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ON THE GLOBAL CONVERGENCE OF RANDOMIZED
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OPTIMIZATION*
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Abstract. In this work, we analyze the global convergence property of a coordinate gradient
descent with random choice of coordinates and stepsizes for nonconvex optimization problems. Under
generic assumptions, we prove that the algorithm iterate will almost surely escape strict saddle points
of the objective function. As a result, the algorithm is guaranteed to converge to local minima if
all saddle points are strict. Our proof is based on viewing the coordinate descent algorithm as
a nonlinear random dynamical system and a quantitative finite block analysis of its linearization
around saddle points.
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1. Introduction. In this paper, we analyze the global convergence of a coordi-
nate gradient descent algorithm for a smooth but nonconvex optimization problem:

(1.1) min
x2Rd

f(x).

More specifically, we consider coordinate gradient descent with random coordinate
selection and random stepsizes, as shown Algorithm 1.1.

Algorithm 1.1 Randomized coordinate gradient descent

Initialization: x0 2Rd, t= 0.
while not convergent do

Draw a coordinate it uniformly random from {1,2, . . . , d}.
Draw a stepsize ↵t uniformly random in [↵min,↵max].
xt+1 xt � ↵teit@itf(xt).
t t+ 1.

end while
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714 ZIANG CHEN, YINGZHOU LI, AND JIANFENG LU

The main result of this paper, Theorem 1, is that for any initial guess x0 that
is not a strict saddle point of f , under some mild conditions, with probability 1,
Algorithm 1.1 will escape any strict saddle points, and thus, under some additional
structural assumptions of f , the algorithm will globally converge to a local minimum.

In order to establish the global convergence, we view the algorithm as a random
dynamical system and carry out the analysis based on the theory of random dynamical
systems. This might be of separate interest; in particular, to the best of our knowledge,
the theory of random dynamical system has not been utilized in analyzing randomized
algorithms, while it o↵ers a natural framework to establish long time behavior of such
algorithms. Let us now briefly explain the random dynamical system view of the
algorithm and our analysis; more details can be found in section 3.

Let (⌦,F ,P) be the probability space for all randomness used in the algorithm
such that each ! 2 ⌦ is a sequence of coordinates and stepsizes. The iterate of
Algorithm 1.1 can be described as a random dynamical system xt ='(t,!)x0, where
'(t,!) :Rd!Rd is a nonlinear map for any given t2N and ! 2⌦.

Consider an isolated stationary point x
⇤ of the dynamical system, which corre-

sponds to a critical point of f . Near x⇤, the dynamical system can be approximated
by its linearization: xt = �(t,!)x0, where �(t,!)2Rd⇥d. The limiting behavior of the
linear dynamical system can be well understood by the celebrated multiplicative er-
godic theorem: Under some assumptions, the limit ⇤(!) = limt!1(�(t,!)>�(t,!))1/2t

exists almost surely. The eigenvalues of the matrix ⇤(!), e
�1(!)

> e
�2(!)

> · · · >
e
�p(!)(!), characterize the long time behavior of the system. In particular, if the
largest Lyapunov exponent �1(!) is strictly positive, then if x0 has some nontrivial
component in the unstable subspace, xt = �(t,!)x0 would exponentially diverge from
x
⇤. More details of the preliminaries of the linear random dynamical system can be

found in section 2.
Intuitively, one expects that the nonlinear dynamical system can be approximated

by its linearization around a critical point x⇤ and would hence escape the strict saddle
point, following the linearized system. However, the approximation by the linear
dynamical system cannot hold for an infinite time horizon due to error accumulation.
Therefore, we cannot naively conclude using the multiplicative ergodic theorem and
the linear approximation. Instead, a major part of the analysis is devoted to establish
a quantitative finite block analysis of the behavior of the dynamical system over a finite
time interval. In particular, we will prove that when the iterate is in a neighborhood of
x
⇤, the distance kxt � x

⇤k will be exponentially amplified for a duration T with high
probability. This would then be used to prove that with probability 1, the nonlinear
system will escape strict saddle points.

1.1. Related work. Coordinate gradient descent is a popular approach in opti-
mization; see e.g., the review articles [55, 46]. Advantages of the coordinate gradient
method include that compared with the full gradient descent, it allows larger stepsize
[36] and enjoys faster convergence [45], and it is also friendly for parallelization [32, 42].

The convergence of coordinate gradient descent has been analyzed in several set-
tings on the property of the objective function and on the strategy of coordinate
selection. The understanding of convergence for convex problems is quite complete:
For methods with cyclic choice of coordinates, the convergence has been established in
[4, 45, 49], and the worst-case complexity is investigated when the objective function
is convex and quadratic in [50]. For methods with random choice of coordinates, it is
shown in [36] that Ef(xt) converges to f

⇤ = minx2Rd f(x) sublinearly in the convex
case and linearly in the strongly convex case. Convergence of objective function in
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GLOBAL CONVERGENCE OF RANDOMIZED CGD 715

high probability has also been established in [36]. We also refer the reader to [41,
33, 32, 55] for further convergence results for random coordinate selection for convex
problems. More recently, convergence of methods with random permutation of coor-
dinates (i.e., a random permutation of the d coordinates is used for every d step of
the algorithm) have been analyzed, mostly for the case of quadratic objective func-
tions [21, 38, 15, 56]. It has been an ongoing research direction to compare various
coordinate selection strategies in various settings. In addition, in the nonconvex and
nonsmooth setting, the convergence of coordinate/alternating descent methods can be
analyzed for tame/semialgebraic functions with Kurdyka– Lojasiewicz property (see,
e.g., [3, 2, 6, 7]).

For nonconvex objective functions, the global convergence analysis is less devel-
oped, as the situation becomes more complicated. Escaping strict saddle points has
been a focused research topic in nonconvex optimization, motivated by applications
in machine learning. It has been established that various first-order algorithms with
gradient noise or added randomness to iterates would escape strict saddle points; see,
e.g., [11, 24, 16, 18, 17, 14] for works in this direction.

Among previous works for escaping saddle points, perhaps the closest in spirit to
our current result are [23, 39, 22, 30], where algorithms without gradient or iterate
randomness are studied. It is proved in [23] that for almost every initial guess, the
trajectory of the gradient descent algorithm (without any randomness) with constant
stepsize would not converge to a strict saddle point. The result has been extended
in [22] to a broader class of deterministic first-order algorithms, including coordinate
gradient descent with cyclic choice of coordinate. The global convergence result for
cyclic coordinate gradient descent is also proved in [30] under slightly more relaxed
conditions. A similar convergence result is also obtained for the heavy-ball method
in [39]. Let us emphasize that in the case of coordinate algorithms, it is not merely a
technical question whether the algorithm can escape the strict saddle points without
randomly perturbing gradients or iterates. In fact, one simply cannot employ such
random perturbations, e.g., adding a random Gaussian vector to the iterate, since
doing so would destroy the coordinate nature of the algorithm.

The analysis in the works [23, 22, 39, 30] is based on viewing the algorithm as
a deterministic dynamical system, and applying the center-stable manifold theorem
for deterministic dynamical system [47], which characterizes the local behavior near
a stationary point of nonlinear dynamical systems. Such a framework obviously does
not work for randomized algorithms. To some extent, our analysis can be understood
as a natural generalization to the framework of random dynamical systems, which
allows us to analyze the long time behavior of randomized algorithms, in particular,
coordinate gradient descent with random coordinate selection.

Let us mention that various stable, unstable, and center manifold theorems have
been established in the literature of random dynamical systems; see, e.g., [1, 43, 44, 8,
34]. These sample-dependent random manifolds also characterize the local behavior
of random dynamical systems. However, as far as we can tell, one cannot simply apply
such “o↵-the-shelf results” for the analysis of Algorithm 1.1. Instead, for study of the
algorithm, we have to carry out a quantitative finite block analysis for the random dy-
namical system near the stationary points. Our proof technique is inspired by stability
analysis of the Lyapunov exponent of random dynamical systems, as in [20, 10].

1.2. Organization. The rest of this paper will be organized as follows. In sec-
tion 2, we review the preliminaries of random dynamical system for the convenience of
the reader. Our main result is stated in section 3. The proofs can be found in section 4.
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716 ZIANG CHEN, YINGZHOU LI, AND JIANFENG LU

2. Preliminaries of random dynamical systems. In this section, we recall
basic notions and results of random dynamical systems; for more details, we refer the
reader to standard references, such as [1]. After introducing the preliminaries in this
section, we will define the random dynamical system associated with Algorithm 1.1 in
section 3.1. Let (⌦,F ,P) be a probability space, and let T be a semigroup with B(T)
being its Borel �-algebra. T serves as the notion of time. In the setting of Algorithm
1.1, we have T = N, corresponding to the one-sided discrete time setting. Other
possible examples of T include T=Z, T=R�0, and T=R, with the assumption that
02T.

