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Abstract

In this paper, we propose and study neural network-based methods for solutions of
high-dimensional quadratic porous medium equation (QPME). Three variational for-
mulations of this nonlinear PDE are presented: a strong formulation and two weak
formulations. For the strong formulation, the solution is directly parameterized with a
neural network and optimized by minimizing the PDE residual. It can be proved that the
convergence of the optimization problem guarantees the convergence of the approxi-
mate solution in the L' sense. The weak formulations are derived following (Brenier in
Examples of hidden convexity in nonlinear PDEs, 2020) which characterizes the very
weak solutions of QPME. Specifically speaking, the solutions are represented with
intermediate functions who are parameterized with neural networks and are trained to
optimize the weak formulations. Extensive numerical tests are further carried out to
investigate the pros and cons of each formulation in low and high dimensions. This
is an initial exploration made along the line of solving high-dimensional nonlinear
PDEs with neural network-based methods, which we hope can provide some useful
experience for future investigations.
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1 Introduction

Solving high-dimensional PDEs is a long-standing challenge in scientific computing.
Standard mesh-based methods, such as Finite Element Method (FEM), Finite Differ-
ence Method (FDM) would suffer from the curse of dimensionality, i.e., in order to
sustain the accuracy of the approximate solution to high-dimensional PDEs, an approx-
imation space with exponentially large size must be used. The number of degrees of
freedom associated to the approximation space is often proportional to the number of
elements in the mesh which usually scales exponentially in the dimension to achieve
a suitable discretization of the domain. Therefore, for high-dimensional problems, the
mesh-based methods are impractical. Alternatively, semilinear parabolic PDEs can
also be solved pointwisely based on stochastic representation of the solutions using
Monte Carlo algorithm [12, 13, 27, 28], but such approaches only apply to specific
type of PDEs.

To circumvent the challenges for solving general high-dimensional (nonlinear)
PDEs, many attempts have been made. One natural idea is to restrict to a solution
ansatz. For example, using the tensor train (TT) format to approximate the solutions
of high-dimensional PDEs [4, 6-9, 23]. While such methods are quite successful if
the solution can be well represented by the tensor train, the representability is not
guaranteed. Another natural and promising candidate for PDE solution ansatz is the
artificial neural networks. Thanks to the rich expressiveness of the neural networks
to parametrize high dimensional functions [2]. Theoretical results are also available
to justify the approximability of PDE solutions by neural networks without curse
of dimensionality, e.g., [14, 18]. Many recent works have been devoted for various
approaches of using neural networks to solve high-dimensional PDEs. Typically, such
methods first identify functional optimization problems corresponding to the PDEs

u = argmin ;, C
gmin ¢ C(f)
PDE solution PDE-inspired optimization problem

Then one could take neural network as an ansatz of the minimizer # and minimize the
parameters using stochastic gradient type approaches.

One well known method of this kind is the physics informed neural network (PINN)
[22], which takes the loss function to be directly the PDE residual. One drawback of
PINN is that, to compute the loss function, the derivatives or high-order derivatives of
the neural network need to be computed throughout the training process. However, the
generality and simplicity of this framework still make it an easy choice when it comes
to the high-dimensional PDEs. Other neural network-based methods to solve PDEs
include the Deep Ritz Methods [3], the Deep BSDE method [10, 11] for semilinear
parabolic PDEs, utilizing different formulations to turn the high dimensional PDE
problems into an optimization problem on the neural network parameters. More recent
work [30] adopts weak variational formulation for linear equations to solve such PDEs
using neural networks. While it is generically unclear how to extend such techniques
to nonlinear ones.
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In this paper, we make an attempt along the direction of utilizing weak formu-
lation for solving nonlinear PDEs in high dimension. In particular, we consider
high-dimensional quadratic porous medium equation (QPME). The equation will be
introduced in Sect. 2, together with a brief review of conventional numerical methods
for solving such equations. Several variational formulations of the QPME is proposed
to solve such PDE (Sect. 3) which both allow solutions in a very weak sense and can
be sought with deep learning techniques. In addition, these formulations are further
compared with the PINN formulation. In Sect. 4, more detailed treatment of the neural
network for solving the optimization problem is presented. Numerical results are then
provided to verify and compare the effectiveness of the proposed methods in Sects. 5
and 6.

2 Preliminaries

We consider the porous medium equation (PME)
1
ou=—Au", (,x)eQ.
m

PME is a degenerate parabolic equation. It is only parabolic where # > 0. When
m is taken to be 2, the quadratic porous medium equation (QPME or Boussinesq’s
equation) reads

1 1 1
du = EAuz = div (uVu) = SJubu+ §|W|2, (t,x) € O, (2.1

where Q := [0, T'] x  and 2 stands for a bounded domain in RIA=A, represents
the Laplace operator acting on the space variables. The equation is mainly used to
describe process involving fluid flow, heat transfer or diffusion. Particularly, it can be
used to study the flow of an isentropic gas through a porous medium [17, 20]. In this
case, u(f,X) € R is a scalar function denoting the density of the gas (u* is roughly
the pressure, and uVu stands for the flux). Physical constraints may apply such that
u > 0. Power 2 here relates to the thermal dynamics character expansion in terms of
the pressure of the gas of interest (linear dependency).

A main feature of PME is the “finite propagation” speed, in contrast with the infinite
propagation of usual diffusion equations. Essentially, the free boundary that separates
the regions where the solution is positive (i.e., where “there is gas”, according to the
standard interpretation of u as a gas density), from the “empty region" where u = 0
moves as time passes.

r=90P,NQ,

where P, := {(#,x) € O | u(t, x) > 0} denotes the set where u is positive. I is also
sometimes referred as the moving boundary, propagation fronts or the interface. While
a rather comprehensive theoretical analysis of this PDEs is provided in [26], exact
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solutions to general initial/boundary conditions can usually not be obtained. Numerical
schemes thus must be applied to obtain approximate solutions. Most previous studies
of PME from a numerical aspect put their focus on dealing with the moving free
boundaries of the solutions. The adaptive moving mesh schemes were proposed and
coupled with mesh-based methods such as finite element method (FEM) to obtain
accurate yet efficient numerical solutions to PME [21]. However, such methods can
not be used to solve high-dimensional QPME due to the curse of dimensionality.
The only exception as far as we know is [25], in which the supervised learning was
conducted to learn the correspondence between the physical parameters in the PDE
and the one-dimensional solutions at certain evaluation x, the learning of the global
solution is not considered by the authors.

While PME is mainly used in modelings for low physical dimensions,d = 2 or 3. In
this work, we use it as a prototypical degenerate nonlinear equation in high dimensions
to test numerical PDE solvers based on the neural networks. The high-dimensional
diffusion might be used for certain machine learning tasks such as analysis of high
dimensional point cloud data, which we will leave for future investigations.

3 Variational formulations of QPME

Since the mesh-based algorithms suffer from the curse of dimensionality, we therefore
turn to neural network-based techniques for solutions to high-dimensional PDEs. In
particular, we first convert the initial/boundary value problem (IBVP) of QPME into a
variational formulation and then take the neural network as an ansatz of the solution.
The objective function is then taken as the loss function and the extrema will be
obtained by optimizing the loss function with stochastic gradient descent (SGD) or its
variants.

