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Abstract
Tensor network states (TNS) are a powerful approach for the study of strongly cor-
related quantum matter. The curse of dimensionality is addressed by parametrizing
the many-body state in terms of a network of partially contracted tensors. These ten-
sors form a substantially reduced set of effective degrees of freedom. In practical
algorithms, functionals like energy expectation values or overlaps are optimized over
certain sets of TNS. Concerning algorithmic stability, it is important whether the con-
sidered sets are closed because, otherwise, the algorithms may approach a boundary
point that is outside theTNS set and tensor elements diverge.We discuss the closedness
and geometries of TNS sets, and we propose regularizations for optimization prob-
lems on non-closed TNS sets. We show that sets of matrix product states (MPS) with
open boundary conditions, tree tensor network states, and the multiscale entanglement
renormalization ansatz are always closed, whereas sets of translation-invariant MPS
with periodic boundary conditions (PBC), heterogeneous MPS with PBC, and pro-
jected entangled pair states are generally not closed. The latter is done using explicit
examples like the W state, states that we call two-domain states, and fine-grained
versions thereof.
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1 Introduction

Weconsider quantummany-body systems on a latticewith N sites1 and d-dimensional
single-site Hilbert spacesH1 " Cd with orthonormal basis {|σ 〉 | σ = 1, . . . , d}. The
total Hilbert space is the N -fold tensor product H = H⊗N

1 and we use the notations
|σ 〉 := |σ1, σ2, . . . , σN 〉 := |σ1〉⊗ |σ2〉⊗ · · ·⊗ |σN 〉 for its orthonormal basis of tensor
product states. To improve the readability, we usually fix d for all sites, and only use
site-dependent dimensions di when necessary.

The exponential growth of the total Hilbert space dimension in N is sometimes
called the curse of dimensionality and limits exact treatments of most quantum many-
body systems to very small system sizes N . Tensor network states (TNS) |"〉 are
(approximate) representations of states |ψ0〉 ∈ H, where expansion coefficients 〈σ |"〉
take the form of a tensor network, i.e., a network of partially contracted tensors. The
only non-contracted (“open”) indices label the local basis states |σi 〉. The other indices
are referred to as virtual or bond indices. Each bond index occurs at exactly two indi-
vidual tensors, and one obtains 〈σ |"〉 by summing over all bond indices. TNSmethods
are a powerful approach for the investigation of strongly-correlated quantum many-
body systems, employed mostly in condensed matter physics and quantum chemistry.
The tensor network forms a graph, where the tensors are associated with nodes of the
graph, and the bond indices are associated with the edges of the graph [1]. When the
network structure is well-aligned with the entanglement structure of |ψ0〉, good TNS
approximations of |ψ0〉 can be achieved with relatively small bond dimensions (small
numbers of effective degrees of freedom). For this, it is desirable that strongly entan-
gled sites have a small graph distance. For condensed matter problems, a common
choice is to arrange the graph according to spatial distances in the physical system.
For quantum chemistry problems, the choice is less obvious and may also be deter-
mined numerically [2–5]. For one-dimensional systems, one can often reach machine
precision accuracy [6–12]. In contrast to quantum Monte Carlo methods, TNS simu-
lations are not hampered by the negative sign problem [13–15] for frustrated quantum
magnets and fermionic systems [16–20].

In this paper, we address the question of whether various sets of TNS are closed
or not closed in the sense of topology2. The answer has fundamental implications for
TNS optimization algorithms. Typical goals are the minimization of energy expec-
tation values 〈"|Ĥ |"〉/‖"‖2 to compute ground states, the minimization of energy
expectation values under orthogonality constraints 〈ψi |"〉 = 0 to compute excited
energy eigenstates, and the maximization of overlaps |〈ψ0|"〉|, e.g., in order to find

1 We typically think of condensed matter systems defined on, say, the D-dimensional hypercubic lattice
{1, 2, . . . , L}×D with N = LD sites. However, tensor network methods are applicable to a wide variety of
problems, and a lattice sitewould, for example, correspond to an orbital in quantum chemistry applications.
2 Recall that a subset of a Hilbert space is closed if, for every sequence of states "n in the subset which
converges to some limit state "∗, the latter is contained in the subset. Here, convergence means strong
convergence, i.e., limn→∞ ‖"n −"∗‖ = 0. With the exception of Sect. 8, we consider finite-dimensional
Hilbert spaces such that the notions of strong and weak convergence are equivalent.
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efficient approximations of states |ψ0〉 = X̂ |$〉 obtained by acting with an operator X̂
on a TNS |$〉. The latter task arises, for example, in real-time evolution algorithms and
in imaginary-time evolution or power methods for the computation of ground states.
The optimization over a non-closed set of TNS may be driven to a boundary point
outside the TNS set, i.e., optimizers may not exist. In such a case, tensor elements of
the TNS representation diverge, and the algorithm becomes unstable.

The simplest type of TNS are matrix product states (MPS) [6, 21–26]. They are
at the heart of the famous density-matrix renormalization group (DMRG) algorithm
[6, 24, 26]. An MPS is characterized by assigning an order-3 tensor Ai ∈ Cd×m×m′

to each lattice site i . We will often interpret such a tensor as a collection of m ×
m′ matrices A1, . . . , Ad , and the dimensions m and m′ of the virtual indices are
called bond dimensions. We discuss three different classes of MPS: those with open
boundary conditions (OBC), thosewith periodic boundary conditions (PBC), and those
with PBC and translation invariance. Further classes of TNS that we address are tree
tensor network states (TTNS) [27, 28], the multiscale entanglement renormalization
ansatz (MERA) [29, 30], and projected entangled-pair states (PEPS) in D > 1 spatial
dimensions [31–35]. Some alternative terms used in the mathematical literature are
tensor train for an MPS with OBC [36], tensor ring for an MPS with PBC, and
hierarchical Tucker format for a TTNS [37, 38].

The main part of the paper addresses TNS for finite system sizes N . Using the
TNS gauge freedom, it is easy to see that OBC-MPS form closed sets, which are
intimately related to direct products ofGrassmannmanifolds (Sect. 2). This generalizes
immediately to TTNS (Sect. 3). Similarly, MERA states form closed sets due to the
isometric property of their tensors (Sect. 4). Sets of normalized PBC-MPS with fixed
bond dimensions are generally non-closed. We present proofs for PBC-MPS with and
without translation-invariant tensors (Sects. 5, 6). For heterogeneous PBC-MPS, we
rephrase and extend results of Ref. [39] for the case d = m2, such that the practically
relevant scenarios with d . m are now covered. These results generalize to PEPS
in D > 1 dimensions, which generally form non-closed sets if the network contains
loops (Sect. 7). In Sect. 8, we shortly comment on tensor networks for infinite systems
[40–47]. We close in Sect. 9 with a summarizing theorem, examples of optimization
problems on non-closed TNS sets with and without optimizers, a geometric intuition
for the occurrence of non-included boundary points, implications for TNS algorithms,
and suggestions for corresponding regularizations.

It has recently been pointed out that, given the tensor of an infinite PEPS (iPEPS),
it is generally undecidable whether the state has a nonzero norm or a certain symmetry
[48]. Our results imply that iPEPS optimization problems, even if they are driven to
a normalizable state, may be driven to a non-included point on the boundary of the
iPEPS set. Furthermore, the infinite system size and translation invariance are not the
decisive factors in this respect; the same problem can occur for heterogeneous PEPS
on finite systems.
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2 Matrix product states with OBC

The set oMPS(N , {mi }, d) of normalized MPS with OBC contains all states of the
form

|"〉 = ∑
σ

Aσ1
1 Aσ2

2 · · · AσN
N |σ 〉 with ‖"‖ := √〈"|"〉 = 1, (1)

characterized by N order-3 tensors Ai ∈ Cd×mi−1×mi . The first and last bond dimen-
sions need to be m0 = mN = 1 in order for the matrix product in Eq. (1) to give a
scalar coefficient.

Proposition 1 The set oMPS(N , {mi }, d) is closed and coincides with the set of nor-
malized states inH with Schmidt ranks m̃i ≤ mi for all bipartitions of the system into
blocks of sites [1, i] and [i + 1, N ].

Proof (a) Call HA = H⊗i1 the Hilbert space for the block of sites A = [1, i] ≡
{1, . . . , i} and HB = H⊗(N−i)1 the Hilbert space of the remaining sites. The Schmidt
decomposition [49] of a state |ψ〉 ∈ H = HA ⊗ HB brings it into the form |ψ〉 =∑m̃

k=1 λk |k〉A⊗ |k〉B with Schmidt coefficients λk > 0 and sets of orthonormal states
{|k〉A ∈ HA} and {|k〉B ∈ HB}. We call m̃ the Schmidt rank of |ψ〉, and we refer
to span{|k〉A} and span{|k〉B} as the (uniquely determined) Schmidt spaces. The set
R(N , {mi }, d) ⊆ H of normalized states with Schmidt ranks m̃i ≤ mi for all such
bipartitions is a closed set: For each bipartition, regard 〈σ |ψ〉 =: ψ

(σ1,...,σi ),(σi+1,...,σN )
i

as the elements of the di × dN−i matrix ψi . Now, let M(|ψ〉) denote the complex
vector formed by the list of all (mi + 1) × (mi + 1) minors of the matrices ψi for
i ∈ [1, N ]. Recall that a matrix has rankm if and only if somem×m minor is nonzero
and every (m + 1)× (m + 1)minor vanishes. M(|ψ〉) is the zero-vector 0 if and only
if |ψ〉 has Schmidt ranks m̃i ≤ mi ∀i . So, R(N , {mi }, d) is the preimage of the closed
set {0} with respect to the continuous function M and is hence itself a closed set.

(b) Every MPS (1) has Schmidt ranks m̃i ≤ mi because we can write it as a sum
of mi tensor products: |"〉 =

∑mi
n=1 |n〉A ⊗ |n〉B with

|n〉A = ∑
σ1,...,σi

[Aσ1
1 · · · Aσi

i ]1,n |σ1, . . . , σi 〉 and (2a)

|n〉B = ∑
σi+1,...,σN

[Aσi+1
i+1 · · · AσN

N ]n,1 |σi+1, . . . , σN 〉. (2b)

From this, one obtains a Schmidt decomposition with m̃i ≤ mi components, e.g.,
by diagonalization of the reduced density matrix ρ̂A = TrB |"〉〈"| for subsystem
A = [1, i].

(c) Every state |ψ〉 = ∑
σ ψ

σ1,...,σN
N |σ 〉 with Schmidt ranks m̃i can be written as

an MPS (1) with bond dimensions mi = m̃i : The MPS tensors Ai ∈ Cd×mi−1×mi can
be determined by a sequence of RQ decompositions, e.g., starting at the right end of
the chain as illustrated in Fig. 1.