Let us first define a random dynamical system. As we have mentioned in the
introduction, the dynamics starting from x0 can be determined once a sample ! 2⌦
is fixed. From the viewpoint of a random dynamical system, specifying the dynamics
of x is equivalent to specifying the dynamics of !: Suppose at time 0 that the dynamics
corresponds to !. Then to prescribe the future dynamics starting from time t, we can
specify the corresponding ✓(t)! 2 ⌦ for some map ✓(t) : ⌦! ⌦. More precisely, we
have the following definition of dynamics on ⌦.

Definition 2.1 (metric dynamical system). A metric dynamical system on a

probability space (⌦,F ,P) is a family of maps {✓(t) : ⌦!⌦}t2T satisfying that

(i) the mapping T⇥⌦!⌦, (t,!) 7! ✓(t)! is measurable;

(ii) it holds that ✓(0) = Id⌦ and ✓(t+ s) = ✓(t) � ✓(s) 8 s, t2T;
(iii) ✓(t) is P-preserving for any t 2 T, where we say a map ✓ : ⌦ ! ⌦ is P-

preserving if

P(✓�1
B) = P(B), 8 B 2F .

The random dynamical system can then be defined as follows.

Definition 2.2 (random dynamical system). Let (X,FX) be a measurable space,

and let {✓(t) : ⌦!⌦}t2T be a metric dynamical system on (⌦,F ,P). Then a random

dynamical system on (X,FX) over {✓(t)}t2T is a measurable map

' :T⇥⌦⇥X! X,

(t,!, x) 7!'(t,!, x),

satisfying the following cocycle property: For any ! 2⌦, x 2X, and s, t 2 T, it holds
that

'(0,!, x) = x

and that

(2.1) '(t+ s,!, x) ='(t,✓(s)!,'(s,!, x)).

The cocycle property (2.1) is a key property of a random dynamical system: After
time s, if we restart the system at xs, the future dynamic corresponds to the sample
✓(s)!. Note that '(t,!, ·) is a map on X. With some ambiguity of notation, we also
use '(t,!) to denote this map on X and write '(t,!)x='(t,!, x). Then the cocycle
property (2.1) can be written as

'(t+ s,!) ='(t,✓(s)!) �'(s,!).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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GLOBAL CONVERGENCE OF RANDOMIZED CGD 717

In this work, we will focus on the one-sided discrete time T = N and ✓(t) = ✓
t,

where ✓ is P-preserving and ✓
t is the t-fold composition of ✓. Suppose that X = Rd

and A : ⌦ ! GL(d,R) is measurable. Consider a linear random dynamical system
defined as (we use � for the linear system while reserving ' for nonlinear dynamics
considered later)

�(t,!) =A(✓t�1
!) · · ·A(✓!)A(!),

where the right-hand side is the product of a sequences of random matrices. In this
setting, the behavior of the linear system xt = �(t,!)x0 is well understood by the
celebrated multiplicative ergodic theorem, also known as the Oseledets theorem, which
we recall in Theorem 2.3. Such a type of result was first established by V. I. Oseledets
[37] and was further developed in many works, such as [40, 43, 52].

Theorem 2.3 (multiplicative ergodic theorem [1, Theorem 3.4.1]). Suppose that

(log kA(·)k)+ ,
�
log kA(·)�1k

�
+
2L1(⌦,F ,P),

where we have used the shorthand a+ := max{a,0}. Then there exists an ✓-invariant

e⌦2F with P(e⌦) = 1 such that the following holds for any ! 2 e⌦:

(i) It holds that the limit

(2.2) ⇤(!) = lim
t!1

�
�(t,!)>�(t,!)

�1/2t

exists and is a positive definite matrix. Here �(t,!)> denotes the transposi-

tion of the matrix (as �(t,!) is a linear map on X).

(ii) Suppose ⇤(!) has p(!) distinct eigenvalues, which are ordered as e
�1(!)

>

e
�2(!)

> · · · > e
�p(!)(!)

. Denote Vi(!) the corresponding eigenspace with

dimension di(!) for i = 1,2, . . . , p(!). Then the functions p(·), �i(·), and

di(·), i= 1,2, . . . , p(·) are all measurable and ✓-invariant on e⌦.

(iii) Set Wi(!) =
L

j�i
Vj(!), i = 1,2, . . . , p(!), and Wp(!)+1(!) = {0}. Then it

holds that

(2.3) lim
t!1

1

t
log k�(t,!)xk= �i(!), 8 x2Wi(!)\Wi+1(!)

for i= 1,2, . . . , p(!). The maps V (·) and W (·) from e⌦ to the Grassmannian

manifold are measurable.

(iv) It holds that

Wi(✓!) =A(!)Wi(!).

(v) When (⌦,F ,P,✓) is ergodic, i.e., every B 2F with ✓
�1

B =B satisfies P(B) =
0 or P(B) = 1, the functions p(·), �i(·), and di(·), i= 1,2, . . . , p(·) are constant
on e⌦.

In Theorem 2.3, �1(!) > �2(!) > · · · > �p(!)(!) are known as Lyapunov expo-
nents, and {0} ✓ Wp(!)(!) ✓ · · · ✓ W1(!) ✓ Rd is the Oseledets filtration. We can
see from the above theorem that both the Lyapunov exponents and the Oseledets
filtration are A-forward invariant.

The Lyapunov exponents describe the asymptotic growth rate of k�(t,!)xk as
t!1. More specifically, (2.3) implies that when x 2Wi(!)\Wi+1(!) for any ✏> 0,
there exists some T > 0 such that

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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718 ZIANG CHEN, YINGZHOU LI, AND JIANFENG LU

e
t(�i(!)�✏)  k�(t,!)xk  e

t(�i(!)+✏)

holds for any t > T . The subspaces spanned by eigenvectors of ⇤(!) corresponding to
eigenvalues smaller than, equal to, and greater than 0 are the stable subspace, center
subspace, and unstable subspace, respectively. The stable and unstable subspaces cor-
respond to exponential convergence and exponential divergence, respectively. When
starting from the center subspace, we would get some subexponential behavior.

The multiplicative ergodic theorem also generalizes to continuous time and two-
sided time. We refer the interested reader to [1, Theorems 3.4.1 and 3.4.11] for details.

The stable, unstable, and center subspaces can be generalized to stable, unstable,
and center manifolds when considering nonlinear systems; see, e.g., [1, 43, 44, 8, 27, 34,
31, 25, 13]. These manifolds play similar roles in characterizing the local behavior of
nonlinear random dynamical systems as the subspaces for linear random dynamical
systems. In particular, the Hartman–Grobman theorem establishes the topological
conjugacy between a nonlinear system and its linearization [53]. There are also other
conjugacy results for random dynamical systems; see, e.g., [27, 26, 28, 29].

3. Main results.

3.1. Setup of the random dynamical system. Let us first specify the ran-
dom dynamical system corresponding to the Algorithm 1.1.

• Probability space. For each t 2 N, denote (⌦t,⌃t,Pt) the usual probabil-
ity space for the distribution U{1,2,...,n} ⇥ U[↵min,↵max], where U{1,2,...,n} and
U[↵min,↵max] are the uniform distributions on the set {1,2, . . . , n} and inter-
val [↵min,↵max], respectively. Let (⌦,F ,P) be the product probability space
of all (⌦t,⌃t,Pt), t 2 N. Denote ⇡t as the projection from (⌦,F ,P) onto
(⌦t,⌃t,Pt), t 2 N. Thus, a sample ! 2 ⌦ can be represented as a sequence
((i0,↵0), (i1,↵1), . . .), where (it,↵t) = ⇡t(!), t2N. Let {Ft}t2N be the filtra-
tion defined by

Ft = �

8
<

:(B0 ⇥ · · ·⇥Bt)⇥

0

@
Y

j>t

⌦j

1

A :Bi 2⌃i, i= 0,1, . . . , t

9
=

; .

• Metric dynamical system. The metric dynamical system on ⌦ is constructed
by the (left) shifting operator ⌧ : ⌦!⌦ defined as

⌧(!) = ⌧(⇡0(!),⇡1(!), · · · ) := (⇡1(!),⇡2(!), · · · ),

which is clearly measurable and P-preserving. The metric dynamical system
is then given by ✓(t) = ⌧

t for t2N.
• Random dynamical system. For any ! 2⌦ and t2N, we define �(!) to be a

(nonlinear) map on Rd as

�(!) :Rd! Rd

x 7! x� ↵eie
>
i
rf(x),

where (i,↵) = ⇡0(!) is the first pair/element in the sequence !, and we define
the map '(t,!) via

'(t,!) = �(⌧ t�1
!) � · · · � �(⌧!) � �(!), for t� 1,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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GLOBAL CONVERGENCE OF RANDOMIZED CGD 719

while '(0,!) is the identity operator. It is clear that '(t,!) satisfies the
cocycle property (2.1) and hence defines a random dynamical system on X =
Rd over {⌧ t}t2N. The iterate of Algorithm 1.1 follows the random dynamical
system as

xt = �(⌧ t�1
!)xt�1 = · · ·= �(⌧ t�1

!) � · · · � �(⌧!) � �(!)x0 ='(t,!)x0.

