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Local Fréchet regression is a nonparametric regression method for met-
ric space valued responses and Euclidean predictors, which can be utilized to
obtain estimates of smooth trajectories taking values in general metric spaces
from noisy metric space valued random objects. We derive uniform rates of
convergence, which so far have eluded theoretical analysis of this method,
for both fixed and random target trajectories, where we utilize tools from em-
pirical processes. These results are shown to be widely applicable in metric
space valued data analysis. In addition to simulations, we provide two per-
tinent examples where these results are important: The consistent estimation
of the location of properly defined extrema in metric space valued trajecto-
ries, which we illustrate with the problem of locating the age of minimum
brain connectivity as obtained from fMRI data; and time warping for metric
space valued trajectories, illustrated with yearly age-at-death distributions for
different countries.

1. Introduction. Non-Euclidean data, or random object data taking values in metric
spaces have become increasingly common in modern data analysis and data science while
there is a lack of principled and statistically justified methodology. Since such data are metric
space valued, they generally do not lie in a vector space, which means that many classical
notions of statistics such as the definition of sample or population mean as an average or ex-
pected value do not apply anymore and need to be replaced by barycenters or Fréchet means
(Fréchet (1948)), the mathematical and statistical properties of which have been studied for
various metric spaces. These include finite-dimensional Riemannian manifolds, the space of
symmetric positive definite matrices, Kendall’s shape space or the Wasserstein space of distri-
butions (Agueh and Carlier (2011), Bhattacharya and Patrangenaru (2003), Bhattacharya and
Patrangenaru (2005), Dryden, Koloydenko and Zhou (2009), Huckemann (2012), Le Gouic
and Loubes (2017), among others); the latter is not a Riemannian manifold (Ambrosio, Gigli
and Savaré (2004)).

Another important topic is to study the relationship of such random objects with other
variables, where regression analysis comes into play. Nonparametric (local) regression tech-
niques have been used for a long time for smoothing and interpolation of Euclidean re-
sponses. While Nadaraya–Watson type methods have been proposed when data lie in finite-
dimensional Riemannian manifolds (Davis et al. (2007), Pelletier (2006), Steinke and Hein
(2009), Steinke, Hein and Schölkopf (2010), Yuan et al. (2012)), and also generic metric
spaces (Hein (2009)), local Fréchet regression (Petersen and Müller (2019)), can be viewed
as a generalization of local linear regression for metric space valued responses. While point-
wise asymptotic results for the corresponding estimates have been previously derived, uni-
form convergence is much more challenging. Here, we derive uniform rates of convergence
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for local Fréchet regression estimates of the fixed conditional Fréchet mean trajectory using
tools from empirical process theory; see Theorem 1. We then extend this result to the case
where local Fréchet regression is applied to recover metric space valued random processes
from discrete noisy observations; see Theorem 2. While these results are of interest in their
own right, our derivations are motivated by important applications of uniform convergence.
These include the estimation of the location of suitably defined extrema in metric space val-
ued functions as well as time warping for metric space valued functional data.

Estimation of modes or maximum locations has been well studied for regression func-
tions in nonparametric regression for real-valued data (e.g., Belitser, Ghosal and van Zan-
ten (2012), Devroye (1978), Müller (1989)) and densities of probability distributions (e.g.,
Balabdaoui, Rufibach and Wellner (2009), Parzen (1962), Vieu (1996)). For object data in
metric spaces, the location of extrema with regard to functionals of interest can be obtained
based on the estimation of the complete conditional Fréchet mean trajectory through local
Fréchet regression, where the consistency of the derived estimates of the location of an ex-
tremum is guaranteed by the uniform convergence of local Fréchet regression under regularity
conditions.