In this section, we specifically focus on the first step of this procedure, i.e., the
IBVP and the variational reformulation.

3.1 Initial/boundary value problem
Consider the QPME on a hyperrectangle
L
oru = EAu , (t,x)eQ,

where O = [0,T] x Q and Q = [—ai,ai]d. We consider the QPME with the
homogeneous Dirichlet boundary condition

Dirichlet B.C. u(¢,x)|x, =0, 3.1
where X7 := [0, T] x 9€2. We also impose the initial condition to the PDE as

LC. u(0,X) = up(x) x e Q. (3.2)
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3.2 Strong formulation

One immediate optimization formulation is to use the strong form of the PDE by
minimizing the squared PDE residual

1 2
LppE (1) = / <a,u— 5A»ﬂ> dxdt. (3.3)
0

If both the I.C. and B.C. are strictly enforced as hard constraints, the optimization
problem can then be formulated as

min Lppg (1), (3.4)
ueVy

where Vo := {f : fls, =0, f(0,x) = uo(x)}. Alternatively, both I.C. and B.C. can
be treated as soft constraints enforced by penalizations: We may define

L) = / u?* dxdt (3.5)
Xr
for homogeneous Dirichlet boundary condition and

L1 (u) :=/ (u (0, X) — ug (x))? dx (3.6)
Q

for the initial condition. The optimization problem (3.4) can then be relaxed to

min Lpinn (1) 3.7
ueV
for some function space V, where
Lpmn(u) ==k Lppe) + uLpw) +vLy(u) (3.8)

is weighted sum of the PDE residual, the error of boundary condition and the error
for initial condition. «, u, v are weights for each term. We used the subscript PINN
for the loss function, as such formulation was popularized by the PINN method [22]
in recent years, while the idea dates back to early days of using neural network ansatz
for PDE solutions [16].

So far, the PDE residual, mismatch in initial condition and boundary condition of
u are all measured in an L? sense. We could also define an analogous L' optimization
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problem (3.7) with:

1
LppE (1) =f du — EAu2 dxdt,

0
Lpu) =f |u| dxdt, 3.9)
Xr

£ (us ug) = /Q 1 (0, %) — o (%) | dx.

We refer the target function in L' by Lppn_,1 and that in L2 by Lppn_z2. While
using L? to measure the PDE residual and I.C./B.C. mismatch is a standard practice
in PINN, the use of L! is inspired by the following stability analysis.

Assume u is a strong solution to the homogeneous QPME (2.1) subject to the
homogeneous Dirichlet boundary condition and the initial condition (3.2). Let u(z, x)
be another smooth function that satisfies the Dirichlet boundary condition #(z, X)|x, =
0. We define f(t, X) := 0,u(t, X) — %Aﬁz(t, X), so that z satisfies the QPME with f
being the forcing term

1 .
ol = EAQZ + f, Y(,x) €0,
1(0,x;0) =up(x), VxeQQ,

where 19(x) = (0, x).
Then the following L! contraction holds for any t € [0, T] [26]:

t
llu(®) — a1l = lluo — dolly +/0 I1f(s) = f ()l ds. (3.10)

Thus,

t
A . A A = .
lu(t) —a()lr < [luo — uoll1 +/O |91 — zAu2||1 ds < CLppN-p1 (@) (3.11)

noticing f(¢) in (2.1) is zero. Therefore, as long as 2 is a bounded domain, by Cauchy—
Schwarz inequality, we have

t
R R ~ 1 ~ .
llu()—a@)||7 < c(||u0—uo||§+/0 Ilasu—zAu2||%ds) < CLpn_z2(@). (3.12)

The estimates (3.11) and (3.12) show that if the QPME is solved by minimizing the
loss LpInN, the convergence of the optimization guarantees the convergence to the
exact solution to (2.1) in L! sense. In other words, if the problem is further solved
with deep learning methods, the loss is essentially a direct real time indicator of the
approximation error during the entire training process. It can thus be naturally used to
truncate the training when needed. Additionally, this result suggests that the intrinsic
norm to measure the approximation error is L' norm.
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3.3 Relaxed concave optimization problem

Besides the strong formulation, in this section, we derive and consider a series of
optimization problems which can also be used to solve the QPME; which correspond
to various weak formulation of the PDE.

We start by considering the very weak solutions to the QPME (2.1),1i.e.,u € L! Q)
satisfying

/ (—28,¢u — Ay + 2u08,1p) dxdi =0 (3.13)
0

for all test functions ¥ € C>!(Q) which vanishes on ¥ and forr = 7. Essentially,
a very weak solution is an integrable distribution solution. Unlike strong solutions, no
derivative of the solution is used in defining such solutions; so very weak solutions
have much lower regularity requirements. We also remark that while we focus on very
weak solutions in this paper, there are different ways of defining generalized solutions
for QPME. A weak solution, for example, is defined to be a function u such that
uell o, T; Wlln’cl) which satisfies

loc
/ (—28,1ﬂu FVWd) VY + 2uoa,w) dxdi = 0.
0

It is clear that all weak solutions are very weak solutions by definition; weak solutions
require higher regularity of the solutions.
The following theorem gives a characterization for very weak solutions to QPME

[5].
Theorem 3.1 ([5]) Any very weak solution u to QPME can be recovered as

"

= A (3.14)

where

—(39)?
1—A¢

¢* = arg maXx,ep J(ug) = arg maXx,ep / < + 2u08,¢>> dxdt (3.15)
Q
with B .= {¢ | ¢(T,x) = 0, 1 — A¢p > 0}. In addition, any solution ¢* satisfies
1— Ag* > (L)a%.
While we will not repeat the proof here, let us mention that the proof starts with

minimizing the Lyapunov (“entropy”) functional among very weak solutions u of
QPME

/ u*(t, x) dxdt, (3.16)
o
it can then be proved that the following formulations are equivalent letting
e A := {u € L*(Q) is a very weak non-negative solution associated with ug €
L*(Q)},

@ Springer



28 M. Wang, J. Lu

e B:={¢|d(T,x)=0, 1 — A¢ > 0}

1. Original form

I(up) = inf sup/ <u2 — 20;¢pu — A¢u2 + 2u08,¢> dxdt. (3.17)
UEA $eBJQ

2. Flipping sup, inf

J(ug) = sup inf / (u2 — 20;,¢pu — A¢u2 + 2u081¢) dxdt. (3.18)
$eB ueA 0

3. Pointwise minimization of (3.18)

fum)zsm)/1<_{&¢y—+mm@¢)dmh. (3.19)
e Jo \ 1 —Ag

4. Letq = d¢,0 = 1 — A in (3.19)

_ 2
J(up) = sup/ (_q + 2uoq> dxdt,
[0) o

q,0 (3.20)
c>0, o(T,)=1, 90+ Ap=0.
More specifically, it is proved that
/ u(t,x) dx dt = I(ug) = J(uo) = J (uo) = J (up). (3.21)
0

Theorem 3.1 shows that we can indirectly obtain very weak solutions to QPME by
solving (3.15). We first obtain ¢*, then obtain candidates for the very weak solution
with (3.14). We can therefore consider the following loss function

—(3,4)*
1—Ag

¢ formulation L4 (¢) := —/ ( + 2u08,¢) dxdt. (3.22)
)

It is not hard to see that if a smooth ¢* is a minimizer, as long as the recovered solution
satisfies the homogeneous boundary condition and the initial condition, % must
be a solution to QPME. Moreover, in the case where u > 0, it has been proved that
the solution to the QPME subject to ug > 0 is unique. However, it is worth noting that
such minimizer ¢* is not necessarily unique. Thus (3.22) can be used to identify the
unique solution to QPME, as long as the initial/boundary conditions are imposed, but
more than one minimizer ¢* could theoretically exist [5].