It can be seen that {xt}t2N is {Ft}-predictable, i.e., xt is Ft�1-measurable for any
t2N+, since xt is determined by samples (i0,↵0), (i1,↵1), . . . , (it�1,↵t�1).

In our analysis, we will use linearization of the dynamical system '(t,!) at a
critical point x

⇤ of f . Without loss of generality, we assume x
⇤ = 0; otherwise, we

consider the system with state being x � x
⇤. The resulting linear system, which

depends on H = r2
f(x⇤) = (Hij)1i,jd, is given by (here and in the following, we

use the superscript H to indicate dependence on the matrix)

(3.1) �H(t,!) =A
H(⌧ t�1

!) · · ·AH(⌧!)AH(!),

where

(3.2) A
H(!) = I � ↵eie

>
i
H, (i,↵) = ⇡0(!).

Note that AH(·) is bounded in ⌦. We know that (log kAH(·)k)+ is integrable. When
↵ < 1/|Hii|, the matrix A

H(!) = I � ↵eie
>
i
H is invertible, and the inverse is given

explicitly by applying the Sherman–Morrison formula:

A
H(!)�1 =

�
I � ↵eie

>
i
H
��1

= I +
↵eie

>
i
H

1� ↵Hii

.(3.3)

In particular, we have

(3.4) kAH(!)�1k  1 +
↵kHk

1� ↵|Hii|
.

Thus, if we take the maximal stepsize ↵max such that ↵max < 1/max1id |Hii|,
kAH(·)�1k is bounded in ⌦, and as a result, (log kAH(·)�1k)+ is also integrable.
Therefore, the assumptions of Theorem 2.3 hold. The shifting operator ⌧ is ergodic
on (⌦,F ,P) by Kolmogorov’s 0–1 law. Then Theorem 2.3 applies for ✓= ⌧ with p

H(·),
�
H

i
(·), and d

H

i
(·) all being a.e. constant. For any ! 2 e⌦ that is the set in Theorem

2.3 satisfying P(e⌦) = 1, we denote

(3.5) W
H

+ (!) =
M

�i>0

V
H

i
(!), and W

H

� (!) =
M

�i0

V
H

i
(!).

Then the following invariant property holds:

W
H

� (⌧!) =A
H(!)WH

� (!).

Note that WH

� (!) works as a center-stable subspace. That is, for any x2WH

� (!) and
any ✏ > 0, it holds that k�(t,!)xk  e

t✏ for su�ciently large t and for x /2 W
H

� (!),
k�(t,!)xk grows exponentially as t!1 with rate greater than min�i>0 �i�✏ for any
✏> 0.
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720 ZIANG CHEN, YINGZHOU LI, AND JIANFENG LU

3.2. Assumptions. In this section, we specify the assumptions of the objective
function f in this paper. The first is a standard smoothness assumption of f .

Assumption 3.1. f 2 C
2(Rd) and the Hessian r2

f is uniformly bounded; i.e.,
there exists M > 0 such that kr2

f(x)k M for all x2Rd.

An optimization algorithm is expected to converge, under some reasonable as-
sumptions, to a critical point of f where the gradient vanishes. Our aim is to further
characterize the possible limits of the algorithm iterates. For this purpose, we dis-
tinguish Crits(f), the set of all strict saddle points (including local maxima with the
nondegenerate Hessian) of f ,

Crits(f) := {x2Rd :rf(x) = 0, �min(r2
f(x))< 0},

where we use the subscript s to emphasize that it is strict. Due to the presence of
a negative eigenvalue of Hessian, if we were considering the gradient dynamics near
the critical point, the saddle point would be an unstable equilibrium. Our first result
is that this instability also occurs in the linear random dynamical system �H(t,!),
where H = r2

f(x⇤). In other words, the dimension of WH

+ (!) defined in (3.5) is
greater than 0. While this would mainly serve as a preliminary step for our analysis
of the nonlinear dynamics, the conclusion by itself might be of interest and is stated
as follows. The proof will be deferred to section 4.1.

Proposition 3.2. Let H have a negative eigenvalue and 0 < ↵min < ↵max <

1/max1id |Hii|. Then the largest Lyapunov exponent of �H(t,!) is positive.

Our goal is to generalize such results to the nonlinear dynamics near strict saddle
points of f , for which we would require two additional assumptions as follows.

Assumption 3.3. For every x
⇤ 2 Crits(f), r2

f(x⇤) is nondegenerate; i.e., x⇤ is
a nondegenerate critical point of f in the sense that any eigenvalue of r2

f(x⇤) is
nonzero.

Assumption 3.3 is also a standard assumption, which, in particular, guarantees
that each strict saddle point is isolated due to the nondegenerate Hessian. For each
strict saddle point, Proposition 3.2 guarantees that the corresponding unstable sub-
space W

H

+ (!) is nontrivial (has dimension at least 1). We would in fact require a
stronger technical assumption on its structure.

Assumption 3.4. For every x
⇤ 2 Crits(f), it holds that PH

+ (!)ei 6= 0 for every
i 2 {1,2, . . . , d} and almost every ! 2 ⌦, where PH

+ (!) is the orthogonal projection
onto W

H

+ (!) with H =r2
f(x⇤).

We expect that Assumption 3.4 holds generically. We also show in Appendix A
that Assumption 3.4 can be verified when H has no zero o↵-diagonal elements (and
W

H

+ (!) is not trivial). However, there exist cases that Assumption 3.4 might not
hold. One example is H = r2

f(x⇤) = diag(H1,H2), where H1 2 Rd1⇥d1 only has
positive eigenvalues and H2 2 Rd2⇥d2 only has negative eigenvalues, which implies
that WH

� (!) = span{ei : 1 i d1} and W
H

+ (!) = span{ei : d1 + 1 i d}.
We also remark that Assumption 3.1 is essential in our framework since the lin-

earized system is defined using the Hessian matrix. Analysis of the randomized co-
ordinate method for nonsmooth optimization problems requires new techniques and
deserves future research.

3.3. Main results. Given an initial guess x0, the behavior of the algorithm,
in particular, the limit of xt, depends on the particular sample ! 2 ⌦. For any
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GLOBAL CONVERGENCE OF RANDOMIZED CGD 721

x
⇤ 2Crits(f), we denote the set of all ! such that the algorithm starting at x0 would

converge to x
⇤:

⌦(x⇤
, x0) :=

n
! 2⌦ : lim

t!1
xt = lim

t!1
'(t,!)x0 = x

⇤
o
.

We further define the set ⌦(Crits(f), x0) as the union of all ⌦(x⇤
, x0) over x

⇤ 2
Crits(f):

⌦(Crits(f), x0) :=
[

x⇤2Crits(f)

⌦(x⇤
, x0).

Thus, if ! /2 ⌦(Crits(f), x0), the limit limt!1 xt, if it exists, will not be one of the
strict saddle points. Our main result in this paper proves that the set is of measure
zero; i.e., for any initial guess x0 that is not a strict saddle point, with probability 1,
Algorithm 1.1 will not converge to a strict saddle point.

Theorem 1. Suppose that Assumptions 3.1, 3.3, and 3.4 hold and that 0< ↵min <

↵max < 1/M . Then for any x0 2Rd\Crits(f), it holds that

P(⌦(Crits(f), x0)) = 0.

The intuition behind the proof of Theorem 1 is to compare the nonlinear dynamics
around a strict saddle point x⇤ 2Crits(f) with its linearization, as the linear dynamics
has nontrivial unstable subspace, thanks to Proposition 3.2. Ideally, one would hope
that the nonlinear dynamics would closely follow the linear dynamics and thus leave
the neighborhood of x⇤ eventually; the obstacle for such an argument is, however,
that the approximation of the linearization is only valid for a finite time interval.
Therefore, to establish the instability behavior of the nonlinear dynamics, we would
need a much more refined and quantitative argument using the instability of the linear
system. In particular, we would need to show that over a finite interval, with high
probability, the linear system and hence the nonlinear system would drive xt away
from the strict saddle point with quantitative bounds; see Theorem 4.4 in section 4.2.
Theorem 1 then follows from an argument with a similar spirit as the law of large
numbers; see section 4.3.

Remark 3.5. The technical Assumption 3.4 and the randomness in stepsizes are
made so that the iterate xt = xt�1�↵t�1eit�1e

>
it�1
rf(xt�1) would obtain some non-

trivial component in the unstable subspace, which would be further amplified within
a su�ciently long but finite time interval. When kPH

+ (⌧ t!)eit�1k and |e>
it�1
rf(xt�1)|

are fixed and relatively large, a random ↵t�1 would keep kPH

+ (⌧ t!)xtk away from 0
with high probability; see section 4.2 for more details. It is an interesting open ques-
tion whether it is possible to establish similar results without such assumptions. Our
conjecture is that P(⌦s(x0)) = 0 still holds for x0 2 Rd\Crits(f) unless x0 is located
in a set with Lebesgue measure zero, similar to the results established in [22].