ψ
σ1,...,σN−1,σN
N

RQ=: ψ
σ1,...,σN−1
N−1 AσN

N and
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(a)

(b) (c)

Fig. 1 a Decomposition of a state |ψ〉 into an MPS with OBC (1) by a sequence of five RQ decompositions
(3) for a system of N = 6 sites. b The resulting tensors Ai can be interpreted as isometries. c This isometric
property guarantees that the resulting block states |n〉B as defined in Eq. (2b) are orthonormal and that bond
dimensions agree with the Schmidt ranks of the state |ψ〉

ψ
σ1,...,σi−1,σi
i

RQ=: ψ
σ1,...,σi−1
i−1 Aσi

i for i = N − 1, . . . , 1. (3)

In each step, ψi is treated as a di−1 × (dmi ) matrix to do the RQ factorization, and
mN = 1. We are using the reduced (or “thin”) RQ decomposition [50] such that bond
dimension mi−1 is the rank of ψi in matrix form. The isometric property of the “Q”
matrix (QQ† = 1) translates into the property

∑
σ Aσ

i A
σ†
i = 1 and implies that

{|n〉B | n = 1, . . . ,mi }, with |n〉B as defined in Eq. (2b), is an orthonormal basis for
the Schmidt space of sites B = [i + 1, N ]. Hence, the obtained bond dimensions mi
agree with the Schmidt ranks m̃i of |ψ〉. In fact, the procedure could similarly be done
using singular value decompositions (SVD), which, in every step, would correspond
to a Schmidt decomposition of the state.

In conclusion, the set R(N , {mi }, d) of Schmidt-rank bounded and normalized
states is closed and oMPS(N , {mi }, d) = R(N , {mi }, d). 45

There is an alternative, slightly quicker way of seeing that oMPS(N , {mi }, d) is a
closed set: Any OBC-MPS (1) is invariant under gauge transformations

(
Aσ
i , Aσ ′

i+1

)
6→

(
Aσ
i Z

−1
i , Zi Aσ ′

i+1

)
∀σ,σ ′ with i ∈ [1, N − 1] (4)

and invertiblemi ×mi matrices Zi . This can be used to bring the matrix product into a
so-called orthonormal form. With a sequence of reduced RQ decompositions, starting
at the right end of the chain,

AσN
N

RQ=: RN−1B
σN
N and Aσi

i Ri
RQ=: Ri−1B

σi
i for i = N − 1, N − 2, . . . , 1 (5)

where R1 = ‖"‖ = 1 and Zi =̂R−1i inEq. (4), one arrives at a so-called right-canonical
form of the MPS

|"〉 = ∑
σ

Bσ1
1 Bσ2

2 · · · BσN
N |σ 〉 with

d∑
σ=1

Bσ
i B

σ†
i = 1. (6)

The reduced dimensions m̃i ≤ mi of tensor Bi ∈ Cd×m̃i−1×m̃i obey m̃i ≤ dm̃i±1.
Tensor Bi can be interpreted as an element of the Stiefel manifold St(m̃i−1, dm̃i )with
St(k, n) ≡ {B ∈ Ck×n | BB† = 1k} " U(n)/U(n − k) and k ≤ n. One can remove a
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remaining unitary gauge freedom, which makes Bi an element of the Grassmannman-
ifold Gr(m̃i−1, dm̃i ) with Gr(k, n) ≡ St(k, n)/U(k). Due to the isometry constraint∑

σ Bσ
i B

σ†
i = 1, the tensor elements are bounded by

∣∣[Bσ
i ]n,n′

∣∣ ≤
√
m̃i−1 ∀i,σ,n,n′ .

So, the set oMPS(N , {mi }, d) is the image of the bounded and closed set

⋃
1≤m̃i≤mi

U(1)× Gr(m̃0, dm̃1)× Gr(m̃1, dm̃2)× · · ·× Gr(m̃N−1, dm̃N ) (7)

with respect to the continuous map (6). It is hence itself a closed set. With the real
dimension dimRGr(k, n) = 2 dimC Gr(k, n) = 2k(n − k) of the Grassmannian, the
real dimensions of the manifolds in the union (7) are

2
N∑
i=1

dm̃i m̃i−1 − 2
N−1∑
i=1

m̃2
i − 1 with m̃i ≤ dm̃i±1. (8)

The result that the Schmidt-rank-bounded set R(N , {mi }, d) is closed is certainly
known to experts. It follows, for instance, from Theorem 3 in Ref. [51], stating that
this set is a finite union of embedded submanifolds, or from a result of Hackbusch
on hierarchical tensor spaces discussed at the end of Sect. 3. The simple proofs given
above and the characterization as the set oMPS(N , {mi }, d) are to our knowledge not
contained in the previous literature.

3 Tree tensor network states

A TTNS |"〉 is a TNS defined for a connected graph with vertices i = 1, . . . , N
and a set E of edges without loops, i.e., a graph that decomposes into two discon-
nected subgraphs if we remove any edge e ∈ E . We will denote the two components
of the corresponding bipartition of the system Ae and Be. The edges e are associ-
ated with bond vector spaces of dimensions me and each vertex i is associated with
a site Hilbert-space of dimension di . So the network structure is characterized by
G = (E, {me}, {di }). Here, we explicitly denote vertex-dependent di , because it is,
for example, very common to have TTNS with internal tensors that carry no physical
index σi , i.e., di = 1 for such a vertex.

For a given network G, a TTNS |"〉 is characterized by assigning a tensor Ai ∈
Cdi×

∏
e∈∂i me to each vertex i and contracting the tensors Ai , i.e., summing over all

their bond indices ne = 1, . . . ,me. Here, ∂i ⊆ E is the set of edges connected to
vertex i . The set of such normalized TTNS is denoted by TTNS(G).

Proposition 2 The set TTNS(G) for a network G = (E, {me}, {di }) is closed and
coincides with the set of normalized states in H with Schmidt ranks m̃e ≤ me for all
bipartitions of the system into components Ae and Be.

Proof This is a straightforward generalization of the OBC-MPS case. With the same
argument as under point (a) of Sect. 2, the set R(G) of normalized states in H
with Schmidt ranks m̃e ≤ me for the bipartitions of the system into components
Ae and Be is a closed set. With the same argument as under point (b) of Sect. 2,
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Fig. 2 Decomposition of a state |ψ〉 into a TTNS for a systemwith N = 14 sites as discussed in Sect. 3. Site
i0 = 1 is chosen as the root and edges directed accordingly. One then splits off TTNS tensors sequentially
using RQ decompositions, starting from the site with the largest distance from i0. The resulting bond
dimensions agree with the Schmidt ranks of the state |ψ〉

TTNS(G) ⊆ R(G). Also, R(G) ⊆ TTNS(G) according to the following scheme for
writing |ψ〉 = ∑

σ ψσ1,...,σN |σ 〉 ∈ R(G) as a TTNS with the desired graph structure
and bond dimensions {me}:

Designate a leaf i0 of the tree as its root. Assign directions to all edges e ∈ E , such
that e points from a vertex i to a vertex i ′ if we have dist(i ′, i0) < dist(i, i0) for their
graph distances from the root.Ae is then chosen as the component that contains i ′ (and
i0) and its complement Be contains i . As in Eq. (3), we will decompose ψσ1,...,σN into
a tree tensor network by a sequence of reduced RQ decompositions, splitting off one
single-site tensor Aσi

i at a time. In each step, we have a tensor ψ
σi1 ,...,σik
ne1 ,...,ne(

that carries
k physical indices and ( bond indices, where, initially, k = N and ( = 0. We then
select a vertex i from {i1, . . . , ik} that has maximal graph distance from the root i0,
and obtain tensor Aσi

i from ψ in an RQ decomposition as in Eq. (3) or, equivalently,
using an SVD. This gives a new tensor ψ with one less physical index and a changed
set of bond indices. In particular, it will now carry the bond index for bond e that starts
at vertex i . If we use an SVD, this decomposition is in fact a Schmidt decomposition
of the global state and the resulting bond dimension agrees with the Schmidt rank m̃e
for the bipartition AeBe of the system. The process is illustrated in Fig. 2. 45

As described for OBC-MPS in Sect. 2, any given TTNS with tensors Ai ∈
Cdi×

∏
e∈∂i me can be transformed into an orthonormal form by using the gauge freedom

of the tensor network [cf. Eq. (4)]: To this end, we designate a leaf i0 of the tree as
its root and assign directions to all edges according to graph distances to i0 as before.
We then visit all vertices i in decreasing order of dist(i, i0). Let vertex i have degree
z, let e1 denote the edge from i to the vertex i ′ with dist(i ′, i0) = dist(i, i0) − 1.
Label the remaining edges from ∂i by e2, . . . , ez . Reshape the current tensor Ai into
an me1 × (di m̃e2 · · · m̃ez ) matrix [Ai ]n1,(σ,n2,...,nz), using the index n1 for bond e1 as
the row index and σ ∈ [1, di ] as well as bond indices n2, . . . , nz as a multi-index for
the columns. Then do a reduced RQ decomposition

[Ai ]n1,(σ,n2,...,nz)
RQ=:

m̃e1∑

n′1=1

[R]n1,n′1[Bi ]n′1,(σ,n2,...,nz) (9)

and move the matrix R to site i ′ by contracting it appropriately with tensor Ai ′ . Con-
tinue with further RQ decompositions. Upon reaching the root i0, the TTNS is in an
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(a) (b)

Fig. 3 a A so-called binary MERA for a one-dimensional system with L sites consists of log2 L layers.
Each layer contains unitary gates that disentangle nearby degrees of freedom before they are decimated by
a factor of two. The so-called causal cone of sites 5 and 6 is indicated by the shaded region. b All tensors
are isometric; cf. Eq. (11)

orthonormal form with all tensors Bi obeying isometry constraints as in Eq. (6) and
having (reduced) bond dimensions m̃e ≤ me that agree with the Schmidt ranks. The
only remaining freedom in the representation corresponds to unitary gauge transfor-
mations (4) for each edge. Thus, TTNS(G) can be seen as the image of the bounded
and closed set

∪1≤m̃i≤mi U(1)×i Gr(m̃ei , di)e∈∂i\{ei }m̃e), (10)

where ei labels the (unique) edge that starts at vertex i . Each term in the union (10) is
a compact set with real dimension 2

∑N
i=1 di

∏
e∈∂i m̃e − 2

∑
e∈E m̃

2
e − 1. TTNS(G)

is the image of the union (10) under the continuous (multi-linear) map that contracts
the tensors to give the TTNS |"〉. This is an alternative way of seeing that TTNS(G)
is closed [52].

Concerning the closedness of the Schmidt-rank-bounded set R(G), a slightly more
general result was presented in Ref. [53], which allows for infinite-dimensional site
Hilbert spaces (cf. Lemma 11.55).

