SYNTHDB: Synthesizing Database via Program
Analysis for Security Testing of Web Applications

An Chen JiHo Lee
University of Georgia University of Virginia
an.chen25@uga.edu

Abstract—Testing database-backed web applications is chal-
lenging because their behaviors (e.g., control flow) are highly
dependent on data returned from SQL queries. Without a
database containing sufficient and realistic data, it is challenging
to reach potentially vulnerable code snippets, limiting various
existing dynamic-based security testing approaches. However,
obtaining such a database for testing is difficult in practice as it
often contains sensitive information. Sharing it can lead to data
leaks and privacy issues.

In this paper, we present SYNTHDB, a program analysis-
based database generation technique for database-backed PHP
applications. SYNTHDB leverages a concolic execution engine to
identify interactions between PHP codebase and the SQL queries.
It then collects and solves various constraints to reconstruct a
database that can enable exploring uncovered program paths
without violating database integrity. Our evaluation results show
that the database generated by SYNTHDB outperforms state-of-
the-arts database generation techniques in terms of code and
query coverage in 17 real-world PHP applications. Specifically,
SYNTHDB generated databases achieve 62.9% code and 77.1%
query coverages, which are 14.0% and 24.2% more in code
and query coverages than the state-of-the-art techniques. Fur-
thermore, our security analysis results show that SYNTHDB
effectively aids existing security testing tools: Burp Suite, Wfuzz,
and webFuzz. Burp Suite aided by SYNTHDB detects 76.8% of
vulnerabilities while other existing techniques cover 55.7% or
fewer. Impressively, with SYNTHDB, Burp Suite discovers 33 pre-
viously unknown vulnerabilities from 5 real-world applications.

I. INTRODUCTION

Web servers deliver web pages to clients in order to provide
web services to businesses and customers. Under the hood,
upon a client’s request, a web server runs a program on the
server-side to process the client’s request and generate the
requested data to be displayed on the client-side (i.e., web
browsers). As those server programs serve a large number
of clients every day, they become a major target of cy-
bercriminals [1]-[4]. Specifically, vulnerable server programs
impose significant security concerns in practice because once
exploited, a cyber attacker may compromise all the future
client users of the server, causing catastrophic consequences.
As a result, finding and fixing vulnerabilities before cyber
attackers exploit them is of utmost importance.

Network and Distributed System Security (NDSS) Symposium 2023
27 February - 3 March 2023, San Diego, CA, USA

ISBN 1-891562-83-5

https://dx.doi.org/10.14722/ndss.2023.24632
www.ndss-symposium.org

Basanta Chaulagain
University of Georgia
jiholee@virginia.edu basanta.chaulagain@uga.edu yongkwon@virginia.edu

Yonghwi Kwon
University of Virginia

Kyu Hyung Lee
University of Georgia
kyuhlee @uga.edu

There has been a line of research in analyzing web server
programs statically and dynamically to find security issues
(e.g., vulnerabilities) and harden them [5]-[8]. However, the
execution of web server programs largely depends on the
database content, which is highly dynamic. Moreover, database
content are often used in dynamic language primitives (e.g.,
eval() for dynamic code generation), imposing significant
challenges. Depending on the database content (i.e., data
points), many parts of the programs can only be exercised, or
they exhibit different behaviors. Static analysis techniques [9]—
[11] have difficulty handling dynamically generated code and
insufficient execution context due to the lack of a concrete
database. While dynamic analysis techniques [12], [13] (i.e.,
analyzing concrete program execution) do not suffer from the
dynamically generated code and execution context, they also
require a database with diverse content (i.e., data points) to
be provided for a successful analysis. Otherwise, they fail to
cover and analyze program code dependent on the database.
Unfortunately, despite the importance of the database in the
security analysis, obtaining a realistic database for testing
in practice is challenging. From our conversation with the
industry collaborators, sharing a database of a real-world
website is extremely difficult because of the privacy concerns
raised by sensitive content in the database.

Multiple database synthesizing approaches are proposed to
aid various program analysis and testing techniques. Typically,
they generate a synthesized database by analyzing database
schema and database queries in an application (i.e., query
traces). In particular, the majority of them [14]-[17] focus on
database schema (i.e., the definition of the database tables and
entries) , which contains relational constraints of database
entries (e.g., a foreign key). However, they fail to capture
implicit relationships between database entries established by
the program code (e.g., database entries that are dependent
on others or always processed together). For example, re-
cently EvoSQL [18] leverages SQL query traces and the
database schema, capturing relational constraints exhibited in
the queries. However, it only focuses on database queries,
without taking the program code that handles the query results
into account. Moreover, its analysis depends on the quality
of the query traces provided by a user, while obtaining a
comprehensive query trace is also typically dependent on the
quality of the database: programs execute many queries based
on previous query results (e.g., retrieving detailed data after
narrowing down a specific data entry).

In this paper, we present SYNTHDB, a system that synthe-
sizes a database from scratch (without any initial databases)

for a web server-side application written in PHP. Specifically,
we analyze both a target program and its database schema
to derive five types of constraints: 1) schema constraints,
2) query-condition constraints, 3) pre-query constraints, 4)
post-query constraints and 5) synchronized-query constraints.
The five constraints essentially describe the requirements of
a desirable test database that can steer the execution toward
the desired path while keeping the database integrity. For
example, the schema constraints (obtained from the database
schema) describe the requirements for database integrity.
Query-condition, pre-query, and post-query constraints are
collected by analyzing data- and control-dependence between
PHP codebase and SQL queries. Synchronized-query con-
straints define integrity and consistency rules between multiple
database records, and they are obtained by observing multiple
INSERT and UPDATE queries executed synchronously. By solv-
ing collected constraints, SYNTHDB generates a test database
containing desirable records that can help cover more program
paths with realistic execution context (i.e., complying with the
identified integrity requirements). The synthesized database is
generic and can be used by existing dynamic security testing
techniques to improve the effectiveness of the testing. Our
evaluation with 17 real-world PHP applications shows that
SYNTHDB can generate high-quality test databases that aid
dynamic testing techniques to improve the code coverage
significantly. Our contributions are summarized as follows:

e We propose SYNTHDB, an automated approach that syn-
thesizes a test database for database-backed web applica-
tions from scratch, without any input and initial database.

o We define five types of constraints for generating a desirable
test database. Then, we develop an automated technique
that identifies the constraints from interactions between the
PHP codebase, the SQL queries, and the database schema.

e Our evaluation with 17 real-world PHP web applications
shows that SYNTHDB outperforms existing state-of-the-
art techniques. Databases generated by SYNTHDB helps
achieve 62.9% code and 77.1% query coverages while
existing techniques cover 48.9% or less of code and 52.9%
or fewer queries.

e We conduct two security analyses using a state-of-the-art
vulnerability scanner, Burp Suite [19], to evaluate how
SYNTHDB-generated test databases help the security test-
ing. (1) Running Burp Suite against 189 real-world vulner-
abilities. SYNTHDB detects 76.8% of vulnerabilities while
other existing techniques cover 55.7% or fewer. (2) Running
Burp Suite to discover new vulnerabilities. SYNTHDB aid
Burp Suite discovers 33 previously unknown vulnerabilities
from 5 real-world applications.

e Two additional security tests further show the effectiveness
of SYNTHDB. (1) Conducting the reachability test against
the vulnerabilities. SYNTHDB reaches 80.9% of vulnera-
bilities while the existing techniques cover 55.3% or less.
(2) Running two fuzzers, Wfuzz [20] and webFuzz [21], to
evaluate the effectiveness of testing databases. SYNTHDB-
generated databases help achieve the best coverage for the
two fuzzers against all 17 programs.

e We plan to publicly release SYNTHDB to facilitate future
research.

Assumptions. We assume that a user who wants to analyze or
test a web application depends on a database without providing

1 $g1 = mysqli_query($db,
"SELECT[courseid FROM registrations
WHERE studentid = '$_POST['student']“+—€)
2 while($registrations = mysqli_fetch_array($ql)) {
3 $g2 = mysqli_query($db,
"SELECT coursename, [teacherid 5—sectionmtm;

roomnum, | dotw|FROM courses
WHERE [courseid = '$registrations[0]'|«ne
semesterid = '$_POST['semester']—
4 while($courses = mysqli_fetch_array($g2)) {
5 $days = preg_split('//', $courses[4], -1, ...);]
6 for($3j=0; $j<count($days); $j++) {
7 switch($days[$j]) {
8 :
9 $93 = mysqli_query($db,
"SELECT fname, lname FROM teachers
[WHERE teacherid = $courses[1]}¢-—@
10 $teachers = mysql_fetch_row($q3);
11 $mon .= "... $courses[@] ... $teachers[0] ,@
12 ce
13 break;
14 | —>{case 'T}:
15 $g3 = mysqli_query($db,
"SELECT fname, lname FROM teachers
[WHERE teacherid = $courses[1]}+
16 $teachers = mysql_fetch_row($q3);
17 $tue .= "... $courses[@] ... $teachers[0] ,9
18 S
19 break;
20 [case W]:
21 e
22 }
23 111}

24 $tablerow = $mon."</td>".$tue."</td>".$wed."</td>"; 9
25 print($tablerow);

Fig. 1. Simplified Code Snippet from SchoolMate [24].

a database and input. This is a typical scenario in practice,
according to our conversations with industry collaborators.
Specifically, a real-world database contains various privacy-
sensitive data, making it difficult to be shared for analysis and
testing purposes. Moreover, inputs that can exercise various
program paths are also difficult to obtain [21]-[23].

II. MOTIVATING EXAMPLE

In this section, we use a real-world web solution called
SchoolMate [24] to illustrate how SYNTHDB synthesizes a
database for better security testing. SchoolMate [24] is de-
signed to manage classes, teachers, and students for schools.

Goal. We aim to synthesize a database with desirable content
so that when we use a dynamic analysis tool that can identify
security vulnerabilities, it can reach (potentially vulnerable)
program statements that require certain database records. In
particular, we aim to do it without requiring (1) concrete input,
(2) an initial database, and (3) any SQL query traces from the
users, as those are typically not available in practice.

Vulnerable Code under Testing. Figure 1 shows a simpli-
fied code snippet from VisualizeRegistration.php which
displays a student’s weekly schedule. There are three vulnera-
bilities in this code snippet. First, there are two SQL injection
vulnerabilities via ‘¢ POST’ variables at lines 1 and 3 (Q).
Second, there is an XSS (Cross-Site Scripting) vulnerability
at lines 11, 17 ,and 24~25 (@). Specifically, an attacker
can inject a malicious code snippet (i.e., JavaScript code) as
‘fname’ and ‘lname’ in the teachers table (representing
the first and last name of a teacher respectively) through
manageTeachers.php and AddTeacher.php (we omit the
two PHP files’ source code due to the space limit). They are

Table “courses”

Table “registrations” Table “teachers”

courseid coursename teacherid semesterid sectionnum dotw regid studentid courseid teacherid fname Iname
0 nulla 37 45 ndnn pvcr 0 10 72 0 Hailie Senger
1 maxtime 27 41 wwdx epox 1 93 8 1 Baby Larson
2 aut 61 62 Tisq Ibnd 2 59 50 2 Stanley Schowalter
(a) Synthesized Database leveraging the Database Schema
Table “courses” Table “registrations” Table “teachers™
courseid coursename teacherid semesterid sectionnum dotw regid studentid courseid teacherid fname Iname
0 Waited 1589 202101 Paren 12=xe 0 12 0 0 Room was
12 Student 1589 202101 While H+!lw 1 12 12 1 Shepherd Crash
78 televison -428 202101 Parent kzUt8 2 12 78 2 student Absent
(b) Synthesized Database leveraging the Database Schema and Query Traces
Table “courses” Table “registrations” Table “teachers”
courseid coursename teacherid semesterid sectionnum dotw regid studentid courseid teacherid fname Iname
0 Althea 0 202101 Sherman M 0 12 0 0 Vaughan Gilmore
1 Maryam 1 202101 Mckinney T 1 12 1 1 Hedley Weeks
2 Leonard 2 202101 Roberts w 2 12 2 2 Victor Wiley

(c) Synthesized Database by SYNTHDB

Note: Orange-colored cells indicate the keys of the tables. Red colored values are undesirable values while green colored values are desirable.

Fig. 2.

fetched (at lines 10 and 16), injected (at lines 11, 17, and 24),
and eventually delivered to the client via print () at line 25.

Challenges. In this example, multiple conditions in loops (at
lines 2, 4, and 6) and a switch statement (at line 7) depend
on a database. If the database does not contain records that
can satisfy the conditions, parts of the programs guarded by
the conditions will not be executed and analyzed. For example,
running this program without a database would not be able to
exercise the loop body between lines 2~23, failing to test the
vulnerable statements (lines 3, 11, and 17).

Existing Database Synthesizing Techniques. Figure 2 shows
examples of the synthesized database by two state-of-the-
art techniques [18], [25]. Note that existing techniques re-
quire concrete input to run the program for analysis, e.g.,
to gather SQL query traces. Hence, we provide concrete
values ‘12’ and ‘202101° for ‘¢ POST["student"]’ and
‘¢ POST["semester"]’ to obtain SQL query traces for [18].

