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AbstractÐDigital content services provide users with a wide
range of content, such as news, articles, or movies, while
monetizing their content through various business models and
promotional methods. Unfortunately, poorly designed or unpro-
tected business logic can be circumvented by malicious users,
which is known as business flow tampering. Such flaws can
severely harm the businesses of digital content service providers.

In this paper, we propose an automated approach that discov-
ers business flow tampering flaws. Our technique automatically
runs a web service to cover different business flows (e.g.,
a news website with vs. without a subscription paywall) to
collect execution traces. We perform differential analysis on the
execution traces to identify divergence points that determine how
the business flow begins to differ, and then we test to see if the
divergence points can be tampered with. We assess our approach
against 352 real-world digital content service providers and
discover 315 flaws from 204 websites, including TIME, Fortune,
and Forbes. Our evaluation result shows that our technique
successfully identifies these flaws with low false-positive and false-
negative rates of 0.49% and 1.44%, respectively.

Index TermsÐJavaScript, business flow tampering, dynamic
analysis, vulnerability detection

I. INTRODUCTION

Digital content services are web-based e-businesses provid-

ing users access to various online content, including news,

entertainment, and technology articles. Those contents are

delivered in diverse formats such as text, audio/video, or

image. For example, Netflix, Amazon Prime Video, and The

New York Times are well known digital content providers.

Digital content services take up a significant portion of the

e-commerce business. Specifically, the global digital content

creation market size is estimated to be $11 billion USD in

2019 and is expected to reach $38.2 billion by 2030 [29].

Business Models of Content Service Providers. Content

providers use a few business models to monetize their services.

For example, news websites allow access to premium articles

only to the users who have subscribed or paid for the access.

Social networking services such as Facebook make profits

via advertisements instead of asking for payments from users

directly. We define four business models as follows:

1. Advertising model delivers promotional marketing mes-

sages (i.e., texts, images, and videos) to users and content

providers earn revenue from advertisers.

2. Subscription model typically uses a paywall method to

restrict access to certain content for the users who have

not subscribed or paid for the content.

3. Donation model relies on voluntary contributions to

support service providers (e.g., giving donation money).

4. Non-profit model is usually adopted by organizations

dedicated to public or social benefit (e.g., Wikipedia).

Advertising
55.8%

Advertising and Subscription

24.9%

Subscription
16.6%

Donation
2.2%

Non-profit
0.6%

Fig. 1: Business Models of 178 Digital Content Service

Providers in Alexa Top 500.

Figure 1 shows the business models of 178 digital content

service providers we collected from Alexa top 5001. Advertis-

ing (80.7%, including the websites with both advertising and

subscriptions) is the most common business model, followed

by a subscription (or paid content) business model. The result

shows that the business models are common for digital content

service providers, and advertising and subscriptions are the

two most popular models.

1The remaining 322 websites are not digital content providers. For example,
websites like Dropbox and Overleaf provide online application services (e.g.,
data creation and sharing functionalities), not focusing on delivering digital
contents. They are based on the subscription model.



Promotional Methods. A promotional method is a strategy

facilitating business models to maximize profits by either pre-

venting adversarial techniques or directing users for payment.

1. Anti-adblocker: The advertising business model has

been the most popular income source for digital content

service providers. However, Adblockers which allows

users to obtain contents without seeing the advertisements

imposed a significant threat. Anti-adblocker is a promo-

tional method that detects the presence of Adblockers to

prevent users with Adblockers from accessing content.

To access the content, users have to disable/uninstall

Adblockers or purchase an ad-removal pass.

2. Paywall: Paywall is a promotional method used in the

subscription business model. It restricts access to content

and asks for a subscription. There are two types of

paywalls: hard and soft. A hard paywall requires a paid

subscription to access any digital content, and a soft

paywall allows users to view the content a certain number

of times before requiring a paid subscription.

Business Flow Tampering (BFT). A recent work [32] in-

troduces the concept of Business Flow Tampering (BFT),

which when successfully happens, allows an attacker to access

content without going through a legitimate business flow

(i.e., by changing the execution flow of the business model

implementation). While it requires a strong adversary who is

capable of monitoring and perturbing the execution of client

web programs, the study shows that various digital content

services suffer from the BFT.

The consequence of the BFT can be catastrophic. For

example, a service provider that earns most of its revenue from

subscriptions would go out of business if users can circumvent

the subscription process (i.e., paywall). Moreover, a report [37]

indicates that BFT has become a real-world threat: software

or browser extensions aim to circumvent paywalls (e.g. [5])

are becoming increasingly popular. As a response, content

providers put their effort into protecting their revenue by using

techniques against BFTs. For example, almost 40% of the top

1,000 websites use anti-adblocker [22], showing the substantial

interest of the content providers on the BFT.

The cause of BFT is essentially an improper business model

implementation that relies on the insecure JavaScript execution

(that can be manipulated by attackers) for critical logic. Hence,

it is crucial to identify the implementation flaws so that

protection strategies can be applied. Unfortunately, a detection

method outlined by the existing work requires substantial

manual effort and domain expertise, hence not scalable.

Proposed Approach. In this paper, we propose an automated

approach that discovers business flow tampering (BFT) flaws

in the web client programs of digital content services. To

handle various web services where implementations of them

may vary, our approach leverages the fact that those web

services share a few business models and their key business

flows (i.e., processes). Focusing on the business model, we

develop generic approach that is less dependent on concrete

implementations of the web services.

Leveraging the business models, we propose a differential

analysis-based technique to identify the BFT flaws. First,

we run a web service twice where the first execution cov-

ers a legitimate business flow (e.g., accessing content with

a subscription) while the second execution tries to do the

same operation without going through the same business flow

(e.g., without the subscription). Second, we perform a novel

differential analysis on the two executions to pinpoint the

critical implementation of the business flow (e.g., checking

the subscription). Third, our approach automatically generates

test inputs that can tamper with legitimate business flows and

executes the web service with the test inputs to find the flaws.

The key enabling technique of our approach is a novel

differential analysis technique that systematically locates the

execution points that diverge, followed by execution muta-

tions. Specifically, we mutate the execution of client-side

JavaScript programs by adding, modifying, and removing

statements. Our system also automatically validates test results

using a clustering algorithm (i.e., Balanced Random Forest

classification). Mutated executions (e.g., skipping subscription

checking) achieving similar results to the executions of legit-

imate business flows (e.g., access to premium content with

subscription) suggest there can be BFT flaws. To this end, our

approach can automatically identify BFT flaws with little to

no manual effort and human interactions.

In summary, we make the following contributions:

• We propose a novel system, BFTDETECTOR, to find BFT

flaws. It automatically exercises business process on a

content provider’s website to identify the execution points

that can be tampered with.

• We generalize the business models and relate the mod-

els with website implementations, using the models to

exercise and trace diverse business flows.

• We develop a differential analysis algorithm to identify a

critical decision point of the business model by compar-

ing call traces between multiple executions.

• We apply our approach to 352 real-world digital content

service providers from Alexa top 500, and find 315 flaws

from 204 websites including TIME, Fortune, and Forbes.

II. MOTIVATION

We use two real-world examples, Los Angeles Times (LA

Times) [10] and StudentShare [12], to demonstrate how our

system can detect BFT in the real-world websites.

Advertisements on LA Times. LA Times is one of the most

popular newspaper service providers in the US, and it uses

advertising and subscription business models. Non-subscribers

can see a limited number of articles by seeing ads on article

pages. However, Adblockers can remove those advertisements,

undermining the business model. To safeguard their income

source, LA Times utilizes an anti-adblocker technique pro-

vided by Google Funding Choices [8]. When Adblockers are

detected, the user is prompted with a message that directs the

user to a subscription page, asking for payments.

Figure 2a shows the anti-adblocker process. When the main

page of the website is loaded, it injects ‘loader.js’ from



1: Hf = function(a) {

2: …
3: for (b=0; b<a.h.length; ++b){

4: var c = a.h[b];

5: if (0 === c.offsetHeight ||

0 === c.offsetWidth) {

6: a.j(c);

7: return;

8: }

9: }

10:}

fundingchoicesmessages.
google.com

main
page

latimes.
com

a.j

JS JS JS

Function Call stack

Adblock

Detected!