As an application of our main result (Theorem 1), we can obtain the global
convergence to stationary points with no negative Hessian eigenvalues for Algorithm
1.1. More specifically, denote by

Crit(f) := {x2Rd :rf(x) = 0}

the set of all critical points of f . Then we have the following corollary, which will also
be proved in section 4.3.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/0

3/
23

 to
 1

75
.1

59
.1

22
.2

07
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



722 ZIANG CHEN, YINGZHOU LI, AND JIANFENG LU

Corollary 3.6. Under the same assumptions as in Theorem 1 and assuming

further that every x
⇤ 2 Crit(f) is an isolated critical point, for any x0 2 Rd\Crits(f)

with bounded level set L(x0) = {x 2 Rd : f(x) f(x0)}, with probability 1, {xt}t2N is

convergent with limit in Crit(f)\Crits(f).
Remark 3.7. In Corollary 3.6, if we further assume that all saddle points of f are

strict, then the algorithm iterate converges to a local minimum with probability 1.
Let us also mention that for many nonconvex problems, saddle points are suboptimal,
while there do not exist “bad” local minima, e.g., phase retrieval [48], deep learning
[19, 35], and low-rank matrix problems [12]. For these problems, convergence to local
minima su�ces to guarantee good performance.

Remark 3.8. In our setting, without adding noise to the gradient or iterate, we
cannot hope for good convergence rates for an arbitrary initial iterate. In fact, as
shown in [9], the convergence of a deterministic gradient descent algorithm to a local
minimum might take an exponentially long time; we expect similar behavior for the
randomized coordinate gradient descent Algorithm 1.1. Let us also remark that while
we need the random stepsize as discussed in Remark 3.5, the interval [↵min,↵max]
could be made arbitrarily small; the result holds as long as 0< ↵min < ↵max < 1/M .

4. Proofs. We collect all proofs in this section.

4.1. Analysis of the linearized system. We will first study the linear dy-
namical system, for which we assume the objective function is given by

(4.1) f
H(x) =

1

2
x
>
Hx,

where H is a symmetric matrix in Rd⇥d with at least one negative eigenvalue. In this
case, the coordinate descent algorithm is given by

xt+1 =
�
I � ↵teite

>
it
H
�
xt,

which corresponds to the linear dynamical system �H(t,!) with single step map
A

H(!), defined in (3.1) and (3.2), respectively.
Our main goal in this subsection is to prove Proposition 3.2 for this linear dynam-

ical system, which states that at least one Lyapunov exponent of �H(t,!) is positive.
It su�ces to show that there exists some x0 such that kxtk grows exponentially to
infinity, which will follow from an energy argument, similar to the proof of [22, Propo-
sition 5]. Although we consider a randomized coordinate gradient descent algorithm
instead of a cyclic one, one step, i.e., Lemma 4.3, in the proof of Proposition 4.1
follows closely the proof in [22, Appendix A]. We start from x0 with f

H(x0) < 0
and consider a finite time interval with length m � d. Proposition 4.1 establishes a
quantitative decay estimate for fH(xt+m) compared with f

H(xt), which leads to our
desired result (Proposition 3.2).

Proposition 4.1. Let m � d be fixed. For the objective function (4.1) with

�min(H)< 0, suppose that 0< ↵min < ↵max < 1/max1id |Hii| and that there exists

c2 (0,1) depending on m, H, ↵min, and ↵max such that

f
H(xt+m)� f

H(xt) c f
H(xt)

holds as long as f
H(xt) < 0 and {1,2, . . . , d} = {it, it+1, . . . , it+m�1} (in the sense of

sets).
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GLOBAL CONVERGENCE OF RANDOMIZED CGD 723

Remark 4.2. The condition {1,2, . . . , d}= {it, it+1, . . . , it+m�1} above is known as
the “generalized Gauss–Seidel rule” in the literature of coordinate methods [51, 54].

Proof. Without loss of generality, we assume that t = 0. Due to the choice of
↵max, we have the following simple nonincreasing property for any t

0 2N:

f
H(x

t
0+1

) =
1

2
x
>
t
0+1

Hx
t
0+1

=
1

2
x
>
t
0

✓
I � ↵

t
0ei

t
0 e

>
i
t
0H

◆>
H

✓
I � ↵

t
0ei

t
0 e

>
i
t
0H

◆
x
t
0

= f
H(x

t
0)� ↵

t
0

✓
e
>
i
t
0Hx

t
0

◆2

+
1

2
↵
2
t
e
>
i
t
0Hei

t
0

✓
e
>
i
t
0Hx

t
0

◆2

 f
H(x

t
0)�

↵
t
0

2

✓
e
>
i
t
0Hx

t
0

◆2

.

(4.2)

Write x0 = y
⇤ + y0 with y

⇤ 2 ker(H) and y0 2 ran(H). Let

(4.3) y
t
0+1

= y
t
0 � ↵

t
0ei

t
0 e

>
i
t
0Hy

t
0 , t

0 = 0,1, . . . ,m� 1.

Then x
t
0 = y

⇤ + y
t
0 holds for any t

0 = 0,1, . . . ,m. Using (4.2), to give an upper bound
for f

H(xt+m)� f
H(xt), we would like a nontrivial lower bound for ↵

t
0(e>i

t
0Hx

t
0)2 =

↵
t
0(e>i

t
0Hy

t
0)2 for some t

0 2 {t, t+ 1, . . . , t+m� 1}, which is guaranteed by Lemma

4.3, whose proof will be postponed.

Lemma 4.3. Suppose that {1,2, . . . , d}= {i0, i1, . . . , im�1}. For any

(4.4) 0< � min

⇢
1

2m
,

↵min�min(H)

2
p
m(m↵max�max(H) + 1)

�
,

where �min(H) and �max(H) are the smallest and largest positive singular values of

H, respectively, if 0 6= y0 2 ran(H), then there exists T 2 {0,1, . . . ,m� 1} such that

↵T |e>iTHyT |� �kyT k, where the sequence yt is given as in (4.3).

Assuming the lemma, there exists T 2 {0,1, . . . ,m� 1} such that

↵T

��e>
iT
HyT

��� �kyT k,

with a fixed � > 0 satisfying (4.4). We can further constrain that �
2

↵min�max(H) < 1.
Thus, we have

f
H(xm) f

H(xT+1) f
H(xT )�

↵T

2

�
e
>
iT
HxT

�2  f
H(xT )�

�
2

2↵T

kyT k2,

which, combined with �max(H)kyT k2 � �y>T HyT = �x>
T
HxT = �2fH(xT ), yields

that

f
H(xm)

✓
1 +

�
2

↵T�max(H)

◆
f
H(xT )

✓
1 +

�
2

↵T�max(H)

◆
f
H(x0).

Set c= �
2

↵max�max(H) , and we get that fH(xm)� f
H(x0) cf

H(x0).

We finish the proof by establishing Lemma 4.3 below.
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724 ZIANG CHEN, YINGZHOU LI, AND JIANFENG LU

Proof of Lemma 4.3. Suppose on the contrary that ↵t|e>itHyt| < �kytk for any
t2 {0,1, . . . ,m� 1}. It holds that

ky1 � y0k= ↵0

��e>
i0
Hy0

��< �ky0k< 2�ky0k.

We claim that

(4.5) kyt � y0k< 2t�ky0k

for any t = 1,2, . . . ,m� 1. By induction, assume that kyt � y0k < 2t�ky0k holds for
some t2 {1,2, . . . ,m� 2}. Then

kyt+1 � ytk= ↵t

��e>
it
Hyt

��< �kytk< �(2t�+ 1)ky0k< 2�ky0k,

where the last inequality uses 2t�< 2m� 1. It follows that kyt+1 � y0k  kyt � y0k+
kyt+1 � ytk< 2(t+ 1)�ky0k.

Using (4.5) and max1id kHeik  �max(H), we have

↵t

��e>
it
Hy0

�� ↵t

��e>
it
H(yt � y0)

��+ ↵t

��e>
it
Hyt

��

< ↵max�max(H) · 2t�ky0k+ 2�ky0k
< 2�(m↵max�max(H) + 1)ky0k

for t = 0,1, . . . ,m � 1. Since span{eik : k = 0,1, . . . ,m � 1} = Rd, noticing that
y0 2 ranH, we have

↵min�min(H)ky0k  ↵minkHy0k 
 

m�1X

t=0

�
↵t

��e>
it
Hy0

���2
!1/2

< 2�
p
m(m↵max�max(H) + 1)ky0k,

which contradicts the choice of � in (4.4).

We are now ready to prove Proposition 3.2, which states the existence of a positive
Lyapunov exponent of the linear dynamical system.