1) Database Schema-based Synthesizing: Figure 2-(a)
shows an example database generated by techniques focusing
on database schema. Note that they do not leverage the
provided input and program execution, ignoring the ‘12’ and
‘202101” for ‘studentid’ and ‘semesterid’. The numbers
and strings in the synthesized database are randomly generated.
For some values (e.g., ‘fname’ and ‘Ilname’ in the teachers
table), they randomly choose a value from a predefined list
templates (e.g., a list of fake names). Unfortunately, running
the program with Figure 2-(a) would not pass line 2, since
there is no database entries with ‘studentid=12’.

2) Query-based Synthesizing: Figure 2-(b) shows an ex-
ample database reconstructed by techniques leveraging both
SQL query traces from concrete executions and the database
schema. Observe that ‘semesterid’ in the courses table and
‘studentid’ in the registrations table have the values of
the provided concrete input (i.e., ‘202101’ and ‘12’). This is
because the technique’s analysis is based on the SQL query
traces generated from the execution with the concrete input.
Moreover, the synthesized database has the same set of values
for ‘courseid’ in the registrations and courses tables,

Generated Synthetic Databases by Existing Techniques and SYNTHDB.

to satisfy the WHERE clause’s condition at line 3. Specifically,
the technique obtains a query trace at line 3 where the value
of ‘$registrations[0]’ is a randomly generated number
inserted in the regsitrations table. To satisfy condition
‘courseid = $registrations[0]’ in the WHERE clause at
line 3, it inserts another database entry with the value of
‘$registrations[0]’ as ‘courseid’, resulting in the two
tables have entries with the same ‘courseid’ values.

Running the program with the same input and the syn-
thesized database can pass the first and second while loops
(lines 2 and 4). For example, if the first query (at line
1) returns the first row of the registration table (i.e.,
regid=0, studentid=12, and courseid=0), it satisfies the
WHERE clause at line 3. Then, the second query at line 3 returns
the first row of the courses table.

However, it does not satisfy the switch’s conditions (at
lines 8, 14, and 20) which require the values of dotw' to have
one of the ‘M’, ‘T’, and ‘W’ characters”. As shown in Figure 2-
(b)’s courses table, dotw’s values are random strings, as they
do not analyze how the program uses the values of dotw.

SYNTHDB: Program Analysis based Database Synthesiz-
ing. In addition to the database schema and queries, SYNTHDB
takes program semantics into account, to synthesize a database
that can satisfy the various program and query conditions so
that it can help exercising more code and behaviors of the
program under testing. Figure 1-@~@ points out key queries
and program statements analyzed by SYNTHDB to satisfy all
the conditions in the motivating example.

We use a concolic execution engine to run the program and
track values returned from a database. During the execution,
we conduct a few different analyses. First, SYNTHDB identi-
fies and analyzes conditions and relations between database
fields in the query to infer desirable values for the fields.
Second, if a variable is used in creating queries, SYNTHDB
explore program paths that define the variable through concolic

"“dotw means ‘day of the week’
2‘M’, ‘T’, and ‘W represent ‘Monday’, ‘Tuesday’, and ‘Wednesdays’

analysis, to identify possible values of the variable in the
query. By analyzing program conditions related to the variable,
SYNTHDB can infer constraints of desirable database records.
Third, SYNTHDB tracks values returned from a database
and analyzes how they are used in the program. Specifically,
predicates and loop conditions depending on values returned
from databases are analyzed to infer desirable database records.

SYNTHDB on the Motivating Example. Figure 1 shows
how our technique reconstructs the database. First, SYNTHDB
identify that the first query’s return ($q1) is used in the
second query’s WHERE clause (@) by tracking $q1. It reveals
the relationship between the two tables registrations and
courses. Specifically, it indicates that there should exist
database entries with the same ‘courseid’ in the two tables.
SYNTHDB leverages this to correctly generate the ‘courseid’
values in the registrations table.

Second, the record returned from the second query (at
line 3, ‘92’ and ‘$courses’) are also tracked. The value of
‘dotw’ is propagated to ‘$days’ through preg split() (at
line 5, @), and used in the switch (at line 7, €). SYNTHDB
identifies desirable values for ‘dotw’ (‘M’, ‘T’, and ‘W’) from
the case statements’ conditions (lines 8, 14, and 20).

Third, SYNTHDB identifies that ‘teacherid’ from the
courses table is used in the third and fourth queries (at
lines 9 and 15, @ and @), suggesting that there should exist
database entries with the same ‘teacherid’ value in the
two tables (courses and teachers). Observe that values
of ‘teacherid’ in the courses and teachers tables are
overlapping. They both have ‘0°, ‘1’, and ‘2’ as shown in
Figure 2-(c). However, in Figure 2-(b), values of ‘teacherid’
in the courses table (‘15689’ and ‘-428’) do not overlap with
the values in the teachers table (‘0°, ‘1’, and ‘2’).

Summary. The synthesized database by SYNTHDB, presented
in Figure 2-(c), contains all the desirable database entries,
allowing to cover all the program statements shown in Fig-
ure 1. This test DB will provide a better coverage for further
dynamic analysis, such as security scanning [13], [26]-[32] or
fuzzing [20], [21] (Details in Section IV).

III. DESIGN AND IMPLEMENTATION

SYNTHDB aims to synthesize a comprehensive database
with integrity, that can help exercise program paths dependent
on the database. In our context, (1) a comprehensive database
means a database containing sufficient entities satisfying the
path conditions of the program under test. (2) A database of
integrity means that records in the database are feasible and
do not conflict with the integrity rules [33] of the program and
database. SYNTHDB achieves the properties through the three
components in Figure 3: (1) the concolic execution engine
exploring execution paths of a target program (Section III-A),
(2) the constraint identifier collecting database constraints
related to the comprehensiveness and integrity of the database
(Section III-B), and (3) the database generator synthesizing a
database by solving the constraints (Section III-C).

A. Path Exploration via Concolic Execution

We first leverage concolic execution to obtain a set of
inputs that can cover diverse program paths. Our concolic

DB-centric PHP Existing Dynamic Analysis Test
Application Techniques for PHP
(e.g., Fuzzer, Dynamic Scanner) Database
A
4 v
. SQL Parser .
Test Record
=30
Identifier
Constraint
Constraint Solver (Z3*)
Solver (Z3*)

Test DB Generator
Concolic Execution

Constraints

1. Schema

2. Query-condition

3. Pre-query

4. Post-query

5. Synchronized-query

SYNTHDB: Synthesizing Database via Program Analysis

Fig. 3. Overview of SYNTHDB (¥Z3 solver [34]).

execution engine is based on Vulcan Logic Dumper [35],
which is an extension of Zend Engine [36]. Similar to other
state-of-the-art concolic execution techniques, we concretely
execute a PHP program and collect the path constraints during
the execution. We then use the Z3 solver [34] to obtain
additional inputs that can satisfy the uncovered path conditions.

Variables of Interest. SYNTHDB’s concolic execution engine
tracks the propagation of (1) inputs from remote users (e.g.,
$ POST or $§ GET) and (2) variables holding data returned
from database (e.g., returns of mysqli query()).

Incremental Path Constrain Solving. We obtain a path con-
dition that can exercise an unexplored path by negating the last
branch condition of a previously explored path. Unfortunately,
we encounter an excessive number of constraints due to a
large number of program paths. Solving them all requires
significant time. To address this problem, we leverage our
observation that many program paths overlap with each other
as well as their constraints. To this end, we identify and
break down the overlapping constraints and cache resolved
constraints’ results. In particular, we leverage the cache to
incrementally solve the constraints. When we encounter a set
of constraints including already resolved constraints, we solve
unresolved (or not cached) constraints and then concatenate the
new solution to the cached solutions, updating the cache. This
incremental approach essentially mitigates the path explosion
problem during the path exploration.

Terminating Condition. Since we aim to explore all possible
execution paths, it often creates a number of executions,
taking a long time to finish the analysis. Hence, our analysis’s
terminating condition is either it explores all execution paths
or reached the time limit of 10 hours.

Algorithm. Due to the space, we provide an example of how
SYNTHDB handles non-trivial path constraints and a complete
algorithm of concolic execution in Appendix VII-A and VII-D.

B. Identifying Database Constraints via Concolic Execution

Database Constraints. To synthesize a comprehensive
database with integrity, we define and collect five types
of database constraints: (1) Schema Constraints, (2) Query-
condition Constraints, (3) Pre-query Constraints, (4) Post-
query Constraints and (5) Synchronized-query Constraints.
Note that except for the schema constraints which are directly
derived from the database schema, the other four database
constraints are inferred from interactions between the SQL
schema, queries, and program code. Specifically, we focus on
analyzing data- and control-dependencies in and between SQL

queries and program code by leveraging our concolic execution
engine. Next, we explain each constraint with examples.

1) Schema Constraints: Database schema defines the struc-
ture of a database to ensure database operations (e.g., data
insertion and updating) are performed in a consistent way with-
out violating the integrity of database records. The database
integrity requires the records to satisfy three properties:

1. Structural properties between database fields (inferred
from KEY, PRIMARY KEY, and UNIQUE KEY keywords).

2. Value range properties (from data types, e.g., INT and
DATETIME, value specifications, e.g., AUTO INCREMENT,
and value filtering keywords, e.g., CHECK).

3. Table relationships via foreign keys (i.e., ‘FOREIGN KEY’).

Database schema files are written in Data Definition Lan-
guage (DDL). SYNTHDB uses JSQLParser [37] to extract
databases’ structures and specifications.

Challenges. A single definition may lead to multiple (implicit)
constraints. For instance, PRIMARY KEY implies the value is (1)
not null and (2) unique within the table. The DATETIME type in-
dicates that the value is a string with a specific format. Hence,
we model each definition and corresponding constraints. In
addition, during the constraint extraction analysis, we consider
multiple tables’ definitions together (e.g., FOREIGN KEY spec-
ifies properties of another table).

CREATE TABLE user (userid int(11) NOT NULL auto_increment)

o (a) SQL Schema e o

type(user.userid)=int /\ 1<=var(user.userid) /\
var(user.userid)=prev(user.userid)+1
(b) Extracted Constraints
Fig. 4. Extracting Schema Constraints from Database Schema.

Example. Figure 4-(a)’s schema provides three constraints in
Figure 4-(b). @ From the INT type, we obtain the constraint
that the field’s type is an integer. ‘auto increment’
suggests that its default initial value is 1 and it will always
have a positive value. €) ‘auto increment’ also indicates
that the value will be always incremented by 1.

2) Query-condition Constraints: We analyze how the out-
come of a query is handled (or processed) before it is returned
to the PHP program. We focus on SQL clauses that operate on
the query results such as WHERE for filtering and JOIN for com-
bining. The query-condition constraints provide information on
(1) possible values of a field (or column) and (2) relationships
between database records within/across tables.

Challenges. When SQL queries are composed, program vari-
ables can be used to specify conditional clauses in the query
as shown in Figure 5-(a) (see $regexpr). It leads to two
challenges:

1. The conditionals depend on the variables’ values that
are dynamically determined at runtime: We handle this
by leveraging our concolic execution engine to identify
possible values to the variable used in the query. In
particular, we conduct additional analysis on the con-
straints for variables used in queries, regardless of the path
exploration (i.e., we analyze them even if it does not help
explore new program paths). We then collect all the traces
of the executed queries and use JSQLParser to parse them.

2. The semantics of the query depends on the variables’ con-
crete values: We solve this by analyzing the concretized

values in the traces with the context. For example, a string
ends with ‘%’ under like as shown in Figure 5-(b) implies
it is a regular expression. We model the value patterns and
contexts to extract query-condition constraints.

mysqli_query("SELECT id, name, points FROM tblusers
JOIN tblfree ON tblusers.id=tblfree.userid
WHERE name like '$regexpr'");

(a) PHP Code Invoking a SQL Query
SELECT id, name, points FROM tblusers

JOIN tblfree ON tblusers.id=tblfree.userid
WHERE name like ‘player’%’

(b) Executed SQL Query Trace >} o
var(tbluser.id) = var(tblfree.userid) &+
var(tbluser.name) = Synth_RegEx("player%")

(c) Extracted Constraints

Fig. 5. Extracting Query-condition Constraints.

Example. Figure 5 shows how SYNTHDB extracts query-
condition constraints from a PHP statement invoking a SELECT
query. Note that SYNTHDB works on an executed SQL query
trace, meaning that all the PHP program variables and func-
tions are concretized as shown in Figure 5-(b): $regexpr is
concretized to ‘player’’ as highlighted in red. We first extract
a relationship between tbluser.id and tblfree.userid
from the JOIN clause (0). In addition, from the WHERE
clause, we obtain a constraint that provides the value range
of tbluser.name. In particular, the 1ike keyword is used to
filter records that match the given regular expression. SYN-
THDB converts it to a user-defined function Synth RegEx ()
that handles regular expressions for the like keyword (@)).