Hf

loader.js detection.js adwall.js

D

S
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S
1

D Divergence point S Solutions

(a) LA Times

1: function unlockCallback(response, …){
2: if(response.success) {

3: …
4: var downloadUrl = 

“/document/download?id=” + docId;
5: downloadUrl += getToken(docId);

6: location.href = downloadUrl;

7: …
8: return true;

9: } else {

10: location.href = getRedirect(response);

11: return true;

12: }

13: …

studentshare.com

JS

documentNewStructure.js

unlockDialogWithGa

unlockDialog

unlockCallback

$ $$

Pricing

Download

D

S3

(b) StudentShare

Fig. 2: Motivating Examples.

Google Funding Choice. After a series of function calls,

the loader script also injects ‘detection.js’ that detects

Adblockers. Specifically, the function Hf() gets a list of DOM

objects containing ads (line 1). For each DOM object, it checks

the sizes of the inserted ads (line 5), and if any of them are

not being shown properly, a.j() is called. Lastly, ‘adwall.js’

is injected to show the Adblocker detection message.

Subscription on StudentShare. The StudentShare site of-

fers a large number of essay samples. It provides a lim-

ited number of free essays, and a monthly subscription is

required to access the premium essay samples. Figure 2b

shows its business process for downloading premium essays.

When a user clicks the download button, it invokes the func-

tion unlockDialogWithGa(), which further calls the function

unlockDialog() to check if the user has access to the essay.

Then, the callback function unlockCallback() is triggered

when a response from the server arrives. It checks the variable

‘response.success’ (line 2), and starts downloading if the

variable’s value is ‘true’ (lines 2∼8). Otherwise, the user is

redirected to a subscription page (lines 10∼11).

A. Business Flow Tampering Flaws

The two websites have BFT flaws. First, in LA Times

(Figure 2a), the function call a.j(c) (line 6) that shows the

Adblocker detection message can be bypassed by removing

the call statement, or altering the result of the if statement

(line 5). Second, in the StudentShare website (Figure 2b), any

premium essays can be downloaded without purchasing the

subscription by forcibly entering the true branch (lines 3∼8)

of the if statement (line 2). These attack scenarios are highly

achievable because the important business process written in

JavaScript (JS) are running on the client-side, and an attacker

can tamper with the flow using JS debuggers provided by web

browsers. To this end, the tampering flaws can compromise the

business well-being of these websites.

B. Business Model vs. Implementation

The underlying cause of the BFT flaws is a discrepancy

between the assumption of the business models and the

models’ implementation. In other words, the business models

do not assume the possibility of tampering with the processes,

while the real-world implementation of the business models

can be tampered with. Ideally, it is secure to implement

the business models and the promotional methods with two

principles: 1) important business process should be handled

on the server-side, and 2) the client only displays final data

rendered at the server. However, the above principles are not

well obeyed in practice: (i) developers are often unaware or

overlook the possibility that JS code can be tampered with on

the client-side. In Figure 2b, decisions to initiate download

or redirect to a subscription page are critical business logic

that can be tampered with, as they are on the client-side. (ii)

existing web ecosystems’ complex internal structures make it

hard to achieve the principles. For example, ad ecosystems

today integrate multiple 3rd-parties and run complex bidding

processes multiple times to provide effective interest-based

ads. The ad ecosystems decide to run them on the client-side

due to the efficiency (i.e., running them on the server will

cause significant overhead).

C. BFTDETECTOR: Automated Tampering Detection

Our approach automatically detects the existence of BFT

flaws, including the location of the flawed code and its cause.

Specifically, we automatically identify a business model of

the website by analyzing execution traces of the website fol-

lowing different business flows (see Section III-A1). We then

conduct differential analysis to identify divergence points of

the executions across different business flows. For instance, we

detect the function Hf() in Figure 2a and unlockCallback()
in Figure 2b as divergence points ( D ) because the executions

of the different business flow paths become different from the

points (Post-Divergence).

Lastly, our technique tries to test whether the divergence

points can be tampered with by forcibly executing a branch or

skipping statements. Specifically, in Figure 2a (LA Times), our

system visits the page with Adblockers, and try to mutate the

original execution at the divergence point (Hf()) by flipping

the if branch ( S1 ) or skipping the call ‘a.j(c)’ ( S2 ). In

Figure 2b (StudentShare), we attempt to download a premium

essay without a subscription by forcibly executing the true
branch of ( S3 ), as if it were part of the subscription flow.

III. SYSTEM DESIGN

Overview. Figure 3 shows a brief overview of our BFT

detection system, which consists of five phases:
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Fig. 4: Generalized Business Process.

1 Dynamic Execution Trace Collection (Section III-A).

BFTDETECTOR collects dynamic execution trace by exer-

cising business processes according to the business model.

The output includes call traces and execution result snapshots

which are essentially screenshots and HTML/DOM data.

2 Call Trace Differential Analysis (Section III-B). Our

system performs differential analysis on the function call

trace collected for different business flows, identifying call

divergences points where executions start to differ.

3 Test Input Generation (Section III-C). We generate test

inputs containing statements data to be mutated by using the

call divergence points from the previous step.

4 BFT Testing (Section III-D). Our system repeatedly visits

the web page to mutate the execution according to the test

inputs generated from the previous step.

5 Test Result Verification (Section III-E). We measure

whether our system successfully tampers with the business

process by comparing snapshots from the test and the results

from the original execution. A machine learning technique is

used to calculate the degree of similarity between snapshots.

A. Dynamic Execution Trace Collection

1) Business Model Driven Trace Collection: Given a web-

site using known business models such as advertising and

subscription, we automatically exercise the website to execute

the business process. Figure 4 shows examples of generalized

processes of business models. The two diagrams on the right

side represent the processes of two business models and the

corresponding promotional methods, and the left side shows a

generalized business process. The service providers first gather

information and then decide with respect to the promotional

methods and users’ current states (e.g., whether a user made

TABLE I: Business Process Procedures

Procedure Name Browsing Operations

Login(JS)
1. Open a browser
2. Perform logging in by replaying JS
3. Return the session S

TriggerPaywall(P |JS, S)
1. Open a browser with a session S
2. Visit all pages ∈ P or replay JS
3. Return the session S

CollectTrace(P |JS, S)

1. Open a browser with a session S
2. Visit any page ∈ P or replay JS
3. Collect execution trace & snapshot
4. Close the browser
5. Repeat 3 times∗

*: In all the evaluated cases, we have reached a fixed point within
three times repetition.

TABLE II: Business Process Execution Driver

Business
Model

Promotional
Method

Browsing Procedure

Passing Run Blocking Run

Subscription

Hard Paywall

1 S = Login(JSlogin )
2 CollectTrace(Psub , S)

1 CollectTrace(Psub ,∅)

1 CollectTrace(Pfree ,∅)∗ 1 CollectTrace(Psub ,∅)

Soft Paywall 1 CollectTrace(Pfree ,∅)
1 S = TriggerPaywall(
Ppaywall ,∅)

2 CollectTrace(Pfree , S)

Advertising Anti-adblocker 1 CollectTrace(Pany ,∅)
1 Enable Adblocker extension

2 CollectTrace(Pany ,∅)

*: If free pages are also available.

a payment or not). The business flow diverges as a result of

the decision, delivering different contents to the users (e.g.,

showing premium content for a paid user, or redirecting to

a subscription page for a guest). Observe that the decision-

making logic causes business flows to diverge (i.e., divergence

point), which can be tampered (i.e., BFT).

2) Definition of Passing and Blocking Runs: To identify

the divergence point in the business model, we first obtain

executions covering two different business flows: a business

flow delivering desired content and another flow blocking the

content. Concrete executions of the two business flows are

defined as passing and blocking runs.