For real-valued functional data, a random function may be considered to reflect two types
of random variation: amplitude variation and phase (or time) variation. Confounding these
two types of variation may compromise conventional statistical methods (Kneip and Gasser
(1992)). This issue has been addressed by introducing time warping, also referred to as curve
synchronization, registration or alignment. The prototypical method is dynamic time warp-
ing (DTW) (Sakoe and Chiba (1978)) and various statistical approaches have been devel-
oped over the years for real-valued functional data (Gasser and Kneip (1995), Gervini and
Gasser (2004), James (2007), Kneip and Gasser (1992), Ramsay and Li (1998), Wang and
Gasser (1997), among others); see Marron et al. (2015) for a review. Beyond classical func-
tional data in L2 Hilbert space, time synchronization has been investigated in engineering
for non-Euclidean semimetric spaces, also referred to as dissimilarity spaces (Faragó, Linder
and Lugosi (1993)), where the DTW method and its variants have been adopted with ap-
plications including human motion recognition and video classification (Gong and Medioni
(2011), Trigeorgis et al. (2018), Vu, Carey and Mahadevan (2012), among others). We note
that no theoretical results were provided in these works. To our knowledge, no comprehen-
sive studies exist of time warping for samples of metric space valued trajectories that include
an investigation of statistical properties or asymptotic behavior.

Statistical methods devised for real-valued functional data, or random elements of a
Hilbert space, are usually not applicable to functional data taking values in a metric space
(Huckemann (2015)). Even extending functional data analysis methods without time warp-
ing to metric space valued trajectories is challenging (Dubey and Müller (2020)), due to the
fact that in general metric spaces one cannot make use of an algebraic structure. In this paper,
we tackle the even more challenging task to extend pairwise warping for real-valued curves
(Tang and Müller (2008)) to metric space valued functional data. Since random processes
are usually not fully observed and only discrete and noisy measurements are available, lo-
cal Fréchet regression needs to be used to obtain complete subject-specific trajectories. The
uniform convergence result in Theorem 2 for local Fréchet regression estimates of random
processes is crucial to derive the uniform consistency of estimates of the pairwise warping
functions, which form the backbone of the proposed warping method; the uniform consis-
tency provides the major justification for this approach.

The remainder of the paper is organized as follows. A key result on the uniform rate of
convergence for local Fréchet regression is presented in Section 2, followed by a study of the
case where the target of the local Fréchet regression is a random process rather than a fixed
trajectory in Section 3. We present two applications, where the estimation of the location of
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extrema is based on Theorem 2 and presented in Section 4. A second key application is the
time synchronization for metric space valued functional data in Section 5, which is based on
Theorem 2. The proposed methods are shown to lead to consistent estimation of time warping
functions in Theorem 3 and Corollary 3. We then demonstrate the estimation of extrema
locations with functional magnetic resonance imaging (fMRI) data from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database in Section 6.1, where we find the time
of minimum brain connectivity, quantified by the Fiedler values of the brain network. The
time warping for metric space valued functional data is illustrated with yearly age-at-death
distribution data for different countries from the Human Mortality Database in Section 6.2.
We also report the results of various simulation studies for the proposed warping method for
distribution-valued functional data in Section S.5 in the Supplementary Material (Chen and
Müller (2022)).

2. Uniform rates of convergence for local Fréchet regression. Let (M, dM) be a to-
tally bounded separable metric space, and T = [0, τ ] be a closed interval in R. This will be
assumed throughout. Consider a random pair (U,V ) with a joint distribution on the product
space T × M, where U is a real-valued predictor and V is a metric space valued response.
Suppose {(Uj ,Vj )}mj=1 are i.i.d. realizations of (U,V ). For any t ∈ T , the conditional Fréchet
mean of V given U = t is defined by

(2.1) ν(t) = argmin
z∈M

L(z, t), L(z, t) = E
[
d2
M(V , z) | U = t

]
.