Proof of Proposition 3.2. It su�ces to show that for almost every ! 2 ⌦, there
exist some x0 2 Rd, ✏ > 0, and T > 0 such that xt = �(t,!)x0 satisfies kxtk � e

✏t

for any t > T . Let x0 be an eigenvector corresponding to a negative eigenvalue of H.
Then it holds that f

H(x0) < 0. Consider a fixed m � d. For any k 2 N, set Ik = 1
if {1,2, . . . , d} = {ikm, ikm+1, . . . , ikm+m�1} and Ik = 0 otherwise. We can see that
the random variables I0, I1, I2, . . . are independent and identically distributed with
EI0 = P(I0 = 1)2 (0,1). By Proposition 4.1, we obtain that

f
H(x(k+1)m)

(
(1 + c)fH(xkm) if Ik = 1,

f
H(xkm) if Ik = 0,

where c is the constant from Proposition 4.1. Therefore,

�min(H)

2
kxkmk2  f

H(xkm) (1 + c)
Pk�1

j=0 Ijf
H(x0),

which implies that

(4.6) kxkmk �
✓
2fH(x0)

�min(H)

◆1/2

· (1 + c)
1
2

Pk�1
j=0 Ij .
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GLOBAL CONVERGENCE OF RANDOMIZED CGD 725

Note that E|I0|= EI0 <1. The strong law of large number suggests that for almost
every ! 2⌦, there exists some K such that for all k�K,

(4.7)
k�1X

j=0

Ij �
EI0
2

k.

Combining (4.6) and (4.7), we arrive at

kxkmk �
✓
2fH(x0)

�min(H)

◆1/2

· (1 + c)
EI0
4m ·km

.

Noticing that (1 + c)
EI0
4m is greater than 1, kxkmk grows exponentially in km, and we

complete the proof.

4.2. Finite block analysis. In this subsection, we study the behavior of the
nonlinear dynamical system near a strict saddle point of f , which, without loss of
generality, can be assumed to be x⇤ = 0. As mentioned above, in a small neighborhood
of x⇤, while it is not possible to control the di↵erence between nonlinear and linear
systems for infinite time, the nonlinear system can be approximated by the linear
system during a finite time horizon.

The main conclusion of this subsection is the following theorem, which states that
after a finite time interval with length T , the distance of the iterate from x

⇤ = 0 will
be amplified exponentially with high probability.

Theorem 4.4. Suppose that Assumptions 3.1, 3.3, and 3.4 hold and that 0 <

↵min < ↵max < 1/M . There exists ✏⇤ 2 (0,1/6) such that for any ✏ 2 (0, ✏⇤), we have

T⇤ = T⇤(✏) 2 N+, and for any T 2 N+ with T � T⇤ and any t 2 N, conditioned on

Ft�1, with probability at least 1� 4✏, it holds for all xt 2 V that

(4.8) kxt+T k � exp

✓
6✏

1� 6✏

��log(1�M↵max)
��T

◆
kxtk,

where V is a neighborhood of x
⇤ = 0, depending on ✏, T , and f near x

⇤
.

The lower bound (4.8) quantifies the amplification of kxt+T k: While we always
have kxt+T k � (1 � M↵max)T kxtk (see (4.20) below), the result states that with
probability at least 1� 4✏, the amplification factor is at least the right-hand side of
(4.8), which is exponentially large in T . Hence, on average, kxt+T k would be much
larger than kxtk. This would lead to the escaping of the iterate from the neighborhood
of x⇤ = 0.

To prove Theorem 4.4, we would require a more quantitative characterization
of the behavior of its linearization at x

⇤. In particular, we need a high probability
estimate of the distance of the iterate from x

⇤ after some time interval. For this
purpose, conditioned on Ft�1 with the iterate xt, we will first show in Lemma 4.8
that, after some finite time, the orthogonal projection of the iterate x%t onto the
unstable subspace, where t < %t  t + L for some constant L, is significant. The
component in the unstable subspace would then be further amplified subsequently
by �H(S, ⌧%t!), where H = r2

f(x⇤). Here the time duration S would be chosen
su�ciently large such that the distance from x%t+S to x

⇤ is exponentially amplified.
Theorem 4.4 follows by setting T =L+S. In the second step above, we would need to
control the closeness between the linear and nonlinear systems within a time horizon
with length S.
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726 ZIANG CHEN, YINGZHOU LI, AND JIANFENG LU

Such a finite block analysis approach has been used to establish the stability of
the Lyapunov exponent of random dynamical systems [20, 10], which inspired our
proof technique for Theorems 4.4 and 1.

We first set the small constant ✏ in Theorem 4.4, which controls the failure prob-
ability of the amplification bound. Let �1 > �2 > · · ·> �p be the Lyapunov exponents
of the linearized system at x⇤ = 0. We set

(4.9) �+ = min
�i>0

�i and 0< � <
1

2
min

⇢
min
1i<p

|�i � �i+1|,�+

�
.

Note that � < �+. Let ✏⇤ 2 (0,1/6) be su�ciently small such that

(4.10) (1� 6✏)(�+ � �) + 6✏ · log(1�M↵max)> 0, 8 ✏2 (0, ✏⇤).

The reason for such choice will become clear later (see (4.23)). For the rest of the
section, we will consider a fixed ✏2 (0, ✏⇤).

We now state and prove several lemmas for Theorem 4.4. First, in the following
Lemma 4.5, we construct a stopping time %t � 1 that is bounded almost surely, and
the component of the gradient |e>

i%t�1
rf(x%t�1)| is comparable with krf(x%t�1)k in

amplitude with high probability.

Lemma 4.5. Let 0 < µ  1p
d
be a fixed constant. There exists some constant

L > 0 such that for any t 2 N, there exists a measurable %t : ⌦ ! N+ such that

t < %t  t+L and

(4.11) P
⇣��e>

i%t�1
rf(x%t�1)

��� µkrf(x%t�1)k
���Ft�1

⌘
� 1� ✏.

Proof. For any t 2 N, use `0 to denote the smallest nonnegative integer ` such
that

`0 = argmin
`

n
`2N+ :

��e>
it+`�1

rf(xt+`�1)
��� µkrf(xt+`�1)k

o
.

It is clear that P(`0 > ` | Ft�1)  (1 � 1/d)` since for each step, the coordinate is
randomly chosen. Hence, there exists some L> 0 such that

P(`0 L | Ft�1)� 1� ✏.

We finish the proof by setting %t = t+min{`0,L}, which has the desired property.

We now carry out the amplification part of the finite block analysis for the lin-
earized dynamics at x

⇤ = 0. To simplify expressions in the following, for t1 < t2, we
introduce the shorthand notation

(i,↵)t1:t2�1 =
�
(it1 ,↵t1), . . . , (it2�1,↵t2�1)

�
2⌦t1 ⇥ · · ·⇥⌦t2�1

and the finite time transition matrix (i.e., composition of linear maps)

�H
�
(i,↵)t1:t2�1

�
= (I � ↵t2�1eit2�1e

>
it2�1

H) · · · (I � ↵t1eit1
e
>
it1

H).

Recall that (⌦t,⌃t,Pt) is the probability space for U{1,2,...,d} ⇥ U[↵min,↵max] for t 2 N.
We also denote PH

+ ((i,↵)t1:t2�1) as the projection operator onto the subspace spanned
by the right singular vectors of �H((i,↵)t1:t2�1) corresponding to d+ largest singular
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GLOBAL CONVERGENCE OF RANDOMIZED CGD 727

values, where d+ =
P

�i>0 di and di is the dimension of the ith eigenspace as in
Theorem 2.3 (ii) for the linearized system at x⇤.

As we mentioned in the proof sketch, we want �H(S, ⌧%t!) = �H((i,↵)%t:%t+S�1)
to amplify x%t , for which we need to establish a nontrivial lower bound for the unstable
component kPH

+ ((i,↵)%t:%t+S�1)x%tk. This is achieved by several lemmas. We will
establish three lower bounds in the following:

• kPH

+ (⌧%t!)ei%t�1k using Lemma 4.6;
• kPH

+ ((i,↵)%t:%t+S�1)ei%t�1k in Lemma 4.7; and finally the desired
• kPH

+ ((i,↵)%t:%t+S�1)x%tk in Lemma 4.8.
Let us first control kPH

+ (⌧%t!)ei%t�1k in the following lemma, which utilizes Assump-
tion 3.4. For simplicity of notation, in Lemmas 4.6 and 4.7, we state the results for
kPH

+ (!)eik and kPH

+ ((i,↵)0:S�1)ejk instead, which is slightly more general.

Lemma 4.6. Under Assumption 3.4, there exist � > 0 and measurable ⌦✏

1 ⇢ e⌦,

where e⌦ is from Theorem 2.3, such that P(⌦✏

1)� 1� ✏ and

kPH

+ (!)eik � �, 8 ! 2⌦✏

1, i2 {1,2, . . . , d}.

Proof. Assumption 3.4 implies that

P
�
{! 2 e⌦ : kPH

+ (!)eik> 0, 8 i2 {1,2, . . . , d}}
�
= 1.

Notice that
�
! 2 e⌦ : kPH

+ (!)eik> 0, 8 i2 {1,2, . . . , d}
 

=
[

n2N+

n
! 2 e⌦ : kPH

+ (!)eik �
1

n
, 8 i2 {1,2, . . . , d}

o
.

The lemma follows from continuity of measure.