Moreover, since (3.20) is equivalent to (3.19), one can also recover a candidate of
very weak solution to QPME with ¢* and o * by

*
why =L (3.23)
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with ¢* and ¢ * being the maximizer of (3.20). Thus, we may also consider the loss
function

_ 2
q — oformulation £, ,(q,0) = —/ (_q + 2uoq> dxdt. (3.24)
0 o

Similar to the discussion in Sect. 3.2, we can also relax the initial/boundary condi-
tions of the recovered solution u obtained from ¢ formulation and ¢, o formulation
to a penalization by regularizing Lp and £; as defined earlier:

Lo-NNW) :=kLy) + pnLlp)+vLy(u) (3.25)
and

Lgo-NNW) =Ly W)+ ulpm)+vLly(u). (3.26)

However, it is worth pointing out that it is very difficult to impose initial condition
as a hard constraint to solution ansatz for both formulations when the optimization
problem is solved with neural networks as only intermediate functions ¢, ¢, o will be
parametrized. The boundary conditions, on the other hand, can be explicitly imposed
by modifying the solution ansatz.
For ¢ — o formulation in particular, we should also note that, the consistency
between ¢ and o
00 +Aqg =0 (3.27)

needs to be imposed since they are essential derivatives of the same function ¢. This
condition can be imposed by minimizing the residual of Eq. (3.27)

Liong = / (8,0 + Ag)*dxdt (3.28)
0

orin L! sense,
Lyo,ng = / |0;0 + Aq| dxdt. (3.29)
o
Thus, £, - NN can be further modified as

Lg.o-NN=KLqo W)+ nLp)+vLiu)+yLsosag- (3.30)

Let us remark that the condition (3.27) can also be imposed weakly following the
Dirichlet principle, £j,5, a4 can be then replaced by

1 A 2
Ls,0.v4 :=/ —f |Vq|? dx+—</qu) +/ dogdx) dr. (3.31)
.71 \2 Je 2 \Ja Q

While related results using L,5,v4 Will not be presented in this paper, we remark
that this formulation completely bypasses taking second order derivative of g, which
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means less smoothness requirement of the neural network ansatz. However, adding
such a term would make the optimization more complicated especially in the high-
dimensional cases. Since this term can not be interpreted as a pointwise condition as
(3.29), it thus can not benefit much from an efficient sampling scheme (see Sect. 5.1). In
addition, the introduction of the extra hyper-parameter A further increases the difficulty
of parameter tuning. From our own experience, the training of the ¢, o formulation
with the term £;,5,v4 seems extremely challenging if not impossible and is therefore
not presented.

4 Solving high-dimensional QPME with neural network ansatz

Neural network is a class of functions that have a certain layered structure, for example
the feed-forward fully connected neural network is defined to be

NN (x;0) := Wyg(--- g(Wag(Wix+b1) + b)) + by. 4.1

In this case, each layer of the network is a composition of a linear trans-
formation and a nonlinear function g acting component-wise. Here, 6 :=
(Wi, Wa, ..., Wy, b1, by, ..., Db,] are the trainable parameters.

The idea of neural network-based numerical solver for PDE:s is to utilize such a
neural network A’ to approximate the function of interest, say u. This is usually
achieved by solving an optimization problem

u = arg minf C(f), “4.2)

where C is some suitable objective function. Then one could take a neural network as
an ansatz and minimize C by tuning its parameters 6 to get an approximate solution
NN (-; 6%) where

0* = argming C (NN (+; 9)). 4.3)

The process of optimization is also referred as “training”, using the terminology from
machine learning. The objective function C is often referred as the loss function.

In Sect.3, we have derived a few loss functions which can be used to solve the
QPME. In this section, we provide further details on how to solve the aforementioned
optimization problems with neural networks, especially on how initial and boundary
conditions can be imposed to the neural network as a solution ansatz. In particular,
the following conditions are generally considered as a solution ansatz to QPME:
1) the initial condition, 2) the boundary condition, 3) the physical constraint, i.e.,

u > 0. In addition, one could consider to impose conditions like 1 — A¢ > (IT)dL”
to narrow down the search space as we know by Theorem 3.1 that it is satisfied by the
true solution. We will slightly modify existing neural network structure as needed to
satisfy the constraints. In this paper, we take the architecture of the neural networks
to be feed-forward fully-connected as defined in (4.1), while other architectures could
also be considered.
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4.1 PINN formulation

To solve QPME with PINN formulation (3.3), we first notice the argmin to (3.7) is
exactly a solution to QPME. Then the solution itself can be directly parametrized with
aneural network. In particular, to further impose the aforementioned conditions to the
solution ansatz, we start with a neural network NN (¢, x; 6,) with both time ¢ and
spatial coordinates x as its inputs and denote the collection of trainable parameters
as 0,. Moreover, since we need to compute the PDE residual, which includes the
computation of second-order derivative of the solution ansatz, NN, (¢, x; 8,) must
be at least second order differentiable. We thus require activation functions g to be
smooth ones such as tanh and softplus functions.

To impose the initial condition (3.2) as a hard constraint, we can parametrize the
solution u (¢, X) as:

u(t,x;6,) =upx) +tNN,(, X;0,).

However, in this case, the physical constraint (# > 0) cannot easily be imposed
explicitly. One would hope that by minimizing the PDE residual, the numerical solution
obtained would be non-negative.

In the case where the initial condition is imposed softly, the term £; defined as
in (3.6) will be added as a part of the loss Lpiny and minimized through training.
Meanwhile, the physical constraint of solution can be imposed by parametrization:

u(t, x; 0,) = softplus WN, (t,x;6,)),
where the softplus function is given by
softplus(x) = In(1 + ¢%)
which guarantees the solution ansatz to be positive.

As for the boundary condition, the homogeneous Dirichlet boundary condition (3.1)
can be imposed as a hard constraint. We take advantage of the function

2
a;

d
Fre(x) = l—[ (ai — xi)(ai + xi) @.4)
i=1

so that fj.(x) = 0 for any x € 9. Moreover, we notice that f;.(0) = 1 and
0 < faz.(x) < 1forall x € Q2. The solution ansatz u(t, xX) can then be further modified
by multiplying fy. to satisfy the boundary condition:

hard I.C. + hard B.C. u(t,x; 0,) = ug(x) + tfzc(x) NN, (¢, x; 6,), (4.5)
soft I.C. + hard B.C. u(z,x;6,) = fy.(x) softplus (NN, (¢, X; 6,)), (4.6)

assuming the homogeneous Dirichlet B.C. is satisfied by ug.
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The benefit of solving PINN is that the convergence of training of Lpinn guarantees
accurate solution, which is justified in (3.11) and (3.12). On the other hand, PINN
formulation also has its own limitation that it only allows strong solutions. Solutions
with less regularity can not be identified with this formulation.