We consider local Fréchet means (Petersen and Müller (2019))

(2.2) ν̃b(t) = argmin
z∈M

L̃b(z, t), L̃b(z, t) = E
[
w(U, t, b)d2

M(V , z)
]
,

where w(s, t, b) = Kb(s− t)[ρ2,b(t)−ρ1,b(t)(s− t)]/σ 2
b (t), ρl,b(t) = E[Kb(U − t)(U − t)l],

for l = 0,1,2, σ 2
b (t) = ρ0,b(t)ρ2,b(t)−ρ1,b(t)

2, Kb(·) = K(·/b)/b, K is a smoothing kernel,
and b = b(m) > 0 is a bandwidth sequence. Local Fréchet regression estimates of ν(t) are
given by

(2.3) ν̂m(t) = argmin
z∈M

L̂m(z, t), L̂m(z, t) = m−1
m∑

j=1

ŵ(Uj , t, b)d2
M(Vj , z),

where ŵ(s, t, b) = Kb(s− t)[ρ̂2,m(t)− ρ̂1,m(t)(s− t)]/σ̂ 2
m(t), ρ̂l,m(t) = m−1 ∑m

j=1[Kb(Uj −
t)(Uj − t)l], l = 0,1,2, σ̂ 2

m(t) = ρ̂0,m(t)ρ̂2,m(t) − ρ̂1,m(t)2.
Let T ◦ = (0, τ ) be the interior of T . We require the following assumptions to obtain

uniform rates of convergence over t ∈ T for local Fréchet regression estimators in (2.3).

(K0) The kernel K is a probability density function, symmetric around zero and uniformly
continuous on R. Defining Kkl = ∫

R
K(x)kxl dx < ∞, for k, l ∈ N, K14 and K26 are finite.

The derivative K ′ exists and is bounded on the support of K , that is, supK(x)>0 |K ′(x)| < ∞;
additionally,

∫
R

x2|K ′(x)|√|x log |x||dx < ∞.
(R0) The marginal density fU of U and the conditional densities fU |V (·, z) of U

given V = z exist and are continuous on T and twice continuously differentiable on
T ◦, the latter for all z ∈ M. The marginal density fU is bounded away from zero
on T , inft∈T fU(t) > 0. The second-order derivative f ′′

U is bounded, supt∈T ◦ |f ′′
U(t)| <

∞, and the second-order partial derivatives (∂2fU |V /∂t2)(·, z) are uniformly bounded,
supt∈T ◦,z∈M |(∂2fU |V /∂t2)(t, z)| < ∞. Additionally, for any open set E ⊂ M, P(V ∈ E |
U = t) is continuous as a function of t ; for any t ∈ T , L(z, t) is equicontinuous, that is,

(2.4) lim sup
s→t

sup
z∈M

∣∣L(z, s) − L(z, t)
∣∣ = 0.
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(R1) For all t ∈ T , the minimizers ν(t), ν̃b(t) and ν̂m(t) exist and are unique, the last
P -almost surely. In addition, for any ε > 0,

inf
t∈T inf

dM(ν(t),z)>ε

(
L(z, t) − L

(
ν(t), t

))
> 0,

lim inf
b→0

inf
t∈T inf

dM (̃νb(t),z)>ε

(
L̃b(z, t) − L̃b

(̃
νb(t), t

))
> 0,

and there exists c = c(ε) > 0 such that

P

(
inf
t∈T inf

dM (̂νm(t),z)>ε

(
L̂m(z, t) − L̂m

(̂
νm(t), t

)) ≥ c

)
→ 1.

(R2) Let Br(ν(t)) ⊂ M be a ball of radius r centered at ν(t) and N(ε,Br(ν(t)), dM) be
its covering number using balls of radius ε. Then∫ 1

0
sup
t∈T

√
1 + logN

(
rε,Br

(
ν(t)

)
, dM

)
dε = O(1), as r → 0+.

(R3) There exists r1, r2 > 0, c1, c2 > 0 and β1, β2 > 1 such that

inf
t∈T inf

dM(z,ν(t))<r1

[
L(z, t) − L

(
ν(t), t

) − c1dM
(
z, ν(t)

)β1
] ≥ 0,

lim inf
b→0

inf
t∈T inf

dM(z,̃νb(t))<r2

[
L̃b(z, t) − L̃b

(̃
νb(t), t

) − c2dM
(
z, ν̃b(t)

)β2
] ≥ 0.