1. Passing Run. A passing run is an execution that success-

fully delivers the digital content (e.g., an execution with

a paid paywall or with advertisements displayed).

2. Blocking Run. A blocking run represents the business

flow that blocks digital content delivery for various rea-

sons (e.g. no subscription, or Adblocker detected).

For instance, successfully downloading the premium essay

with a valid subscription in the StudentShare is a passing run,

while redirecting to the subscription page is a blocking run.

3) Automated Business Flow Execution Driver: Our system

automatically exercises business flows with respect to the



business model to obtain the passing and blocking runs. We

first define three key business process procedures, where each

procedure is a sequence of browsing operations (e.g., open

a browser and visit a page) that can exercise key imple-

mentations of the business models when executed. We then

obtain the passing and blocking runs by executing the business

process procedures on the websites.

Variables of Business Process. We define five variables to de-

scribe business process procedures (and browsing operations).

1. Psub is content pages requiring a subscription.

2. Pfree is a list of free pages (accessible without a sub-

scription).

3. Ppaywall indicates a maximum number of pages allowing

free access of content, before it triggers a paywall.

4. Pany represents any content pages.

5. JS is a Puppeteer [11] script recorded by a tester

providing automated browsing.

Business Process Procedures. Table I shows three business

procedures that serve as building blocks for exercising the

flows in the business model. Table II shows the browsing

procedures for each promotional method to exercise the two

distinct business flows (i.e., passing and blocking runs). Our

system repeats the collection process three times in order to

gather enough execution traces that contain business processes.

Our system also supports replaying tester-recorded brows-

ing activities (in JS file format) from the Chrome DevTool

recorder [1]. This enables our system to emulate website-

specific browsing procedures (e.g., logging in or clicking the

download button in the StudentShare case (Figure 2b)).

4) Call Trace Collection: We collect function call traces

during the execution driven by the business flow execution

driver. On a function call, we record the (1) Caller function,

(2) Function Call Statement, and (3) Callstacks. Intuitively,

the call trace includes information about who (Caller) called

whom/at where (Call statement) and in which circumstance

(Callstack), and we call this set of data a call signature. The

callstack is stored as a hashed string to enable fast comparison

in the differential analysis (Section III-B).

Bytecode Level Instrumentation. Instrumenting complex and

often obfuscated real-world programs is challenging. Hence,

we modify the V8 JS engine [15] to dynamically instrument at

the JS bytecode level (we have changed around 1,600 LOC).

This design choice also handles various difficult-to-instrument

primitives such as anonymous/asynchronous functions and

dynamically generated code.

Performance and Space Optimization. Call trace collection

incurs high overheads due to, in part, a high volume of function

calls. To minimize the overhead, we optimize the built-in call

stack collection procedure. Specifically, when we retrieve a

full-sized call stack from the browser, it constructs an object

containing various unnecessary information (e.g., metadata

of scripts, functions, and stack trace), leading to substantial

performance and memory overhead. Hence, we prune out the

unnecessary items in the call stack. In addition, we deploy

a blacklisting approach filtering out JS files that are not

Algorithm 1 Call Divergence Point Discovery

Input: P,B : lists of call traces collected from passing and blocking runs,
where Pi ∈ P or Bi ∈ B is a list of call signature c, and ci ∈ c
denotes a set (Caller, Call Statement, Callstack)

Output: CD : a list of call divergence data, where CDi ∈ CD denotes a
set (Divergence function, Call statement, Passing or Blocking Run)

1: function EXTRACTCALLDIVERGENCE(P,B)
2: CD ← {}
3: Pint ← INTERSECTION(P )
4: Bint ← INTERSECTION(B)
5: Puniq ← Pint − UNION(B)
6: Buniq ← Bint − UNION(P )
7: PBint ← INTERSECTION({Pint , Bint})
8: for each pb ∈ PBint do
9: for each p ∈ Puniq do

10: if pb.Callstack ⊂ p.Callstack then
11: CD ← CD ∪ {p.Caller , p.Call Stmt , “Passing Run”}

12: for each b ∈ Buniq do
13: if pb.Callstack ⊂ b.Callstack then
14: CD ← CD ∪ {b.Caller , b.Call Stmt , “Blocking Run”}

15: return CD

relevant to the business process of our interest, such as internal

functions of common JS libraries (e.g., jQuery) or third-party

tracking code. For those libraries, we only trace the interface

functions in our call trace (i.e., the first call to the libraries). As

we show in Section IV-D, the above optimizations successfully

reduce the overhead by half. Besides the call trace, we also

record a snapshot (screenshot and HTML/DOM data) of the

resulting page for each run. The recorded snapshots are used

in the test result verification step described in Section III-E.

Contributions. BFTDETECTOR automatically explores the

business process (passing and blocking runs) of the target

website using our business process execution driver. In

addition, it collects dynamic execution traces efficiently with

bytecode-level instrumentation and optimizations.

B. Call Trace Differential Analysis

Given the collected call traces of the passing and blocking

runs, we perform a differential analysis to identify a divergence

point representing the critical decision-making point in the

business model. For instance, in Figure 2a (LA Times), Hf()
is the call divergence point since the execution flows of passing

and blocking runs reach the function, but only blocking flow

continues to a.j(). Similarly, unlockCallback() in Figure 2b

is the call divergence point.

Algorithm. Algorithm 1 describes how we identify the call

divergence point. It takes two lists of call traces (P and B)

that are collected in Section III-A4. Each element (Pi and Bi)

in the lists contains the call signatures, consisting of (caller,

call statement, and callstack) as discussed in Section III-A4.

We first obtain intersections for each list of call traces P and

B (lines 3∼4). INTERSECTION() gathers call signatures that

exist in all the runs in a set, essentially pruning out execution

flows that are not necessary. For example, assume that our sys-

tem targets a newspaper website using the subscription busi-

ness model. In the passing runs, we visit three subscription-

only article pages with a paid account, and visit the pages

without the account in the blocking runs. INTERSECTION()



identifies and keeps call signatures from essential business

processes triggered every time such as checking subscription,

filtering out processes that are not always appearing (e.g., a

video available only in one of the article pages).

Then, we identify unique call signatures for passing (Puniq )

and blocking runs (Buniq ) at lines 5∼6 using the function

UNION that combines call signatures. Specifically, to obtain

Puniq , we subtract the union of call signatures of blocking

runs (UNION(B)) at line 5. Similarly, we obtain Buniq by

subtracting the union of P from the intersection of B at

line 6. For instance, our major interest from the previous

example is to identify and exercise the exclusive business flows

that depend on the outcome of subscription checking. The

subtraction procedure can prune out executions from common

business flows, such as getting subscription data.

Next, it identifies call divergence points by leveraging the

intersection (Pint and Bint ; pre-divergence) and unique (Puniq

and Buniq ; post-divergence) call traces. In particular, we detect

a divergence point if a function is (1) a callee of a common

signature available in both runs and also is (2) a caller of a

distinct call signature existing on one side of the runs, and (3)

their context is identical. Specifically, the algorithm first gets

the intersection of Pint and Bint (line 7) to obtain common

call signatures on both runs (pre-divergence). Then, it checks

whether the call stack before the divergence (PBint ) can be

found in after the divergence (i.e., post-divergence represented

by Puniq and Buniq) at lines 10 and 13. If it finds such a case,

the caller of post-divergence is considered a call divergence

point, and we store it to CD (lines 11 and 14). For example,

unlockCallback() in Figure 2b (the StudentShare example) is

the call divergence point. This is because (1) the call signature

unlockDialog() → unlockCallback() is available in both

passing and blocking runs (pre-divergence), and (2) there

exist call signatures from post-divergence: unlockDialog() →
getToken() and unlockDialog() → getRedirect(), (3) with

the same call stacks.

Contributions. We propose and design a differential anal-

ysis to identify divergence points where critical business

decisions are made. Our algorithm automatically finds di-

vergence points that can be tested to find BFT flaws.