4 Multiscale entanglement renormalization ansatz

MERA states [29, 30] are a hierarchical type of TNS that is inspired by real-space
renormalization group schemes [54–56]. In each renormalization step (layer), the
system is partitioned into small blocks. Those blocks are to some extent disentangled
fromneighboring blocks by local unitary transformations before the number of degrees
of freedomper block is reduced by application of isometries. A formal characterization
of the admissible tensor network structures for a MERA is, for example, given in
Ref. [57]. Every finite set of sites A is associated with a causal cone that consists of
all tensors of the MERA that can affect measurements on subsystem A. The decisive
feature of MERA is that the cross-sectional sizes of such causal cones have a systems-
size independent bound. This implies that computation costs for the evaluation of
expectation values of strictly local observables scale logarithmically in the system
size. The example of a binary MERA is shown in Fig. 3.

As for the TTNS, we specify MERA networks G = (E, {me}, {di }) by a connected
graph with vertices i = 1, . . . , N and a set E of edges, which are associated with site
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Hilbert spaces of dimension di and bond vector spaces of dimension me. In contrast
to TTNS, the MERA network contains loops, and the edges are directed, all pointing
in the “renormalization” direction. For vertex i , in(i) will denote its incoming edges
and out(i) its outgoing edges. In a MERA, typically, only the tensors of the first layer
carry physical indices σi , i.e., di = 1 for vertices of all other layers.

A MERA |"〉 is characterized by tensors Ai ∈ Cdi×mi×m′i associated with the
vertices of the graph,wherem′i :=

∏
e∈in(i) me is the total dimension of the bond vector

spaces of incoming edges and mi :=
∏

e∈out(i) me is the one for the outgoing edges.
Importantly, all tensors of a MERA are unitaries or isometries. So, when considering
Aσi
i as mi ×m′i matrices, mapping from the bond vector spaces of incoming edges to

the bond vector spaces of outgoing edges, we have

di∑

σ=1

Aσ
i A

σ†
i = 1. (11)

The MERA |"〉 is obtained by contraction of the tensors Ai , i.e., summing over all
their bond indices ne = 1, . . . ,me. The set of such normalizedMERAstates is denoted
by MERA(G).

According to the isometry constraint (11), the MERA tensors Ai are elements of
the Stiefel manifold St(mi , dim′i ). Removing a unitary gauge freedom [cf. Eq. (4)] in
the tensor network at the outgoing edges, they become elements of quotient manifolds

Qi := St(mi , dim′i )/
(×e∈out(i) U(me)

)
. (12)

Thus, MERA(G) is the image of the direct product U(1)× Q1× · · ·× QN under the
continuous map that contracts the tensors Ai to give theMERA state |"〉. As the direct
product is a compact set, we arrive at the following.

Proposition 3 The set MERA(G) of normalized MERA states for any network G =
(E, {me}, {di }) is closed.

In contrast to OBC-MPS and TTNS, the bond dimensions of a MERA have no
one-to-one relation to Schmidt ranks. In fact, they can only be used to derive upper
bounds on Schmidt ranks. There is a decisive distinction between MERA in one
spatial dimension and higher-dimensional systems. For one-dimensional systems, the
Schmidt rank for a block of ( sites can grow as m( such that MERA can describe
critical systems with entanglement entropies S(() ∝ log (. For higher-dimensional
systems, it turns out that MERA form a subclass of PEPS [57]. The Schmidt rank
for a region A is then bounded by mc|∂A|, where |∂A| denotes the surface area of
A. Hence, entanglement entropies obey the area law [58–60]. In contrast to PEPS,
MERA expectation values for local observables can be evaluated efficiently without
approximation, thanks to the isometry constraint (11) and the bounded cross sections
of the causal cones.
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5 Translation-invariant MPS with PBC

The set tiMPS(N ,m, d) of normalized translation-invariant MPS with PBC contains
all states of the form

|"(A)〉 :=
∑

σ

Tr(Aσ1 Aσ2 · · · AσN )|σ 〉 with ‖"(A)‖ = 1, (13)

characterized by a single order-3 tensor A ∈ Cd×m×m . In the following, we will show
that tiMPS(N ,m, d) is in general not closed.

To this purpose, consider site Hilbert spaces of dimension d = 2 and the family of
states

|ψW 〉 :=
1
N

(|ϕ〉⊗N − |1〉⊗N ) with |ϕ〉 := |1〉+ ε|2〉 (14)

and N =
√
(1+ ε2)N − 1. In the limit ε → 0, we obtain the so-calledW state [61]

|W 〉 := lim
ε→0

|ψW 〉 =
1√
N

(|2, 1, 1, 1, . . .〉+ |1, 2, 1, 1, . . .〉+ . . . ) , (15)

which, physically, can be interpreted as a zero-momentum single-magnon state.
Incidentally, this is a well-known example for the fact that sets of tensors with a

given tensor rank [a.k.a. canonical polyadic (CP) rank] are in general not closed [62,
63]. For a tensor Q ∈ Cd1×···×dk , the tensor rank r is the minimal number of tensor
products needed for a CP decomposition Q = ∑r

ν=1 v1,ν⊗ · · ·⊗vk,ν with vi,ν ∈ Cdi .
In the case of the state (14), the tensor rank is clearly 2 for any nonzero ε. However,
in the limit ε → 0 we obtain the W state (15), which has tensor rank N .

For any ε > 0, the state (14) can be written as a tiMPS (13) with bond dimension
m = 2. Specifically,

|ψW 〉 = |"(A)〉 ∈ tiMPS(N , 2, 2) with A = 1
N 1/N

[|ϕ〉 0
0 eiπ/N |1〉

]
. (16)

For brevity, we have written the tensor A ∈ Cd×m×m as an m ×m matrix of elements
inH1 " Cd .

Combining results on canonical forms of tiMPS and the injectivity of their tensor
factors from Refs. [23, 25, 64, 65], we will see why the limit (15) is in general not an
element of tiMPS(N ,m, 2) for sufficiently large N or sufficiently small m.

Proposition 4 The sets tiMPS(N ,m, d) for m, d ≥ 2 are not closed for prime-number
system sizes N > Nc(m), where 2 logd m < Nc(m) ≤ 12m3(7+ log2 m).

The stated bounds on Nc(m) are certainly not tight and can be improved; we will
shortly discuss the general case at the end of the section. tiMPS(N , 1, d) is the set
of translation-invariant product states, which is clearly closed, and the case d = 1 is
trivial. Let us now go through the proof.
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(a) (b) (c)

Fig. 4 a In comparison with MPS with OBC (1), MPS with PBC (13) contain an additional contraction
line that connects the tensors of sites 1 and N . It allows to encode correlations between the two ends of the
chain in a local fashion. In a tiMPS, all tensors are chosen to be identical. b After blocking the tensors of (
consecutive sites, we may arrive at a tensor Bσ1,...,σ(

( := Aσ1 · · · Aσ( that is injective such that an inverse

B−1( exists in the sense of Eq. (19). c It follows that B(′ is injective for all (
′ ≥ ( if A obeys the isometry

constraint
∑d

σ=1 Aσ Aσ† = 1; cf. Fig. 1b

Canonical form of tiMPS [23, 25] – Translation invariant states of a system with
N sites and PBC can always be written as tiMPS |"(A)〉, and the tensor A can always
be brought into the canonical form

Aσ =




α1Aσ

1
. . .

αb Aσ
b



 for σ = 1, . . . , d. (17)

with b blocks on the diagonal. Aσ
j has dimension m j × m j , 0 < α j ≤ 1, and

∑
σ Aσ

j A
σ†
j = 1m j such that {Aσ†

j | σ = 1, . . . , d} can be interpreted as Kraus

operators that define the quantum channel E j (X) := ∑
σ Aσ†

j X Aσ
j [49]. For the

canonical form, these channels have unique diagonal fixed-pointmatrices/ j : 0with
E j (/ j ) = / j . If one has a tiMPS |"( Ã)〉 with bond dimension m, the corresponding
canonical tensor (17) with |"(A)〉 = |"( Ã)〉 has bond dimension

∑b
j=1m j ≤ m.

Injective MPS and quantum Wielandt’s inequality [64, 65] – An MPS tensor
A ∈ Cd×m×m that obeys the isometry constraint

∑
σ Aσ Aσ† = 1 may give rise to an

injective tensor
Bσ1,...,σ(

( := Aσ1 Aσ2 · · · Aσ( (18)

that is obtained by contracting the tensors of ( consecutive sites, i.e., the (-site tensor
B(, seen as a map from the joint bond vector space Cm×m to the (-site Hilbert space
H⊗(

1 , may be injective [23, 25, 66]. Injectivity of B( is equivalent to requiring that
{Bσ

( | σ ∈ [1, d]×(} is a basis for the m2-dimensional space of m × m matrices. Let
B( be injective with an inverse B−1( such that

∑
σ
[(B−1( )σ ]n1,n2 [Bσ

( ]n′1,n′2 = δn1,n′1
δn2,n′2

. (19)

Then (Aσ ′)∗(B−1( )σ is an inverse of Bσ ′,σ
(+1 , i.e., B(′ is injective for all (′ ≥ (; cf. Fig. 4.

Furthermore, for a canonical tiMPS tensor (17) with blocks j = 1, . . . , b, the (′-site
subspaces

H j := span
{∑

σ
[Bσ

j,(′]n,n′ |σ 〉 | n, n′ ∈ [1,m]
}

(20)
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with Bσ1,...,σ(
j,( := Aσ1

j · · · Aσ(
j are mutually orthogonal for (′ ≥ 3(b− 1)(( + 1) if the

tensors Bj,( are injective for all j [25].
Now, a quantum version of Wielandt’s inequality was proven in Ref. [64]. It states

that, if there exists an ( for which B( is injective, then it will be injective for all ( ≥ m4.
An improved upper bound Ninj(m) on the injectivity lengthwas given in Ref. [65] with

( ≥ Ninj(m) := 2m2(6+ log2 m). (21)

As discussed above, the canonical form of the tiMPS (17) gives rise to a quantum
channel E j for each block j ∈ [1, b]. Each channel E j has a unique fixed point
/ j , i.e., its eigenvalue 1 is non-degenerate. For this case, Fannes et al. [23] showed
that all eigenvalues of E j of magnitude 1 are roots e2π in/p of the identity for some
p ∈ N and n = 1, . . . , p. There also exists a set of p orthogonal projectors Pn
with

∑p
n=1 Pn = 1m j and Pn Aσ

j = Aσ
j Pn+1, where Pp+1 ≡ P1. It follows that the

contribution of block j in the canonical form vanishes unless p is a divisor of the
system size N [25]. Thus, if we restrict our considerations to prime-number N , 1 is
the only magnitude-1 eigenvalue of the E j and the corresponding fixed-point matrices
/ j are positive. Quantum channels of this type are primitive. Repeated application of
a primitive channel E j leads exponentially fast to the (full-rank) fixed point, and the
Kraus operator products Bj,( span the space of m j × m j matrices for some finite (,
i.e., the Bj,( are injective and the precondition of the quantum Wielandt’s inequality
is fulfilled [64].