3) Pre-query Constraints: PHP programs typically com-
pose SQL queries by concatenating program variables (e.g.,
holding values or field/table names) and constant SQL key-
words (e.g., INSERT and SELECT). The composed queries are
passed to SQL functions such as mysqli query(). Note that
those variables are defined before a query is constructed and
often go through various computations and predicates, which
essentially confine the data values in the query. Pre-query
constraints are essentially inferred by analyzing the computa-
tions and predicate conditions, implying possible values (e.g.,
ranges or patterns) of database fields.

Challenges. There are two prominent challenges. First, there
are multiple sources of constraints from program code and
queries: (1) predicates on variables restrict them to not have
certain values along the path, (2) there are PHP functions
that mutate variables’ values (e.g., sanitizing), constraining the
values, and (3) SQL functions such as ‘PASSWORD()’ also
process values before they are stored to the database. We
handle them by modeling each source of constraints. Second,
constraints from different sources, i.e., program code and SQL
query, are combined and accumulated along the paths. Hence,
errors in tracking and integrating constraints may lead to
substantial analysis failure down the road. To handle this, we
make constraints from different sources to be compatible.

Example. Figure 6-(a) shows a program that sanitizes (lines
1~3) and validates input values (lines 4~6) before it inserts
the values into the database at line 7. Figure 6-(b) shows the
extracted constraints from the SQL query at line 7 (€)), the
predicates at lines 4~6 (@), and input sanitization functions
at lines 1~3 (9). Observe that we create symbolic variables

$u = mysql_real_escape_string($_POST['user']);

$e = mysql_real_escape_string($_POST['email’]); 9

$p = mysql_real_escape_string($_POST['pass']);

if (preg_match("~[[:alnum:]_]{4,20}$", $u) &&
preg_match($emailvalidation, $e)) && 9
preg_match("~[[:alnum:]]{4,20}$", $p)) {

$mysqldb->query("INSERT INTO authors (User, Email, Pwd, Reg)
VALUES ('$u', '$e', PASSWORD('$p'), Nowo)");o

NouhwN R

(a) PHP Code Invoking a SQL Query

9 authors.User == t1 /\ authors.Email == t2 /\ var(authors.Pwd)

10 | == SQL.PASSWORD(t3) /\ var(authors.Reg) == SQL.NOW() /\
11 | var(tl) == Synth_RegEx("~[[:alnum:]_]{4,20}%$") /\
12 | var(t2) == Synth_RegEx("~[[:alnum:]][a-z0-9_.-]*@[a-z0-9.-]+\.

[a-z]{2,4}$") /\
13 | var(t3) == Synth_RegEx("~[[:alnum:]]{4,20}%$") /\
14 | var(tl) == Synth_mysql_real_escape_string($_POST[‘user']) /\
15| var(t2) == Synth_mysql_real_escape_string($_POST['email’]) /\
16 var(t3) == Synth_mysql_real_escape_string($_POST['pass'])
(b) Pre-query Constraints

Fig. 6. Extracting Pre-query Constraints.

t1~3 for program variables used in the query, $u, $e, and $p,
respectively. SQL built-in functions are handled by defining
our own functions that emulate the original functions (e.g.,

SQL.PASSWORD() and SQL.NOW() to generate a hashed
password and return the current time, respectively). Observe
that the predicates at lines 4~6 have regular expressions which
are directly translated into the constraints at lines 11~13, using
Synth RegEx () that generates a string value that follows the
given regular expression input.

4) Post-query Constraints: Typically, results of SQL
queries (e.g., return of mysqli query()) are processed by
program code (e.g., predicates and functions). For example,
programs validate and filter invalid returned data with respect
to the database field’s semantics (e.g., negative values for an
age field). As such, program statements operating on data
returned from queries can provide potential values (or value
ranges) in the database. To this end, we infer post-query
constraints by analyzing program code dependent on the results
of queries.

Challenges. To identify post-query constraints, SYNTHDB
conducts the taint analysis from the return values of SQL query
functions (e.g., mysql query()). Since SYNTHDB analyzes
every statement with tainted variables to obtain post-query
constraints, over-tainting causes significant false positive cases
for post-query constraints’. While overall, we conduct con-
servative taint analysis, for post-query constraint analysis, we
configure our taint analysis particularly more conservatively
(e.g., do not taint a variable if it is only partially affected by
an already tainted variable, such as through bitwise, logical,
and comparison operators).

Example. Figure 7-(a) shows a code snippet calculating letter
grades from students’ score (students.currpoints) with
respect to the pre-configured percentage value stored in the
database (courses.aperc) for each letter grade. To
extract the constraints in Figure 7-(b), SYNTHDB tracks all
the variables holding values returned from queries such as
$courses and $students, via taint analysis. On a predicate
condition that uses tainted variables (line 7), SYNTHDB cre-
ates constraints from the tainted variables (@) along the data

3Over-tainting in the pre-query constraint analysis also causes false posi-
tives, while its impact is less critical than in the post-query constraint analysis.

[

$sqll = mysql_query("SELECT coursename, points, aperc, bperc,
. FROM courses"); §
while($courses = mysql_fetch_row($sqll)){
$sql2 = mysql_query("SELECT currpoint |
$students = mysql_fetch_row($sql2);
if(!$students) {i ; i |
$perc = ($students[@] / $courses[1]); 11)
if ($perc >= $courses[2]) $grade = 'A’; i
A

1 12}
(a) PHP Code Invoking a SQL Query
10 var(perc) = var(students.currpoints) / var(courses.points) /\
var(perc) >= var(courses.aperc)s
11 | var(perc) = var(students.currpoints) / var(courses.points) /\
var(perc) < var(courses.aperc)

ROM stuéﬁents A

VWK NOURWN

(b) Post-query Constraints

Fig. 7. Extracting Post-query Constraints.

dependencies of the variables (line 6,). We also obtain
the constraints from the negation of the predicate condition to
cover the else condition of the predicate such as the constraints
at line 11.

1 mysql_query("INSERT INTO courses (semesterid, coursename, teacherid)
VALUES('$_POST[semester]', '$_POST[title]', '$_POST[teacher]')");
2 $coursel = mysql_insert_id();
3 mysql_query("INSERT INTO courses (semesterid, coursename, teacherid)
o VALUES('$_POST[semester2]', '$_POST[title]', '$_POST[teacher]’)”);9
4 $course2 = mysql_insert_id();

5 | | mysql_query("UPDATE courses SET seccourseid = $course2 3]
WHERE courseid = $coursel");
6 mysql_query("UPDATE courses SET seccourseid = $coursel ¢)

WHERE courseid = $course2");

(a) PHP Code Invoking SQL Queries Consecutively

7 | “¢var(courses.semesterid) != prev(courses.semesterid)) \/
(var(courses.coursename) == prev(courses.coursename) /\
var(courses.teacherid) == prev(courses.teacherid)),

8 var(courses.seccourseid) == prev(courses.courseid)+1\/
var(courses.seccourseid) == prev(courses.courseid)-1

(b) Synchronized-Query Constraints

Fig. 8. Extracting Synchronized-query Constraints.

5) Synchronized-query Constraints: A program may exe-
cute a set of SQL queries always together, meaning that the
values between the queries will appear consistently on the
database. Moreover, if a program variable is used in such
queries on multiple tables, it suggests an implicit relationship
between the tables (e.g., multiple tables have correlated fields).
For example, assume the two consecutive queries:

1. INSERT into tableA (x, ...) VALUES ($id, ...);
2. INSERT into tableB (¥, ...) VALUES ($id, ...);

By observing that $id is used in both queries, we infer
the correlation between tableA.x and tableB.y (i.e., they
are identical). To this end, we obtain synchronized-query
constraints by identifying queries in the same or subsequent
basic blocks, which will be always executed together.

Challenges. There are two major challenges. First, beyond
the queries executed within the same basic block, queries in
multiple basic blocks may always execute together if the basic
blocks are always executed along every path. To solve this,
we compute dominators [38] from the control flow graphs
of the target program. Given queries of a basic block, all
the dominator basic blocks’ queries are executed together.
Second, values of database fields between the queries executed
together should be analyzed to identify how the queries are
synchronized. For instance, two related values can be stored
in two different tables. We solve this by comparing all the
dependencies between the values used in the queries.

Program Analysis via Concolic Execution Database Constraints Synthesized Database
(Section III-A/B) (Section III-B) (Section III-C)
1| if ($price > 1000) $discount = 20; Schema | type(pid, discount) = int pid | discount
2 else if ($price > 500) $discount = 10;
3| $r = mysqli_query("INSERT INTO tblevent(pid, discount) Pre-query | {discount = 20} V/ {discount = 10} 1,2,3 020
VALUES ($pid, $discount)"); (b) Constraints for tblevent 110
o . " . . . f) tblevent
4| $r = mysqli_query("SELECT id, points, job Schema | type(id, points) = int, type(job) = string ®
FROM tblusers - id oints iob
WHERE points > 100"); Query-cond. | {points > 100} 4 p J
5| while($u = $r->fetch_assoc()) { {job = “teacher”} /\ {points < 3000}, 0 101 teacher
6 if ($u['job'] == "teacher" && $u['points'] < 3000) Post-query | 01— <ieacher”} V {points >= 3000} | ° 1] 101 student
70 3 o (c) Constraints for tblusers 2 | 3000 student
8 if($_POST['bonus']==true) { - - - (g) tblusers
9 mysqli_query("INSERT INTO Schema | type(id, point, bonus) = int
tblpoint(id, point, bonus) P p— {point = 100} A {bonus = 1}, a1 id | points bonus
VALUES ($id, 100, 1)"); UEY | {point = 50} A {bonus = 0} b 11 100 1
10 mysqli_query("INSERT INTO tblclaimed(id, tm) K K X
VALUES ($id, curdate())"); Sync-query | {id = tblclaimed.id} 9,10 2 | 50 0
11| } else (d) Constraints for tblpoint (h) tblpoint
12 mysqli_query("INSERT INTO
tblpoint(id, point, bonus) Schema | type(id) = int, type(tm) = date id | tm
VALUES ($id, 50, ©)"); Sync-query | {id = tblpoint.id} 9,10 1 | 2022-07-01

(a) Source code

(e) Constraints for tblclaimed (i) tblclaimed

Fig. 9. Overall Procedure of Synthesizing Database (Highlighted columns in (b)~(e) present the source lines where we extracted constraints from).

Example. Figure 8-(a) shows a program executes four SQL
queries consecutively. While the two consecutive queries have
different values for courses.semesterid (@), they share
variables for the next two fields: courses.coursename and
courses.teacherid (@)). The constraints at line 7 sum-
marize the relationship. The order of the two queries are
represented by prev (). In addition, at lines 5 and 6, it updates
the two inserted rows at lines 1 and 3, so that each of the
record will have the other record’s id in seccourseid. The
constraints at line 8 captures this relationship between the two
consecutive queries (&) and 9).

C. Synthesizing Database

We synthesize a database by solving all the database con-
straints collected in Section III-B. Specifically, we iteratively
solve the collected constraints to generate concrete data for
corresponding fields in tables.

1) Overall Procedure: Figure 9 shows an end-to-end exam-
ple from the source code to the synthesized database. Specif-
ically, Figure 9-(a) shows the target PHP program, and our
concolic execution engine identifies database constraints from
the highlighted parts of the code and queries. Figure 9-(b)~(e)
show identified database constraints from the example. Its third
column shows which source code line numbers are analyzed
to obtain the corresponding constraints. Lastly, Figure 9-(f)~(i)
present the synthesized database. In the next paragraphs, we
illustrate how SYNTHDB synthesizes each table of a database.

Synthesizing tblevent. Observe that $discount is defined
at lines 1~2, and used in the INSERT query at line 3, sug-
gesting the relationship between tblevent.discount and
$discount. Then, from the lines 1~2, the value of $discount
(and tblevent.disount) must be one of the two values:
20 or 10. This is translated to the pre-query constraints in
Figure 9-(b). Finally, SYNTHDB generates database records
that satisfy the constraints as shown in Figure 9-(f). Note that
we do not have constraints for tblevent.pid. By default, we
use any value from a given data type if a field have no value
constraints. In this case, we use 0 and 1.

Synthesizing tblusers. A query at line 4 leads to a query-
condition constraint in Figure 9-(c). In addition, the predicate
at line 6 uses the data returned from the query at line 4 as it
compares values of the job and points fields with a string
teacher and 3,000. Specifically, the first constraint is directly
obtained from the predicate condition, while the second con-
straint is obtained by negating the predicate conditions which
essentially indicates its else branch. To this end, SYNTHDB
generates records that satisfy the all the constraints as shown
in Figure 9-(g).

Synthesizing tblpoint and tblclaimed. Observe two
queries at lines 9 and 12 insert two records to the
database with constant values for point and bonus. They
lead to the pre-query constraints in Figure 9-(d). In ad-
dition, lines 9~10 have two queries that are always exe-
cuted together, resulting in the synchronized-query constraints:
tblpoint.id=tblclaimed.id. Note that this also leads to
another synchronized-query constraints in tblclaimed (Fig-
ure 9-(e)). Lastly, we generate records satisfy the constraints
in Figure 9-(h) and (i). First, the two records in tblpoint
is to satisfy the first pre-query constraint of tblpoint. The
first records in tblpoint and tblclaimed have the same id
value, satisfying the synchronized-query constraint. Note that
to satisfy synchronized-query constraints describing inter-table
relationships, multiple records across tables are needed.