Similar but weaker assumptions have been made by Petersen and Müller (2019) for point-
wise rates of convergence for local Fréchet regression estimators. Assumption (K0) is needed
to apply results of Silverman (1978) and Mack and Silverman (1982), and (R0) is a standard
distributional assumption for local nonparametric regression. These assumptions guarantee
the asymptotic uniform equicontinuity of L̃b and control the behavior of (L̃b −L) around ν(t)

uniformly over t ∈ T , whence we obtain the uniform rate for the bias part dM(ν(t), ν̃b(t))

and the uniform consistency of the stochastic part dM(̃νb(t), ν̂m(t)) for the local Fréchet re-
gression estimators. In particular, (2.4) guarantees the dM-continuity of ν(t) in conjunction
with (R1). Assumption (R1) is commonly used to establish the uniform consistency of M-
estimators (van der Vaart and Wellner (1996)). It ensures the uniform convergence of L̃b(·, t)
to L(·, t) and the weak convergence of the empirical process L̂m(·, t) to L̃b(·, t), which, in
conjunction with the assumption that the metric space M is totally bounded, implies the
pointwise convergence of the minimizers for any given t ∈ T ; it also ensures that the (asymp-
totic) uniform equicontinuity of L̃b and L̂m implies the (asymptotic) uniform equicontinuity
of ν̃b(·) and ν̂m(·), whence the uniform convergence of the minimizers follows as the time
domain T is compact. Assumptions (R2) and (R3) are adapted from empirical process the-
ory to control the differences (L̂m − L̃b) and (L̃b − L) near the minimizers ν̃b(t) and ν(t),
respectively, which is necessary to obtain the convergence rates for the bias and stochastic
parts.

In the following, we discuss assumptions (R1)–(R3) in the context of some specific metric
spaces.

EXAMPLE 1. Let M be the set of probability distributions on a closed interval of R with
finite second moments, endowed with the L2-Wasserstein distance dW ; specifically, for any
two distributions z1, z2 ∈ M,

dW(z1, z2) =
(∫ 1

0

(
Qz1(x) − Qz2(x)

)2 dx

)1/2
= dL2(Qz1,Qz2),

where Qz is the quantile function for any given distribution z ∈ M. The Wasserstein space
(M, dW ) satisfies (R1)–(R3) with β1 = β2 = 2.
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EXAMPLE 2. Let M be the space of r-dimensional correlation matrices, that is, sym-
metric positive semidefinite matrices in R

r×r with diagonal elements all equal to 1, endowed
with the Frobenius metric dF . The space (M, dF ) satisfies (R1)–(R3) with β1 = β2 = 2.

For Examples 1–2, we note that since the Wasserstein space and the space of correlation
matrices are Hadamard spaces (the former as per Kloeckner (2010)), there exists a unique
minimizer of L(·, t), for any t ∈ T (Sturm (2003)). Examples 1–2 follow from similar argu-
ments as those in the proofs of Propositions 1–2 of Petersen and Müller (2019); we omit the
details.

We then obtain uniform rates of convergence over t ∈ T for local Fréchet regression esti-
mators as follows. Proofs and auxiliary results are in the Supplementary Material (Chen and
Müller (2022)).

THEOREM 1. Under (K0), (R0)–(R3) and if b → 0, mb2(− logb)−1 → ∞, as m → ∞,
for any ε > 0, it holds for ν(t), ν̃b(t) and ν̂m(t) as per (2.1)–(2.3), respectively, that

sup
t∈T

dM
(
ν(t), ν̃b(t)

) = O
(
b2/(β1−1)),(2.5)

sup
t∈T

dM
(̃
νb(t), ν̂m(t)

)
= OP

(
max

{(
mb2)−1/[2(β2−1)+ε]

,
(
mb2(− logb)−1)−1/[2(β2−1)]})

.