Bond-dimension bound for the W state – Assume that there exists a tiMPS repre-
sentation (13) of |W 〉 in Eq. (15) with prime N , bond dimension m, and MPS tensor
A in the canonical form (17). According to the Wielandt inequality (21), the (-site
tensors Bj,( are injective if ( ≥ Ninj(m j ). Choose (0 = max j Ninj(m j ) such that all
Bj,(≥(0 are injective. By contradiction as in Ref. [25], we will see in the following
that no such tiMPS representation of the W state can exist for N ≥ 6(m− 1)((0 + 1).

For the given setup, let us choose N ≥ 6(b − 1)((0 + 1) such that we can split
the system into two groups A and B of i, N − i ≥ 3(b − 1)((0 + 1) consecutive
sites, respectively. We can write the W state as a sum of tensor products |"(A)〉 =∑b

j=1
∑m j

n,n′=1 | j, n, n′〉A ⊗ | j, n, n′〉B, where, similar to Eq. (2),

|q〉A := | j, n, n′〉A= ∑
σ1,...,σi

[Aσ1
j · · · Aσi

j ]n,n′ |σ1, . . . , σi 〉 and (22a)

|q〉B := | j, n, n′〉B = ∑
σi+1,...,σN

[Aσi+1
j · · · AσN

j ]n′,n |σi+1, . . . , σN 〉. (22b)

According to the properties of injective tiMPS discussed above [cf. Eq. (20)],

span{| j, n, n′〉A | j ∈ [1, b], n, n′ ∈ [1,m j ]} and (23a)

span{| j, n, n′〉B | j ∈ [1, b], n, n′ ∈ [1,m j ]} (23b)

have both (full) dimension
∑b

j=1m
2
j , which is hence the rank of the reduced density

matrix
TrB |"(A)〉〈"(A)| = ∑

q,q ′
|q〉AB〈q ′|q〉BA〈q ′|. (24)
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We know that the reduced density matrix of the W state (15) for subsystem A has
rank 2, with the support spanned by |1〉⊗i and theW state on i sites. This would imply
that the canonical tiMPS tensor A has b = 2 blocks with m1 = m2 = 1. This is a
contradiction since theW state can clearly not be written as a sum of only two product
states.

System-size bounds for non-closedness – The W state is the ε → 0 limit of the
family of tiMPS (16)with bonddimension2, butwehave found that N < 6(m−1)((0+
1) for any tiMPS representation with bond dimension m. Using that (0 ≤ Ninj(m)

with Eq. (21), we arrive at the result that tiMPS(N , 2, 2) is not closed for prime
N > 12m3(7 + log2 m) with m = 2. The same criteria guarantee non-closedness
of tiMPS(N ,m, d) with m, d > 2, since the states |ψW 〉 in Eqs. (14) and (16) can
of course also be written as a tiMPS with bond dimension m > 2, e.g., by padding
the tensor A in Eq. (16) with zeros. Moreover, we can allow d > 2, since it is not
necessary for |ψW 〉 to exhaust the single-site Hilbert spaces.

The lower bound 2 logd m on Nc(m) stated in Proposition 4 follows from the
fact that, as discussed in Sect. 2(c), every state with Schmidt ranks {mi } for bipar-
titions into subsystem A = [1, i] and its complement B = [i + 1, N ] has an
OBC-MPS representation (1) with tensors Ai ∈ Cd×mi−1×mi . The maximum pos-
sible Schmidt rank for a state in H = H⊗N

1 is m̃ = d;N/2<. From the OBC-MPS
representation with tensors Ai , we can get a tiMPS representation (13), by choosing
Aσ = N−1/N

∑N
i=1 A

σ
i ⊗ Ei,i+1. Here, Ei,i+1 are N × N matrices with a single

nonzero entry [Ei,i+1] j, j ′ = δi, jδ j ′,i+1mod N . Thus, every state has a tiMPS repre-
sentation with bond dimension m ≤ Nm̃ = Nd;N/2<, i.e., non-closedness requires at
least N > 2 logd m. 45

Comments – The large injectivity length (21) and the requirement for prime N
are a worst-case scenario. In generic cases, canonical tiMPS representations have
primitive block channels E j , and they are injective for blocks ( ≥ 2 logd m. Such a
generic tiMPS representation of the W state (15) cannot exist for N > 12m logd m.
Furthermore, note that the requirement of a translation-invariant MPS format (13) is
essential here: The W state can easily be written as a heterogeneous OBC-MPS (1)
with bond dimension 2, where

A1 =
1
N

[|2〉 |1〉] , Ai =
[|1〉 0
|2〉 |1〉

]
for 1 < i < N , and AN =

[|1〉
|2〉

]
. (25)

6 HeterogeneousMPS with PBC

The set pMPS(N ,m, d) of (heterogeneous) MPS with PBC contains all states of the
form

|"〉 =
∑

σ

Tr
(
Aσ1
1 Aσ2

2 · · · AσN
N

)
|σ 〉, (26)

characterized by N order-3 tensors Ai ∈ Cd×m×m . While we consider a fixed single-
site dimension d in Sect. 6.1,we generalize to site dependent dimensions di in Sect. 6.2.
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(a) (b)

Fig. 5 a The heterogeneous MPS with PBC (26) considered in Sect. 6.1 have small bond dimensions m
(large d), obeying d = m2. They can be constructed from a tensor product |µ〉 of maximally entangled
states

∑
n |n, n〉 for each bond and subsequent application of endomorphisms Âi on every site; cf. Eq. (28).

b If consecutive operators Âi are injective maps, also their contraction is injective (invertible); cf. Eq. (44)
and Fig. 4b

For clarity of notation, we consider the case where all bond dimensions are equal tom,
although it is not essential. Note that, so far, we did not impose a normalization con-
straint. The set of pMPS (26)with norm ‖"‖ = 1will be denoted by pMPSn(N ,m, d).

6.1 Small bond dimensions d ≥ m2

Landsberg et al. [39] discussed the case of small bond dimensions with dimH1 = d ≥
m2, finding that sets of corresponding heterogeneous MPS with PBC are not closed
based on comparing dimensions of stabilizers. In the following, we will rephrase the
arguments of Ref. [39] and extend them.

Let us choose d = m2 and impose a tensor-product structure for the single-site
Hilbert spaceH1 = V ⊗V = span{|n, n′〉 | n, n′ = 1, . . . ,m}, where vector spaces V
agree with the bond vector space and are spanned by an orthonormal basis {|n〉 | n =
1, . . . ,m}. In this setting, we can write all MPS (26) as images of the state

|µ〉 :=
m∑

n0,...,nN−1=1

|n0, n1〉 ⊗ |n1, n2〉 ⊗ · · ·⊗ |nN−1, n0〉 =
⊗

e

(
m∑

n=1

|n, n〉e
)

. (27)

under the application of operators Âi ∈ End(H1) on the site Hilbert spaces such that

|"〉 = Â1 ⊗ Â2 ⊗ Â3 ⊗ · · ·⊗ ÂN |µ〉. (28)

The tensor product on the right-hand side of Eq. (27) runs over all edges e = (i, i+1)
of the one-dimensional lattice. The generated state |"〉 is equal to the MPS (26) if
the matrix elements of the operators Âi agree with the elements of the MPS tensors
in the sense that 〈σi | Âi |ni−1ni 〉 = [Aσi

i ]ni−1,ni . Note that this is a standard way of
constructing MPS or PEPS [34, 67]: One associates copies of each bond vector space
to both of the corresponding lattice sites, prepares a tensor product |µ〉 with each
bond in a maximally entangled state

∑m
n=1 |n, n〉 (a.k.a. entangled-pair state), and

applies to it then a tensor product of linear operators Âi that map into the actual site
Hilbert spaces. The special case considered here is that the single-site Hilbert space is
isomorphic to the tensor product of the associated bond vector spaces (d = m2).
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Injective pMPS as a group orbit – Consider the sets E and G of N -fold tensor
products of generic single-site operators End(H1) and invertible operators GL(H1),

E := { Â1 ⊗ · · ·⊗ ÂN | Âi ∈ End(H1)} and (29a)

G := { Â1 ⊗ · · ·⊗ ÂN | Âi ∈ GL(H1)} ⊂ E, (29b)

respectively. According to Eq. (28), we then have

pMPS(N ,m,m2) = E |µ〉 ≡ {â|µ〉 | â ∈ E}. (30)

The subset of injective MPS is

ipMPS(N ,m,m2) := G|µ〉 ≡ {â|µ〉 | â ∈ G}. (31)

These are injective in the sense that the considered MPS operators Âi ∈ GL(H1)

correspond to injective maps from the bond vector spaces V ⊗ V to the single-site
Hilbert space H1. This is precisely the notion of injectivity discussed in Sect. 5 with
injectivity length 1.

In contrast to E , G is a group with the operator multiplication on H as the group
operation. It is a Lie group that is generated by the identity and all traceless operators
on site i , tensoredwith the identity on the remaining sites, where i = 1, . . . , N . Hence,

dimC G = N · (m4 − 1)+ 1. (32)

ipMPS has very nice properties. In particular, it is the orbit of the state |µ〉 in Eq. (27)
under the action of the group G. Orbits are homogeneous spaces, i.e., for all |"〉, |$〉 ∈
ipMPS there exists a group element â ∈ G such that |$〉 = â|"〉. Moreover, the
constraint det Âi >= 0 for invertible Âi does not reduce the dimension of the operator
set as a quasi-projective variety such that

dim G = dim E and, hence, dim ipMPS(N ,m,m2) = dim pMPS(N ,m,m2).