C. Test Input Generation

We generate test inputs that can potentially bypass blocking

executions flows, or change them to passing flows by leverag-

ing the identified call divergence points. A test input contains

pairs of (1) a mutation point and (2) a mutation action. The

mutation point indicates a position of an expression/statement

to be changed, and the mutation action describes how to alter

the point based on the type of the expression/statement. For

example, if the type is a conditional (e.g. if, switch, ternary,

etc.), the action can be an identification of the branch (e.g.

true/false, or an index of a switch-case) that is to be entered

forcibly. For a function call type, the action can be skip, which

essentially disables the call statement.

Building CFGs for Mutation. We build CFGs for each

function containing the divergence points in the call divergence

2, 3, 4

5 7

10

11, 12 14

END

T F

T

T

F
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1: function onArticlePageLoaded(){

2: var user = getUserInfo();

3: var contentMetadata = 

getContentMetaData();

4: if(user.loggedIn == false){

5: redirectToLogInPage();

6: } else {

7: if(user.accountType=="premium"){

8: showContent();

9: } else {

10: if (user.remainFreeView>0){

11: user.remainFreeView -= 1;     

12: showContentAndPaywallInfo();

13: } else {

14: showPaywall();

15: }

16: }}}

8

Fig. 5: Illustrative Example for Test Input Generation

data to compute control dependencies. If a call divergence

is from a passing run, we generate a test input containing a

list of mutation points and mutation actions that can drive

the execution flow to the call divergence point. For a call

divergence point from blocking runs, we first generate a test

input that skips the call statement. Finally, we also generate

separate test inputs that alter the branch outcomes.

We illustrate the test input generation process by using a

simplified website with a softer promotional method as shown

in Figure 5. Specifically, onArticlePageLoaded() is triggered

when a user clicks an article page. It then gets information

about the user and the article (lines 1 and 2). If not logged in,

it redirects to a login page (line 5). If logged in, it checks the

account type and then shows the contents for premium users

(lines 7 and 8). For a non-paid user, it shows the content with

paywall information if the user’s free view count is not used

up (lines 10∼12); otherwise, it shows the paywall (line 14).

Assume that onArticlePageLoaded() is a call divergence

point that has two branches caused by the call state-

ments showContent() from the passing run at line 8 and

showPaywall() from the blocking run at line 14. For the call

divergence from the passing run, the call statement at line 8

is dependent on the statements at lines 7 and 4. Therefore, the

generated test input that can trigger the call in any circum-

stances is (4:false,7:true). On the other hand, in order to

bypass the call statement at line 14 (which is dependent on the

statements at lines 10, 7, and 4), we generate four test inputs:

(4:true), (7:true), (10:true), and (14:skip).

D. Testing Business Flow Tampering (BFT)

We perform BFT testing to find whether executions with

mutations can lead to a passing run. For each test input, our

system runs the web application by following the automated

browsing procedures described in Table II. We then apply the

mutation actions at the mutation point by intercepting the in-

terpretation process and adjust the bytecode generated via the

modified V8 engine. For instance, to apply the skip mutation

action, we disable the bytecode generation for a target function

call statements in ‘BytecodeGenerator::VisitCall’. For the

conditional statements and expressions, we simply copy the

same bytecode of the desired block to every branch outcome

instead of changing the outcome itself. We record a snapshot



(a screenshot and HTML/DOM data) of each test page for

verification.

E. Test Result Verification

Once each test is completed, we examine the snapshots

recorded in the dynamic execution trace collection and the

BFT testing steps to verify the detected tempering flaws.

Crash Detection. Since our system forcibly mutates original

execution flows, it may corrupt the execution context causing

unexpected crashes, such as accessing undefined objects, or

calling function without proper arguments. We discard snap-

shots collected from crashed executions because the results

might not be valid (and may mislead the classifier training pro-

cess as well). We examine the amount of successfully rendered

information to detect a crashed execution. Compared to the

non-crashed execution (i.e., execution from the trace collection

step in Section III-A4), if an execution renders substantially

less information, we consider them as crashed. Intuitively, a

crashed execution tends to terminate the execution before it

renders all the elements. To estimate the amount of visually

rendered elements, we take a screenshot of the webpage and

leverage Shannon’s entropy [42] that measures the level of

complexity. For the HTML/DOM data, we utilize their content

sizes. We combine those two metrics and compare them with

average values from the original executions snapshots from

passing and blocking runs. If it contains less than 40% of the

non-crashing runs, we consider it crashed.

Test Result Classification. Intuitively, if a test result’s snap-

shot (i.e., a screenshot and HTML/DOM) is similar to the

snapshots of the passing runs, the mutated execution may

indicate the existence of a flaw. Hence, we utilize similarity

scores between the snapshots, and use them as a metric for

a machine learning technique. We first extract common data

available for each set of snapshots collected from the passing

and the blocking runs, and these two data sets are used to

check similarities. To be specific, we gather common pixels

between the screenshots, then calculate the structural similarity

index measures [48]. For HTML/DOM data, we compare the

existence of DOM elements. This method using the common

data is beneficial for computing structural similarities not

disrupted by various contents inside. By doing this process,

we can get a total of 4 similarity scores, 2 scores (screenshot

and HTML/DOM data) from the passing and blocking runs

each, and they are used as features of a classifier. We employ

Balanced Random Forest (BRF) as a classification algorithm.

Note that our training dataset is easy to be biased since the

number of results containing flaws is much less than the not-

flawed ones. We use the BRF classifier because it is designed

to be robust for imbalanced dataset as it is less inclined to

over-fitting. As a training dataset, we utilize flawed websites

presented in the recent work [32]. We train the classifier with

a total of 1,778 snapshots collected from 13 websites using

the subscription and advertising business models.

IV. EVALUATION

Implementation. BFTDETECTOR [3] is written in Python

and JS (Node.js). We use Chromium (91.0.4460) compiled

with modified V8 JS engine (9.1.203). All experiments are

performed on a machine with an Intel Core i9 3.60 GHz CPU

and 16 GB RAM running Ubuntu 20.04 LTS.

Website Selection. For evaluation, we collect websites pro-

viding digital content services from various resources, such

as Google News, Yahoo News, or Alexa Top 500, then select

websites: 1) using one of the 3 promotional methods of the

business models, 2) eligible for automated browsing, and 3)

providing passing and blocking runs.

We classify the collected websites by the promotional meth-

ods. For the paywall methods, we first find websites having

membership/subscription payment pages. If some paid content

is accessible, it indicates the website uses a soft paywall

method; otherwise, it is a hard paywall. For the anti-adblocker

method, we utilize an adblocker browser extension, and if

we observe content differences (except for advertisements)

between websites with and without the adblocker extension,

we classify it as anti-adblocker. If a website uses multiple

promotional methods, we obtain each case per the methods.

To this end, we selected 449 cases in 352 websites.

Research Questions. We evaluate BFTDETECTOR to answer

the following five research questions:

• RQ1. How effective is our system in detecting BFT flaws?

• RQ2. How efficient is our system in reducing search space?

• RQ3. How effective is our test result verification method?

• RQ4. What is the performance overhead of our technique?

• RQ5. How is our system compared to other approaches?

A. BFT Detection Results

Table III shows the result and statistics of the BFT detection.

The first column shows the promotional methods. The numbers

of websites for each method are in the second column, and

the third column represents the number of flaws identified.

TABLE III: BFT Detection Result and Statistics

Promotional # # # Funcs # # Divg.1 Ratio
Method Sites Flaws (A) Calls (B) (B/A)

Hard Paywall 45 31 13,245 1,408,472 93 0.70%

Soft Paywall 127 67 10,313 899,207 258 2.50%

Anti-adblocker 277 217 12,885 1,396,466 19 0.15%

Total 449 315 Avg. 12,148 1,234,715 123 1.02%

1: Divergences.

Discovered BFT Cases. BFTDETECTOR identified 315 flaws.