(2.6)

Furthermore, with b ∼ m−(β1−1)/(2β1+4β2−6+2ε), it holds that

(2.7) sup
t∈T

dM
(
ν(t), ν̂m(t)

) = OP

(
m−1/(β1+2β2−3+ε)).

Theorem 1 is a novel and relevant result for local Fréchet regression in its own right; we
expect it to be a useful and widely applicable tool for the study of metric space valued data.
We note that although T is a closed interval, boundary effects do not pose a problem, similar
to the situation for local polynomial regression with real-valued responses (e.g., Fan and
Gijbels (1996)). For the bias part in (2.5), we obtain the same rate as for pointwise results.
For the stochastic part, the proof is substantially more involved. When β1 = β2 = 2 as in
Examples 1–2, the uniform convergence rate is found to be arbitrarily close to OP (m−1/3).

3. Recovering metric space valued random processes from discrete noisy measure-
ments. We consider a metric space valued random process Y : T → M that is assumed to
be dM-continuous over T . In practice, the process Y is usually not fully observed; instead
one observes noisy measurements at discrete time points. Since a metric space in general is
not a vector space, and hence does not afford additive operations, it is not obvious how to
express the deviation of noisy observations from the underlying process Y . To address this
issue, we introduce a random perturbation map P : M → M such that

(3.1) z′ = argmin
z∈M

E
[
d2
M

(
P

(
z′), z)], for all z′ ∈ M.

Consider a random pair (T ,Z) following a joint distribution on T ×M, where T is the time
of observation and Z is a noisy observation of the process Y at a random time T , given by

(3.2) Z =P
(
Y(T )

)
.

Then the conditional Fréchet mean of the observed object Z given the process Y and time T

is the process evaluated at that time, that is,

(3.3) Y(T ) = argmin
z∈M

E
[
d2
M(Z, z) | Y,T

]
.

Furthermore, we assume:
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(P1) The time of observation T and the random perturbation map P are independent of
the random process Y .

The analogue of assumption (P1) in Euclidean regression is the standard assumption of inde-
pendence between additive noise and underlying process.

Suppose that available noisy observations of the process Y are {(Tj ,Zj )}mj=1, where Zj =
Pj (Y (Tj )), and {(Tj ,Pj )}mj=1 are independent realizations of (T ,P). Hence, {(Tj ,Zj )}mj=1
are conditionally independent realizations of (T ,Z) given the process Y . Local Fréchet re-
gression can be utilized to estimate the process trajectories Y via (2.3), with trajectory esti-
mates

(3.4) Ŷ (t) = argmin
z∈M

1

m

m∑
j=1

v̂(Tj , t, b)d2
M(Zj , z), for all t ∈ T .

Here, v̂(s, t, b) = Kb(s − t)[
̂2,m(t) − 
̂1,m(t)(s − t)]/ς̂2
m(t), b = b(m) > 0 is a bandwidth

sequence, 
̂l,m(t) = m−1 ∑m
j=1 Kb(Tj − t)(Tj − t)l , l = 0,1,2, ς̂2

m(t) = 
̂0,m(t)
̂2,m(t) −

̂1,m(t)2, Kb(·) = K(·/b)/b, and K is a kernel function.

We note that while ν̂m in (2.3) is a local Fréchet regression estimate of the fixed trajectory ν

as per (2.1), the target of the local Fréchet regression implemented as per (3.4) is the random
process Y . We next extend the results in Section 2 for local Fréchet regression with fixed
targets to the case of such random targets, and obtain the uniform convergence rates for Ŷ

over T .
Let (�,F ,P ) be the probability space on which the observed data (Tj ,Zj ) are defined,

where � is the sample space, F is the σ -algebra of events, and P : F → [0,1] is the proba-
bility measure. As the random mechanisms that generate the data as per (P1) are independent,
the probability space (�,F ,P ) is a product space of two probability spaces, (�1,F1,P�1),
where the metric space valued process Y is defined, and (�2,F2,P�2), where the observed
times Tj and the random perturbation map Pj associated with the noisy observations Zj