(33)
Finally, the constraints det Âi >= 0 are not stable with respect to taking the set closure.
Thus,

ipMPS(N ,m,m2) = pMPS(N ,m,m2). (34)

Dimension of pMPS – According to Eq. (33) we can study the dimension of pMPS
through that of ipMPS. From group theory, we know that

dim ipMPS ≡ dim G|µ〉 = dim G − dim Gµ, where Gµ := {â ∈ G | â|µ〉 = µ〉}
(35)

is the stabilizer of the state |µ〉 under the action of G. The entangled-pair states∑m
n=1 |n, n〉 are invariant under transformations of the form

Ẑ−1 ⊗ Ẑ T
m∑

n=1

|n, n〉 =
m∑

n,n′,n′′=1

|n′, n′′〉〈n′|Ẑ−1|n〉〈n′′|Ẑ T |n〉 =
m∑

n=1

|n, n〉 (36)
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(a) (b)

Fig. 6 The two-domain state (42) is an equal-weight superposition of tensor product states that have two
domains with sites in basis states |n〉 and |n′〉, respectively, where n, n′ ∈ [1,m]. The domain walls are
located on sites i ∈ [1, N − 1] and N , respectively. Two components are depicted for N = 6 in the upper
parts of both (a) and (b). The off-diagonal generators for the stabilizer of the two-domain state |τ 〉 are
spanned by operators t̂ in Eq. (46) that act on neighboring sites to map two such components into the same
state (bottom configurations) but with opposite sign such that t̂ |τ 〉 = 0

where the transposition is defined such that 〈n′′|Ẑ T |n〉 ≡ 〈n|Ẑ |n′′〉. Hence,

Gµ =
{
ẑ1 ⊗ · · ·⊗ ẑN

∣∣∣ ẑi = Ẑ T
i−1 ⊗ Ẑ−1i , Ẑi ∈ SL(V)

}
. (37)

Here, we employ the special linear group SL(V) to fix a scale freedom of the Ẑi
through det Ẑi = 1. So,

dimC Gµ = Nm2 − N , (38)

where the reduction by N is due to the constraints on the determinants for i =
1, . . . , N . With Eqs. (32) and (35) we obtain

dimC pMPS(N ,m,m2) = Nm2(m2 − 1)+ 1. (39)

Note that the invariance of |µ〉 under the action of the stabilizer (37) is in fact nothing
but the usual MPS gauge freedom (4) as

〈σ | Âi (Ẑ T
i−1 ⊗ Ẑ−1i )|n, n′〉 =

m∑

n̄,n̄′=1

[Aσ
i ]n̄,n̄′ 〈n̄|Ẑ T

i−1|n〉〈n̄′|Ẑ−1i |n′〉

= [Zi−1Aσ
i Z

−1
i ]n,n′ . (40)

Two-domain state – Following Ref. [39], consider the family of injective pMPS
for ε > 0

|ψτ 〉 := Â ⊗ Â ⊗ · · ·⊗ Â ⊗ B̂|µ〉 ∈ ipMPS with (41a)

Â = P̂d + ε P̂o, B̂ = 1
ε
(P̂o + ε P̂d), (41b)

P̂d :=
m∑

n=1

|n, n〉〈n, n|, P̂o :=
m∑

n=1

m∑

n′ >=n=1

|n, n′〉〈n, n′| = 1− P̂d , (41c)
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i.e., Â = ε1 + (1 − ε)P̂d . Noting that P̂⊗(N−1)d ⊗ P̂o|µ〉 = 0, the limit ε → 0 is
well-defined, and we obtain the state

|τ 〉 := lim
ε→0

|ψτ 〉 = P̂⊗N
d |µ〉+

N−1∑

i=1

P̂⊗(i−1)d ⊗ P̂o ⊗ P̂⊗(N−i−1)d ⊗ P̂o|µ〉

=
∑

n

|n, n〉⊗N +
∑

i,n,n′ >=n

|n, n〉1 ⊗ |n, n〉2 ⊗ · · ·⊗ |n, n〉i−1

⊗ |n, n′〉i ⊗ |n′, n′〉i+1 ⊗ · · ·⊗ |n′, n〉N , (42)

where the subscripts in the second and third lines indicate lattice sites. This is a sum of
product states with a domain wall at site i ∈ [1, N − 1] and another at site N . Hence,
we call |τ 〉 the two-domain state; see Fig. 6. With A j := { j} and B j := [1, N ] \ { j},
we have a bipartition of the system into site j and the rest. One finds that the reduced
density matrices ρ̂ j := TrB j |τ 〉〈τ | all have full rank, rank ρ̂ j = m2 ∀ j : For j < N ,
we can write

|τ 〉 =
∑

n

(
|n, n〉 j ⊗ |n, n〉B j +

∑

n′ >=n

|n, n′〉 j ⊗ |n, n′〉B j

)
(43)

with

|n, n〉B j = |n, n〉⊗(N−1)

+
∑

n′ >=n

(∑

i> j

|n, n〉 j+1 ⊗ · · ·⊗ |n, n′〉i ⊗ · · ·⊗ |n′, n〉N ⊗ · · ·⊗ |n, n〉 j−1

+
∑

i< j

|n, n〉 j+1 ⊗ · · ·⊗ |n, n′〉N ⊗ · · ·⊗ |n′, n〉i ⊗ · · ·⊗ |n, n〉 j−1
)
,

|n, n′〉B j = |n′, n′〉 j+1 ⊗ · · ·⊗ |n′, n〉N ⊗ · · · · · ·⊗ |n, n〉 j−1.

All states for site j and block B j in this decomposition are mutually orthogonal such
that this is, up to normalization, a Schmidt decomposition of |τ 〉withm2 terms, which
implies rank ρ̂ j = m2. The same works for j = N .

Location of the two-domain state – The injectivity of |"〉 ∈ ipMPS [cf. Eq. (31)]
implies that all single-site density matrices ρ̂ j = TrB j |"〉〈"| have full rank,

rank ρ̂ j = m2: As discussed in Sect. 5, injectivity of the operator Â j implies that
{Aσ

j | σ ∈ [1, d]} spans the space of m × m matrices. Furthermore, the injectivity of

Âi and Âi+1 implies that B̂ := ( Âi ⊗ Âi+1)
∑

n,n′,n′′ |n, n′, n′, n′′〉〈n, n′′| is injective.
In particular, with the inverses Â−1i and Â−1i+1 of the single-site tensors,

B̂−1 = 1
m

∑

n,n′,n′′
|n, n′′〉〈n, n′, n′, n′′|( Â−1i ⊗ Â−1i+1) (44)
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is the inverse of B̂; cf. Fig. 5. Consequently, also
{
A

σ j+1
j+1 · · · AσN

N Aσ1
1 · · · Aσ j−1

j−1
| σi ∈ [1, d]

}
spans the space of m × m matrices. In the decomposition

|"〉 =
m∑

n,n′=1

|n, n′〉 j ⊗ |n, n′〉B j (45)

of the ipMPS |"〉, in analogy to Eqs. (22)–(24), we have two sets of m2 linearly
independent states and, hence, rank ρ̂ j = m2.

As all single-site density matrices ρ̂ j of the two-domain state (42) have full rank,
there are two possibilities. Either |τ 〉 is in ipMPS(N ,m,m2), or it is an element
of the boundary ∂ pMPS of pMPS that is not contained in pMPS. It cannot be in
pMPS \ ipMPSbecause all those states have at least one operator Â j that is not injective
and hence a ρ̂ j without full rank. Comparing the dimension of the stabilizer Gτ with
that of Gµ, we will see in the next subsection that the latter scenario is the case and
that, hence, pMPS(N ,m,m2) is not a closed set.

Stabilizer of the two-domain state – If the two-domain state (42) were in ipMPS,
the dimension of its stabilizer Gτ = {â ∈ G | â|τ 〉 = |τ 〉} would agree with that of Gµ
because, as previously discussed, ipMPS is a homogeneous space with respect to the
group G [Eq. (29)]. Generators for elements of Gτ take the form t̂ = c1 + ∑N

j=1 t̂ j
with operators t̂ j acting non-trivially on site j and as the identity on all other sites.
They obey t̂ |τ 〉 = 0. Off-diagonal t̂ necessarily act simultaneously on neighboring
sites: For N ≥ 3, they either map the equal-weight sum of two terms with domain
walls on sites i and i − 1, respectively, to zero, or they map the sum of a term with a
domain wall on site 1 or N − 1 and a term without domain walls to zero; see Fig. 6.
Thus, a basis for the off-diagonal generators is given by

|n′, n′〉〈n, n′|i − |n, n〉〈n, n′|i−1 for 1 < i < N , and

|n′, n′〉〈n, n′|1 − |n′, n〉〈n′, n′|N , |n′, n〉〈n, n|N − |n, n〉〈n, n′|N−1. (46)

The subscripts indicate sites and tensoring with the identity on the remaining sites is
implied. See Fig. 6. With N such operators for each index pair n >= n′ ∈ [1,m], this
gives Nm(m − 1) linearly independent off-diagonal generators. Generators t̂ that are
diagonal in the basis {|n, n′〉} need to solve the equations

i−1∑

j=1

〈n, n|t̂ j |n, n〉+ 〈n, n′|t̂i |n, n′〉+
N−1∑

j=i+1

〈n′, n′|t̂ j |n′, n′〉+ 〈n′, n|t̂N |n′, n〉 = −c,

N∑

j=1

〈n, n|t̂ j |n, n〉 = −c (47)

for all i ∈ [1, N − 1] and n >= n′ ∈ [1,m]. With N · (m2 − 1) + 1 diagonal matrix
elements and, (N − 1)m(m− 1)+m independent equations, this gives N · (m− 1)+
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m(m − 2)+ 1 linearly independent diagonal generators. In summary, for N ≥ 3,

dimC Gτ = Nm(m−1)+N ·(m−1)+m(m−2)+1 = N (m2−1)+m(m−2)+1. (48)

This is consistent with the value 4m2 − 2m given in Ref. [39] for N = 3 because,
in that paper, the group G was defined in terms of a Cartesian product instead of the
tensor product in Eq. (29). Also note that Eq. (48) correctly captures the corner case
m = 1, for which Gτ = {1}, i.e., dim Gτ = 0. For any N ≥ 3 andm > 1, the obtained
dimC Gτ is larger than dimC Gµ [Eq. (38)]. Hence, the two-domain state (42) is not in
pMPS(N ,m,m2) and we have established that pMPS(N ,m,m2) is not a closed set.

Normalization – So far, we did not impose a normalization constraint on the MPS.
However, the considered states |ψτ 〉 and their ε → 0 limit |τ 〉 are normalizable.
Enforcing norm one reduces the real dimension of theMPS quasi-projective variety by
one (dimR pMPSn = dimR pMPS−1), but it remains a non-closed set: All |ψτ 〉/‖ψτ‖
are in pMPSn, and normalization of |τ 〉 does not change the fact that it cannot be
represented as a pMPS with bond dimension m.

Proposition 5 The sets pMPSn(N ,m, d ≥ m2) of normalized pMPSwith bond dimen-
sion m > 1 on a ring of N sites are not closed for any N ≥ 3.

Here, we generalized from d = m2 to d ≥ m2 because, for the above arguments to
hold, it is not necessary for the states |ψτ 〉 and |τ 〉 to exhaust the single-site Hilbert
spaces.

6.2 Extension to larger bond dimensions

In actual simulations of quantummany-body systems, bond dimensionsm are typically
much larger than single-site Hilbert space dimensions d, say, d ∼ 2 . . . 10 and m ∼
10 . . . 15000. Often, one is interested in simulating large system sizes N . The result
on non-closedness can be generalized to this more relevant regime by imposing a
tensor-product structure on the local Hilbert spaces and decomposing the tensors of
the injective pMPS (41) to obtain an MPS for a correspondingly fine-grained lattice.

Proposition 6 For a system with size N being a multiple of ( ∈ N and some single-site
Hilbert-space dimension d̃ ≥ d > 1, the sets pMPSn(N ,m = d(/2, d̃) are not closed
for any N ≥ 3(. More generally, if the system consists of at least three clusters with
lengths (c such that N = ∑

c (c, and with some single-site Hilbert space dimensions
d̃c,1 ≥ dc,2, . . . , d̃c,(c ≥ dc,(c in cluster c such that 1 < m2 = d1d2 · · · d(c , then the
corresponding set pMPSn(N ,m, {d̃c,i }) is not closed.

