Y(Y3,...,Yn,,) " has uniform angular distribution with respect to the norm |- |4 /2,
so its normalization X = T Zﬁuz is uniformly distributed on the unit sphere {X €

RN"‘ : ||XH1/2 = 1}
A.2. Sampling for boundary patches. Let

c RV»

m

e [%m,d

m,r

be a random sample, with <Zm,d representing the physical boundary part and %m,r
representing the random part. When we rearrange the weight matrix W as

W= {de Wdr:| 7

Wrd Wrr
so that H(;NSMHf/? = ¢ W, then it yields

o Wrrﬁgm,r - R?n - g;,d(wdd - Werr;IWrd)(gm,d 5

m,r

indicating that the random part lies in an ellipsoid.
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Hence, the random part q§m7r can be sampled as follows. We decompose it into
independently sampled radial and angular parts gg,. = 7, X, so that r2 is uniformly
distributed in the interval [0, (R2, = &}, ;(Waa — Way W, Wya)dn,a) /2], and X, is
uniformly distributed on the set {X,, : X,) W, X, = 1}.

Appendix B. Sampling method for the nonlinear radiative transfer
equations. Here we describe the sampling method for the nonlinear radiative transfer
equations discussed in subsection 4.4. _

To generate samples for the interior patches KC;,, m = 2,..., M —1, each sample is
decomposed into radial and angular parts ¢ = rX, which are sampled independently.
We take (5-)? to be uniformly distributed in [0, 1], while X is an (N, +2)-dimensional
vector uniformly distributed in the set {X € RNe*2 : | X| = 1,X > 0}, where the
norm || - || is defined by

Ny
2 NU

612 = wig® (s,v)P+ D wylgMt,v)? + 00 + 027,
J=1 j="2

given any discrete boundary condition
~ Ny iy~
¢ = <{§(2)(8a Uj)}jzzh {g(l) (t’ Uj)}]v\[i)N ) 9(1)7 0(2)> :
=241

Here N, is the number of grid points in the velocity direction, and the w; are the
Gaussian—Legendre weights. (We choose R,,, = R = 25 in our tests.)

To generate X, let Y1,...,Yn, +2 ~ N(0,1) be i.i.d. standard Gaussian random
variables. Denote the vector

Y1 Yn
7 = vy Y, .
<\/w—17 ) \/TM7 Ny+15 NU—&-Q)
Then the normalized vector X = ﬁ is uniformly distributed on the unit sphere

{X € RM*2 . || X| = 1}. Note that (4.16) is invariant under z-translation, so we
need only learn one interior dictionary on one interior patch, and then we reuse in for
the other interior patches.

Sampling the boundary conditions on the boundary patches can be done in the
same way. However, we do adjust the radius r. In particular, (%/MF is chosen

uniformly in [0, 1], where R;/5; has the fixed boundary condition deducted from R.
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