are defined. Fixing an element ω1 ∈ �1 corresponds to a realization of the metric space val-
ued process Y . Given a fixed ω1 ∈ �1, the observed pairs {(Tj ,Zj )}mj=1 are independent in
(�2,F2,P�2) and T and Tj do not depend on ω1. We use Yω1 , Zω1 , Zω1j , T and Tj to
represent the corresponding quantities given ω1 ∈ �1 in what follows, and also E�2 for the
expectation (integral) with respect to P�2 . For any fixed ω1 ∈ �1, {(Tj ,Zω1j )}mj=1 are i.i.d.
realizations of (T ,Zω1). For any t ∈ T , as per (3.3),

(3.5) Yω1(t) = argmin
z∈M

Mω1(z, t), Mω1(z, t) = E�2

[
d2
M(Zω1, z) | T = t

]
.

The localized Fréchet mean (Petersen and Müller (2019)) is

(3.6) Ỹω1,b(t) = argmin
z∈M

M̃ω1,b(z, t), M̃ω1,b(z, t) = E�2

[
v(T , t, b)d2

M(Zω1, z)
]
.

Here, v(s, t, b) = Kb(s − t)[
2,b(t) − 
1,b(t)(s − t)]/ς2
b (t), where 
l,b(t) = E�2[Kb(T −

t)(T − t)l], for l = 0,1,2 and ς2
b (t) = 
0,b(t)
2,b(t)−
1,b(t)

2. The local Fréchet regression
estimates Ŷ (t) in (3.4) can be expressed as

Ŷω1,m(t) = argmin
z∈M

M̂ω1,m(z, t),

M̂ω1,m(z, t) = m−1
m∑

j=1

v̂(Tj , t, b)d2
M(Zω1j , z).

(3.7)

Let T ◦ = (0, τ ) be the interior of the time domain T . Considering an arbitrarily fixed ω1 ∈
�1, for local Fréchet regression as described in (3.5)–(3.7), assumptions (R0)–(R3) can be
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adapted to obtain uniform rates of convergence of local Fréchet regression estimates Ŷω1,m(t)

over t ∈ T . To obtain uniform rates of convergence of the local Fréchet regression estimate
Ŷ of the random process Y over T , we need to deal with different ω1 ∈ �1 simultaneously,
for which we require the following stronger variants of assumptions (R0)–(R3).

(U0) The marginal density fT of T and the conditional densities fT |Zω1
(·, z) of T

given Zω1 = z exist and are continuous on T and twice continuously differentiable
on T ◦, the latter for all z ∈ M and ω1 ∈ �1. The marginal density fT is bounded
away from zero on T , inft∈T fT (t) > 0. The second-order derivative f ′′

T is bounded,
supt∈T ◦ |f ′′

T (t)| < ∞. The second-order partial derivatives (∂2fT |Zω1
/∂t2)(·, z) are uni-

formly bounded, supω1∈�1,t∈T ◦,z∈M |(∂2fT |Zω1
/∂t2)(t, z)| < ∞. Additionally, for any open

set E ⊂M, P�2(Zω1 ∈ E | T = t) is continuous as a function of t for all ω1 ∈ �1.
(U1) For all ω1 ∈ �1 and t ∈ T , the minimizers Yω1(t), Ỹω1,b(t) and Ŷω1,m(t) exist and

are unique, the last P�2 -almost surely. Additionally, for any ε > 0,

inf
ω1∈�1,t∈T

inf
z∈M s.t.

dM(Yω1 (t),z)>ε

(
Mω1(z, t) − Mω1

(
Yω1(t), t

))
> 0,

lim inf
b→0

inf
ω1∈�1,t∈T

inf
z∈M s.t.

dM(Ỹω1,b(t),z)>ε

(
M̃ω1,b(z, t) − M̃ω1,b

(
Ỹω1,b(t), t

))
> 0.