4.2 ¢ formulation

To solve QPME following the ¢ formulation, we need to parametrize ¢ (¢, X) in (3.22)
instead of the solution u directly. When computing L4 as in (3.22), we also need the
ansatz of ¢ (z, X) to be at least second-order differentiable. Note that this is a much
weaker assumption on the solution ansatz of u compared with the PINN. In particular,
no assumption is needed on the smoothness of u directly. We simply take a neural
network NNy (1, X; 6) with smooth activation function as its solution ansatz.

We then note that the minimizers ¢* to (3.22) must also satisfy certain conditions
in order to obtain reasonable solutions. As suggested by Theorem 3.1, we would like
to require ¢ to vanish at 1 = 7. We thus let

d(t.%;0p) = (T — )N Ny (t,x; 6p). 4.7
For the recovered solution u

ug = —% 4.8)
1—-A¢

unlike PINN formulations, the solution to QPME is not directly parametrized; thus it

is not easy to impose the initial condition as a hard constraint. Instead, we enforce the

constraint softly relying on the penalty term £;. The homogeneous Dirichlet boundary

condition, on the other hand, can be softly enforced with the term L£p or enforced as

a hard constraint by modifying the neural network. Essentially, we only need

adlag =0,
which can be achieved using the ansatz
soft I.C. + hard B.C. ¢(t,x;6p) = (T — 1) fac XINN4(t, X; 0), 4.9)

where fy.(x) is defined as in (4.4). Additionally, while the recovered solution uy > 0
is desired, this condition cannot be easily imposed by simply modifying the solution
ansatz.

Compared with the PINN formulation, using a ¢-formulation allows solutions in a
very weak sense. It potentially can find solutions with less regularity. The smoothness
requirement is not directly applied to ugs. However, as described above, a few con-
ditions of ¢ can not be easily enforced. In addition to the positivity of u4, condition

like .,
t\ a2
1—A¢ > <7> (4.10)
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is difficult to enforce as a hard constraint either. While (4.10) is preferable as it can
narrow down the search function space for ¢ (since we know the PDE solution would
satisfy that), it is not necessary. However, the fact that u is not confined to be pos-
itive function can potentially cause the training of Ls_yy converges to unphysical
solutions.

4.3 g - o formulation
The g — o formulation (3.24) is derived from the ¢ formulation, and thus also
inherits a few conditions for ¢. We first notice that when computing £, 5, no
computations of derivatives will be needed. However, when computing L4, 3,0, first-
order and second-order derivatives of o and ¢ are required respectively. We thus
can start by parametrizing ¢(z, x) and o (¢, x) with neural networks NN, q(t,X;0,)
and NN, (¢, X; 65) which should be at least first and second order differentiable
respectively.

To ensure the positivity of o, as suggested in (3.20), we further parametrize o by

o(t,x; 0) = softplus NN, (t,X; 65)) .
To guarantee that
G(Tv ) = 17

we modify the above and let

o(t,X;0,) = softplus(ln (e—=1)+ (T —t)NN, (¢, x; 95)). 4.11)

Alternatively, if we also impose the condition (to narrow down the search space)

1\ 75
az<7> , (4.12)

one can also parametrize o as

d_
o(t,X:;6,) = <%> h + (T — 1) softplus (NN (1, x; 6,5)) . (4.13)

For the recovered solution
P q

O —

4 o

like ¢ formulation, the initial condition can only be softly imposed. The homogeneous
Dirichlet boundary condition can be enforced as a hard constraint, as long as

qlag =0.
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We thus let
q(t,X;6g) = fac(ONN(t,X;0y). (4.14)

Moreover, to ensure u, , > 0, we further let
soft L.C. + hard B.C. ¢ (t,x;6,) = fac(x)softplus (NN (t,%x;6,)).  (4.15)

Similar to ¢ formulation, the ¢ — o formulation allows solutions with less regularity.
However, two neural networks will be needed to parametrize a solution to QPME,
which could potentially be more challenging to train.

4.4 Empirical loss and training data sampling

To solve the QPME with aforementioned formulations (3.7), (3.25) and (3.30), we need
to compute the high-dimensional integrals of the neural network or its derivatives to
evaluate the loss functions.

In practice, Monte Carlo methods are usually used to approximate those high-
dimensional integrals. The approximate solutions are then obtained by minimizing
the surrogate empirical loss functions. Take the PINN formulation as an example,
let Po be the uniform probability distributions over the spatial domain €2 and let
{X j}’}:1 to be an independent and identically distributed (i.i.d.) sequence of random
variables distributed according to Pg. Parallelly, we also define Pjo, 7 to be the uniform
probability distributions over the spatial domain [0, 7] and let {Tj}’}zl be an i.i.d.
sequence of random variables distributed according to Pjp 7). Define the empirical
loss Ly by setting

p n 1 2 v n

PINN = 2} (fW(ij X)) — 5 Au;, Xj)) + 2} ((0.X;) = uo (X7))*

! ! (4.16)

for the case where only I.C. is imposed softly and the loss measuring norm is taken to
be L. Notice that all terms are scaled by ﬁ which does not change the minimizer of
the problem but can effectively avoid numerical blowup in evaluating the loss during
the training. Similarly, £p can also be approximated with points uniformly sampled
from 92 when needed. We further refer such sampled data as training data.

However, a uniform sampling of X;’s sometimes does not meet the need of our
computation especially in the case where the dimension d is very large. Notice that
one essential feature of solutions to QPME is that it has a free boundary that separates
positive part of the solution from the zeros. In particular, in the case where the solution
is a Barenblatt solution, the nonzero values of the solution actually concentrate near
the origin. Ideally, one would like to sample points in both non-zero and zero region,
to capture the local features of the solution. However, with a fixed budget of training
samples, it could happen that all randomly sampled data points only reside in the zero
region, which is apparently problematic. In fact, this could become a serious issue for
high dimensional problems. For example, when d = 20, the probability of sampling
the nonzero region of a Barrenblatt solution (5.2) at t = 2 within [—7, 7129 can be
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computed by the ratio of the volume of the d-ball Vyonzero With radius (22)1/ 296/11
standing for the non-zero region versus the volume of the hypercubic. It can then be
computed that

Vnonzero

Phonzero = 14—20 ~157x 1078

which means, the non-zero region can rarely be sampled if not impossible. There-
fore, we would need an effective sampling scheme which puts larger weights over
the non-zero region, so that we can accurately approximate the loss function. Ideally,
one could hope for an adaptive important sampling scheme which provides samples
of the training data based on a distribution adapted to current status of the parameter-
ized solution and its derivatives throughout the training process. However, especially
for high-dimensional problems, such sampling scheme is challenging and computa-
tionally expensive to implement. Therefore, a hand-crafted sampling scheme is used
instead, which is explained in details in Sect. 5 for specified numerical examples.