Specifically, a total of 31 websites with hard paywalls and 67

with soft paywall methods were found to be flawed, and this

includes popular websites, such as TIME [13], Fortune [7],

Automotive News [2], Forbes [6], and Bookmate [4]. Further-

more, we found flaws of the anti-adblocker methods from 217

websites. We manually verified the 315 flaws by following

each website’s business flow. For instance, for soft-paywall

websites, we check if we can view articles more than the

number of free access with the mutation. All flaws we found



are deterministically and reliably exploitable. Details of the

discovered cases including demo videos can be found on our

website2.

TABLE IV: 6 Websites with No Flaws Detected

Promotional Method Website Investigation Result

Hard Paywall
New Scientist Server-side logic

AZ Central Multiple alteration needed

Soft Paywall
Journal & Courier Server-side logic

Orlando Sentinel Dynamic execution

Anti-
adblocker

Daily Herald Unable to analyze (Large codebase)

NY Daily News Multiple alteration needed

We reviewed the websites that our system was unable to

find any BFT flaws. Since manual and thorough investigation

is required, we selected 2 cases for each promotional method,

a total of 6 websites as in Table IV. New Scientist and Journal

& Courier does not have the BFT flaws since their business

processes are operated in the server-side. On the other hand,

we discovered that it was necessary to alter multiple locations

simultaneously to bypass the hard paywall of AZ Central

and the anti-adblocker of NY Daily News. From the Orlando

Sentinel case, we find that a few similar functions containing

the same business process were being executed randomly. This

protection technique, known as cloning, creates clones of basic

blocks or functions that can be executed interchangeably by

selecting one of them dynamically. Lastly, we failed to identify

potential flaws in Daily Herald, due to, in part, the large and

complex codebase (e.g., 7,175 functions).

Findings. The detection result shows that our approach is

effective in finding BFT flaws; BFTDETECTOR revealed 315

BFT flaws from real-world 449 cases.

B. Efficiency in Reducing Search Space

BFTDETECTOR can pinpoint potential flawed locations

from a large amount of functions. In order to show the

efficiency in reducing search space, we collect the number

of functions interpreted in a single run, and calls triggering

them. We repeat the test 10 times for each web application,

then calculate the average values. The fourth and fifth columns

in Table III show the result of the test. The result indicates

that there are 12,148 functions on average in a single run, and

they trigger about 100 times higher number of calls. Since

our system gathers call signatures from 6 runs (3 runs each

passing and blocking sides), the average number of calls our

system needs to handle would be about 6 millions. By using

the huge number of call signatures, our system extracts call

divergence by performing the call trace differential analysis

we discussed in Section III-B. The sixth column represents

the number of the call divergence our system discovers after

the differential analysis, and there are only 123 divergences

left after the analysis on average.

Findings. Our evaluation result shows that our approach

reduces the search space efficiently (1.02% of the original

number of function).

2https://sites.google.com/view/bftcases

TABLE V: Test Result Verification

Actual

Flawed Not Flawed

Predicted
Flawed TP = 1,645 (98.56%) FP = 197 (0.49%)

Not Flawed FN = 24 (1.44%) TN = 39,417 (99.51%)

C. Effectiveness of Test Result Verification

In the course of performing our BFT testing on the 449

websites, a total of 42,128 snapshots were generated. As we

discussed in Section III-E, BFTDETECTOR first checks if a

test result is from a crashed execution. As a result of the

crash detection, our system successfully filtered out 845 error

snapshots. Furthermore, our test result classification process

classified 1,842 of the remaining 41,283 test results as flawed.

Specifically, we manually validate all the test cases and the

classification results. If the prediction from our system is

flawed, we revisit the website with the mutated execution and

then check whether our system successfully tampers with the

business flow. If it succeed, we consider the classification

result is valid (true positive); otherwise, the prediction is

incorrect (false positive). On the other hand, if the prediction is

not flawed, we first compare the screenshots of the snapshots

from the test result and the blocking run. If they are identical,

the prediction is valid (true negative). Otherwise, we revisit

the website with the mutation. If the new mutation triggers

the BFT flaw, the prediction is not valid (false negative). If

not, the prediction is valid (true negative).

Table V shows the confusion matrix of the test result classi-

fication. Within the 41,283 snapshots, our approach correctly

classified 1,645 test results as flawed, while 39,417 are not

flawed. The result indicates that our classification method

using 4 similarity scores is effective with a false negative rate

of 1.44% (24 cases) and a false positive rate of 0.49% (197

cases). We investigated the 24 false negative cases, and found

that most of them are from the anti-adblocker method. For

instance, NWITimes [14] displays ads covering about 80% of

the screen when the main page is loaded. If their anti-adblocker

technique detects blocked ads, it shows a warning message.

One of our test inputs was able to mutate the execution to

prevent the warning message from appearing while the ads are

not displayed. However, the ad space is also removed, allowing

80% of the screen to be filled by remaining content or a blank.

The page is not similar to passing runs (webpages with ads)

since the ad contents in the mutated run do not exist. It is

also different from blocking runs (webpages without ads, but

with an adblocker warning) because the blocking run screen

is covered by the warning message.

Findings. The evaluation indicates that our verification

technique successfully classifies test results with low false-

positive (0.49%) and false-negative (1.44%) rates.

D. Performance Overhead

Throughout the detection process of our system, there are

two operations that can induce the overhead: 1) instrumenta-

tion, and 2) call trace collection. Our system instruments the



TABLE VI: Performance Overhead

Interpretation Call Trace Collection

Native
Our

Approach
Built-in
Method

Optimized +
Blacklisting

Total 65.32 ms 65.76 ms Total 13.32 sec 6.54 sec

Per Function 6.46 µs 6.74 µs Per Call 10.74 ms 5.2 ms

TABLE VII: BFT Detection using JSFlowTamper

(a) Detection Results on 315
Flawed Websites

Business
Model

✓ é

Hard Paywall 8 23

Soft Paywall 17 50

Anti-adblocker 77 140

Total 102 213

(b) Reasons of Detection Failure

Reason of Failure # Cases

No DOM mutation event 63

No dynamic data collected 17

Random selector 84

No succeed tampering trial 49

✓: Flaws found, é: Flaws not found

tracking code by modifying the interpreter of the JS engine.

Also, when the tracking operation is triggered, it collects a call

signature containing the call stack. As Table III shows, there

are 1,234,715 function calls on average in a single run, which

indicates our system needs to retrieve the call trace data about

one million times for each run. To measure the performance

overhead, we record the elapsed time of the two operations for

10 times while our system performs the automated browsing,

then we calculate the average values. Table VI shows the

experiment results. The first two columns of the first row

represent the total execution time for a single run, and the

second row indicates the interpretation time per function. The

result shows that the code instrumentation only took 0.28µs

per function (6.74−6.46), and 0.44ms (65.76−65.32) in total.

Furthermore, the rest of the columns indicate the overhead

caused during the call trace collection. The third column shows

the results of using the built-in method of V8 JS engine

as a baseline, and the last column denotes the results after

deploying our optimized method along with the blacklisting

approach as described in Section III-A4.

Findings. The result (i.e., reduce the overhead by half)

shows that our optimizations are effective and BFTDETEC-

TOR can handle a heavy workload.

E. Comparison Study

We compare our technique with state-of-the-art technique

JSFlowTamper [32] on the 315 flawed websites our system

discovered. Note that we compare the source code of JSFlow-

Tamper and BFTDETECTOR to confirm that JSFlowTamper

implements a subset of BFTDETECTOR’s methods. It means

that JSFlowTamper can only find the same or fewer flaws

than the flaws BFTDETECTOR detects. To this end, we focus

on how many flaws JSFlowTamper can detect from the 315

flaws found by BFTDETECTOR. Since JSFlowTamper does not

provide automatic method, we manually prepared 315 sets of

inputs including: 1) Puppeteer JS code performing automated

browsing, and 2) DOM object selectors related to business

process. We also manually reviewed the test results to verify

the flaws, although it provides test result grouping to minimize

human effort.