(U2) Let Br(Yω1(t)) ⊂ M be a ball of radius r centered at Yω1(t) and N(ε,Br(Yω1(t)),

dM) be its covering number using balls of radius ε. Then

sup
r>0

sup
ω1∈�1

∫ 1

0
sup
t∈T

√
1 + logN

(
rε,Br

(
Yω1(t)

)
, dM

)
dε < ∞.

(U3) There exist c1, c2 > 0 and β1, β2 > 1 such that for any r1, r2 > 0,

inf
ω1∈�1,t∈T

inf
z∈M s.t.

dM(z,Yω1 (t))<r1

[
Mω1(z, t) − Mω1

(
Yω1(t), t

) − c1dM
(
z,Yω1(t)

)β1
] ≥ 0,

lim inf
b→0

inf
ω1∈�1,

t∈T
inf

z∈M s.t.
dM(z,Ỹω1,b(t))<r2

[
M̃ω1,b(z, t) − M̃ω1,b

(
Ỹω1,b(t), t

) − c2dM
(
z, Ỹω1,b(t)

)β2
] ≥ 0.

We note that the assumption of equicontinuity of L as per (2.4) to guarantee the dM-
continuity of ν is not needed in this case, since the process Y is assumed to be dM-continuous.
We then obtain the uniform convergence rates for Ŷ over T as follows.

THEOREM 2. Under (P1), (K0) and (U0)–(U3), for any ε > 0,

sup
t∈T

dM
(
Y(t), Ỹ (t)

) = O
(
b2/(β1−1));

sup
t∈T

dM
(
Ỹ (t), Ŷ (t)

)
(3.8)

= OP

(
max

{(
mb2)−1/[2(β2−1)+ε]

,
(
mb2(− logb)−1)−1/[2(β2−1)]})

.

Furthermore, if b ∼ m−(β1−1)/(2β1+4β2−6+2ε),

(3.9) sup
t∈T

dM
(
Y(t), Ŷ (t)

) = OP

(
m−1/(β1+2β2−3+ε)).

We note that Examples 1 and 2 indeed satisfy (U1)–(U3) with β1 = β2 = 2, where the
uniform convergence rate in (3.9) can be arbitrarily close to OP (m−1/3). We also note that
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the uniform convergence results for local Fréchet regression with fixed and random targets
in Theorems 1 and 2, respectively, can be extended to the case of multivariate predictors at
the expense of more tedious algebra similarly to multivariate nonparametric regression with
scalar responses (Ruppert and Wand (1994)).

4. Estimation of the location of extrema. In this section, we consider the problem of
estimating the locations of extrema (maxima and/or minima) of the conditional Fréchet mean
trajectory ν(t) as per (2.1) with regard to some functional of interest that is defined on the
metric space of random objects and will depend on the specific nature of these objects, cor-
responding to a map from the object space to the real line. Without loss of generality, we
focus on the case of extrema that are minima and note that the case of zero crossings can be
handled analogously.

Consider a functional � : M → R that quantifies a property of interest of the objects
situated in the metric space M. Then the conditional Fréchet mean ν(t) of V given U = t

as per (2.1) induces a real function �(t) that reflects the dependence of the functional on the
covariate t ,

�(t) = �
(
ν(t)

)
, for all t ∈ T .

Our goal is to find the location where �(·) is minimized,

(4.1) tmin = argmin
t∈T

�(t).

An estimate of the minimizer tmin of �(·) is obtained by replacing ν(t) with its local Fréchet
regression estimate, that is,

(4.2) t̂min = argmin
t∈T

�̂(t), with �̂(t) = �
(̂
νm(t)

)
.

In addition, we assume:

(D1) There exists C1 > 0 and α1 > 1 such that for all z1, z2 ∈ M, |�(z1) − �(z2)| ≤
C1dM(z1, z2)

α1 .
(D2) The minimizer tmin exists and is unique. Additionally, for any ε > 0,

inf|t−tmin|>ε[�(t) − �(tmin)] > 0.
(D3) There exists r,C2 > 0 and α2 > 1 such that inf|t−tmin|<r [�(t) − �(tmin) − C2|t −

tmin|α2] ≥ 0.