Proof (a) In a first step, we decompose the tensors

Â = α P̂d + β P̂o = β1+ (α − β)
m∑

n=1
|n, n〉〈n, n| with α,β ∈ R (49)

for the MPS representation (41) of |ψτ 〉, where α = 1 and β = ε for the tensors of
the first N − 1 sites as well as α = 1/ε and β = 1 for site N . Let us decompose Â
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(a)

(b)

(c)

Fig. 7 Decomposition of the tensors An,ñ with n, ñ ∈ [1,m] [Eq. (49)] for the MPS |ψτ 〉 into a contraction
of tensors Anii with smaller site Hilbert spaces, where ni ∈ [1, di ]. a In an SVD, An,ñ is brought to the

form An,ñ = Un diag(s1, . . . , sm )V ñ ; cf. Eq. (50). b, c In a second step,U and V are decomposed further
into contractions of tensors Ai according to Eq. (52) by imposing suitable tensor product structures for the
bond spaces and site Hilbert spaces

into the contraction of two tensors such that

〈n, ñ| Â|n′, ñ′〉 SVD=
m∑

k=1

sk〈n|Û |n′, k〉〈ñ|V̂ |k, ñ′〉, (50)

where n, ñ, n′, ñ′ ∈ [1,m]. The tensors Û and V̂ both have bond dimension m and
site Hilbert-space dimension m, whereas Â has site dimension m2. Let {D̂k} be a set
of m operators on V that, in the basis {|n〉}, are real and diagonal with orthonormality
Tr(D̂k D̂k′) = δk,k′ , and with D̂1 = 1/

√
m as the first element. Then, a valid choice

for the decomposition (50) is

〈n|Û |n′, k〉 = 〈n|D̂k |n′〉, 〈n|V̂ |k, n′〉 = 〈n|D̂k |n′〉, (51a)

s1 = mβ + α − β, sk>1 = α − β (51b)

as D̂1 ⊗ D̂1 = 1/m and
∑m

k=1 D̂k ⊗ D̂k =
∑m

n=1 |n, n〉〈n, n|.
(b) We can now decompose the tensors Û and V̂ further to obtain an MPS

with site dimensions smaller than m. To this purpose choose a prime factorization
m = d1d2 · · · dp with any ordering of the factors, and consider a corresponding
tensor-product structure V = V1 ⊗ V2 · · · ⊗ Vp of the space V with dim Vi = di ,
corresponding orthonormal bases {|ni 〉 | ni = 1, . . . , di }, and orthonormal bases of
diagonal real operators {D̂(i)

ki
| ki = 1, . . . , di }, where D̂(i)

1 = 1/
√
di . With the multi-

index k = (k1, . . . , kp), we can choose D̂k = D̂(1)
k1
⊗ · · ·⊗ D̂(p)

kp . With multi-indices

n = (n1, . . . , n p) and n′ = (n′1, . . . , n
′
p), we obtain a decomposition of Û into a

contraction of p MPS tensors (a matrix product),

〈n|Û |n′, k〉 = 〈n|D̂(1)
k1
⊗ · · ·⊗ D̂(p)

kp |n′〉 =
[
An1
1 An2

2 · · · Anp
p

]

n′,k
, where (52a)

Ani
i := 11 ⊗ · · ·1i−1 ⊗3

ni
i ⊗ 1i+1 ⊗ · · ·⊗ 1p, (52b)

and [3ni
i ]n′i ,ki := 〈ni |D̂

(i)
ki
|n′i 〉 (52c)
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(a) (b)

Fig. 8 a A PEPS |"〉 can be constructed by starting from the tensor product |µ〉 of maximally entangled
bond states

∑me
n=1 |n, n〉e , and applying, subsequently, operators Âi on each site that map into the site

Hilbert spacesHi ; cf. Eq. (53). In the diagrams, physical indices are either indicated by encircled numbers
or by encircled dots. b Proposition 7 establishes the non-closedness of PEPS sets for the case where, at
each vertex, the local Hilbert space dimension is equal to or larger than the product of bond dimensions,
i.e., di ≥ mzi . It is based on PEPS |ψT 〉, where the tensors of the pMPS |ψτ 〉 [Eq. (41)] are applied to |µ〉
along some loop of the network. Here, we chose the loop (6, 7, 8, 12, 11, 10)

with ni , n′i , ki ∈ [1, di ]. A graphical representation for this matrix product decom-
position is given in Fig. 7. The same works for V̂ . In this way, we have obtained a
fine-grainedMPS form for the states |ψτ 〉 [Eq. (41)]with bond dimensionm and prime-
number single-site Hilbert space dimensions di . Blocking the tensors of consecutive
sites in the sense that tensors Ai and Ai+1 are replaced by B(ni ,ni+1) := Ani

i Ani+1
i+1 , etc.,

we can reach MPS representations |ψ ′τ 〉 with arbitrary factorizations dc,1dc,2 · · · dc,(c
of m2 for each cluster as specified in the Proposition.

(c) Finally, for any such fine-grained MPS representation |ψ ′τ 〉 of the state |ψτ 〉,
we can regain the original MPS representation (41) by blocking all (c sites of each
cluster. With limε→0 |ψ ′τ 〉, we obtain a fine-grained form |τ ′〉 of the two-domain state
|τ 〉. If |τ ′〉 were in the pMPSn set for the fine-grained lattice, |τ 〉 [Eq. (42)] would be
in the pMPSn set for the original (coarser) lattice. The latter is not the case according
to Proposition 5, which concludes the proof. 45

7 Projected entangled-pair states

PEPS [31–35] are a generalization of MPS to D > 1 spatial dimensions. First, one
chooses a connected graph with vertices i = 1, . . . , N and the set E of edges. In
contrast to TTNS, the graph generally contains loops. The edges e ∈ E are associated
with bond vector spaces Ve of dimensions me, and each vertex i is associated with
a site Hilbert space Hi of dimension di . Let us denote orthonormal basis states for
Ve by |ne〉 with ne = 1, . . . ,me and orthonormal basis states for Hi by |σi 〉 with
σi = 1, . . . , di . So the network structure is characterized by G = (E, {me}, {di }).

For such a networkG, a PEPS |"〉 is defined by assigning tensors Ai ∈ Cdi×
∏

e∈∂i me

to all sites i , where ∂i ⊂ E is the set of edges connected to vertex i . The PEPS |"〉 is
obtained by contraction of the tensors Ai , i.e., summing over all joint bond indices ne.
The set of such normalized PEPS for network G is denoted by PEPS(G). As depicted
in Fig. 8a, for a square lattice, a common choice is to assign one tensor Ai to each
lattice site. Every tensor carries one index index σi for the site Hilbert space basis.
In the bulk, the tensors have four bond indices to be contracted with corresponding
indices of tensors on the four neighboring sites. For OBC, tensors at the boundary
carry fewer bond indices (two or three).
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As discussed in Sect. 6.1, one can equivalently construct PEPS as follows [34,
67]: For each edge e ∈ ∂i connected to site i , associate a copy Vi,e " Ve of the
corresponding bond vector space to that site. For each edge e connecting sites i and j ,
prepare the tensor product Vi,e ⊗ V j,e in the maximally entangled state

∑me
n=1 |n, n〉.

In this way, we obtain the state

|µ〉 := ⊗

e∈E

( me∑
n=1

|n, n〉e
)
. (53)

See Fig. 8a. It is the analog of the state (27) that we employed for MPS. Now, let
e1, . . . , ez denote the z = |∂i | edges connected to site i . We can interpret the tensor
Ai as a map Âi : Vi,e1 ⊗ · · ·⊗ Vi,ez → Hi from the bond vector spaces into the site
Hilbert space of site i with 〈σ | Âi |n1, . . . , nz 〉 = [Aσ

i ]n1,...,nz . Then, the PEPS can be
written as

|"〉 = Â1 ⊗ Â2 ⊗ Â3 ⊗ · · ·⊗ ÂN |µ〉, (54)

as in Eq. (28) for pMPS.

7.1 Small bond dimensions d ≥ mz

By embedding the pMPS constructed in Sect. 6 suitably into a PEPS for network G,
in generalization of Proposition 5, it follows that the sets PEPS(G) are generally not
closed.

Proposition 7 The sets PEPS(G) of normalized PEPS for networks G = (E, {me =
m}, {di }) are not closed if the network contains at least one loop and if site dimensions
obey di ≥ mzi , where zi is the degree of vertex i .

Proof For the following let di = mzi , i.e., Hi = ⊗
e∈∂i Vi,e. The generalization to

site dimensions di ≥ mzi is trivial as before. Let us start from the state |µ〉 in Eq. (53)
for the given network G. It is a PEPS of bond dimension m. Acting on |µ〉 with
suitable single-site endomorphisms Âi , we can define a family of PEPS |ψT 〉 with
unchanged bond and site dimensions. In particular, we choose a closed path (loop)
C = (i1, i2, . . . , iL) on the graph and apply the endomorphisms Â and B̂ that define
the pMPS |ψτ 〉 of Eq. (41) along that path. This construction of |ψT 〉 is illustrated in
Fig. 8b. For example, if the path C enters site i from edge e and exits it through edge
e′, we apply Â (or B̂ for i = iL ) as defined in Eq. (41) to the component Vi,e ⊗ Vi,e′

of the site-i Hilbert space. With the same considerations as in Sect. 6.1, one finds that
the stabilizer Gµ of |µ〉with respect to the action of invertible operators Âi ∈ GL(Hi )

has lower dimension than the stabilizer GT of |T 〉 := limε→0 |ψT 〉. Here, |T 〉 is the
two-domain state (41) on the Hilbert space that corresponds to the loop C, and consists
of maximally entangled states for all other edges. As the single-site reduced density
matrices of |T 〉 all have full rank, it is a point on the boundary of PEPS(G) that is not
contained in the set, i.e., PEPS(G) is not closed. 45
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7.2 Larger bond dimensions

As discussed for pMPS, also for PEPS simulations, bond dimensions me are usually
considerably larger than single-siteHilbert space dimensions di , andwe can generalize
from Proposition 7 to this more relevant regime by imposing tensor-product structures
for the site Hilbert spaces. The decisive step for pMPS in Sect. 6.2 was to construct a
fine-grained version of the state |ψτ 〉 [Eq. (41)] that yields the two-domain state |τ 〉 in
the limit ε → 0. Suitable tensor decompositions lead to a state |ψ ′τ 〉 for a lattice with
smaller site dimensions, allowing for the physically most relevant scenario di . me.
This fine-grained state |ψ ′τ 〉 is chosen such that a blocking of sites (tensors) recovers
|ψτ 〉. For PEPS, we need to extend these tensor decompositions of |ψτ 〉 one step
further.