5 Numerical example: Barenblatt solution

To test the numerical schemes, we will use a series of special solutions, known as
Barenblatt Solutions. They are given by

1

_ 2N t\ m—1
U3 C) = 17 ((C UL ) S e

where o := m, B = %, (s)* := max(s, 0) and C > 0 is an arbitrary constant.
This solution takes a Dirac mass as initial data: lim; o u(¢, X) — MJ&(x), where M
is a function of the constant C (depends on m and d). In the particular case m = 2,
the Barenblatt Solution to (2.1) reduces to

2\ T
Ust.x: C) =17 (c— — KT\ (5.2)
2(d +2) a5

The free boundary 9P, to (5.2) in this case can then characterized by the equation

IX| = ry
1
with r; ;= /2C (2 4+ d) t4+2. We also notice that the solution is scale-invariant:
u; (1, X) := A%u(rt, APx).

The shifted Barenblatt Solution is a strong/weak/very weak solution of PME, which
is unique subject to the Dirac initial condition.
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Since numerically one cannot set § function as the initial condition, we specifically
consider the following IBVP:

1
du = EAuz (t,x) € 0 =1[0,1] x Q,

0,x)= (1 ! 2\"
w0 = (1= 75 5)

Notice the initial condition is essentially the Barenblatt Solution (5.2) evaluated at
t = 1 when C = 1. The exact solution to (5.3) is therefore the Barenblatt Solution
(5.2) with the time shifted:

(5.3)

maxy=a+nﬁﬁ 1- ! IxP” ' 5.4
T 2W+30+Dﬁ ‘ '

We further let Q = [—a, a]d , where a is the smallest integer that is greater than the
radius of the free boundary of U;(¢, x) at the terminal time 7 = 1:

a = ceil(rr),

where rr = (2 + d)%Z% to ensure the computational domain is large enough
to include the entire free boundary for ¢+ € [0, 1]. We take this example to test the
effectiveness of the proposed formulations by comparing the approximate solution
with the exact one (5.4). The performance of each formulation is further analyzed to
show the pros and cons.

5.1 Numerical settings

In particular, We would like to solve the aforementioned QPME with three formula-
tions using neural network ansatz. We specifically take NN, (-, -; 6,), NN (5 0p),
NNy, 6;) and NN (-, -5 65) to be fully connected neural networks with two
hidden layers and the softplus(-) as their activation function. The corresponding solu-
tion ansatz can then be developed following Sect. 4. Notice that when computing the
derivatives of the solution ansatz, a chain rule will be applied and the derivatives of
fac (%) need to be computed when a homogeneous Dirichlet B.C. is imposed.

To evaluate the empirical losses, as discussed in Sect. 4.4, we further take randomly
sampled data to approximate the integrals in Q or in 2. When boundary condition is
softly imposed, we take additional randomly sampled data over X7 to evaluate Lp.
In particular, since the data are sampled on the fly, a new set of data will be sampled
at each training step, the total number of training data n can then be computed by
n = batch size X training steps.

Moreover, for high-dimensional cases, to make sure the sampled points can cap-
ture the features of the solutions, we use the following weighted sampling scheme.
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(a) 8d: 6o =0.3,0, = 0.3, Q = [—4,4]>. (b) 50d: 6y = 0.3,6, = 0.2, Q = [-11,11]°.

- 6 ~ -
Fig. 1 3D projection (first three coordinates) of samples of {Xj}}o=1 in Q. Red: X; € Vp, green: X; € V)
and blue: X; € V3. (Colour figure online)

Specifically, we first decompose the region Q = [—a, a]? into @ = Vo U V; U V>,
where

Voi={xeQ|x|<r}, Vii={xeQlrn<|xl<rr}, Voi={xeQ]|[x]>rr}

The radius of these region are decided by the radius of the free boundary to the
Barenblat solution (5.4) att =0 andt = T = 1, respectively:

roi=V2Q+d), rr=Q+d)r2i,

We then take weights 6, ; and the X ;’s will be uniformly sampled within Vy with
a probability 6y, within V| with a probability 6; and within  with a probability
0 := 1 — 0y — 61 (see Fig. 1for an illustration of the sampled training data). The
probability of sampling data in each region can thus be computed as

Py, :90-|-92M Py, :91+92m Py, =06 M
0 2] : : 2]

The density function to this mixture distribution can be written as the piecewise
constant function

fFX) = 0p fox) + 01 f1(x) + 02 f2(x),

where

1 1 1
Jfo(x) = leo(X), [x) = lel x), f(x)= ]

are defined over the entire €2, with 1y (x) being an indicator function of region V.
When sampling from Vj and Vi, to ensure the data are uniformly sampled in those
high-dimensional ball regions, we specifically adopt the following algorithm as in [19]
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1. Generating random points uniformly on the (d — 1)-unit sphere.

(a) Generate a d-dimensional vector x = (xyx2, ..., x4) sothat x; ~ N(0, 1) for
i=1,2,...,d;
(b) then ¥ := m is a uniformly sampled point form (d — 1)-unit sphere.

2. Generating a point uniformly at random within the d-ball.

(a) Letu be a number generated uniformly at random from the interval [0, 1], then

1. . - .
ud x is a point randomly sampled within the unit ball.
(b) Further, rou'/?% is a random point in Vp and ((rT —ro)ul/? + ro) X is a
random point in V.
To avoid changing the values of the integrals to be evaluated in the loss functions, a
piecewise constant factor should be multiplied to the empirical function to correct the

approximation of the integrals resulted from a nonuniform distributed training data.
For PINN formulation, the empirical loss (4.16) can then be rewritten as

n 2
K S ~ 1 -
PINN = P ZC(X]') <3zu(Tj,Xj) — EAu(Tj,Xj)>
Jj=1

+£Xn:c(5(j) (u (o, Xj) — o (X,))2 (5.5)
j=1

with the correction term
3

V;
c(x) = Z |S|2|P|V. 1y, (x).

i=1

Here, X j’s are random points in £ sampled subject to the aforementioned density
function f(x), while T; will be uniformly sampled from [0, 1]. The empirical losses
for ¢ formulation and g —o formulation can also be formulated in a similar fashion. The
data are then randomly sampled on the fly which are batched into 1000 for each training
step. New data is sampled for each batch. Essentially, this sampling scheme enforces
data samples in all three regions which can potentially improve the representativity of
the training data and thus lead to a faster convergence of the training procedure.

For high-dimensional cases, the initial conditions and PDEs are in fact imposed
without the correction factor c¢(x), i.e., with the efficient sampling scheme, we
are essentially minimizing the modified initial/PDE conditions. Taking such terms
measured with L2 as examples, the following loss terms will be minimized
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1) = /Q (0, %) — up ®))? F(x) dx,
1 2
Lppe(u) = / <3ru - —Au2> f(x) dxdt,
0 2
Loong = / (8,0 + Ag)? f(x) dxdtr. (5.6)
0

Since f(x) is merely a positive piecewise constant function, such modification will
keep the minimizers to these terms unchanged, meaning the desired initial condition
and PDE equation will still be imposed with mild assumption on the regularity of the
solution ansatz. The reason that the correction constants are not used is because for
high-dimensional cases,

cxX) < 1% Vxe VUV,

which means extremely small contribution of samples within these region will be made
to update the trainable parameters with SGD. We also notice that while this is possible
for imposing the initial condition and PDEs, we must apply c(x) the to inf terms,
namely L4(¢) and L, (g, o) as the sampling scheme will change the optimization
target.