We determine the reasons for detection failure for JSFlow-

Tamper as follows: 1) No DOM mutation event and No

dynamic data collected: They are directly from JSFlowTam-

per’s error messages, 2) Random selector: we observed that

JSFlowTamper failed to identify prepared DOM selectors as

the server-side code randomizes the selectors, 3) No succeed

tampering trial: JSFlowTamper finishes without errors but no

BFT flaws are found. This happens because the business

model’s core implementation is not related to DOM selectors

(e.g., using predicates) or the core logic is executed without

function calls which JSFlowTamper cannot handle. Table VII

shows the BFT detection result. As shown in Table VIIa,

JSFlowTamper was able to find the flaws only in 102 web-

sites. Additionally, we examined 213 unsuccessful cases to

determine the reason they failed, and each of them was caused

by one of four reasons in Table VIIb. The first one was

caused when there was no DOM mutation events related to

business process as in the StudentShare example (Figure 2b).

Secondly, we also found that the system failed to collect

dynamic data in 17 cases. The third reason was due to the

random selector. Since JSFlowTamper utilizes DOM selectors

to catch DOM mutation events, it cannot perform the detection

if a targeted web application is equipped with randomization

techniques, such as in [47]. Lastly, there were 49 cases where

JSFlowTamper could not find flaws even after testing every

trial. This indicates that the system was unable to locate

functions that need to be tampered with.

Findings. JSFlowTamper can only find 32.38% (102 out of

315) of the flaws that BFTDetector can find.

F. Case Study

1: function(){

2: …

3: var wallType = 

dataElement.getAttribute('data-wall_type');

4: if (wallType) {

5: if (wallType === 'none') {

6: body.classList.add('allow-scroll');

7: } else if (wallType === 

'registration-wall') {

8: showRegistrationWall();

9: } else if …

10: …

article.js

2

loadComponents

anonymous

1

P B

D

meter-wall-client.js

JS

JS

P

B

Fig. 6: Business Process of Time.com

1) TIME.com: TIME [13] is a popular news magazine

website employing a soft paywall for the subscription business

model. It allows users to access 2 articles for free; after that,

it shows a subscription message blocking the article page. To

start test, we gathered 3 free pages; 2 for Ppaywall to trigger

the paywall and 1 for Pfree . Our system collected 129,774

call signatures on average for each run, and it extracted

156 divergence points in total. We observe 11,403 functions

and 635,445 calls on average in a single run, showing that

our approach efficiently reduced the search space. From the

divergence points, we generated 124 test inputs and, after

trials, found 1 input that allows us to access more than 2

articles without a subscription. Figure 6 shows the flaw. When



an article page is loaded, loadComponents() in ‘article.js’

injects ‘meter-wall-client.js’ dynamically. After a series of

calls, the logic inside the anonymous function (function())

determines whether to allow access for the article by allowing

scroll ( P ) or to show a registration message ( B ). Our system

successfully identified the divergence point ( D ), and found the

test input that changes the blocking flow by forcibly taking the

then branches of the two if statements ( 1 and 2 ).

1: function(){

2: var t = o.props

3: , r = t.maximumAllowedProgress

4: , n = t.onChapterClick

5: , c = t.showPaywall;

6: e.percent <= r ? n(e.src) : c()

7: }

bundle.f7cfa.js

d

anonymous

1

P B

D

9.chunk.d05ec.js

JS

JS

P B

Mouse click event

Fig. 7: Business Process of Bookmate.com

2) Bookmate.com: Bookmate [4] is a social ebook sub-

scription service, has 3 million readers and a catalog of

over 500,000 books. They employ the subscription business

model with the hard paywall method. The first one or two

chapters of books are free to access, but users need to

subscribe to a premium plan for $8 per month to read more.

In order to trigger the subscription paywall, a series of mouse

click events is required instead of just visiting a page. We

recorded 2 Puppeteer scripts (JSfree and JSsub) containing

the browsing actions using Chrome DevTool, then fed them

into our tool for replay. During the dynamic execution trace

collection, our system collected 6,071 functions and 50,506

call signatures. After analyzing the collections, 7 test inputs

from 2 divergence points are generated. To this end, we found

1 input that can unlock the chapter limitation. Figure 7 shows

the divergence point and call stacks of the test input. When

a user clicks a chapter, the triggered mouse click event is

handled by the function d(). Then, it calls the anonymous

function (i.e., function()) in the different script, which is

a divergence point containing both paths to passing and

blocking runs. The function gathers data, and checks if the

clicked chapter (‘e.percent’) exceeds the maximum number

of free chapters (‘r’) in line 6. If the clicked chapter is

within the ‘maximumAllowedProgress’, it shows the chapter

( P ); otherwise, the paywall is displayed ( B ). The test input

our system found forcibly executes the true branch of the

conditional expression ( 1 ).

V. MITIGATION: SERVER SIDE CODE RANDOMIZATION

As we discussed in Section II-B, migrating every important

business logic to the server-side to solve the business flow

tampering flaws is not only impractical but also causing

substantial overhead on the server side, leading to a high main-

tenance cost. Hence, in this section, we present, implement,

and evaluate a practical solution (that does not cause high

costs and substantial disruption in the existing service), which

is a server-side code randomization. It generates new JS code

each time a request is received from the client. Note that code

randomization techniques are normally expensive. Hence, our

solution is to leverage BFTDETECTOR to identify the flawed

logic, and apply the randomization on the identified code only.

Implementation. We implemented a proof of concept method

to demonstrate the effectiveness of the mitigation approach.

Specifically, we configure a proxy server imitating Google

Funding Choice providing anti-adblocker service as in the

LA Times case (Figure 2a). It intercepts requests from web

browsers, then returns a JS file by applying the code ran-

domization to the flawed function (Hf()) that our system

discovered. To implement random code generation, we use

an open-sourced JS obfuscator [9], which includes various

anti-analysis technique (e.g. control flow flattening and string

encryption). We test the mitigation approach on LA Times.

Result against BFTDETECTOR. BFTDETECTOR failed on

the mitigation setup; it was unable to identify any divergences.

This is because BFTDETECTOR locates statements and func-

tions using file offsets, that are randomized by the proposed

mitigation. Also, BFTDETECTOR analyzes branches to infer

the business models, where our mitigation approach eliminates

branches via the control flow flattening technique.

Result against Manual Analysis. The server-side code ran-

domization also make manual analysis difficult. JS debuggers

cannot set breaking points or track variables since locations

of code and variables are constantly changing.

Efficiency. One concern of the mitigation approach can be a

performance since JS code obfuscation techniques normally

incur lots of computational and memory overhead. For exam-

ple, the control flow flattening slows down the performance up

to 1.5x [30], and the dead code injection increases the code

size up to 200% [31]. To compare the performance overhead,

we record the total time of the obfuscation operations applied

only to the flawed function and to the entire code. As in

Table VIII, our mitigation approach increase only 287 bytes

and 8.15 ms, which we believe reasonable.

TABLE VIII: Performance Overhead of Mitigation Approach

Vul. Func. Only Entire Code

File
Size

Before 184 B 64,316 B

After 471 B 134,510 B

Time Overhead 8.15 ms 623.07 ms

Limitations. It is not immune to a code-reuse attack. Although

we generate random code for every request, that does not mean

that previously generated codes are invalid. Furthermore, if a

flawed function contains only a few statements (e.g., a single

call statement), the code randomization may not be effective.

VI. DISCUSSION

Ethical Considerations. The findings of this study are strictly

for research purposes. Our disclosures do not include detailed

information that could be used to reproduce the tampering. We

have reported the flaws to all digital content providers, and we

are actively in contact with them for potential mitigations.



Limitations. While our system is highly effective, it is also

not free of limitations. First, BFTDETECTOR performs the

BFT testing using one input at a time. If multiple divergence

points need to be mutated together (as shown in Table IV),

our approach would fail to detect the flaws. Second, we use

a file offset as an identification of JS objects (e.g. functions,

or statements). BFTDETECTOR may fail to locate JS objects

embedded in HTML because the offset varies based on its

contents. Although we have not yet observed the cases in

which important business logic is implemented in embedded in

HTML, our differential analysis may miss divergence points in

such cases. Third, while our test result verification shows low

false-positive/negative rates, the 1,778 training dataset from 13

websites may not represent all possible cases.