Before we proceed with these decompositions, let us state clearly what we mean by
blocking and fine-graining: A network G′ = (E ′, {m′e}, {d ′i }) is called a fine-grained
version of network G = (E, {me}, {di }) if there exists a blocking scheme that maps G′
onto G in the following sense. The graph of G′ is partitioned into clusters, and each
cluster Ci with site dimensions {d ′j | j ∈ Ci } corresponds to exactly one vertex i of G
such that di =

∏
j∈Ci

d ′j . The edge e in G that connects vertices i and j corresponds
to all edges in G′ that connect clusters Ci and C j . The product of the bond dimensions
of the latter must agree with me. We call |" ′〉 ∈ PEPS(G′) a fine-grained version
of |"〉 ∈ PEPS(G) if G′ is a fine-grained version of G and if there exists a blocking
scheme that maps |" ′〉 to |"〉 in the following sense: The PEPS tensor Ai of |"〉 for
vertex i is obtained by contracting the PEPS tensors of |" ′〉 in clusterCi and grouping
indices of outgoing edges into one multi-index for each connected cluster C j∈∂i . Note
that not every |"〉 ∈ PEPS(G) necessarily has a fine-grained pendant in PEPS(G′),
but every |" ′〉 ∈ PEPS(G′) is a fine-grained version of some state in PEPS(G).

In Sect. 6.2,we started from the tensors Â = α P̂d+β P̂o that define the pMPS format
(41) of |ψτ 〉. With an SVD, we expressed it as a contraction (50) of an isometry Û , the
diagonal operator ŝ of singular values and a second isometry V̂ . The isometries carry
the physical indices and were decomposed into matrix products (51) for a fine-grained
lattice and a corresponding tensor product structure for the bond vector spaces V . For
the following, we want to also decompose ŝ = ∑m

k=1 sk |k〉〈k| in accordance with the
tensor product structure V = V1⊗ · · ·⊗Vp introduced for the decompositions (51) of
Û and V̂ . For a bond with dim V = m, the dimensions di = dim Vi coincide with the
site-dimensions of the fine-grained lattice such thatm = d1d2 · · · dp, and wewrote the
bond basis as |k〉 = |k1, . . . , kp〉with ki ∈ [1, di ].While it is not necessary, we assume
here and in the following, for simplicity, that the same factorization of V is used for
both Û and V̂ . The structure of the singular values is very simple, s1 = mβ + α − β

and sk>1 = α − β, where k = 1 corresponds to k1 = · · · = kp = 1. Hence, ŝ can be
written in the form of a matrix product operator [26] with bond dimension 2,

ŝ = s1|1, 1, . . . , 1〉〈1, 1, . . . , 1| + (sk>1 − s1)
⊗p

i=1 1i

=
[
s1|1〉〈1|1 (sk>1 − s1)11

] [|1〉〈1|2 0
0 12

]
· · ·

[|1〉〈1|p−1 0
0 1p−1

] [|1〉〈1|p
1p

]
. (55)
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(a) (b)

(c) (d)

Fig. 9 a For results on PEPSwith di <
∏

e∈∂i me , we extend the decomposition of the tensors A in Eq. (49).
As shown in Sect. 6.2 and Fig. 7, one can do an SVD A = UsV , and decompose the isometries U and
V by introducing a suitable tensor product structure for the bond vector spaces V = V1 ⊗ · · · ⊗ Vp and
site spaces. Here, we extend this decomposition by bringing the singular-value tensor s into the compatible
matrix-product form (55). In the shown example, p = 4. b Such decompositions are employed to obtain
fine-grained PEPS versions of the pMPS |ψτ 〉, resulting in Proposition 8 that covers PEPS for cubic lattices
in D dimensions with PBC in the x direction. With p = 12, the diagram shows the decomposition of
one tensor A into a tensor network for 2(x = 6 times Ly = 4 sites. It can be encoded as a block of
PEPS tensors as indicated by the green boxes with single-site dimension d ′ bond dimension m′ = d ′3 in x
direction and arbitrary bond dimensions ≥ 2 in y direction. c, d Proposition 9 generalizes to a larger class
of PEPS networks using fine-grained versions of states |ψT 〉 as depicted in Fig. 8b. Here we show how the
components of |ψT 〉 are fine-grained. c Gives an example for fine-graining site 7 from Fig. 8b into a block
of 6 × 6 sites, with new site dimension d ′ = δ2 and new bond dimensions m′ = δ3, where the original
PEPS |ψT 〉 has m = m′6 = δ18 and d = d ′36 = δ72 = m4. d Gives an example for fine-graining site 6
from Fig. 8b into a block of 4× 4 sites

The matrix product representation in the second line is analogous to Eqs. (16) and
(25); each entry of the i th matrix is an operator on Vi .

In this way, we have obtained a comb-like decomposition of the tensors (49) that
constitute the pMPS |ψτ 〉 as depicted in Fig. 9a. The tensors and contraction lines of
this fine-grained version can be arranged to form, e.g., a D-dimensional cubic lattice
as shown in Fig. 9b for D = 2.

Proposition 8 The set PEPS(G) of normalized PEPS with a network G = (E, {me},
{di ≥ d}) for a cubic lattice in D dimensions is not closed under the following sufficient
conditions. In x direction, the network G has PBC, bond dimension mx = d(x , and
length Lx = 2Nc(x with Nc ≥ 3. For the other D − 1 spatial directions, one can
choose arbitrary lengths Ly, Lz, . . . ≥ 1, arbitrary boundary conditions, and any
bond dimensions my,mz, . . . ≥ 2.

Proof We can partition the network G into Nc clusters, defined by cuts on the x axis
at x = 2(x , 4(x , . . . , 2Nc(x . G is a fine-graining of the one-dimensional lattice with
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Nc sites and PBC. For cluster j ∈ [1, Nc], we can encode a fine-grained version of
the j th pMPS tensor of |ψτ 〉 in PEPS form for the cubic lattice of the cluster with
2(x × Ly × Lz × · · · sites and bond dimension mx = d(x in x direction. We only
need bond dimension my,mz, . . . ≥ 2 in the other directions, in order to encode the
matrix product decomposition (55) of the singular-value tensor ŝ. This construction
yields a PEPS representation for the fine-grained state |ψ ′τ 〉 and is illustrated in Fig. 9b
for D = 2. For any ε > 0, |ψ ′τ 〉 is in PEPS(G). Now, blocking all tensors of each
cluster into one big tensor, we recover the pMPS representation (49) of |ψτ 〉. As
the two-domain state limε→0 |ψτ 〉 is not in pMPSn(Nc,m′ = d2(x L y Lz ···, d ′ = m′2),
limε→0 |ψ ′τ 〉 is not in PEPS(G), i.e., PEPS(G) is not closed. 45

This result can be extended to a much bigger class of PEPS networks by fine-
graining the states |ψT 〉 of Sect. 7.1 instead of |ψτ 〉. The only additional ingredient
needed are fine-grained versions of the maximally entangled states

∑m
n=1 |n, n〉 that

define the state |µ〉 [Eq. (53)]. Introducing, as before, a tensor product structure V =
V1 ⊗ · · ·⊗ Vp with di = dim Vi and m = dim V = d1 · · · dp, one can simply use the
decomposition

m∑
n=1

|n, n〉 =
p⊗

i=1

(
di∑

ni=1
|ni , ni 〉

)

. (56)

Proposition 9 Let G be any network as characterized in Proposition 7 and |ψT 〉 ∈
PEPS(G) a family of PEPS as described in its proof, i.e., states obtained by starting
from |µ〉andapplying theMPSoperators (41) for |ψτ 〉along some loop inG. LetG′ bea
fine-grained version ofG, consisting of Nc interconnected clusters, each corresponding
to one vertex of G. The bond dimensions of G′ need to be able to accommodate the
tensors of a fine-grained version |ψ ′T 〉 ∈ PEPS(G′) of |ψT 〉. Apart from that, the bond
dimensions inside each cluster can be arbitrary. The product of bond dimensions for
edges of G′ that get combined into an edge e ofG in the blocking G′ → G must be equal
to the corresponding bond dimension me. Under these conditions, the set PEPS(G′)
of normalized PEPS for network G′ is not closed.

This covers many network structures, for example, (sufficiently large) cubic lattices
with open boundary conditions. See Fig. 9c, d for exemplary fine-graining schemes.

8 Tensor network states for infinite system sizes

To directly access the thermodynamic limit, N → ∞, one can use MPS, PEPS and
MERA with an infinitely repeated unit cell of tensors (iMPS, iPEPS, iMERA) [40–
47]. An iMPS with a single-site unit cell, for example, has the same order-3 tensor
A ∈ Cd×m×m for every site of the infinite one-dimensional lattice Z, corresponding
to the limit N → ∞ in Eq. (13). An iMPS with a two-site unit cell is characterized
by the repetition . . . Aσ2i

e Aσ2i+1
o Aσ2i+2

e Aσ2i+3
o . . . of two tensors, one for all even sites

and one for all odd sites.
Avoidingmore complicated topologies, we consider here the closedness of such sets

of TNS |"〉 for infinite systems in the sense that the resulting sets of reduced density
matrices ρ̂A = TrB |"〉〈"| are closed or not, where A is a finite subsystem and B is
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its (infinite) complement. This is a relevant topology, since physical observations are
for practical reasons limited to finite subsystems.

For an infinite MPS with a transfer operator E = ∑
σ Aσ∗ ⊗ Aσ that has only one

eigenvalue of magnitude 1, expectation values of local observables and finite-range
correlation functions are insensitive to the boundary conditions, since the transfer-
matrix product limn→∞ En = |(〉〈r | for and infinite number of sites is completely
determined by the left and right eigenvalue-1 eigenvectors of E . In this typical scenario,
one can hence always imagine working with open boundary conditions on a very large
lattice such that the corresponding sets of iMPS density matrices are closed.

Like the sets of pMPS and PEPS, sets of iPEPS are generally not closed due to
loops in the networks. In fact, there are more substantial complications: Given the
tensor of a translation-invariant iPEPS, it is, in general, undecidable whether the state
has a nonzero norm, a certain symmetry, etc. [48].

For iMERA, let us distinguish two cases—iMERA with a finite number of layers
(fiMERA) and scale-invariant iMERA (siMERA) where a layer or finite sequence of
layers is repeated an infinite number of times: (a) Sets of reduced density matrices ρ̂A
for fiMERA are closed. This is because their ρ̂A can be written as a tensor network
that corresponds to the causal cone of A [30, 40]. An example is shown in Fig. 3.
If A is finite, also the number of tensors in the causal cone is finite, i.e., the ρ̂A are
the images of a continuous map from the compact set of the MERA tensors in the
causal cone. Hence, they form a closed set. (b) For siMERA, causal cones of finite
subsystems still have finite cross sections, but they are infinite in the renormalization
direction. The density matrix ρ̂A is in this case obtained as the fixed point of the
transfer matrix that propagates from layer to layer inside the causal cone [46, 47]. As
in phase transitions, such fixed points can depend in a non-analytic way on the tensor
elements. Hence, it is conceivable that the reduced density matrices ρ̂A of siMERA
generally form non-closed sets. We leave a detailed analysis for future work.