However, the choices of 8y and 6; still remain to be arbitrary. While numerical
examples show that certain choices could lead to faster convergence, there is no clear
principle one could follow to make optimal choices. Similar situations happen when
we decide the values of v, «, y to balance the terms in the losses. While theoretically
these hyper-parameters can be any positive number, the choice of them can heavily
influence the training procedure. Some choices seem to help the weighted loss to
converge faster compared to others, but there is no justified reason for any certain
choices. Therefore, the choices of theses hyper-parameters used in the results reported
in this paper are results of trial and error.

The losses are then optimized by tuning the trainable parameters of the neural
networks. We take the optimizer that implements the Adam algorithm [15] to train the
models. The complete algorithm to establish the loss function and to train the neural
networks is implemented using the TensorFlow library [1].

Once the training is finished, to evaluate the quality of the approximate solution
obtained with the trained neural networks, we can further quantify the gener-
alization error of it. In particular, we define the relative errors on a solution
slice u(t, x, y,c,...,c) at time ¢t for some fixed constant ¢ € [—a, a], denoting
u(t,x,y,c,...,c)byu(t) for simplicity:
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llunn (@) —u@®)lh

L'-Relative Error

)

[lu(@)Ih
t) —u(t
L%-Relative Error lunn (@) — u( )”2, 57)
u()|l2
1) —u(t
H'-Relative Error llunn () —u@)|| g 7
[ (@)l 1

where u y y stands for the neural network-based solutions. These norms can be further
numerically approximated over a 100 x 100 evenspaced mesh on [—a, a]? letting
{xi, yj}l.lgi!jzl be the meshgrid points

2 2
I1Lf Ce, 1~ %Dﬂxi,ym,
iJ

2a)2
ik~ | S0 ey,
i,j

(2a)?

1F @ »lm ~ | o

D U @iy )P+ IV F iy 31
i,j

The numerical relative errors can then be computed with predicted values of the neural
network solutions evaluated at the mesh-grid points.

5.2 PINN formulation

In this section, we consider the case, where the QPME (5.3) is solved following a PINN
formulation (3.7) in both L' and L? norm. Specifically speaking, the homogeneous
Dirichlet boundary condition is imposed as a hard constraint and the initial condition
is imposed as a soft constraint following (4.6). The specific algorithmic settings are
further presented in Table 1along with the relative errors computed for the trained
solution slice (0.5, x, y, 1.0, ..., 1.0; 6) at time ¢ = 0.5 comparing with the exact
solution (5.4).

From Table 1, Figs.2 and 5, one can observe that the PINN formulation can indeed
provide numerical solutions that can reasonably approximate the exact ones even in
high dimensions. Not only is the neural network able to approximate the function
itself, but also the derivative of it. This is essentially a result of successful imposition
of the PDE. As can be observed from Figs.3and 6, the learned d;u coincides with
%Auz which confirms the PDE has been successfully learned. The initial condition
can also be softly enforced with term £; as training proceeds (See Figs.4 and 7 for an
illustration). The training loss history of PINN is further presented in Fig.8 term by
term. A training convergence can be observed from these plots, which further suggests
a convergence to the exact solution ensured by (3.11) and (3.12).
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(a) Barenblatt reference solution (b) Learned solution slice (c) Learned solution error

-10 =5 o 5 10 -10 -5 o 5 10 -10 -5 o 5 10
(d) Barenblatt reference solution (e) Learned solution gradient (f) Learned solution gradient error
gradient

Fig. 2 lgD, L2— PINN formulation (3.7) Predicted solution slice #(0.5, x, y, 1.0, ..., 1.0) forx € Q =
[-7. 71,1 =05

i WWW a00

(a) Learned u (b) Learned %A’U,Q

Fig.3 15D, L2 — PINN formulation (3.7), predicted partial derivatives

(a) Exact ug (b) Learned initial value

Fig. 4 15D, L2— PINN formulation (3.7), predicted initial value (0, x,y,1.0,...,1.0) forx € Q =
[-7,711
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0.01
0.00

-0.01
-0.02
-0.03
-0.04
-0.05
~0.06

(a) Barenblatt reference solution (b) Learned solution slice

(d) Barenblatt reference solution (e) Learned solution gradient (f) Learned solution gradient error
gradient

Fig.5 15D, L'— PINN formulation (3.7): Predicted solution slice #(0.5, x, y, 1.0,...,1.0) forx € Q =
7,715, =05

AN

(a) Learned u¢ (b) Learned %Auz

Fig.6 15D, L'— PINN formulation (3.7): predicted partial derivatives

(a) Exact ug (b) Learned initial value

Fig. 7 15D, L'~ PINN formulation (3.7), predicted initial value u(0, x, y, 1.0,...,1.0) forx € Q@ =
(-7.71"
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| 1073
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
step le5 step le5
(a) L*~PINN (b) L'—PINN

Fig.8 15D: Training loss history by term

In addition, one can observe that learning the solution to QPME does not require the
number of the trainable parameters of the solution ansatz to scale exponentially, which,
in contrast to mesh-based solvers, is advantageous in dealing with high-d problems.

However, from Table 1, one can observe that the generalization errors of the neural
network-based solutions of high-dimensional cases are larger compared to that of low-
dimensional cases. This could be a result of using larger neural network to approximate
a more complicated solution in high-dimensional cases. Numerical experiments show
that neural networks with width 200 is no longer sufficient in approximating solutions
to QPME with dimension larger than 15, thus a larger network was adopted. Such
network naturally requires more training and data for convergence. Since the training
steps (data) was not quadrupled as the number of trainable does, which could have
contributed to a larger approximation error. In addition, whether assigning quadrupled
training steps and training data could bring significant improvement on the approxima-
tion accuracy is also questionable as the optimization of 6, is highly nonconvex, which
means one has to accept a significant and unavoidable uncertainty about optimization
success with SGD or its variants.

5.2.1 ¢ formulation

In this section, we consider the ¢ formulation (3.25) to solve QPME (5.3) in both
L' and L? norm. The homogeneous Dirichlet boundary condition is enforced as a
hard constraint following (4.9). The initial condition can also be enforced softly with
term £; similar to the PINN formulation. The specific algorithmic settings are further
presented in Table 2 along with the relative errors computed for the trained solution
slice u(0.5, x, y, 1.0, ..., 1.0; 6) at time ¢ = 0.5 comparing with the exact solution
(5.4).