We will then be able to handle kPH

+ ((i,↵)0:S�1)ejk using Lemma 4.6 and the
closeness between (�H(S,!)>�H(S,!))1/2S with ⇤(!) as the former converges to
the latter as S !1 by Theorem 2.3. More precisely, denote the singular values of
X 2 Rd⇥d by s1(X) � s2(X) � · · · � sd(X). Then for S 2 N+ su�ciently large, we
have

(4.12)

����
1

S
log sj

�
�H(S,!)

�
� �µ(j)

����=
����
1

S
log sj

�
�H

�
(i,↵)0:S�1

��
� �µ(j)

���� �

for every j 2 {1,2, . . . , d}, where �1 > �2 > . . . > �p are the Lyapunov exponents from
Theorem 2.3, � is given by (4.9), and the map µ : {1,2, . . . , d}! {1,2, . . . , p} satisfies
that µ(j) = i if and only if d1 + · · ·+ di�1 < j  d1 + · · ·+ di, so µ corresponds the
index for the singular values with that of the Lyapunov exponents. Moreover, the
convergence also implies that

kPH

+ (S,!)�PH

+ (!)k  �

2

for su�ciently large S, which then leads to

(4.13) kPH

+ (S,!) ejk= kPH

+ ((i,↵)0:S�1) ejk �
�

2

for every j 2 {1,2, . . . , d}, where PH

+ (S,!) is the projection operator onto the subspace
spanned by the right singular vectors of �H(S,!) corresponding to d+ largest singular
values. Let
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728 ZIANG CHEN, YINGZHOU LI, AND JIANFENG LU

⌦S =
�
(i,↵)0:S�1 2⌦0 ⇥ · · ·⇥⌦S�1 : (4.12) and (4.13) hold

 
.(4.14)

The following lemma states that ⌦S has high probability for su�ciently large S,
where, with slight abuse of notation, we write P(⌦S) = P(⌦S ⇥ (⇥t�S

⌦t)).

Lemma 4.7. Under the same assumptions of Lemma 4.6, there exists some S⇤ > 0
such that for every S 2N+, S � S⇤, it holds that P(⌦S)� 1� 2✏.

Proof. For a.e. ! 2 ⌦, it follows from Theorem 2.3, in particular (2.2), and
standard matrix perturbation analysis (see, e.g., [5, Theorems VI.2.1 and VII.3.1])
that

(4.15)
1

S
sj(�

H(S,!))! �µ(j), S!1,

for any j 2 {1,2, . . . , d} and that

(4.16) PH

+ (S,!)!PH

+ (!), S!1.

By Egorov’s theorem, there exists ⌦✏

2 ⇢ ⌦✏

1 with P(⌦✏

2) � 1 � 2✏ such that the
convergences in (4.15) and (4.16) are both uniform on ⌦✏

2. Here ⌦✏

1 is as in Lemma
4.6. Therefore, for some S⇤ su�ciently large, we have

����
1

S
log sj

�
�H(S,!)

�
� �µ(j)

���� �, 8 j 2 {1,2, . . . , d}, S � S⇤, ! 2⌦✏

2,

and

(4.17) kPH

+ (S,!)�PH

+ (!)k  �

2
, 8 S � S⇤, ! 2⌦✏

2.

Combining Lemma 4.6 and (4.17), we obtain that

kPH

+ (S,!)eik �
�

2
, 8 i2 {1,2, . . . , d}, 8 S � S⇤, ! 2⌦✏

2.

For any S � S⇤, by the definition of ⌦S , it holds that

⌦✏

2 ⇢⌦S ⇥
⇣⇥t�S

⌦t

⌘
,

which implies the desired estimate

P(⌦S) = P
✓

⌦S ⇥
⇣⇥t�S

⌦t

⌘◆
� P(⌦✏

2)� 1� 2✏.

Note that ↵%t�1 ⇠ U[↵min,↵max] is independent of F%t�2, i%t�1, and (i,↵)%t:%t+S�1.
The next lemma shows that with high probability, the choice of ↵%t�1 will lead to a
nontrivial orthogonal projection of x%t onto the unstable subspace of �H(S, ⌧%t!) =
�H((i,↵)%t:%t+S�1).

Lemma 4.8. For any S 2N+, x%t�1, i%t�1, and (i,↵)%t:%t+S�1 2⌦S
, there exists

I ⇢ [↵min,↵max] with m(I)� (1�✏)(↵max�↵min), where m(·) is the Lebesgue measure,

such that for any ↵%t�1 2 I, it holds that

(4.18) kPH

+ ((i,↵)%t:%t+S�1)x%tk �
✏�(↵max � ↵min)

4

��e>
i%t�1
rf(x%t�1)

��.
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GLOBAL CONVERGENCE OF RANDOMIZED CGD 729

Proof. We assume that |e>
i%t�1
rf(x%t�1)| 6= 0; otherwise, the result is trivial.

For simplicity of notation, we write

PH

+ ((i,↵)%t:%t+S�1)x%t =PH

+ ((i,↵)%t:%t+S�1)x%t�1

� ↵%t�1e
>
i%t�1
rf(x%t�1)PH

+ ((i,↵)%t:%t+S�1) ei%t�1

=: y2 � ↵%t�1y1,

where the last line defines y1 and y2. Using the shorthand notation

r=
✏�(↵max � ↵min)

4

��e>
i%t�1
rf(x%t�1)

��,

we then observe that (4.18) holds if and only if ↵%t�1y1 is not located in a ball with
radius r centered at y2.

It follows from the definition of ⌦S and (4.13) that kPH

+ ((i,↵)%t:%t+S�1) ei%t�1k �
�

2 , which then leads to

ky1k �
�

2

��e>
i%t�1
rf(x%t�1)

��= 2r

✏(↵max � ↵min)
.

Thus, the set of ↵%t�1 such that ↵%t�1y1 2 Br(y2) consists of an interval J in R
with k sup(J) · y1 � inf(J) · y1k  2r, as the diameter of Br(y2) is 2r, which implies
that m(J)  2r/ky1k  ✏(↵max � ↵min). The lemma is proved then by setting I =
[↵max � ↵min]\J .

With Lemmas 4.5, 4.6, 4.7, and 4.8, we now prove Theorem 4.4, which relies on
approximation of the nonlinear dynamics by linearization and the amplification from
the finite block analysis for the linearized system.

Proof of Theorem 4.4. Without loss of generality, we will assume t = 0 in the
proof to simplify notation. Since H = r2

f(x⇤) is nondegenerate, we can take a
neighborhood U of x⇤ = 0 and some fixed �> 0 such that

(4.19) krf(x)k � �kxk, 8 x2U.

Assumption 3.1 implies that

krf(x)k= krf(x)�rf(x⇤)k Mkx� x
⇤k=Mkxk, 8 x2Rd

.

Using the above inequality and ↵max < 1/M , it holds for every ! 2⌦ and t
0 2N that

kx
t
0+1
k= kx

t
0 � ↵

t
0ei

t
0 e

>
i
t
0rf(xt

0)k

� kx
t
0k � ↵

t
0kei

t
0 e

>
i
t
0 k · krf(xt

0)k

� (1�M↵max)kx
t
0k,

(4.20)

and similarly that

kx
t
0+1
k  (1 +M↵max)kx

t
0k.

We thus define

r� := 1�M↵max and r+ := 1 +M↵max,
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730 ZIANG CHEN, YINGZHOU LI, AND JIANFENG LU

so that

(4.21) r�kx
t
0k  kx

t
0+1
k  r+kx

t
0k.

We now choose the time duration S large enough in the finite block analysis to
guarantee significant amplification. More specifically, we choose S so large that S � S⇤
(S⇤ defined in Lemma 4.7) and that the following two inequalities hold:

(4.22) exp(S(�+ � �)) · ✏�µ�(r�)
L�1(↵max � ↵min)

8
� (r+)

L

and
(4.23)

(1� 6✏)

✓
S(�+ � �) + log

✏�µ�(r�)2(L�1)(↵max � ↵min)

8

◆
+ 6✏(L+ S) log r� > 0,

where L is the upper bound defined in Lemma 4.5, µ  1/
p
d is a fixed constant as

in Lemma 4.5, � is from Lemma 4.6, and � is set in (4.19). Thanks to (4.10) for our
choice of ✏ and that � < �+ from (4.9), (4.22) and (4.23) are satisfied for su�ciently
large S.

Next, we show that for any S su�ciently large as above, there exists a convex
neighborhood U1 ⇢ U of x

⇤ = 0 such that for any t
0 2 N, any x

t
0 2 U1, and any

(i,↵)
t
0:t0+S�1

, it holds that

(4.24) kx
t
0+S
k � k�H

�
(i,↵)

t
0:t0+S�1

�
x
t
0k � kx

t
0k.