Handling Soft-paywall Websites. In Section IV-A, we ob-

serve that BFTDETECTOR detects fewer flaws in soft paywall

websites. To understand the reason behind this, we inspected

the 60 soft-paywall websites that BFTDETECTOR could not

find flaws and found the following 4 cases are observed fre-

quently. (1) 14 websites require multiple execution mutations

(the paywall is implemented across multiple files), which

we do not support. (2) 7 websites are high-ranked Alexa

websites. They use a protection technique called cloning. (3)

4 websites randomly decide the free-access policy (e.g., # of

free-access pages), while we assume a deterministic policy. (4)

2 websites implement the business logic on the server side.

For the remaining 33 websites, we found neither a flaw nor

BFTDetector’s limitations on them (probably not vulnerable).

VII. RELATED WORK

Testing-based Web Application Flaw Detection. Our work is

closely related to automated web application testing for flaw

detection. Black-box testing is widely used to generate test

cases and check applications for vulnerabilities [17], [18], [20],

[23], [24], [40], [43], [44]. Testers analyze the system and cre-

ate test cases to check if the test cases expose flaws. Previous

work has employed black-box testing on web applications for

various purposes, including detection of side-channel vulnera-

bilities [20], testing for checkout system flaws [40], feedback-

directed automated test generation [16]. Their common goal

is to improve the coverage of the execution space to discover

buggy, abnormal or malicious behavior. Nonetheless, they are

not suitable for detecting BFT flaws, which need to precisely

pinpoint business logic related functions.

JSFlowTamper [32] is the state-of-the-art detection tech-

nique for BFT flaws. Unlike JSFlowTamper that only fo-

cuses on testing DOM selectors, BFTDETECTOR defines

and leverages business models. The business models help

discover new BFT flaws related to predicates and function

calls, beyond DOMs. Also, BFTDETECTOR proposes the

differential analysis-based algorithm to automatically identify

divergence points, while JSFlowTamper requires manual effort

and domain expertise to identify DOM selectors. Furthermore,

BFTDETECTOR automates the end-to-end process, while JS-

FlowTamper focuses on manual dynamic testing. Lastly, BFT-

DETECTOR solved JSFlowTamper’s limitations: (1) handling

randomized DOM selectors, (2) handling websites without

DOM mutation events (e.g., Figure 2b), (3) detecting flaws

related to multiple JS files in the call chain (e.g., Figure 2a).

JS Analysis Techniques. There are a variety of techniques

analyzing JS code [16], [19], [21], [25]±[28], [33]±[36], [38],

[39], [41], [45], [46], [49]. Jalangi [41] provides a dynamic

analysis framework by instrumenting JS code. Rozzle [34] is

a virtual machine that performs multi-path execution experi-

ments in parallel to enhance the efficiency of dynamic analysis.

J-Force [33] uncovers hidden malicious behaviors by forcibly

exploring all possible execution paths. Dual-Force [45] is

a technique that forcibly executes both Java and JavaScript

code of WebView applications simultaneously to reveal hidden

payloads of malware. JSGraph [35] records fine-grained details

about how JS programs are executed and how their effects are

reflected in DOM elements within a browser. JStap [25] is a

static malicious JavaScript detector that enhances the detection

capability of existing lexical and AST-based pipelines.

VIII. CONCLUSION

We present an automated approach to detect the BFT

flaws on digital content service websites. Our novel business

model based approach automatically exercises different busi-

ness flows and identifies the flaws via our differential analysis

algorithm. Our evaluation result shows that our approach is

highly effective, discovering 315 flaws from 204 high-profile

websites such as TIME, Fortune, and Forbes.

ACKNOWLEDGMENTS

We thank the anonymous referees for their constructive

feedback. The authors gratefully acknowledge the support of

NSF 1908021, 1916499, 2047980, and 2145616. This research

was also partially supported by a gift from Cisco Systems.

Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not

necessarily reflect the views of the sponsor.

REFERENCES

[1] ªChrome devtools recorder: Record, replay and measure user flows,º
https://developer.chrome.com/docs/devtools/recorder/, 2021.

[2] ªAutomotive news,º https://www.autonews.com/, 2022.
[3] ªBftdetector git repository,º https://github.com/jspaper22/bftdetector,

2022.
[4] ªBookmate,º https://bookmate.com/, 2022.
[5] ªBypass paywalls,º https://github.com/iamadamdev/bypass-paywalls-

chrome, 2022.
[6] ªForbes,º https://www.forbes.com/, 2022.
[7] ªFortune,º https://fortune.com/, 2022.
[8] ªGoogle’s funding choices,º https://fundingchoices.google.com/, 2022.
[9] ªJavascript obfuscator tool,º https://obfuscator.io/, 2022.

[10] ªLos angeles times,º https://www.latimes.com/, 2022.
[11] ªPuppeteer,º https://developers.google.com/web/tools/puppeteer, 2022.
[12] ªStudent share,º https://studentshare.org/, 2022.
[13] ªTime,º https://time.com/, 2022.
[14] ªThe times of northwest indiana,º https://www.nwitimes.com/, 2022.
[15] ªV8 javascript engine,º https://v8.dev/, 2022.
[16] S. Artzi, J. Dolby, S. H. Jensen, A. Mùller, and F. Tip, ªA framework for

automated testing of javascript web applications,º in Proceedings of the

33rd International Conference on Software Engineering. ACM, 2011,
pp. 571±580.



[17] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell, ªState of the art:
Automated black-box web application vulnerability testing,º in 2010

IEEE Symposium on Security and Privacy. IEEE, 2010, pp. 332±345.
[18] P. Bisht, T. Hinrichs, N. Skrupsky, R. Bobrowicz, and V. Venkatakrish-

nan, ªNotamper: automatic blackbox detection of parameter tampering
opportunities in web applications,º in Proceedings of the 17th ACM

conference on Computer and communications security. ACM, 2010,
pp. 607±618.

[19] Y. Cao, Z. Li, V. Rastogi, Y. Chen, and X. Wen, ªVirtual browser:
a virtualized browser to sandbox third-party javascripts with enhanced
security,º in 7th ACM Symposium on Information, Compuer and

Communications Security, ASIACCS ’12, Seoul, Korea, May 2-4, 2012,
H. Y. Youm and Y. Won, Eds. ACM, 2012, pp. 8±9. [Online].
Available: https://doi.org/10.1145/2414456.2414460

[20] P. Chapman and D. Evans, ªAutomated black-box detection of side-
channel vulnerabilities in web applications,º in Proceedings of the 18th

ACM conference on Computer and communications security. ACM,
2011, pp. 263±274.

[21] Z. Chen and Y. Cao, ªJskernel: Fortifying javascript against
web concurrency attacks via a kernel-like structure,º in 50th

Annual IEEE/IFIP International Conference on Dependable Systems

and Networks, DSN 2020, Valencia, Spain, June 29 - July

2, 2020. IEEE, 2020, pp. 64±75. [Online]. Available: https:
//doi.org/10.1109/DSN48063.2020.00026

[22] D. Coldewey, ªThousands of major sites are taking silent anti-ad-
blocking measures,º https://techcrunch.com/2017/12/27/thousands-of-
major-sites-are-taking-silent-anti-ad-blocking-measures/, December
2017.