Domain-Specific Value Generation. We use randomly gen-
erated values for database fields that satisfy collected con-
straints. Purely random values may work fine with automated
analysis tools, but they often decrease the readability of the
user, especially for certain fields such as “name”, “email”,
and “phone number”. To generate a more realistic and readable
database, we apply simple heuristic techniques for those fields,
similar to existing techniques [18], [25].

2) Implications of Constraints: The five database con-
straints are extracted from different sources and have differ-
ent implications for generating database records. Specifically,
schema and pre-query constraints are used to define strict
rules that confine the database. They are used to restrict the
value range of each field in a table, meaning that all items

in a generated database must satisfy the constraints. Other
constraints, however, such as query-condition, post-query, or
synchronized-query constraints, are not as strict as the schema
and pre-query constraints. They essentially indicate that there
exist some database records satisfying the constraints, but not
all records must satisfy. While they are less strict, since there
are predicates that depend on those constraints, they are crucial
in covering more program paths. Query-condition constraints
are similar to post-query constraints, as we need at least one
record to get a valid return from a SELECT query.

Conflicting Constraints. Multiple constraints may have con-
flicting definitions that cannot be satisfied within a single
database. For example, as shown in Figure 10, a PHP program
that has a if and else blocks where the first block (@,
line 3) is executed when the SELECT query returns less than
100 records while the other block (@, line 5) requires the
query to return 100 or more than 100 records. In other words,
with a single database, only one of the two blocks can be
covered, meaning that the constraints for the two blocks are
conflicting. We discuss other sources of conflicting constraints
in Appendix VII-F due to the space limit.

1| $r = mysqli_query("SELECT ... FROM ... WHERE ...");
2 | if(mysqli_num_rows($r) < 100) {

B] cee o requiring a database with less than 100 rows

4| } else {

5 . o requiring a database with more than or equal to 100 rows
6

¥

Fig. 10. Program code requiring two constraints that are conflicting.

Since conflicting constraints cannot be satisfied within a
single database, multiple databases need to be used. However,
in this paper, we focus on a single database that can satisfy
the most number of constraints. Hence, we choose a database
with the least number of conflicting constraints as output. We
manually investigate all the conflicting constraint cases and we
miss 8.4% of code coverage and 8.7% of query coverage on
average in our evaluation, meaning that our method of choos-
ing the database satisfying the most constraints is effective in
practice. We leave handling conflicting constraints as our future
work by generating multiple versions of tables or databases.

IV. EVALUATION

We evaluate SYNTHDB with 17 real-world PHP appli-
cations and compare the quality of the synthesized database
by SYNTHDB with three state-of-the-art techniques: EvoSQL
[18], DOMINO [25], and Datafaker [39]. We then execute a
dynamic analysis technique for PHP on top of each generated
database and compare the observed code and query coverage
(Section IV-A). We also conduct three types of security anal-
ysis to measure how the test databases affect security testing,
including the vulnerability detection testing with an active vul-
nerability scanner, Burp Suite [19] (Section IV-B1), the reacha-
bility test against reported vulnerabilities (Section 1V-B2), and
integrating SYNTHDB with two fuzz testing tools, WFuzz [20]
and webFuzz [21] (Section IV-B3).

PHP Applications for Evaluation. As presented in Table I,
we use 17 real-world PHP applications. The first column shows
ids (i.e., identifiers) that we will use to refer to applications
throughout the section for brevity. The next column show
the application name and version, followed by two columns
presenting the number of PHP files and the logical lines of code

(LLOC). The next two columns show the number of tables and
columns, and the following three columns show the number
of each INSERT, UPDATE, and SELECT query, respectively. The
tenth column shows the total number of those three types SQL
queries and the last column presents a brief description of each
application. In total, the selected applications include 21,256
PHP files, 771k PHP LLOC, and 10,144 SQL queries.

— Selection Criteria: In choosing the target database-backed
PHP applications, we consider categories of web applications
where the PHP and database are popularly used, including
management systems, online forums, eCommerce platforms,
web games, and Content Management System (CMS). More-
over, we also consider the frequency and diversity of SQL
queries used in the programs (Details in Section VII-C).

1. We choose twelve applications (s1~s8, s12, and s15~s17)
out of 28 applications that are frequently evaluated by
previous work [5], [56]-[58]. Specifically, among 28 pro-
grams, we exclude 7 applications that have limited database
interactions (less than 30 queries, and 9 applications use
database engines or PHP versions that SYNTHDB does not
support (e.g., MariaDB or PHP version<7).

2. We additionally include five popular real-world applications

(s9~s11, s13, and s14) that have large codebase. They are
chosen as follows. First, we search for the most popular
projects from three categories where the DB-backed PHP
is dominant: CMS, eCommerce platform, and online forum.
Then, we select the most installed [S9] PHP project for each
category. We select WordPress [50] and OpenCart [48] for
the CMS and eCommerce platform categories respectively.
For the online forum category, we select two applications,
phpBB [46] and SMF [51], as they have almost the same
number of installations (47,631 for phpBB and 47,716 for
SMF) as of July 2022.

— Summary of Existing Techniques: We compare our technique
with three state-of-the-art test database generation techniques,
DoMINO [25], Datafaker [39], and EvoSQL [18]. Table II
summarizes the advantages and limitations of them, focusing
on which database constraints are supported. First, DOMINO
[25] and Datafaker [39] focus on analyzing database schema
to synthesize test data that follow integrity rules. While
Datafaker uses domain-specific value generation for creating
realistic looking test data, both DOMINO and Datafaker do
not support four database constraints (i.e., query-condition,
pre-query, post-query, and synchronized-query constraints).
Second, EvoSQL [18] is a query-aware technique that lever-
ages the genetic algorithm to generate test data. However,
it has limited support for the query-condition constraints,
handling the SELECT query only. As shown in the last column,
SYNTHDB supports all five database constraints, as well as
domain-specific value generation (Section III-C1).

— Configurations of Existing Techniques: During our eval-
uation, we try our best to fairly treat existing techniques.
Specifically, EvoSQL takes a list of concrete queries and a
schema. We collect all concrete queries from our concolic
execution runs for each application and feed them to EvoSQL
to generate test databases. We acquire the implementation of
DoMINO and Datafaker from their official sites [39], [60] and
feed the database schema for each PHP application to generate
test databases. Note that SYNTHDB improves the effectiveness
of testing techniques because (1) our concolic execution engine

TABLE 1.

LiST OF PHP APPLICATIONS.

Source Code Database # SQL Query
Id Application Description
Files LLOC # Tables # Columns INSERT UPDATE SELECT Total
s1 SchoolMate-1.5.4 [24] 63 1,587 15 95 17 32 214 263 School management system
s2 PHP7-Webchess [40] 29 1,505 7 48 14 20 60 94 Web game
s3 Timeclock-1.04 [41] 63 10,820 8 35 18 19 262 299 Employment management system
s4 Mybloggie-2.1.4 [42] 59 3,053 4 24 5 5 74 84 Content management system
sb Faqforge-1.3.2 [43] 15 302 2 11 3 5 22 30 Online forum
s6 Wackopicko-1.0 [44] 49 720 13 60 13 3 24 40 Photo management system
s7 phpBB-2.0.23 [45] 74 10,798 30 277 44 89 244 377
Online forum
s8 phpBB-3.3.8 [46] 1,091 40,612 69 601 64 341 938 1,343
s9 OpenCart-3.0.3.8 [47] 1,932 60,515 136 834 246 111 586 943
Ecommerce platform
s10 OpenCart-4.0.0 [48] 2,866 49,018 142 871 258 118 623 999
s11 WordPress-5.1.2 [49] 901 84,891 12 94 12 32 271 315
Content management system
s12 WordPress-6.0.1 [50] 1,332 110,227 12 94 12 31 264 307
s13 SMF-2.1.2 [51] 316 45,641 73 525 7 270 929 1,206 Online forum
s14 OsCommerce-2.4.0 [52] 422 15,809 49 343 529 10 377 916 Ecommerce platform
s15 CEPhoenix-1.0.7 [53] 1361 23,938 55 369 149 101 436 686 Ecommerce platform
s16 ZenCart-1.5.7 [54] 1,829 74,960 103 848 394 215 1,311 1,920 Ecommerce platform
s17 Drupal-9.0.0 [55] 8,854 237,001 72 544 39 65 218 322 Content management system
Total 21,256 771,406 802 5,673 1,824 1,466 6,860 10,144
TABLE II. COMPARISON WITH BASELINE APPROACHES. L.
observe four programs (s3, s9, sl1, s17) have significantly
DOMINO Datafaker ~EvoSQL ~ SYNTHDB lower than (e.g., more than 10%) the average code coverage.
Schema Constraints However, observe that the code coverage with SYNTHDB
Query-condition Constraints o o =) sypthesmed database are consistently hlg'her than the coverage
Pro-query Constraint o O 0 with databases generated by other techniques.
Post-query Constraint o o o Our manual inspection reveals that there are two major
Synchronized-query Constraint 8] 8] o reasons for those low code coverage cases: (1) code requires
Domain-Specific Value Generation 0 o specific configurations and (2) code requires complex input

B: Supporting SELECT queries only.

solves path constraints, allowing many program paths to be
tested, and (2) synthesized database enables testing tools to
cover more program paths. Unfortunately, existing techniques
that we compare with do not have concolic execution engine,
making it difficult to measure the effectiveness coming from
the synthesized database. To focus on the effectiveness of the
synthesized database, we use our concolic execution engine
(Section III-A) for all the existing techniques. In other words,
all the experiments in Section IV-A, Section IV-C, and Sec-
tion IV-B2 are conducted on top of our concolic execution
engine with test databases generated by each technique.

A. Coverage Evaluation with Test Databases

To evaluate the quality of test databases generated by dif-
ferent techniques, we measure code and SQL query coverages
while we execute PHP applications with the concolic execution
engine with 10 hours of timeout. As a baseline, we execute
each application with a default database that is shipped with
the application or generated during the installation.

Code Coverage. We use Xdebug [61] to measure the code
coverage. Figure 11(a) shows the code coverage result. The
concolic executions with SYNTHDB-generated test databases
achieve the best code coverage (63.9% on average). On aver-
age, databases generated by EvoSQL, Datafaker, and DOMINO
achieve 48.9%, 38.9%, and 38.3%, respectively. The execu-
tions with a default DB achieves 33.0%. Among them, we

formats which is challenging for the SMT solver. First, a
program may have modules that are unreachable when using
the default configuration. To cover those code, one needs to
install and configure additional extensions, while in our eval-
uation, we run all the programs with the default configuration
and extensions/plug-ins. For instance, 11.3% of the uncovered
code of OpenCart belongs to multi-language support modules,
whereas only the English module is activated by default. Also,
we observe that 63.6% of uncovered code can be activated
only with payment extensions (e.g., Ali-pay or Amazon-pay).

Second, program paths may require complex inputs to be
covered. For example, to cover OpenCart’s email service code,
we need to provide valid values for the Simple Mail Transfer
Protocol (SMTP) service such as host address, username,
password, and port, which are extremely challenging to handle
for SMT solvers.

SQL Query Coverage. We statically scan the code to identify
the SQL queries used in each PHP application, and we leverage
Xdebug to count the executed SQL queries. Queries that return
a valid result without an error are counted as covered. The Fig-
ure 11(b) show that the execution with SYNTHDB-generated
DB can cover 77.1% of SQL queries in PHP applications
while test databases by EvoSQL, Datafaker, and DOMINO can
cover 52.9%, 31.3%, and 30.9%, respectively. We also test the
query coverage with a default database. We observe that most
SELECT and UPDATE queries failed because the target items do
not exist. However, INSERT queries are executed normally, and
SELECT or UPDATE against items inserted by former INSERT

‘ m Default DB

DOMINO = Datafaker mEvoSQL ®mSYNTHDB ‘

100%
75%
50%
25%

0%

sl s2 s3 s4 s5 s6

s7 s8

s9

|||| |||
1

s17

||II ||I| IIII “ll |II| |II| IIII
s10 s11 s12 s13 sl4 s15 sl6 Avg.

(a) Code Coverage

100%
75%
50%
25%

s7

0%

sl s2 s3 s4 s5 s6

II" III' Ill- IIII |III II‘I |III Il‘. III.
s8 s9 s10 s11 s12 s13 s14 s15 s16

|II i II|
1

s17 Avg.

(b) Query Coverage

Fig. 11.
can also be executed and counted as covered.

Out of 10,144 SQL queries in PHP applications, the current
implementation of SYNTHDB failed to cover 2,832 queries.
There are two major reasons for the uncovered queries: (1)
2,173 queries are located in PHP code that we failed to cover
the code (due to the limitation of the default configuration
or inactivated plug-ins), (2) 659 queries are sub-queries that
return empty results and hence are not counted, even if the
statements executing them are technically reached. We further
analyze the uncovered queries regarding their impact on our
analysis. 848 of them contain query constraints that we can
also extract from other already covered queries, meaning that
missing them does not impact our analysis.