We first define a convex neighborhood U0 ⇢U of x⇤ = 0 such that

k
�
x� ↵eie

>
i
rf(x)

�
�
�
I � ↵eie

>
i
H
�
xk= k↵eie>i (rf(x)�Hx)k

= k↵eie>i
Z 1

0
(r2

f(⌘x)�Hx)d⌘k  1

S(r+)S�1
kxk

for any x2U0, any i2 {1,2, . . . , d}, and any ↵2 [↵min,↵max]. Applying the inequality
S times for x

t
0 2U1 = (r+)�(S�1)

U0, we have

kx
t
0+S
��H

�
(i,↵)

t
0:t0+S�1

�
x
t
0k

 kx
t
0+S
�
✓
I � ↵

t
0+S�1

ei
t
0
+S�1

e
>
i
t
0
+S�1

H

◆
x
t
0+S�1

k

+ kI � ↵
t
0+S�1

ei
t
0
+S�1

e
>
i
t
0
+S�1

Hk · kx
t
0+S�1

��H
�
(i,↵)

t
0:t0+S�2

�
x
t
0k

 1

S(r+)S�1
kx

t
0+S�1

k+ r+kx
t
0+S�1

��H
�
(i,↵)

t
0:t0+S�2

�
x
t
0k

 1

S(r+)S�1

⇣
kx

t
0+S�1

k+ r+kx
t
0+S�2

k+ · · ·+ (r+)
S�1kx

t
0k
⌘

 kx
t
0k

and hence inequality (4.24).
Setting V = (r+)�(L�1)

U1, we then have x%0�1 2U for any x0 2 V , which implies
that krf(x%0�1)k � �kx%0�1k as %0 L. According to Lemmas 4.5, 4.6, 4.7, and 4.8,
for any given x0 2 V , with probability at least 1� 4✏, we have (i,↵)%0:%0+S�1 2 ⌦S ,
and the following holds:
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GLOBAL CONVERGENCE OF RANDOMIZED CGD 731

��e>
i%0�1

rf(x%0�1)
��� µkrf(x%0�1)k,(4.25)

kPH

+ ((i,↵)%0:%0+S�1)x%0k �
✏�(↵max � ↵min)

4

��e>
i%0�1

rf(x%0�1)
��,(4.26)

where the probability is the marginal probability on (i,↵)0:L+S�1 2⌦0⇥· · ·⇥⌦L+S�1.
Recall �+ and � in (4.9) and that d+ =

P
�i>0 di. It follows from (4.12) of the

construction of the set ⌦S that

1

S
log sj

�
�H ((i,↵)%0:%0+S�1)

�
� �µ(j) � � � �+ � �, 8 j  d+.

This is to say that the d+ largest singular values of �H((i,↵)%0:%0+S�1) are all greater
than or equal to exp(S(�+ � �)). Therefore, it holds that

k�H ((i,↵)%0:%0+S�1)x%0k � k�H ((i,↵)%0:%0+S�1)PH

+ ((i,↵)%0:%0+S�1)x%0k
(4.26)
� exp(S(�+ � �)) · ✏�(↵max � ↵min)

4

��e>
i%0�1

rf(x%0�1)
��

(4.25)
� exp(S(�+ � �)) · ✏�µ(↵max � ↵min)

4
krf(x%0�1)k,

(4.27)

where the first inequality is because �H((i,↵)%0:%0+S�1)PH

+ ((i,↵)%0:%0+S�1)x%0 and
�H((i,↵)%0:%0+S�1)(I � PH

+ ((i,↵)%0:%0+S�1))x%0 are orthogonal. Combining (4.24)
and (4.27), we obtain that

kx%0+Sk � exp(S(�+ � �)) · ✏�µ(↵max � ↵min)

4
krf(x%0�1)k � kx%0k

(4.21)
�

✓
exp(S(�+ � �)) · ✏�µ�(r�)

L�1(↵max � ↵min)

4
� (r+)

L

◆
· kx0k

(4.22)
� exp(S(�+ � �)) · ✏�µ�(r�)

L�1(↵max � ↵min)

8
· kx0k.

Therefore, it holds that

kxL+Sk
(4.21)
� (r�)

L�1kx%0+Sk

� exp(S(�+ � �)) · ✏�µ�(r�)
2(L�1)(↵max � ↵min)

8
· kx0k.

We finally arrive at (4.8) by setting T = L + S and combining the above with
(4.23).

4.3. Proof of main results. In this section, we first prove the following the-
orem, which relies on the local amplification with high probability established in
Theorem 4.4. The main result (Theorem 1) will follow as an immediate corollary
since Crits(f) is countable and strict saddle points are isolated.

Theorem 4.9. Suppose that Assumptions 3.1, 3.3, and 3.4 hold and that 0 <

↵min < ↵max < 1/M . Then for every x
⇤ 2 Crits(f) and every x0 2 Rd\{x⇤}, it holds

that

P(⌦(x⇤
, x0)) = 0.
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732 ZIANG CHEN, YINGZHOU LI, AND JIANFENG LU

Proof. Without loss of generality, we assume that x
⇤ = 0. Conditioned on Ft�1

with xt 2 V , where V can be assumed to be bounded, Theorem 4.4 states that with
probability at least 1� 4✏,

kxt+T k �Akxtk,

where to simplify notation we denote

A := exp

✓
6✏

1� 6✏

��log(1�M↵max)
��T

◆

as the amplification factor appearing on the right-hand side of (4.8). Notice also that,
due to (4.21), we always have

kxt+T k � (r�)
T kxtk.

It su�ces to show that for any x0 2 V \{x⇤}, with probability 1, there exists some
t2N+ such that xt /2 V .

Let us consider the iterates every T steps: Denote yt = xTt and Gt = FTt�1 for
t2N. Denote stopping time

⇢= inf{t2N : yt /2 V }.

It su�ces to show that P(⇢<1) = 1. We define a sequence of random variables It as
follows:

It(!) =

(
1 if kyt+1k �Akytk,
0 otherwise.

By the discussion in the beginning of the proof, we have

P(It = 1 | Gt, t < ⇢)� 1� 4✏,

and moreover, setting St(!) =
P

0s<t
It(!), we have, for t < ⇢(!),

kytk
ky0k

�A
St(!) · (r�)T (t�St(!))

.

Denote R := sup
x2V
kxk<1. Since (1�5✏) logA+5✏T log r� > 0, there exists t⇤ 2N

such that

�
A

1�5✏ · (r�)5✏T
�t

>
R

ky0k
, 8 t� t⇤.

Therefore, for any t� t⇤, it holds that

P(⇢> t) = P
�
⇢> t,St  (1� 5✏)t

�


X

i(1�5✏)t

✓
t

i

◆
(1� 4✏)i(4✏)t�i

.

As we will show in the next lemma, the right-hand side of the above goes to 0 as
t!1, and thus limt!1 P(⇢> t) = 0, which implies that P(⇢<1) = 1.

Lemma 4.10. For any ✏2 (0,1/4), it holds that

lim
t!1

X

i(1�5✏)t

✓
t

i

◆
(1� 4✏)i(4✏)t�i = 0.
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Proof. Let X0,X1,X2, . . . be a sequence of i.i.d. random variables with Xi be-
ing a Bernoulli random variable with expectation 1 � 4✏. Denote the average X̄t =
1
t

P
0s<t

Xs. The weak law of large numbers yields that

X

i(1�5✏)t

✓
t

i

◆
(1� 4✏)i(4✏)t�i = P

�
X̄t  1� 5✏

�
 P

�
|X̄t �EX0|� ✏

�
! 0

as t!1.

The main theorem then follows directly from Theorem 4.9.

Proof of Theorem 1. Assumption 3.3 guarantees that, in a small neighborhood of
x
⇤, the gradient rf(x) = r2

f(x⇤)(x� x
⇤) + o(kx� x

⇤k) is nonvanishing as long as
x 6= x

⇤, which implies that x
⇤ is an isolated stationary point. Therefore, Crits(f) is

countable. Then Theorem 1 follows directly from Theorem 4.9 and the countability
of Crits(f).

We now prove the global convergence, i.e., Corollary 3.6, for which we will show
that Algorithm 1.1 converges to a critical point of f with some appropriate assump-
tions. We first show that the limit of each convergent subsequence of {xt}t2N is a
critical point of f .

Proposition 4.11. If Assumption 3.1 holds and 0 < ↵min < ↵max < 1/M , for

any x0 2 Rd
with bounded level set L(x0) = {x 2 Rd : f(x)  f(x0)}, with probability

1, every accumulation point of {xt}t2N is in Crit(f).

Proof. Algorithm 1.1 is always monotone since the following holds for any t 2 N
by Taylor’s expansion:

f(xt+1) = f
�
xt � ↵teite

>
it
rf(xt)

�

= f(xt)� ↵t

�
e
>
it
rf(xt)

�2

+
1

2
↵
2
t

�
e
>
it
rf(xt)

�2 · e>
it
rf

�
xt � ✓t↵teite

>
it
rf(xt)

�
eit

 f(xt)�
1

2
↵t(e

>
i
rf(xt))

2

 f(xt),

(4.28)

where ✓t 2 (0,1), which implies that the whole sequence {xt}t2N is contained in the
bounded level set L(x0).