9 Discussion and algorithmic remedies for non-closedness

9.1 Summarizing theorem

As discussed in the introduction, important objectives of tensor network algorithms
are to solve the following optimization problems:

(I) Minimize the distance ‖|"〉 − |ψ0〉‖2 or, equivalently, maximize the overlap
|〈ψ0|"〉| for a given state |ψ0〉 over some set M of normalized TNS |"〉.

(II) Minimize the expectation value 〈"|Ĥ |"〉 for a given Hamiltonian Ĥ over some
set M of normalized TNS |"〉.

The findings in Propositions 1 to 9 can be summarized as follows.

Theorem Let H = H1 ⊗ · · · ⊗HN be the joint Hilbert space of a quantum system
with N sites and finite-dimensional site Hilbert spacesHi .

(a) Existence: Problems (I) and (II) possess an optimizer for any given |ψ0〉 ∈ H
and any given self-adjoint operator Ĥ : H → H when M ⊆ H is any of the
closed sets of TNS in Propositions 1 to 3 (MPS with OBC, TTNS, or MERA).
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(b) Nonexistence: There exist states |ψ0〉 and Hamiltonians Ĥ such that problems
(I) and (II) do not possess an optimizer when M ⊂ H is any of the non-closed
sets of TNS specified in Propositions 4 to 9 (translation-invariant MPS with PBC,
heterogeneous MPS with PBC, or PEPS) with the corresponding restrictions on
the number of sites, site Hilbert space dimensions, and bond dimensions as given
in these propositions.

Proof (a)As was shown, the considered sets of TNS are closed, and they are bounded
due to the normalization constraint ‖"‖ = 1. Hence, the TNS sets are compact. Now,
the assertion follows from the generalized extreme-value theorem, which states that
every continuous function on a compact set attains its maximum and minimum in the
set [52]. (b) The proofs of Propositions 4 to 9 establish, in each case, the existence
of states |ψ0〉 ∈ H that lie outside the TNS set M but belong to its closure. For
these states, an overlap optimization will approach but never reach |ψ0〉, i.e., problem
(I) has no (global) optimizer. With regard to the energy minimization problem (II),
choose |ψ0〉 as before. Then the expectation-value minimization for the Hamiltonian
Ĥ = −|ψ0〉〈ψ0| or any other parent Hamiltonian [23, 25, 68] of |ψ0〉 reduces to
overlap maximization and the assertion follows. 45

9.2 Examples with or without optimizers in non-closed TNS sets

For sets M of tiMPS, pMPS, and PEPS with loops, we found that the boundary ∂M
generally contains states |ψ0〉 that are not elements ofM. TheW state |W 〉, discussed
inSect. 5, is an example for tiMPS.The two-domain states |τ 〉 andfine-grainedversions
of them are examples for pMPS (Sect. 6). Embeddings |T 〉 of two-domain states into
PEPS for higher dimensions and fine-grained versions thereof are examples for PEPS
with loops (Sect. 7). For these states, maximization of the overlap or minimization of
the expectation value for a parent Hamiltonian over the respective TNS set lead to a
non-included boundary point.

Both tasks, (I) and (II), of Sect. 9.1 correspond to the minimization of a convex
functional F("). However, since the considered quasi-projective varietiesM of TNS
usually have much lower dimensions than the full Hilbert spaceH, the optimizers do
not need to lie at the boundary ∂M of the TNS set. Concerning this point, see also
Sect. 9.3 and Fig. 10.

The prevalence of the nonexistence of optimizers in practical simulation problems is
an interesting topic for future research. In the following, let us describe some examples
where optimizers are indeed interior points of non-closed TNS sets [69]. Specifically,
consider the bilinear-biquadratic spin-1 chain

Ĥθ =
N∑
i=1

[
cos θ Ŝi · Ŝi+1 + sin θ (Ŝi · Ŝi+1)

2
]

(57)

with spin operators Ŝi = (Ŝ1i , Ŝ
2
i , Ŝ

3
i ), ŜN+1 ≡ Ŝ1, [Ŝai , Ŝbj ] = i δi, j

∑3
c=1 εabc Ŝci ,

and (Ŝi )2 = 2. The competition between the bilinear and biquadratic terms of the
Hamiltonian (57) leads to a rich ground state phase diagram, parametrized by the angle
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θ [70–72]. The model features a gapped dimerized phase (−3π/4 < θ < −π/4), the
gapped Haldane phase (−π/4 < θ < π/4), an extended critical phase (π/4 < θ <

π/2), and a gapless ferromagnetic (π/2 < θ < 5π/4). At θ = arctan 1/3 ≈ 0.102π ,
the AKLT state |"AKLT〉, an unnormalized tiMPS (13) with bond dimension m = 2
and MPS tensor

A =
[ −|0〉

√
2 |1〉

−
√
2 |−1〉 |0〉

]
, (58)

is the exact and unique ground state [67, 73], where |σ = −1, 0, 1〉 denote the normal-
ized single-site Ŝ3i eigenstates. Except for the AKLT point θ = arctan 1/3 and except
for the ferromagnetic phase, an MPS representation of the ground state requires bond
dimension m > 2. One can show the following about the best m = 2 MPS ground
state approximation [69]: (a) The AKLT state is a stationary state for the m = 2
tiMPS (13) and pMPS (26) energy minimization problems for all θ and any system
size N > 1. (b) In the thermodynamic limit (N → ∞), the AKLT state is the best
m = 2 tiMPS ground state approximation for −π/4 < θ < π/4, i.e., for the entire
Haldane phase. For finite N , corrections to the boundaries of this θ interval are expo-
nentially small in N . (c) In the thermodynamic limit, the AKLT state is a minimum
of the m = 2 pMPS single-site alternating least-squares optimization (DMRG) for
arctan 2 − π < θ < arctan 2 ≈ 0.35π . For finite N , one finds again exponentially
small corrections to the interval boundaries.

9.3 Geometric interpretation and implications for TNS simulations

The convergence to an exterior boundary point of a non-closed TNS set is necessarily
accompanied by the divergence of tensor elements. This can be concluded by contra-
diction: If we impose finite bounds on the absolute values of all tensor elements of
a TNS, the set of tensors is closed and bounded. The TNS are obtained by doing the
tensor contractions. As the latter corresponds to a continuous map, the resulting set of
TNS is closed.

Geometrically, exterior boundary points can come about as follows. Consider a
pMPS |"〉 ∈ H as defined in Eq. (26). Now, |"〉 may have norm one although the
tensor"σ

n := [Aσ1
1 Aσ2

2 · · · AσN
N ]n,n has infinite elements. Such infinite elements would

have to cancel when taking the trace

〈σ |"〉 = Tr ("σ ) =
m∑

n=1
"σ

n (59)

in Eq. (26) that corresponds to the contraction for the bond (N , 1). Such cases can
lead to exterior boundary points of TNS sets as sketched in Fig. 10.

Similar scenarios are commonplace for low CP-rank tensor approximations [74–
76] and known, there, under the name CANDECOMP/PARAFAC degeneracies [62,
63, 77, 78]. In these problems, the nonexistence of optimizers is not a rare instance.
For given tensor dimensions and desired (reduced) CP-rank, the set of tensors that do
not have a best low-rank approximation has positive volume [63].
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Fig. 10 The sketch illustrates why sets M of normalizable TNS can feature exterior boundary points.
As an example a pMPS (26) is determined by the diagonal elements "σ

n = [Aσ1
1 Aσ2

2 · · · AσN
N ]n,n with

n = 1, . . . ,m. They can be interpreted as elements of H⊗ V , where V is the m-dimensional bond vector
space. Diverging elements "σ

n may cancel when projecting onto the physical Hilbert space H such that
the state |"〉 = ∑m

n=1 "σ
n |σ 〉 is normalizable. In the illustration, the three-dimensional space represents

H⊗V , the red curve that diverges to z →∞ at its ends represents "σ
n , the shaded xy plane representsH,

and the blue curve represents the TNS setM ⊂ H. Its two boundary points |ψ1〉 and |ψ2〉 are not included
and are analogs of states like the W state (15) for tiMPS or the two-domain states (42) for pMPS (color
figure online)

9.4 Regularizations for optimizations over non-closed TNS sets

A first idea to resolve the problem of convergence to exterior boundary points might
be to drop the normalization constraint ‖"‖ = 1 and to impose instead a constraint
like

∑
σ Aσ

i A
σ†
i = 1 on the TNS tensors. This would, however, not resolve the issue.

When approaching an exterior boundary point of a non-closed TNS set, the norm ‖"‖
of the state would simply go to zero. In order to avoid divergent tensor elements and
resulting algorithmic instabilities, we suggest two different regularizations.

Let F(") = F("({Ai })) denote either of the functionals ‖|"〉 − |ψ0〉‖2 or
〈"|Ĥ |"〉 for the optimization problems (I) and (II) of Sect. 9.1, respectively. The
objective is to minimize F(") over one of the non-closed setsM of normalized TNS
|"({Ai })〉 specified in Propositions 4 to 9 (tiMPS, pMPSn, and PEPS). For any normal-
ized state |ψ0〉 and any norm-boundedHamiltonian Ĥ , respectively, the corresponding
optimization problems for the regularized functional

F̃("({Ai })) = F("({Ai }))+
∑
i

λi‖Ai‖2 (60)

have an optimizer in M, where λi > 0 are small regularization parameters. This is
because the minimization can be restricted to a sublevel set of F̃ which, due to the
boundedness of F , is norm-bounded.

One issue with the functional (60) is that it is not invariant under gauge transfor-
mations (4) of the TNS tensors. For MPS with PBC, this problem could be alleviated
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by using instead the product of transfer matrices in the regularization such that

F̃("({Ai })) = F("({Ai }))+λ‖E1E2 · · · EN‖2 with Ei :=
d∑

σ=1
Aσ∗
i ⊗ Aσ

i . (61)

The transfer matrix product E1 · · · EN is invariant with the exception of gauge trans-
formations on bond (N , 1). The minimization problems with functional (61) always
have an optimizer in the set pMPS(N ,m, d): An optimization over pMPS (26) can be
seen as an optimization over the m interrelated OBC-MPS

|n〉 := ∑
σ

[
Aσ1
1 Aσ2

2 · · · AσN
N

]
n,n |σ 〉 with n = 1, . . . ,m. (62)

Now, 〈n|n〉 = [E1 · · · EN ](n,n),(n,n) such that the regularization term in Eq. (61)
enforces a finite norm for each of the OBC-MPS |n〉. According to the discussion of
OBC-MPS in Sect. 2, this implies that the elements of the tensors Ai cannot diverge.

Another approach was recently suggested in Ref. [79]. It uses extensions of TNS
such that certain types of boundary points are covered by the extended ansatz. With
some computational overhead, one can optimize over theses states using gradient
descent or imaginary-time evolution.
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