Observations. From the coverage evaluation, the major con-
tributing factor of SYNTHDB outperforms existing techniques
is that SYNTHDB supports the post-query constraints and
query-condition constraints. Specifically, the most common
cases that SYNTHDB can cover while others failed to cover,
are the predicates that evaluate values returned from database
queries. Due to page limit, we present the number of each
constraints SYNTHDB derived in Appendix VII-B.

B. Enhancing Existing Security Testing using Test Databases

We evaluate how effectively test databases can aid existing
security testing techniques, using a state-of-the-art vulnerabil-
ity scanner, Burp Suite, and two fuzzers, Wfuzz and webFuzz.

1) Vulnerability Detection with Burp Suite: We use Burp
Suite to demonstrate how SYNTHDB can help vulnerability
detection for database-backed applications. We conduct Burp
Suite’s active scanning (i.e., automated mode) for applica-
tions in Table I with test databases generated by SYNTHDB,
EvoSQL, DOMINO, and Datafaker.

Vulnerability Report Collection. First, we collect vulnerabil-
ity reports for PHP applications listed in Table I, from the CVE
database [62], Exploit Database [63], previous research [64]—
[66], and security reports by application developers4. We man-
ually verify each reported vulnerability to prune out false posi-
tives and uncertain reports that do not provide sufficient details
for the vulnerable code’s location. We collected information of
189 known vulnerabilities from 11 PHP applications, including
126 cross-site scripting (XSS), 27 SQL injection, and 36 other
vulnerabilities (e.g., directory traversal, forceful browsing,

*From public repositories such as GitHub.

10

Code and Query Coverage of SYNTHDB (‘Default DB’ presents an execution with a DB right after the installation. s1~s17 are the ids from Table I).

remote admin addition, and parameter manipulation). Note
that we could not find publicly available vulnerability reports
for six applications: phpBB-3.3.8, OpenCart-4.0.0, SMF-2.1.2,
OsCommerce2.4.0, CE-Phoenix-1.0.7, and Zencart-1.5.7.

We count the number of vulnerabilities reported by Burp
Suite and prune out false positives by manually checking
reported vulnerabilities. Specifically, we leverage Burp In-
truder [67] to generate a specific exploit for each vulnerability
and ensure the detected vulnerability is exploitable. For in-
stance, we forge a request with a generated payload and send
it to the server for input-based vulnerabilities (e.g., XSS, SQL
injection, and file path traversal). Table III shows the number
of known vulnerabilities and the number of vulnerabilities
reported by Burp Suite with each test database. Burp Suite
detects the most number of vulnerabilities when it runs with
the DB-generated by SYNTHDB.

33 New Vulnerabilities Discovered. Notably, with SYN-
THDB, Burp Suite detected 33 previously unreported vulner-
abilities from 5 real-world applications, including 21 XSS
vulnerabilities and 12 SQL injection vulnerabilities. We have
reported the discovered vulnerabilities to the developers with
detailed instructions including how to create the test databases
(as they are not reproducible without a proper database).
Note that Table III does not include results for 5 applications
(i.e., s8, s10, s13, s15, and s16) because they do not have
any known vulnerabilities, and could not detect any new
vulnerabilities. Out of 189 vulnerabilities we collected, Burp
Suite with SYNTHDB failed to detect 25 of them. Our further
analysis shows that 15 of them are vulnerability types that Burp
Suite does not aim to detect [68] (e.g., session/object injection,
logical fault, and authentication bypass). Burp Suite with
SYNTHDB failed to detect the remaining 10 vulnerabilities
for the following reasons: (1) seven of them require additional
external resources, such as local files or network service, (2)
two of them require inputs that the SMT solver could not
handle (e.g., requires a specific HTTP referer format), (3) the
last one requires a specific configuration change.

2) Reachability of Security Vulnerabilities: Although our
experiments with Burp Suite clearly show the effectiveness
of SYNTHDB, the limitation of Burp Suite prevents us from
identifying a number of known vulnerabilities. To further
evaluate how the quality of test databases affects the security
testing and analysis, we conduct more generic tests that do not
rely on a specific tool. Specifically, we conduct a reachability
test against reported vulnerabilities for each application. We

TABLE III. BURP SUITE RESULTS WITH DATABASES

a 5;‘1’1“’“ Default DB DoMINO Datafaker EvoSQL SYNTHDB
s1 80 7 31 31 62 80 (+13)%
s2 18 3 5 5 12 18 (+4)f
s3 8 2 2 2 3 7@
s4 13 3 4 4 8 9 (+8)"
s5 5 3 4 4 5 5

s6 15 5 6 6 8 11

s7 5 1 1 1 3 5

9 3 0 0 0 0 0

s11 23 6 6 7 9 12
s12 15 3 3 3 4 7

s14 N/A N/A N/A N/A N/A N/A (+1)”
s17 4 0 0 0 1 1

— The number in parentheses indicates the number of new vulnerabilities discovered.
— Background color red, yellow, light-green, and green represent 0%~25%, 25%~50%,
50%~75%, and 75%~100% of known vulnerabilities detected, respectively.

#£: Total 93 (13 new vulnerabilities). T: Total 22 (4 new vulnerabilities). F: Total 14
(7 new vulnerabilities). *: Total 17 (8 new vulnerabilities). p: 1 new vulnerability.

TABLE IV. REACHABILITY TEST AGAINST PHP VULNERABILITIES.
Id # Vuln. Default DB DoMINO Datafaker EvoSQL SYNTHDB
s1 80 8 33 33 62 80
s2 18 5 8 8 12 18
s3 8 2 2 2 3 7
s4 13 3 6 6 11 13
sb 5 3 4 4 5 5
s6 15 7 11 11 12 14
s7 5 1 2 2 3 5
s9 3 0 0 0 0 2

s11 23 6 8 9 12 16
s12 15 3 5 5 7 10
s17 4 0 0 0 1 1

Total 189 38 79 80 128 171

(%) (24.9%) (37.7%) (38.1%) (55.3%) (80.9%)

— Background color red, yellow, light-green, and green represent 0%~25%, 25%~50%,
50%~75%, and 75%~100% of vulnerabilities reached, respectively.

execute each PHP application on top of our concolic execution
engine with different test databases to measure how many
vulnerable statements have been covered. Table IV shows a
result. SYNTHDB can successfully reach 80.9% (171 out of
189) vulnerable statements. EvoSQL can cover 55.3% (128
out of 189), Datafaker reaches 38.1% (80 out of 189), and
DOMINO covers 37.7% (79 out of 189). The execution can
only reach 24.9% (38 out of 189) with a default database. We
further investigate the vulnerabilities that SYNTHDB failed to
reach and discuss our findings in Appendix VII-E.

3) Integrating with Fuzzing Methods: We use two popular
fuzzing tools, Wfuzz [20] and webFuzz [21], that are designed
for testing web applications. Figure 14 shows the code
coverage reported by Wfuzz and webFuzz. We use the default
setup for each fuzzing test, and we use the timeout of 10
hours for each test. SYNTHDB-generated database helps to
achieve the best coverage for both fuzzing tools in all the
cases. On average, webFuzz reports 58.6% code coverage
with SYNTHDB'’s database while EvoSQL’s database achieves
47.4%, Datafaker and DOMINO get 37.0%, and the executions
with an default DB achieve only 30.8%. Wfuzz shows 57.3%
code coverage with SYNTHDB, 46.4% with EvoSQL, 36.0%
for both Datafaker and DOMINO, and it covers only 29.9% in

11

m Default DB DOMINO m Datafaker mEvoSQL mSynthDB

s8 s9 s10 sll s12 s13 sl14 s15

100%
75%
50%

25%
0%

s16 s17 Avg.

100% (a) Code Coverage of Wfuzz

s10 s11 s12 s13 sl14 s15 s16 s17 Avg.
(b) Code Coverage of webFuzz

50%
25%
0%

s8 s9

Fig. 12. Code Coverage Results by Existing Fuzzing Tools.
TABLE V. TIME TAKEN TO GENERATE A TEST DATABASE (IN
MINUTE) AND THE NUMBER OF RECORDS GENERATED.
DoOMINO Datafaker EvoSQL SYNTHDB

Time Rec# Time Rec# Time Rec# Time Rec#
sl <lm 416 <lm 500 18 m 458 8§ m 421
s2 <1lm 191 <1lm 300 6 m 137 4 m 166
s3 <lm 139 <lm 500 29 m 556 51m 475
s4 <lm 95 <1lm 300 7m 152 16 m 133
s5 <1lm 43 <1lm 300 Im 24 2m 21
s6 <lm 239 <lm 300 3m 51 4 m 49
s7 <1 1,108 <1lm 1,000 41 m 653 82 m 517
s8 <1lm 2,136 <1lm 1,500 312 m 1,920 417 m 1,306
s9 <1 3,336 <lm 1,500 193 m 1,412 600* m 1,552
s10 <1 3,484 <lm 1,500 239 m 1,589 600* m 935
sl <1lm 376 <1lm 500 45 m 601 600* m 514
s12 <1 376 <lm 500 51 m 632 600* m 482
s13 <1lm 2,100 <1lm 1,500 384 m 2106 600* m 1,307
sl4 <1lm 1,372 <1lm 1,000 82 m 909 113 m 895
s15 <lm 1,476 <lm 1,500 318 m 1,610 182 m 1,052
s16 <1lm 3,392 <1lm 1,500 271 m 1,573 600* m 1,253
s17 <1lm 2,176 <1lm 1,000 68 m 752 600* m 941
Average <lm 1,321 <lm 894 122 m 890 299 m 707

#: The number of records generated. *: Reached 10 hours of timeout.

the executions with a default DB.

C. Runtime Performance Measurement

We measure the time taken for generating a test database
by each technique Table V shows the results. SYNTHDB takes
the longest average time (2.5x compared to EvoSQL) because
we comprehensively analyze the program and database, iden-
tifying five types of database constraints, requiring multiple
runs of concolic execution. EvoSQL [18] is a query-aware
technique and analyzes a list of queries. For this evaluation,
we assume that the queries are prepared and provided by
the user, and we only measure the time taken to generate
test data.” Datafaker [39] and DOMINO [25] are much faster
than SYNTHDB and EvoSQL because they only analyze the
schema. While SYNTHDB takes a longer time than others,
generating a test database is a one-time effort for each PHP
application, and the generated database can be reused for
different dynamic testing and analysis techniques. Table V
also shows the number of records each technique generates
for a test database. From our observation, 41.2% of the time
is attributed to constraints solving, 14.3% for running the PHP

31t would take a longer time than the presented result in practice.

script, 6.5% for parsing the trace files, 25.8% for database
generation and 12.2% for other components.

V. RELATED WORK

Test Data Generation. Emmi et al. [14] have proposed an
automatic test input generation technique for database applica-
tions written in Java. Similar to SYNTHDB, their technique is
based on concolic execution to derive input values and database
records to explore uncovered application paths. However, their
technique focuses on generate concrete SQL query string that
can satisfy the symbolic constraints. SYNTHDB uses concolic
executions to identify the five types of database constraints
to generate a test database that ensures data integrity while
providing valid query results to enable exploring uncovered
PHP codebase. In addition, their approach handles a SQL
query as string constraints (equality, inequality, and LIKE), and
it only supports WHERE and FROM clauses. SYNTHDB parses
SQL queries to utilize the semantics to recognize database
constraints, and it can handle queries with JOIN operation.

There exist several approaches to generate test data or a
test database to examine SQL queries or database integrity
constraints. EvoSQL [18] is a query-aware test data generation
technique. It models a test data generation problem as a
search-based problem to effectively find an optimal solution
that contains test data to cover realistic SQL queries. Other
query-aware techniques [15], [16], [69] have been proposed to
generate test data to cover various SQL queries. DOMINO [25]
is an automated test data generation technique that aims to
systematically exercise the integrity constraints in database
schemas. There exist prior works [17], [70], [71] studying
test data generation techniques for exercising and evaluating
database integrity constraints.

Recently, JaSoN [72] proposed a systematic test case gener-
ation technique for Java applications using MongoDB. It uses a
symbolic execution approach to generate executable JUnit test
cases. JaSoN applies a versioned schema-approach to gener-
ating valid test inputs without relying on an explicit schema.
Orthogonal to SYNTHDB, STICCER [73] is a database test
suite reduction technique by merging similar test cases.

Static Analysis for Web Applications. Static-based security
analysis [9], [11], [74], [75] and vulnerability scanner [10],
[76]-[82] are popular approaches for identifying security
issues of web applications. However, web applications are
typically written in dynamic languages such as PHP, and most
of them are frequently interact with external resources, such
as a database, to store and retrieve data effectively. Static-
based techniques have difficulties analyzing dynamic code and
interaction with databases.