Let us consider any ⌘> 0 and set

L(x0,⌘) = {x2L(x0) : krf(x)k � ⌘},

which is either empty or compact. We claim that with probability 1, the accumulation
points of {xt}t2N will not be located in L(x0,⌘). This is clear when L(x0,⌘) is empty,
so it su�ces to consider compact L(x0,⌘). Set µ 2 (0,1/

p
d] as a fixed constant.

For any x 2 L(x0,⌘), there exists an open neighborhood Ux of x and a coordinate
ix 2 {1,2, . . . , d} such that

(4.29)
��e>

ix
rf(y)

��� µkrf(x)k � µ⌘, 8 y 2Ux,

and that

(4.30) sup
y2Ux

f(y)� inf
y2Ux

f(y)<
↵minµ

2
⌘
2

2
.
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734 ZIANG CHEN, YINGZHOU LI, AND JIANFENG LU

Noticing that L(x0,⌘)⇢
S

x2L(x0,⌘)
Ux, by the compactness, there exist finitely many

points, say, x1
, x

2
, . . . , x

K , such that

L(x0,⌘)⇢
[

1kK

Uxk .

For any k 2 {1,2, . . . ,K}, combining (4.28), (4.29), and (4.30), we know that for any
t, conditioned on Ft�1 with xt 2 Uxk , if it = ix (which has probability 1/d), then
f(xt+1)< infy2Uxk f(y), and thus x

t
0 62Uxk for all t0 > t.

Therefore, the probability that there are infinitely many t 2 N with xt 2 Uxk

is zero, which implies that {xt}t2N does not have accumulation points in Uxk with
probability 1. We conclude that with probability 1, L(x0,⌘) does not contain any
accumulation points of {xt}t2N, as K is finite. Since this holds for any ⌘> 0, we have
for P-a.e. ! 2 ⌦ that {xt}t2N has no accumulation points in

S
n�1L(x0,1/n), which

then leads to the desired result.

Proposition 4.11 implies that any accumulation point of the algorithm iterate is a
critical point. If we further assume that each critical point of f is isolated, we would
conclude that the whole sequence {xt}t2N converges and that the limit is in Crit(f).

Proposition 4.12. Under the assumptions of Proposition 4.11. If every x
⇤ 2

Crit(f) is an isolated critical point of f , then with probability 1, xt converges to some

critical point of f as t!1.

Proof. It follows from Proposition 4.11 that krf(xt)k converges to 0 as t!1
for a.e.a.e. ! 2 ⌦. In fact, if there were a subsequence {xtk}k2N and ✏ > 0 with
krf(xtk)k � ✏, 8 k 2N, then by the boundedness of L(x0), {xtk}k2N would have some
accumulation point which is not a stationary point of f , which leads to a contradiction.

Moreover, Crit(f) \ L(x0) is a finite set since otherwise Crit(f) \ L(x0) would
have a limiting point which would be a nonisolated critical point of f , violating the
assumption.

Consider a fixed ! 2⌦ with limt!1 krf(xt)k= 0. Select an open neighborhood
Ux⇤ for every x

⇤ 2Crit(f)\L(x0) such that there exists some �> 0 with

dist(Ux⇤ ,Uy⇤) = inf
x2Ux⇤ ,y2Uy⇤

kx� yk> �, 8 x
⇤
, y

⇤ 2Crit(f).

If {xt}t2N has more than one accumulation point, there would be infinitely many
iterates located in L(x0)\

S
x⇤2Crit(f)\L(x0)

Ux⇤ , which is compact. Therefore, {xt}t2N
would have an accumulation point in L(x0)\

S
x⇤2Crit(f)\L(x0)

Ux⇤ , which contradicts
Proposition 4.11.

Corollary 3.6 is now an immediate consequence.

Proof of Corollary 3.6. The result follows directly from Theorem 1 and Proposi-
tion 4.12.

Appendix A. Validity of Assumption 3.4. In this appendix, we provide
some justification of Assumption 3.4, which is expected to hold generically. In partic-
ular, the following proposition validates this assumption when the o↵-diagonal entries
of H are all nonzero.

Proposition A.1. Suppose that the largest Lyapunov exponent of �H(t,!) is

positive. Then Assumption 3.4 holds as long as 1< ↵min < ↵max < 1/max1id |Hii|
and every o↵-diagonal entry of H is nonzero.
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Proof. For any element ! in ⌦, we take the smallest ` such that {1,2, . . . , d} =
{i0, i1, . . . , i`�1} and write

!= ((i0,↵0), . . . , (i`�1,↵`�1),!0),

where !
0 = ⌧

`
! 2 ⌦. We have that ` is finite for a.e. ! 2 ⌦. Note that we can

view ` � 1 as a stopping time, in particular, given `, !0 has distribution P and is
independent with F`�1.

Let {v10, v20, . . . , vm0} be a set of basis vectors for W
H

� (!0) = W
H

� (⌧ `!). Then a
set of basis vectors for WH

� (!) is given by

vj =
�
I � ↵0ei0e

>
i0
H
��1 · · ·

�
I � ↵`�1ei`�1e

>
i`�1

H
��1

vj
0
, j = 1,2, . . . ,m.

Denote the matrices concatenated by the column vectors as V 0 = (v10|v20| · · · |vm0) and
V = (v1|v2| · · · |vm). If ei 2 W

H

� (!) = span{v1, v2, . . . , vm}, then Vı̂,: is column-rank
deficient since the existence of a positive Lyapunov exponent implies that m d� 1.
Here and for the rest of the appendix, we denote by Vı̂,: the (d�1)⇥mmatrix obtained
via removing ith row of V 2Rd⇥m.

Therefore, as Assumption 3.4 is equivalent to that ei /2 W
H

� (!) holds for any
i 2 {1,2, . . . , d} and almost every ! 2 ⌦, it su�ces to show that Vı̂,: has full column
rank with probability 1. The key point is that given `, ↵0,↵1, . . . ,↵`�1 are indepen-
dent with i0, i1, . . . , i`�1 and !

0 = ⌧
`
!. Thus, it su�ces to show that with fixed `,

i0, i1, . . . , i`�1, !0 = ⌧
`
!, and v1

0
, v2

0
, . . . , vm

0, the set of all ↵0,↵1, . . . ,↵`�1 that yield
the rank deficiency of Vı̂,: is of measure zero, and without loss of generality, we can
assume i= 1. Noticing that i0, i1, · · · , i`�1 cover all the coordinates and that every o↵-
diagonal entry of H is nonzero, the desired result follows directly from the following
Lemma A.2 applied repeatedly.

Lemma A.2. Suppose that X = (X1|X2| · · · |Xd)> and Y = (Y1|Y2| · · · |Yd)> are

full-column-rank d⇥m matrices satisfying Y = (I�↵eke
>
k
H)�1

X (we suppress in the

notation the dependence of Y on k and ↵ for simplicity). Then the following holds:

(i) If X1̂,: has full column rank, then for any k = {1,2, . . . , d}, Y1̂,: also has full

column rank for a.e. ↵.

(ii) Suppose that X1̂,: is column-rank deficient, and let 2 j1 < j2 < . . . < jm�1 
d be row indices such that

Xj 2 span{Xj1 ,Xj2 , . . . ,Xjm�1}, 8 j 2 {2,3, . . . , d}.

If k 2 {1, j1, j2, . . . , jm�1}, then we have with probability 1 that either Y1̂,: has

full column rank or Y1̂,: is column-rank deficient with

Yj 2 span{Yj1 , Yj2 , . . . , Yjm�1}, 8 j 2 {2,3, . . . , d}.

If k /2 {1, j1, j2, . . . , jm�1} and Hk1 6= 0, then Y1̂,: has full column rank.

Proof of Lemma A.2. By (3.3), it holds that Yj =Xj for j 6= k and that

Yk =
1

1� ↵Hkk

0

@Xk + ↵

X

j 6=k

HkjXj

1

A .

For point (i), we notice that if k = 1, then Y1̂,: = X1̂,: has full column rank. If
k > 1, then it follows from X1 2 span{X2, . . . ,Xd} that Y1̂,: also has full column rank
for a.e. ↵.
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D
ow

nl
oa

de
d 

07
/0

3/
23

 to
 1

75
.1

59
.1

22
.2

07
 . 

R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



736 ZIANG CHEN, YINGZHOU LI, AND JIANFENG LU

For point (ii), we have

span{X1,Xj1 ,Xj2 , . . . ,Xjm�1}=Rm
.

If k 2 {1, j1, j2, . . . , jm�1}, then span{Y1, Yj1 , Yj2 , . . . , Yjm�1} = Rm holds for a.e. ↵.
Therefore, we obtain that Yj1 , Yj2 , . . . , Yjm�1 are linearly independent, which implies
that either Y1̂,: has full column rank or

Yj 2 span{Yj1 , Yj2 , . . . , Yjm�1}, 8 j 2 {2,3, . . . , n}.

If k /2 {j1, j2, . . . , jm�1}, then Y1̂,: has full column rank since Hk1 6= 0.

Acknowledgments. We thank Jonathan Mattingly, Zhe Wang, and Stephen J.
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