From Table 2, Figs.9and 10, one can observe that the ¢ formulation can indeed
provide numerical solutions that closely approximate the exact ones up till dimension
20. Not only is the neural network able to provide a reasonable approximation of the
function itself, but also the derivatives of it. The mismatch mainly concentrated near
the region where the solution is not smooth (free boundary). The predicted minimizer
¢ to (3.25) is also presented as in Fig. 11.
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(a) Barenblatt reference solution (b) Learned solution slice (c) Learned solution error
6 6 6
4 4 4
2 2 2
o o 0
-2 -2 3 -2
-4 -4 i i -4
-6 -6 -6
-10 =5 o 5 10 -10 -5 0 5 10 -10 5 0 5 10
(d) Barenblatt reference solution (e) Learned solution gradient (f) Learned solution gradient error
gradient

Fig. 9 15D, L2 — ¢ formulation (3.19): Predicted solution slice (0.5, x, y, 1.0,...,1.0) forx € Q =
[-7. 71,1 =05
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(a) Barenblatt reference solution (b) Learned solution slice
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-10 -5 0 5 10 -10 -5 o 5 10 -10 -5 o 3 10
(d) Barenblatt reference solution (e) Learned solution gradient (f) Learned solution gradient error
gradient

Fig.10 15D, L' — ¢ formulation (3.19): Predicted solution slice u4 (0.5, x, y, 1.0, ..., 1.0) with for x €
Q=[-7.715,1r=05

Theoretically speaking, compared to PINN, ¢ formulation is advantageous as it can
be applied to solve a wider range of QPMESs, whose solution are less regular or smooth.
However, for the case being tested, we do encounter more challenges in the training
process especially for the high-dimensional cases compared with that of PINN. One
observation is that the generalization error of the testing solution slice gets larger as
the dimension gets higher. This could attributes to the nature of the exact solution U,
as its nonzero region only accounts for a tiny small portion of Q2 (< 1%o) when d
is large. That is to say, the zero function will be a pretty good approximation of U,
already in both L' () and L?(2) sense. The training can thus be easily trapped in a
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(a) Learned through L'-¢ formulation (b) Learned through L?-¢ formulation

Fig. 11 15D: Predicted ¢ (0.5, x, y, 1.0, ..., 1.0; 6;)

local minimum uy = 0 which can be reached by a neural network ¢ = 0. In addition,
the generalization error reported measures the error for a solution slice projected onto
a two-dimensional space in stead of in Q2 to ease the computation and visualization,
which can be an uncomprehensive measurement of the error. Moreover, the selected
slice is a slice whose values are dominated by nonzero ones, which can also be an
unfair representative of the entire solution to quantify the relative error.

The reason that PINN formulation seems to suffer less from this effects is probably
the application of efficient sampling. Since the correction term c(x) is not applied for
any terms in the loss functional of PINN, meaning a very large weight was put on
the region where the solution is nonzero when evaluating LpinN, Which could have
helped the solution ansatz to escape from the local minimum. However, by the nature
of ¢ formulation, the c(x) can not be omitted. Otherwise, the target functional will be
changed entirely.

Furthermore, while we are able to identify the desired solutions in many cases,
theoretically, one can not guarantee meaningful solutions to QPME form the training
of ¢ formulation. In fact, both the condition 1 — A¢ and us > 0 are not enforced at
all in this formulation. Theses conditions can only be used post training to carry out a
solution selection or as a criteria for early truncation of training.

Artificial choices of other algorithmic ingredients such as batch sizes, learning rates,
6p and 67 will also inevitable influence the optimization process providing limited
computational resources.

We further observe that the optimization of L4 (g (t, X; 63)) indeed converges to
-/ U22 dxdt as training proceeds with uy4 being the parametrize solution ansatz as
stated in (4.8). This observation in fact confirms the theoretical result (3.21) derived
in [5]. In Fig. 12, we specifically use the batch of training data at each training step to
evaluate empirically the value of — f 0 U22 dxdt for the exact solution U (¢, x) defined
as in (5.4), and further compare it with the empirical loss L (1) based on the neural
network solution uy at that time. As one can observe, the difference of the two values
gradually reduces as the training continues, which verifies the training effectiveness
of this formulation.
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Fig.12 Empirical [, U22(t, X)dxdt + L (ug(r,X; 0g)) as training proceeds
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(a) Barenblatt reference solution (b) Learned solution slice (c) Learned solution error

Fig. 13 10D, L2 — q — o formulation (3.30): Predicted solution slice u(0.5, x, y, 1.0, ..., 1.0) for x €
Q=[-6.6]"0r=05

5.3 g -o formulation

Since g — o formulation (3.30) is developed based on the ¢ formulation, the training
thus also suffers from challenges met in the training of ¢ formulation, i.e., the training
can be easily trapped in a local minimum, i.e., u4 » = 0 for high-dimensional cases.
Additionally, the partial derivatives of ¢ are separated into two independent functions
g and o, whose correlation is only enforced softly with the loss term Ly, A4, Which
can pose more challenges to the optimization of the target functional. Additional
hyper-parameter y is also introduced to adjust the weight of Lj,,, o4 Whose optimal
choice is again obscure. Due to such reasons, only results for dimension 1 to 10 are
reported as no reasonable results for higher-dimensions were obtained in the scope of
experiments that were carried out.

Specifically, the homogeneous Dirichlet boundary condition is imposed as a hard
constraint following (4.15) and the condition for o is imposed with (4.11). The con-
dition (4.12) was not strongly imposed for training reasons. The initial condition can
then be softly enforced with term £; as mentioned earlier. The specific algorithmic
settings are further presented in Table 3 along with the relative errors computed for
the trained solution slice u4,, (0.5, x, y, 1.0, ..., 1.0; 6, 6) at time ¢ = 0.5 compar-
ing with the exact solution (5.4). The comparison of predicted solutions with exact
solution are further presented in Figs. 13and 15. In addition, the predicted function
q and o are depicted in Figs. 14 and 16. These figures are further used to show the
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(b) Learned o

(c) Learned —Agq (d) Learned 80

Fig. 14 10D, L2 — g — o formulation (3.30): predicted g, o and their partial derivatives

= +01

0.4 0.01
?00

03 il —0.01 0.00

02 jsoz -0.01
01 03

il -0.02
0.0 ) 4

=8 ~—~< 2
T 7,0
2 4"
L E
(a) Barenblatt reference solution (b) Learned solution slice (c) Learned solution error

Fig. 15 10D, L — g — o formulation (3.30): Predicted solution slice u(0.5, x, y, 1.0, ..., 1.0) for x €
Q=[-6,61"0r=05

predicted —Agq and 9,0 to verify that the condition
Aq + 8,0 =0

is satisfied. Finally, Fig.17is used to demonstrate the computational value of £, »
converges to — |, 0 U22 dxdt as training proceeds. This observation confirms once again
the theoretical result (3.21) derived in [5]. Here, the batch of training data at each
training step is used to evaluate empirically the value of — 0 U22 dxdt for the exact
solution U (¢, X) defined as in (5.4). Such value is further compared with the empirical
loss Ly,6 (ug,o) at that time. The difference of the these values gradually reduces as
the training continues (Fig. 17).
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Fig.16 10D, L' — g — o formulation (3.30): predicted ¢, o and their partial derivatives
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Fig. 17 Empirical fQ U22 (t,x)dxdt + L4, o (uq,g(t, X; 0q, 90)) v.s. training steps
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6 Numerical example: waiting-time phenomena

In this section, we further consider the following IBVP

1
du = A (1.0 € 0 =[0,1] x @,

cos(|x]), |x| <Z, (6.1)
0, elsewhere,

u(0,x) = up(x) = {
u(t,x)pe =0,

where Q = [—4, 4]d . The general exact solution to (6.1) can hardly be derived. When
d = 2, the reference solution can be taken to be the numerical solutions obtained with
amoving mesh finite element method following [29] instead. In particular, the mesh is
advanced forward in time using a forward Euler time-stepping scheme. These mesh-
based results are then compared with the ones obtained following a deep learning
framework under various formulations. For higher dimensions, the mesh-based solver
in general will suffer from curse of dimensionality. The moving mesh method would
also be more challenging to design. Therefore, for comparison reasons, we only present
the results for d = 2 while noticing the higher dimensional cases can also be handled
by the neural network-based algorithms.