Dynamic Analysis for Web Applications. There exist ap-
proaches to provide effective dynamic analysis frameworks
or testing environments for web applications [13], [26]-[32].
Dynamic vulnerability testing techniques for web applica-
tions [27], [83]-[87] execute the target application on top
of dynamic analysis frameworks to identify vulnerable code
or malicious logic. Hybrid approaches [88]-[90] combine
static and dynamic techniques. Existing dynamic and hybrid
approaches do not consider database-backed applications, or
assume that the user provides a proper database.

12

VI. DISCUSSION

Other Languages and DBMS. The current version of SYN-
THDB only supports PHP and MySQL database. SYNTHDB
uses JSQLParser [37] to disassemble the recorded query. While
it claims to support various DBMS (e.g., MySQL, Oracle,
and PostgreSQL), its query analyzer needs to be extended
to handle syntax differences between DBMSs (e.g., dialects).
For instance, PostgreSQL supports EXCEPT keyword while
MySQL does not. To support languages other than PHP, an
instruction-level trace, a trace reader, and a parser for the target
language need to be developed. We leave this as future work.

Dynamic Schema Changes. There are applications (e.g.,
WordPress) that allow the installation of plugins or extensions
at runtime, and they may change the schema dynamically.
While the current implementation of SYNTHDB does not sup-
port dynamically changing database schema during its analysis,
it can be used for such plugins and extensions. Specifically,
the user can install the plugin first and then run SYNTHDB
to generate a test database that can support plugins for further
security analysis. Note that after the plugin is installed, the
schema would not be changed further at runtime. To fully
handle dynamic schema changes, the final output needs to
include multiple database instances to support each of the
possible schemas.

Improving Concolic Execution. As discussed in Sec-
tion IV-A, our concolic execution engine is less effective for
applications globally accessing a large number of user inputs.
Hence, we plan to develop a guided concolic execution to
improve the performance of the concolic execution engine.
Specifically, we will identify PHP code that affects or is af-
fected by SQL queries and leverage guided concolic execution
techniques to preferentially explore query-related code.

Object-Relational Mapping (ORM). Object-relational map-
ping (ORM) is a program layer between the language and the
database that lets users access data from a database using an
object-oriented paradigm. The current version of SYNTHDB
does not support ORM. We observe that ORM implementa-
tions vary significantly between the APIs. Supporting them
in a generic way is challenging while not impossible. We
also observe that some PHP ORM have their own database
abstraction layer (DAL), which can be leveraged to abstract
the implementation differences. We leave this as future work.

Code Injection Attack. We do not consider the presence of
a code injection attack at the time of generating the database.
In other words, we assume that the target PHP application
and the database schema are not compromised when the user
launches SYNTHDB to generate a test database. We believe
that the generated database can help existing security tools to
identify code injection vulnerabilities.

VII. CONCLUSION

We present SYNTHDB, a system that synthesizes a
database for dynamic security analysis of database-backed
PHP web applications. It leverages a concolic execution to
identify interactions between PHP codebase and the SQL
queries, deriving five types of database constraints. SYNTHDB
creates database records by solving the constraints, the gener-
ated database can be used to exercise program paths dependent
on database queries. Our evaluation with 17 real-world PHP

web applications demonstrates that SYNTHDB outperforms
existing state-of-the-art techniques, achieving 62.9% code and
77.1% query coverages while other techniques cover <48.9%
code and <52.9% queries. Our security analysis results show
that SYNTHDB could effectively assist existing security testing
approaches, including Burp Suite, Wfuzz, and WebFuzz. Burp
Suite aided by SYNTHDB detects 76.8% of vulnerabilities
while other existing techniques cover 55.7% or fewer. Notably,
SYNTHDB helps to discover 33 previously unknown vulnera-
bilities from 5 real-world applications.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their constructive feedback. The authors gratefully ac-
knowledge the support of NSF 1916499, 1916500, 1908021,
1909856, 1850392, and 2145616. This research was also par-
tially supported by a gift from Cisco Systems. Any opinions,
findings, conclusions, or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of the sponsor.

REFERENCES
[1]

Verizon, “Data breach investigations report,” https://enterprise.verizon
.com/resources/reports/2021-data-breach-investigations-report.pdfx.
[2] Sucuri, “Website threat research report,” https://sucuri.net/wp-conten
t/uploads/2020/01/20-sucuri-2019-hacked-report- 1.pdf, 2019.

D. Canali and D. Balzarotti, “Behind the scenes of online attacks: an
analysis of exploitation behaviors on the web,” in 20th Annual Network
& Distributed System Security Symposium (NDSS 2013), 2013.

“Web Application Vulnerabilities: Attacks Statistics for 2018,” 2019,
https://www.ptsecurity.com/ww-en/analytics/web-application- vulnera
bilities-statistics-2019/.

A. Alhuzali, R. Gjomemo, B. Eshete, and V. Venkatakrishnan, “Navex:
Precise and scalable exploit generation for dynamic web applications,”
in 27th USENIX Security Symposium, 2018, pp. 377-392.

B. Anderson and D. McGrew, “Identifying encrypted malware traffic
with contextual flow data,” in Proceedings of the 2016 ACM workshop
on artificial intelligence and security, 2016, pp. 35-46.

K. Borgolte, C. Kruegel, and G. Vigna, “Delta: automatic identification
of unknown web-based infection campaigns,” in Proceedings of the
ACM CCS’13, pp. 109-120.

L. Invernizzi, P. M. Comparetti, S. Benvenuti, C. Kruegel, M. Cova,
and G. Vigna, “Evilseed: A guided approach to finding malicious web
pages,” in 2012 IEEE symposium on Security and Privacy, 2012.

M. Sharif, V. Yegneswaran, H. Saidi, P. Porras, and W. Lee, “Eureka:
A framework for enabling static malware analysis,” in European
Symposium on Research in Computer Security. Springer, 2008.

N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A static analysis tool
for detecting web application vulnerabilities,” in IEEE Symposium on
Security and Privacy (S&P’06). IEEE, 2006.

J. Dahse and T. Holz, “Simulation of built-in php features for precise
static code analysis.” in NDSS, vol. 14. Citeseer, 2014, pp. 23-26.
T. P. Group, “Dphp runkit book,” http://php.net/manual/en/book.runki
t.php, 2016.

P. M. Wrench and B. V. Irwin, “Towards a sandbox for the deobfus-
cation and dissection of php malware,” in 2014 Information Security
for South Africa. 1EEE, 2014, pp. 1-8.

M. Emmi, R. Majumdar, and K. Sen, “Dynamic test input generation
for database applications,” in ISSTA 07, 2007.

S. A. Khalek, B. Elkarablieh, Y. O. Laleye, and S. Khurshid, “Query-
aware test generation using a relational constraint solver,” in 2008
23rd IEEE/ACM International Conference on Automated Software
Engineering. 1EEE, 2008, pp. 238-247.

M. J. Sudrez-Cabal, C. de la Riva, J. Tuya, and R. Blanco, “Incre-
mental test data generation for database queries,” Automated Software
Engineering, vol. 24, no. 4, pp. 719-755, 2017.

[3]

[4]

[3]

(6]

[7]

(8]

[9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

13

[17]

(18]

(19]
(20]
[21]

[22]

(23]

(24]

[25]

(26]

[27]

[28]

(29]

[30]

[31]

(32]

(33]

(34]
(35]
[36]
[37]
[38]

(391
(40]
[41]

(42]

[43]
[44]

[45]
[46]
(47]

[48]

J. Zhang, C. Xu, and S.-C. Cheung, “Automatic generation of database
instances for white-box testing,” in 25th Annual International Com-
puter Software and Applications Conference. COMPSAC 2001. 1EEE,
2001, pp. 161-165.

J. Castelein, M. Aniche, M. Soltani, A. Panichella, and A. van Deursen,
“Search-based test data generation for sql queries,” in Proceedings of
the 40th international conference on software engineering, 2018.
“Burp suite,” 2020, https://portswigger.net/burp.

“Wfuzz — The Web Fuzzer,” 2020, https://github.com/xmendez/wfuzz.
0. van Rooij, M. A. Charalambous, D. Kaizer, M. Papaevripides,
and E. Athanasopoulos, “Webfuzz: Grey-box fuzzing for web appli-
cations,” in Computer Security — ESORICS 2021. Springer-Verlag,
2021.

G. A. D. Lucca and A. R. Fasolino, “Testing web-based applications:
The state of the art and future trends,” Inf. Softw. Technol., 2006.
Y.-F. Li, P. K. Das, and D. L. Dowe, “Two decades of web application
testing - a survey of recent advances,” Inf. Syst., vol. 43, pp. 20-54.
“SchoolMate,” https://sourceforge.net/projects/schoolmate/files/Schoo
IMate/.

A. Alsharif, G. M. Kapfhammer, and P. McMinn, “Domino: Fast and
effective test data generation for relational database schemas,” 2018
IEEE ICST, 2018.

A. Bulekov, R. Jahanshahi, and M. Egele, “Saphire: Sandboxing PHP
applications with tailored system call allowlists,” in 30th USENIX
Security Symposium (USENIX Security 21).

G. Pellegrino, M. Johns, S. Koch, M. Backes, and C. Rossow,
“Deemon: Detecting csrf with dynamic analysis and property graphs,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, 2017, p. 1757-1771.

Y.-W. Huang, C.-H. Tsai, T.-P. Lin, S.-K. Huang, D. T. Lee, and S.-Y.
Kuo, “A testing framework for web application security assessment,”
Comput. Networks, vol. 48, pp. 739-761, 2005.

S. McAllister, E. Kirda, and C. Kriigel, “Leveraging user interactions
for in-depth testing of web applications,” in RAID, 2008.

Y. Zhou and D. Evans, “Ssoscan: Automated testing of web applica-
tions for single sign-on vulnerabilities,” in USENIX Security’14.

W. G. J. Halfond, A. Orso, and P. Manolios, “Wasp: Protecting web
applications using positive tainting and syntax-aware evaluation,” IEEE
Transactions on Software Engineering, vol. 34, pp. 65-81, 2008.

P. Saxena, D. A. Molnar, and B. Livshits, “Scriptgard: automatic
context-sensitive sanitization for large-scale legacy web applications,”
in CCS ’11, 2011.

Oracle, “Data integrity,” https://docs.oracle.com/cd/B19306_01/server
.102/b14220/data_int.htm.

“Z3,” 2022, https://github.com/Z3Prover/z3.

“Vulcan logic dumper,” https://derickrethans.nl/projects.html, 2016.
“The PHP Interpreter,” 2021, https://github.com/php/php-src.
“JSqlParser,” 2021, https://github.com/JSQLParser/JSqlParser.

T. Lengauer and R. E. Tarjan, “A fast algorithm for finding dominators
in a flowgraph,” ACM Trans. Program. Lang. Syst., vol. 1, no. 1, p.
121-141, jan 1979.

“Datafaker-Tool for faking data,” https://github.com/gangly/datafaker.
“Webchess,” https://github.com/halojoy/PHP7- Webchess.

“Timeclock,” https://sourceforge.net/projects/timeclock/files/PHP%2
OTimeclock/.

“myBloggie,” https://sourceforge.net/projects/mybloggie/files/myblo
ggie/.
“FaqForge,” https://sourceforge.net/projects/faqforge/files/fagforge/.

“WackoPicko Vulnerable Website,” 2018, https://github.com/adamdou
pe/WackoPicko.

“phpBB 2.0.23,” http://www.oldversion.com/windows/phpbb-2-0-23/.
“phpBB 3.3.8,” https://www.phpbb.com/.

“OpenCart 3.0.3.8,” https://github.com/opencart/opencart/releases/tag/
3.0.3.8/.

“OpenCart 4.0.0,” https://github.com/opencart/opencart/releases/tag/4.
0.0.0/.

[49]

[50]

[51]
[52]
[53]
[54]
[55]
[56]

[57]

[58]

[59]
[60]
[61]
[62]
[63]
[64]

[65]

[66]

[67]

[68]
[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

“WordPress 5.1.2,” https://github.com/WordPress/WordPress/releases/
tag/5.1.2/.

“WordPress 6.0.1,” https://github.com/WordPress/WordPress/releases/
tag/6.0.1/.

“Simple Machines Forum,” 2022, https://www.simplemachines.org/.
“OsCommerce240,” https://github.com/osCommerce/oscommerce?2.
“Ce-phoenix,” https://github.com/gburton/CE-Phoenix/tree/1.0.5.0.
“Zencart 1.5.7,” https://github.com/zencart/zencart/tree/v155.
“Drupal 9.0.0,” https://www.drupal.org/project/drupal/releases/9.0.0.

O. van Rooij, M. A. Charalambous, D. Kaizer, M. Papaevripides, and
E. Athanasopoulos, “webfuzz: Grey-box fuzzing for web applications,”
in ESORICS, 2021.

A. Alhuzali, B. Eshete, R. Gjomemo, and V. Venkatakrishnan, “Chain-
saw: Chained automated workflow-based exploit generation,” in Pro-
ceedings of the ACM CCS’16, pp. 641-652.

Y. Zou, Z. Chen, Y. Zheng, X. Zhang, and Z. Gao, “Virtual dom cover-
age for effective testing of dynamic web applications,” in Proceedings
of ISSTA’14, 2014, p. 60-70.