[23] A. DoupÂe, L. Cavedon, C. Kruegel, and G. Vigna, ªEnemy of
the state: A state-aware black-box web vulnerability scanner,º in
Proceedings of the 21th USENIX Security Symposium, Bellevue, WA,

USA, August 8-10, 2012, T. Kohno, Ed. USENIX Association, 2012,
pp. 523±538. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity12/technical-sessions/presentation/doupe

[24] A. DoupÂe, M. Cova, and G. Vigna, ªWhy johnny can’t pentest: An
analysis of black-box web vulnerability scanners,º in Detection of

Intrusions and Malware, and Vulnerability Assessment, 7th International

Conference, DIMVA 2010, Bonn, Germany, July 8-9, 2010. Proceedings,
ser. Lecture Notes in Computer Science, C. Kreibich and M. Jahnke,
Eds., vol. 6201. Springer, 2010, pp. 111±131. [Online]. Available:
https://doi.org/10.1007/978-3-642-14215-4 7

[25] A. Fass, M. Backes, and B. Stock, ªJstap: a static pre-filter for
malicious javascript detection,º in Proceedings of the 35th Annual

Computer Security Applications Conference, ACSAC 2019, San Juan,

PR, USA, December 09-13, 2019, D. Balenson, Ed. ACM, 2019, pp.
257±269. [Online]. Available: https://doi.org/10.1145/3359789.3359813

[26] A. Fass, R. P. Krawczyk, M. Backes, and B. Stock, ªJast: Fully syntactic
detection of malicious (obfuscated) javascript,º in Detection of Intrusions

and Malware, and Vulnerability Assessment - 15th International

Conference, DIMVA 2018, Saclay, France, June 28-29, 2018,

Proceedings, ser. Lecture Notes in Computer Science, C. Giuffrida,
S. Bardin, and G. Blanc, Eds., vol. 10885. Springer, 2018, pp. 303±325.
[Online]. Available: https://doi.org/10.1007/978-3-319-93411-2 14

[27] Q. Hanam, F. S. d. M. Brito, and A. Mesbah, ªDiscovering bug
patterns in javascript,º in Proceedings of the 2016 24th ACM SIGSOFT

international symposium on foundations of software engineering, 2016,
pp. 144±156.

[28] D. Hedin, A. Birgisson, L. Bello, and A. Sabelfeld, ªJsflow: Tracking
information flow in javascript and its apis,º in Proceedings of the 29th

Annual ACM Symposium on Applied Computing, 2014, pp. 1663±1671.
[29] insightSLICE, ªDigital content creation market - global

market share, trends, analysis and forecasts, 2020 - 2030,º
https://www.insightslice.com/digital-content-creation-market, November
2020.

[30] T. Kachalov, ªJavascript obfuscator - controlflowflat-
tening,º https://github.com/javascript-obfuscator/javascript-
obfuscator#controlflowflattening, 2022.

[31] ÐÐ, ªJavascript obfuscator - dead code injec-
tion,º https://github.com/javascript-obfuscator/javascript-
obfuscator#deadcodeinjection, 2022.

[32] I. L. Kim, Y. Zheng, H. Park, W. Wang, W. You, Y. Aafer, and
X. Zhang, ªFinding client-side business flow tampering vulnerabilities,º
in Proceedings of the ACM/IEEE 42nd International Conference

on Software Engineering, ser. ICSE ’20. New York, NY, USA:

Association for Computing Machinery, 2020, p. 222±233. [Online].
Available: https://doi.org/10.1145/3377811.3380355

[33] K. Kim, I. L. Kim, C. H. Kim, Y. Kwon, Y. Zheng, X. Zhang, and
D. Xu, ªJ-force: Forced execution on javascript,º in Proceedings of the

26th international conference on World Wide Web, 2017, pp. 897±906.
[34] C. Kolbitsch, B. Livshits, B. Zorn, and C. Seifert, ªRozzle: De-cloaking

internet malware,º in 2012 IEEE Symposium on Security and Privacy.
IEEE, 2012, pp. 443±457.

[35] B. Li, P. Vadrevu, K. H. Lee, R. Perdisci, J. Liu, B. Rahbarinia, K. Li,
and M. Antonakakis, ªJsgraph: Enabling reconstruction of web attacks
via efficient tracking of live in-browser javascript executions,º in NDSS,
2018.

[36] G. Li, E. Andreasen, and I. Ghosh, ªSymjs: automatic symbolic testing
of javascript web applications,º in Proceedings of the 22nd ACM

SIGSOFT International Symposium on Foundations of Software Engi-

neering, 2014, pp. 449±459.
[37] N. Newman, ªJournalism, media and technology trends and predictions

2019,º https://www.digitalnewsreport.org/publications/2019/journalism-
media-technology-trends-predictions-2019/, January 2019.

[38] N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. Van Acker, W. Joosen,
C. Kruegel, F. Piessens, and G. Vigna, ªYou are what you
include: Large-scale evaluation of remote javascript inclusions,º
in Proceedings of the 2012 ACM Conference on Computer and

Communications Security, ser. CCS ’12. New York, NY, USA:
Association for Computing Machinery, 2012, p. 736±747. [Online].
Available: https://doi.org/10.1145/2382196.2382274

[39] F. S. Ocariza Jr, G. Li, K. Pattabiraman, and A. Mesbah, ªAutomatic
fault localization for client-side javascript,º Software Testing, Verification

and Reliability, vol. 26, no. 1, pp. 69±88, 2016.
[40] G. Pellegrino and D. Balzarotti, ªToward black-box detection of logic

flaws in web applications.º in NDSS, 2014.
[41] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs, ªJalangi: A selective

record-replay and dynamic analysis framework for javascript,º in Pro-

ceedings of the 2013 9th Joint Meeting on Foundations of Software

Engineering, 2013, pp. 488±498.
[42] C. E. Shannon, ªA mathematical theory of communication,º ACM

SIGMOBILE mobile computing and communications review, vol. 5,
no. 1, pp. 3±55, 2001.

[43] N. Skrupsky, P. Bisht, T. Hinrichs, V. Venkatakrishnan, and L. Zuck,
ªTamperproof: a server-agnostic defense for parameter tampering attacks
on web applications,º in Proceedings of the third ACM conference on

Data and application security and privacy. ACM, 2013, pp. 129±140.
[44] A. Sudhodanan, A. Armando, R. Carbone, L. Compagna et al., ªAttack

patterns for black-box security testing of multi-party web applications.º
in NDSS, 2016.

[45] Z. Tang, J. Zhai, M. Pan, Y. Aafer, S. Ma, X. Zhang, and J. Zhao, ªDual-
force: Understanding webview malware via cross-language forced exe-
cution,º in Proceedings of the 33rd ACM/IEEE International Conference

on Automated Software Engineering, 2018, pp. 714±725.
[46] J. Wang, W. Dou, C. Gao, Y. Gao, and J. Wei, ªContext-based event

trace reduction in client-side javascript applications,º in 2018 IEEE

11th International Conference on Software Testing, Verification and

Validation (ICST). IEEE, 2018, pp. 127±138.
[47] W. Wang, Y. Zheng, X. Xing, Y. Kwon, X. Zhang, and P. Eugster,

ªWebranz: web page randomization for better advertisement delivery and
web-bot prevention,º in Proceedings of the 2016 24th ACM SIGSOFT

International Symposium on Foundations of Software Engineering, 2016,
pp. 205±216.

[48] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, ªImage
quality assessment: from error visibility to structural similarity,º IEEE

transactions on image processing, vol. 13, no. 4, pp. 600±612, 2004.
[49] M. Zhang and W. Meng, ªDetecting and understanding javascript global

identifier conflicts on the web,º ser. ESEC/FSE 2020. New York, NY,
USA: Association for Computing Machinery, 2020, p. 38±49. [Online].
Available: https://doi.org/10.1145/3368089.3409747


	Introduction
	Motivation
	Business Flow Tampering Flaws
	Business Model vs. Implementation
	BFTdetector: Automated Tampering Detection

	System Design
	Dynamic Execution Trace Collection
	Business Model Driven Trace Collection
	Definition of Passing and Blocking Runs
	Automated Business Flow Execution Driver
	Call Trace Collection

	Call Trace Differential Analysis
	Test Input Generation
	Testing Business Flow Tampering (BFT)
	Test Result Verification

	Evaluation
	BFT Detection Results
	Efficiency in Reducing Search Space
	Effectiveness of Test Result Verification
	Performance Overhead
	Comparison Study
	Case Study
	TIME.com
	Bookmate.com


	Mitigation: Server side Code Randomization
	Discussion
	Related Work
	Conclusion
	References