We also note that the solution to PME of this type of initial condition exhibits a
waiting-time phenomenon [21]. In fact, the velocity of the free boundary of QPME is
given by Darcy’s law [24], i.e.,

u?

I't)= lim V (—) , (6.2)
x—>(1)~ 2

where the limit is taken from the interior of the support. Thus, as one may compute,

the free boundary of solution to (6.1) should not move until a finite amount of time

2
has elapsed as initially I''(0) = V (%) vanishes at the free boundary I'(0) : |x| =

7. This phenomena of waiting can be observed from solutions obtained with Finite
Element Method as shown in Fig. 18, where the dashed vertical lines indicate the
exact initial location of the free boundary. In Fig. 18a, a series of snapshots of the
solution for ¢ € [0, 0.1] is plotted, while in 18b, the solution snapshots for a broader
range of time is plotted. As one may observe, the free boundary of the solution barely
moves in the entire time of ¢+ € [0, 0.1] and only start to change by the time of
t = 0.2. This phenomena can also be accurately captured by a solution obtained
following the PINN formulation (3.7). In specific, the solution obtained with the PINN
formulation is presented in comparison with the ones obtained with the moving mesh
FEM in Fig. 18. The solution slices essentially overlap one another. Parallelly, problem
(6.1) is also solved with the ¢ formulation (3.22) and the ¢ — o formulation (3.24).
The comparison of the resulted solution with a FEM solution is then presented as in
Figs. 19and 20, respectively, which verifies the effectiveness of the neural network-
based solutions using ¢ formulation and ¢ — o formulation.
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Fig. 18 2d, L2— PINN formulation, waiting-time phenomena (6.1): snapshots of solution cross-section
u(t,x,0) at y = 0. Green: reference solutions obtained with moving mesh FEM (DO F = 901); red:
predicted solutions obtained with PINN formulation; blue: initial condition. (Colour figure online)

7 Conclusion

In this paper, we explored different variational forms in solving high-dimensional
QPME with neural networks. In specific, three formulations were considered. For
the PINN formulation, the solution is directly parametrized and the PDE residual is
minimized. A theoretical analysis is carried out to show that the convergence of the
PINN loss guarantees a convergence to the exact solution in L' sense. Moreover, this
analysis also suggests the use of the L! norm to quantify the residual and approximation
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Fig.19 2d, L? —¢ formulation, waiting-time phenomena (6.1): snapshots of solution cross-section u (t, x, 0)
at y = 0. Green: reference solutions obtained with moving mesh FEM (DOF = 901); red: predicted
solutions obtained with ¢ formulation; blue: initial condition. (Colour figure online)

error. In addition, inspired by the work [5], a ¢ formulation and a ¢ — o formulation
are further presented and used to solve the QPME in a very weak sense. Theoretically,
these formulation can identify solutions with less regularity. All formulations are then
tested with the Barrenbaltt solution in low and high dimensions. Experiments have
shown that ¢ formulation and ¢, o formulation can provide approximate solutions
with a similar level of accuracy compared with PINN in low-dimensional cases but
the optimization aspect continues to pose challenges in high-dimensional cases. A two-
dimensional example of QPME that exhibits waiting phenomena is also presented to

@ Springer



Neural Network-Based Variational Methods... 55

t=0.0 t = 0.005 t=0.01 t =0.015 t=0.02 t =0.025 t=0.03

1.0

0.8

0.6

0.4

0.2

0.0{—4 N — S — S — | N —4 | N —4 | N 4 | N
t=0.035 t=0.04 t = 0.045 t=0.05 t=0.055 t=0.06 t = 0.065

10
0.8
0.6
0.4
0.2
0.0{—4 | | | |4 | | | |— | N | —

1.0

0.8

oe —I F‘EM solution

— Initial condition

0.2 . .
—— Predicted solution
0.0{— Y R | N I | N I | | N R | N S | S S R | —

04

—-2.5 0.0 25 —=2.5 0.0 25 —=2.5 0.0 25 —=2.5 0.0 25 —=2.5 0.0 25 —=2.5 0.0 25 —-2.5 0.0 25
(a) t € [0,0.1]
t=0.0 t = 0.05 t=0.1 t=0.15 t=0.2 t=0.25 t=0.3

1.0
0.8
0.6
0.4
0.2

oold | | ) ]

1.0
08
0.6
0.4

Sl U L L N N

t=0.95 t=1.

I
I
o
N
-
I
o
N
a
I
I
o
®
-
I
o
@
a
I
I
o
©

1.0

ot
—— Predicted solution
= ANIVENIVENIVENIVRNIVRVIVAY

-2.5 0.0 25 -2.5 0.0 25 -2.5 0.0 25 -2.5 0.0 25 -2.5 0.0 25 -2.5 0.0 25 -2.5 00 25

0.8
0.6

(b) Snapshot solution slices for t € [0, 1.0]

Fig. 20 2d, Lz - g — o formulation, waiting-time phenomena (6.1): snapshots of solution cross-section
u(t,x,0) at y = 0. Green: reference solutions obtained with moving mesh FEM (DO F = 901); red:
predicted solutions obtained with ¢ — o formulation; blue: initial condition. (Colour figure online)

show the capability of deep learning-based methods in identifying solution features
as such.

Other aspects of the discussion toward solving QPME with deep learning includes
the hard and soft imposition of certain conditions of the solutions in all formulations
such as initial conditions and boundary conditions. Additionally, an efficient sampling
scheme is proposed aiming at a faster convergence toward the solution desired espe-
cially in high-dimensional cases. These treatments in principal can also be applied in
other scenarios where the PDE solutions are parametrize with neural networks.
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While such efforts can all contribute to more efficient implementation of solving
high-dimensional QPMEs, we must admit that the training success is overwhelmed
by the large number of hyper-parameters. Moreover, for practical applications, neural
network training using stochastic gradient descent type schemes, which means one
must accept a significant and unavoidable uncertainty about optimization success.
An efficient strategy on making choices of hyper-parameters could potentially be
an interesting direction for future investigations. More broadly, whether a similar
variational form could be derived for general m of porous medium equation is also an
open question.

Funding This work is supported in part by National Science Foundation via grant DMS- 2012286 and by
Department of Energy via grant DE-SC0019449.
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