“builtwith,” 2021, https://builtwith.com/.

“SchemaAnalyst,” https://github.com/schemaanalyst/schemaanalyst.
“Xdebug ,” 2021, https://xdebug.org/.

“Common Vulnerabilities and Exposures,” 2021, https://cve.mitre.org/.
“Exploit Database,” 2021, https://www.exploit-db.com/.

A. Kiezun, P. J. Guo, K. Jayaraman, and M. D. Ernst, “Automatic
creation of sql injection and cross-site scripting attacks,” IEEE 31st
International Conference on Software Engineering, pp. 199-209, 2009.
“Security Testing Report,” 2020, https://github.com/carloFanc/Securit
y-Testing/blob/main/FinalReportCarloFanciulli.pdf.

“Security Testing Project,” 2017, https://github.com/davidepedranz/s
ecurity_testing_project/blob/master/report/vulnerabilities.pdf.

PortSwigger, “Burp intruder,” https://portswigger.net/burp/documenta
tion/desktop/tools/intruder.

“Issue definitions - burp suite,” https://portswigger.net/kb/issues.

C. Binnig, D. Kossmann, E. Lo, and M. T. Ozsu, “Qagen: Gener-
ating query-aware test databases,” in Proceedings of the 2007 ACM
SIGMOD, New York, NY, USA, 2007.

P. McMinn, C. J. Wright, and G. M. Kapthammer, “The effectiveness
of test coverage criteria for relational database schema integrity
constraints,” ACM Transactions on Software Engineering and Method-
ology (TOSEM), vol. 25, pp. 1 — 49, 2015.

P. McMinn, C. J. Wright, C. Kinneer, C. J. McCurdy, M. Camara, and
G. M. Kapfhammer, “Schemaanalyst: Search-based test data genera-
tion for relational database schemas,” IEEE International Conference
on Software Maintenance and Evolution, pp. 586-590, 2016.

H. Winkelmann and H. Kuchen, “Symbolic Execution of NoSQL
Applications Using Versioned Schemas,” in Proceedings of the 36th
Annual ACM Symposium on Applied Computing, ser. SAC 21, New
York, NY, USA, 2021, p. 1778-1787.

A. Alsharif, G. M. Kapfhammer, and P. McMinn, “Sticcer: Fast and
effective database test suite reduction through merging of similar test
cases,” 2020 IEEE 13th International Conference on Software Testing,
Validation and Verification (ICST), pp. 220-230, 2020.

Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D. T. Lee, and S.-Y.
Kuo, “Securing web application code by static analysis and runtime
protection,” in WWW ’04, 2004.

M. Hills, P. Klint, and J. J. Vinju, “An empirical study of php
feature usage: a static analysis perspective,” Proceedings of the 2013
International Symposium on Software Testing and Analysis, 2013.

P. Li and W. Meng, “Lchecker: Detecting loose comparison bugs in
php.” Proceedings of the Web Conference 2021, 2021.

M. Backes, K. Rieck, M. Skoruppa, B. Stock, and F. Yamaguchi,
“Efficient and flexible discovery of php application vulnerabilities,”
IEEE EuroS&P’17, pp. 334-349.

J. Dahse and T. Holz, “Static detection of second-order vulnerabilities
in web applications,” in USENIX Security Symposium, 2014.

[79]

[80]

[81]

[82]

(83]

(84]

[85]

(86]

(87]

(88]

[89]

[90]

(911

[92]

(93]

[94]

[95]

[96]

(971

[98]

[99]
[100]
[101]

[102]
[103]

M. Monshizadeh, P. Naldurg, and V. Venkatakrishnan, “Mace: Detect-
ing privilege escalation vulnerabilities in web applications,” Proceed-
ings of the ACM CCS’14.

F. Sun, L. Xu, and Z. Su, “Detecting logic vulnerabilities in e-
commerce applications,” in NDSS, 2014.

G. Wassermann and Z. Su, “Sound and precise analysis of web
applications for injection vulnerabilities,” in PLDI ’07, 2007.

Y. Zheng and X. Zhang, “Path sensitive static analysis of web
applications for remote code execution vulnerability detection,” 35th
International Conference on Software Engineering, pp. 652-661, 2013.
A. Doupé, L. Cavedon, C. Kruegel, and G. Vigna, “Enemy of the state:
A state-aware black-box web vulnerability scanner,” in 21st USENIX
Security Symposium, Aug. 2012, pp. 523-538.

S. Kals, E. Kirda, C. Kriigel, and N. Jovanovic, “Secubat: a web
vulnerability scanner,” in WWW 06, 2006.

G. Pellegrino and D. Balzarotti, “Toward black-box detection of logic
flaws in web applications,” in NDSS, 2014.

B. Hawkins and B. Demsky, ‘“Zenids: Introspective intrusion detection
for php applications,” IEEE/ACM 39th International Conference on
Software Engineering, pp. 232-243, 2017.

S. Son, K. S. McKinley, and V. Shmatikov, “Diglossia: detecting code
injection attacks with precision and efficiency,” Proceedings of the
ACM conference on Computer & communications security, 2013.

D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda,
C. Kriigel, and G. Vigna, “Saner: Composing static and dynamic
analysis to validate sanitization in web applications,” 2008 IEEE
Symposium on Security and Privacy (S&P’08), pp. 387-401, 2008.

R. Jahanshahi, A. Doup’e, and M. Egele, “You shall not pass: Miti-
gating sql injection attacks on legacy web applications,” Proceedings
of the ACM ASIACCS, 2020.

A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans,
“Automatically hardening web applications using precise tainting,” in
USENIX Security, 2005.

V. Garousi, R. Ozkan, and A. Betin-Can, “Multi-objective regression
test selection in practice: An empirical study in the defense software
industry,” Information and Software Technology, vol. 103, 2018.

A. Arrieta, P. Valle, J. A. Agirre, and G. Sagardui, “Some seeds are
strong: Seeding strategies for search-based test case selection,” ACM
Transactions on Software Engineering and Methodology, 2022.

“Advanced PHP 7 eCommerce Website,” https://github.com/justinhar
tman/complete-php7-ecom-website.

“Online shopping system advanced,” https://github.com/PuneethRedd
yHC/online-shopping-system-advanced.

“Doctor-Appointment,” https://github.com/divScorp/Doctor- Appoint
ment.

“Hostel Management System,” https://github.com/Bharat-Reddy/Host
el-Management- System.

“Inventory management system,” https://github.com/carloFanc/Securit
y-Testing/tree/main/inventory-management-system-fixed.

“Andy’s PHP Knowledgebase,” https://sourceforge.net/projects/aphpk
b/files/.

“MediaWiki,” https://www.mediawiki.org/wiki/MediaWiki.

“Better Search,” https://wordpress.org/plugins/better-search/.

“Contact Form 7 Database Addon — CFDB7,” https://wordpress.org/
plugins/contact-form-cfdb7/.

“Student Result,” https://wordpress.org/plugins/simple-student-result/.
“Contact Forms Lite,” https://wordpress.org/plugins/wpforms-lite/.

APPENDIX

A. Handling Path Constraints

During the concolic execution, SYNTHDB solves various
path constraints to cover more program paths. In particular, we
obtain path constraints from predicate conditions. Figure 13-
(a) shows an example predicate where SYNTHDB extracts
the constraints shown in Figure 13-(b). Specifically, we first

14

translate the structure of the predicate condition to the con-
straints (0). Then, we concretize all the functions that are not
operating the tracked variables. In this example, we obtain the
concrete return value of time () which is ‘1654229324’ (@).
Then, we create symbolic variables (e.g., fnret) to represent
the remaining functions and expressions (€)). If a symbolic
variable represents a function, we define our own function
handler in SYNTHDB that emulates the target function (e.g.,
Synth _strtotime() emulates strtotime()) (@)). Finally,
we define an additional constraint to relate the symbolic
variables (e.g., fnret) to the tracked program variable (e.g.,

$ POST["exp"]) (6)).

if(strtotime($_POST["exp"]) < time()?)

0 0

0 e (1) (a) Predicate Condition

var(fnret) < 1654229324 «/X
Synth_strtotime(fnret) var($_POST["exp"])

(b) Extracted Path Constraints
Extracting Path Constraints

Fig. 13.

B. Observation from Coverage Evaluations

From the coverage evaluation, we observe that the most
common cases that SYNTHDB can cover but others cannot are
predicates that evaluate values from the query return, including
logical comparisons between two or more values from different
columns. Let’s revisit the example code presented in Figure 7
(a). As we discussed, the query return values from two seperate
queries at line 1 and 3 are stored in $sql1 and $sql2, and
the program’s path changes based on the values from three
columns, points, aperc, and students. To explore the true
branch at line 7, we need to understand the relationships
between those two columns and generate items accordingly.
We observe that guery-condition and post-query constraints
play significant roles in improving the code coverage and
Table VI shows the number of each constraint SYNTHDB
derived from each PHP application we evaluate.

C. SQL keyword Statistics

We run statistical analysis on all 17 applications we evalu-
ated to show that (1) our selected applications include a wide
spectrum of SQL queries and (2) SYNTHDB supports most
of those frequently used SQL keywords and functionalities.
Specifically, we search all the SQL keywords in PHP source
files and schema files. Then, we rank the SQL keywords by
the number of appearances.

Results and Observations. First, there are 744 SQL key-
words according to the MySQL version 8.0.24’s specification.
Among them, 214 keywords are appeared in our selected 17
applications (Table I), meaning that the selected applications
include diverse SQL queries (hence those applications are of
high quality for the evaluation). Second, a total of 49,585 SQL
keywords are used in our selected 17 applications, and the
top 25 most frequent keywords are the dominant majority as
they are 83.3% of the total extracted keywords. SYNTHDB
supports all those top 25 frequent keywords. For the top 50
frequent SQL keywords, which are 97.5% of the total extracted
keywords, SYNTHDB failed to handle only two of them,
EXISTS and GROUP BY, which appear 691 times out of 51,510.

15

TABLE VI. QUERY-CONDITION (QCl) AND POST-QUERY (PQ2)
CONSTRAINTS SYNTHDB DERIVED FROM PHP APPLICATIONS.
Id QC' PQ? Total Id Qc' PQ* Total
s1 59 126 185 s10 481 379 860
s2 30 27 57 s11 247 179 426
s3 142 54 196 s12 262 203 465
s4 34 37 71 s13 752 518 1,270
s5 12 11 23 s14 214 198 412
s6 21 12 33 s15 428 227 655
s7 284 191 475 s16 805 614 1,419
s8 628 418 1,046 s17 215 198 413
s9 557 317 874 Total 5,171 3,709 83880

Note that the GROUP BY statement is typically used with
aggregate functions (COUNT (), MAX(), MIN(), SUM(), AVG()),
which we do not support due to the conflicting constraints.
Lastly, we present the top 75 frequent SQL keywords in
Table VII, which are 99.7% of the total extracted keywords.
Among 75 keywords, 25 of them are generic SQL keywords
that do not contribute to database reconstruction. SYNTHDB
supports 47 out of the remaining 50 keywords but does not
support 3 keywords.

TABLE VIIL. ToOP 75 FREQUENT SQL KEYWORDS.

WHERE, FROM, SELECT, NOT, AND, SET, TABLE,
DEFAULT, NULL, AS, DELETE, UPDATE, BY, ON,
JOIN, INT, KEY, INSERT, INTO, IN, LEFT, CREATE,
IF, DROP, UNSIGNED, PRIMARY KEY, OR, INNER,
TINYINT, DISTINCT, MEDIUMINT, VALUES, TEXT,
DATETIME, ALTER, SMALLINT, IS, PRIMARY, LIKE,
CASE, BIGINT, UNIQUE KEY, BETWEEN, DATE,
MEDIUMTEXT, HAVING, ELSE

EXISTS, GROUP, INTERVAL

ORDER, LIMIT, FOR, COLLATE, DESC, ASC, COALESCE,
LOCK, UNLOCK, ENABLE, DISABLE, DATA, THEN, TO,
WHEN, END, YEAR, MONTH, LONGTEXT, TRUE, ADMIN
USER, REPLACE, FIRST, IGNORE

Supported

Not supported

No Effect

D. Algorithm: Concolic Execution

Algorithm 1 runs as a part of our concolic execution engine.
Specifically, after the concolic execution engine processes each
instruction, we conduct our analysis to extract the constraints.

It takes an input UNTRUSTEDSRCS that contains untrusted
sources. At line 2, our concolic execution engine taints be-
fore its analysis, so that any data originated from the un-
trusted sources will be tracked. Lines 3~46 form a large loop
that is executed on every instruction. Specifically, at line 3,
we run the concolic execution engine on each instruction
(SINGLESTEPCONCOLICEXEC()), and obtain the executed
instruction as ins. At lines 4~5, we implement a basic taint
propagation logic: if ins.operand (i.e., an operand or argument
of an instruction) is tainted, we taint its outcome (i.e., resulr).

Pre-query constraints (Line 6~13). When a query that inserts
or updates the database is executed, we check whether the
query is constructed by using program variables. If so, we
collect the constraints related to those variables for pre-query
constraints. Specifically, if the current instruction calls a DB
function (e.g., mysqli query()) to execute an INSERT or
UPDATE query and the query string passed to the function is
tainted (lines 9~10), we identify all the tainted variables used

to compose the query (line 11) and collect them as a pre-query
constraint (lines 12~13).

Post-query constraints (Line 14~18). Post-query constraints
are collected from the program code, particularly branches,
using the data returned from a database. Specifically, if
the instruction is a branch6, we check whether the branch
condition is tainted, and originated from a SELECT query
(lines 15~16). In other words, we try to identify cases that a
SELECT query’s return is used as a predicate condition such as
‘if ($database[‘field’] == ...)’ . If so, we collect the
current query and the instruction as a post-query constraint
(lines 17~18). Note that the query represents the source of
the constraint and the instruction for the predicate condition
associated with the constraint.

Lines 19~22 show that SYNTHDB taints a return value of
a DB function (e.g., mysqli query()) if either SELECT or
UPDATE query is executed (lines 21~22), as it retrieves data
from a database.

Query-condition constraints (Line 23~29). Query-condition
constraints are obtained from conditional clauses of a query.
During the concolic execution, if the current instruction calls
a DB function (e.g., mysqli query()) with a SELECT or
UPDATE query (line 26), we check the query passed to the
function to see whether it has conditional clauses (e.g., WHERE,
JOIN, and HAVING) at line 27. If it has, we collect the query
as a query-condition constraint (lines 28~29).

Synchronized-query constraints (Line 30~46). SYNTHDB
identifies synchronized-query constraints when queries that are
always executed together (i.e., queries within the same basic
block) are affected by the same program variables. Specifically,
we first maintain a list of queries that are executed within
the same basic block (lines 31~35). We identify consecutive
queries by adding any INSERT or UPDATE queries to the set
which we reset on a branch instruction, which indicates the
beginning of a new basic block (lines 31~32).

With the consecutive query list, when a database function is
invoked with an INSERT or UPDATE query (line 39), we check
whether the query is constructed by tainted program variables
(line 40). If so, we iterate all the consecutive queries within
the basic block and their tainted variables (lines 41~42). If the
current query and one of the consecutive queries have common
tainted variables (lines 43 and 44), it means that those queries
are constructed from a same program variable, resulting in
synchronized-query constraints (line 45~46).

E. Reachability Test: Failed Cases of SYNTHDB

We further investigated the vulnerabilities that SYNTHDB
failed to reach in the reachability evaluation (Section IV-B2).
Among the 18 cases, six of them require other external
resources. One requires different configurations (e.g., changing
the application language or turning on the legacy features),
five cases failed due to SMT solver’s limited URL support,

6

We consider the following opcodes as branch instructions:
IS_IDENTICAL, IS_NOT_IDENTICAL, IS_EQUAL, IS_NOT_EQUAL,
IS_SMALLER, IS_SMALLER_OR_EQUAL, SWITCH_LONG,

SWITCH_STRING, ISSET_ISEMPTY_VAR, ISSET_ISEMPTY_DIM_OBJ,
ISSET_ISEMPTY_PROP_OBIJ, ISSET_ISEMPTY_CV, IS-
SET_ISEMPTY_THIS, and ISSET_ISEMPTY_STATIC_PROP.

16

Algorithm 1: Obtaining Database Constraints

UNTRUSTEDSRC: a list of five untrusted sources ($_GET,
$_POST, $_REQUEST, $_SESSION, and $_COOKIE).
Output: Collected four types (pre-query, query-condition,

post-query, and synchronized-query) of constraints.
procedure OBTAINDATABASECONTRAINTS
TAINT(UNTRUSTEDSRC)
for ins « SINGLESTEPCONCOLICEXEC() do
if ISTAINTED(ins.operand) then
| TAINT(ins.result)

Input :

6 // Extract the pre-query constraint
7 if ISDBFUNCTIONCALL(ins) then
s query « GETFUNCARGS(ins)
9 if ISTAINTED(query) and
QUERYTYPE(query) = (INSERT or UPDATE) then
tainted < GETTAINTEDVARS(query)
Constraints e guery < Constraints, e gyery Y
<query, tainted>
/I Extract the post-query constraint
if ISBRANCH(ins.opcode) and
QUERYTYPE(TAINTSOURCE(ins.operand)) = SELECT then
LConstraintspost_query « Constraintsyost—query Y
<TAINTSOURCE(ins.operand), ins>
if ISDBFUNCTIONCALL(ins) and
QUERYTYPE(GETFUNCARGS(ins)) =

(SELECT or UPDATE) then
L TAINT(GETFUNCTIONRETURN(ins))

/I Extract the query-condition constraint
if ISDBFUNCTIONCALL(ins) then
query « GETFUNCARGS(ins)
if QUERYTYPE(query) = (SELECT or UPDATE) and
GETCONDITIONCLAUSE(query) # @ then
L Constraints gyery—cond < CONSaints gy ery—cond Y
<query>
/I Extract the synchronized-query constraint
if ISBRANCH(ins.opcode) then
| Consecutive-queries « @

33 else if ISDBFUNCTIONCALL(ins) and QUERYTYPE(
GETFUNCARGS(ins)) = (INSERT or UPDATE) then
query < GETFUNCARGS(ins)

Consecutive-queries « Consecutive-queries U <query>

34
35

36
37
38
39
40
M
42
43
44
45
46

if ISDBFUNCTIONCALL(ins) then
query « GETFUNCARGS(ins)
if ISTAINTED(query) and
QUERYTYPE(query) = (INSERT or UPDATE) then
tainted < GETTAINTEDVARS(query)
for V query.onsec € Consecutive-queries do
tainted .opsec < GETTAINTEDVARS(qUery copsec)
shared « tainted N taintedconsec
if shared + @ then
L Constraints sypnc— query < CONSraints sypne—query

U <query, query qonsec, shared>
return <Constraints ¢ query> CONSraints gyery—cond»
Constraints o st—query, CONSIaints gypc—query >

47
48

two cases require serialized object as input, and two case
requires a specific plug-in installed. Furthermore, we analyze
the remaining two cases that SYNTHDB failed to reach.

1. Case 1: Figure 14-(a) presents the PHP code from Wack-
oPicko [44] that contains a directory traversal vulnerability.
The if-statement at line 35 evaluates the existence of a
specific file where the file name is provided by the user
through $ POST. SYNTHDB failed to take the true branch
because the system does not have the requested file in

29 | $filename = "../upload/{$_POST['tag']}/{$_POST['name']}";
35 if (file_exists($filename))

36 | {

37 $new_name = tempnam("../upload", $filename);

38

move_uploaded_file($_FILES['pic']['tmp_name'], $new_name);

(a) Case 1: WackoPicko-upload.php (Directory traversal vulnerability at 38)

20 | if ($show_display_name == "yes") {
2 if (isset($displayname)) {
23 $query = "select displayname from " . $df_prefix;

$emp_name_result = mysql_query($query);

} else if ($show_display_name == "no") {
if (isset($fullname)) {

40 $query = "select empfullname from " . $df_prefix;
41 $emp_name_result = mysql_query($query);

(b) Case 2: timeclock-1.04-1leftmain.php (SQL injection at 24 and 41)

Fig. 14. Analysis of Failed Cases of SYNTHDB (Gray shaded regions are not
reached as SYNTHDB-synthesized database failed to provide data that satisfy
the red-shaded predicates’ conditions at lines 35 and 20).

it. SYNTHDB focuses on generating a test database for
web application testing, but reconstructing other external
resources, such as a file, is out of the scope of this work.

2. Case 2: Figure 14-(b) shows code snippets from timeclock-
1.04 [41]. $show display name variable at lines 20 and
36 is defined by a dynamically generated configuration
file. Our concolic execution only takes the else branch
at line 36 (not the true branch at lines 22~24) because
the default value of $show display name is “no”. The
current implementation of SYNTHDB does not control the
values defined in the configuration file.

We leave handling the above cases as future work.

FE. Additional Discussion

Complexity of Regular Expression Constraints. We ob-
served the average length and processing time of regular
expression is 11 (in # of characters) and 51 ms for each
regular expression. Due to the limitation of the library exrex
that SYNTHDB uses, 3.27% of regular expressions were not
solved. For instance, “/"["<]J*+(2:<[">]*+>["<]*+)*+$/” raises
a “multiple repeat error.”

Clarification of SYNTHDB’s Results and Other Tools’
Results. SynthDB’s result is almost a superset except for an
average of 0.32% total code (0%,0.61%,0.65%,0% for de-
fault DB, Domino, Datafaker, and EvoSQL respectively). The
main reason for the missing 0.32% is conflicting constraints,
as we discussed in Section III-C “Conflicting Constraints”
single database cannot satisfy multiple database constraints
that have conflicting definitions. SynthDB chooses a database
with the least number of conflicting constraints as output, and
thus causes missing code and queries. Supporting multiple
databases to handle conflicting constraints is our future work.

Implicit Datatype Conversion. SynthDB infers the datatype
by analyzing the definition of the variables and the query. If
a datatype differs between the PHP code and the database
schema, we implicitly convert the type by prioritizing a
more concrete datatype than the other (e.g., mostly from the
schema). SynthDB currently supports conversions between
three datatypes of PHP (i.e., String, Integer, and Float) and
all types of the database.

17

Conflicting Constraints. In addition to conflicting constraints
discussed in Section III-C, another commonly observed pattern
of a conflicting constraint is an error-handling/exception rou-
tine that is only executed when a query (e.g., SELECT) returns
no record. In most cases, such an error-handling is followed
by a data processing code that handles returned records from
the query. In that case, if a database does not have records, it
will only cover the error-handling routine, while if a database
has records, it will only cover the data processing code. Other
conflicting constraints include SQL queries using aggregation
functions, such as MIN, MAX, and AVG. Specifically, suppose
there are multiple queries specifying different values for the
same database and table. In that case, multiple databases are
required (e.g., if two queries are expecting MIN values of 1
and 2, two databases having the smallest value of 1 and 2 are
needed). We leave this for future research.

Overhead and Re-analysis SYNTHDB’s overhead is not
trivial as we conduct a more comprehensive analysis than
existing techniques. However, we believe that it is acceptable in
the context of security testing, where existing dynamic testing
techniques (e.g., fuzzing) typically run 6~35 hours. If the target
program’s source code is updated (potentially also updating
the database-related code), SYNTHDB requires a re-analysis of
the updated program. This is a typical limitation of dynamic
analysis techniques. SYNTHDB can be further improved to
support incremental analysis. Specifically, we can leverage the
existing regression testing techniques [91], [92] while there are
additional challenges, such as how to integrate the incremental
analysis result to the previous analysis result from the old
version of the program. We leave this for future research.

Generality of Database Constraints. We try our best to be
generic in deriving constraints from our observation. Specif-
ically, we study 28 common and popular web applications’
codebases and databases (we manually operate the applications
to obtain the databases), to derive the constraints. The 28 ap-
plications are (1) 17 evaluated applications, (2) 7 applications
(Ecom-site [93], Onlineshop [94], Doctor-Appointment [95],
Hotel-Management-System [96], Inventory [97], Aphpkb [98],
and mediawiki [99]), and (3) 4 wordpress plug-ins. (better-
search [100], cfdb7 [101], student-result [102], and wp-
forms [103]) For the concolic execution, we develop a standard
concolic execution engine as described in Section III-A. We
additionally implemented support for symbolizing queries,
query return values, and database fields.

False Positives and Negatives. We identify three main sources
for FNs by manually inspecting PHP code, SQL queries, and
generated test databases: Conflicting constraints are the main
source of FNs (Section III-C “Conflicting Constraints”). The
second source is unsupported SQL keywords (Section VII-C
“SQL keyword Statistics”). The third source is dynamic
schema changes (Section VI “Dynamic Schema Changes”).
From our observation, 13.5% of uncovered code and 15.2% of
uncovered queries are caused by the first two main sources.
We start to evaluate the web applications after all installation-
s/upgrading is done, so the current evaluation is unaffected by
the third source. We plan to support dynamic schema changing
during the evaluation in the future.

	Introduction
	Motivating Example
	Design and Implementation
	Path Exploration via Concolic Execution
	Identifying Database Constraints via Concolic Execution
	Schema Constraints
	Query-condition Constraints
	Pre-query Constraints
	Post-query Constraints
	Synchronized-query Constraints

	Synthesizing Database
	Overall Procedure
	Implications of Constraints

	Evaluation
	Coverage Evaluation with Test Databases
	Enhancing Existing Security Testing using Test Databases
	Vulnerability Detection with Burp Suite
	Reachability of Security Vulnerabilities
	Integrating with Fuzzing Methods

	Runtime Performance Measurement

	Related Work
	Discussion
	Conclusion
	References
	Handling Path Constraints
	Observation from Coverage Evaluations
	SQL keyword Statistics
	Algorithm: Concolic Execution
	Reachability Test: Failed Cases of SynthDB
	Additional Discussion