Assumptions (D1) and (D2) guarantee the consistency of the minimizer estimate t̂min, and
hence can be used to obtain the corresponding convergence rate in conjunction with (D3). An
example scenario where (D1) holds with α1 = 1 will be given in Section 6.1. For (D2) and
(D3), a sufficient condition is, for instance, that �(·) is twice continuously differentiable on
T with unique minimizer tmin and �′′(tmin) > 0; specifically, α2 = 2 in (D3).

Applying Theorem 1, we obtain the following result of the minimum location estimate t̂min
based on local Fréchet regression.

COROLLARY 1. Under (K0), (R0)–(R3) and (D1)–(D3), for any ε > 0 and for b ∼
m−(β1−1)/(2β1+4β2−6+2ε), it holds for the estimate t̂min in (4.2) of the minimizer tmin in (4.1)
that

(4.3) |̂tmin − tmin| = OP

(
m−α1/[α2(β1+2β2−3+ε)]).

We will illustrate this approach with an application to the study of brain connectivity uti-
lizing fMRI data in Section 6.1. More generally, for an aggregation statistic determined by a
functional �∗ such that |�∗(̂νm) − �∗(ν)| ≤ C∗

1 supt∈T dM(̂νm(t), ν(t))α
∗
1 , for some C∗

1 > 0
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and α∗
1 > 1, where �∗(ν), �∗(̂νm) ∈ R, analogous rates of convergence as in (4.3) can be ob-

tained for |�∗(̂νm) − �∗(ν)|. Examples where such results are useful include the estimation
of zero crossings or more general level crossings and the estimation of intervals where �∗(ν)

exceeds a certain level.

5. Time warping for metric space valued functional data.

5.1. Global warping. We consider the time warping problem for metric space valued ran-
dom trajectories. With T = [0, τ ] being the time domain, consider a set of warping functions
W = {g : T → T | g(0) = 0, g(τ ) = τ , g is continuous and strictly increasing on T }. Note
that for each function g ∈ W , g(·)/τ is a strictly increasing cdf on T . Suppose μ : T → M
is a fixed metric space valued trajectory, and h ∈ W is a random (global) warping function
such that E[h(t)] = t , for all t ∈ T . We consider the following model for the metric space
valued random process Y : T → M in Section 3:

(5.1) Y(t) = μ
(
h−1(t)

)
, for all t ∈ T ,

where μ is referred to as the mean trajectory, and the stochastic fluctuations of the random
warping function h around the identity function id determines the phase variation of the
process Y . Considering a random pair (T ,Z) consisting of time of observation T and pro-
cess Z, which is observed with a perturbation that is determined by the map P satisfying
(3.1), suppose {(hi, Yi, Ti,Pi ,Zi)}ni=1 is a set of n independent realizations of the quintuple
(h,Y,T ,P,Z), where as per (5.1) the metric space valued processes Yi are

(5.2) Yi(t) = μ
(
h−1

i (t)
)
, for all t ∈ T ,

and the observed objects are Zi = Pi(Yi(Ti)), as per (3.2).
Furthermore, we make the following assumptions regarding the fixed mean trajectory μ

and random warping function h ∈ W .

(W1) The trajectory μ is dM-continuous, that is, lim�→0 dM(μ(t + �),μ(t)) = 0, for
any t ∈ T .

(W2) Defining a bivariate function dμ : T 2 → R as dμ(s, t) = dM(μ(s),μ(t)), dμ is
twice continuously differentiable with infs=t∈T |(∂dμ/∂s)(s, t)| > 0. For any t1, t2 ∈ T with
t1 < t2,

∫ t2
t1

[(∂dμ/∂s)(s, t)]2 ds > 0, for all t ∈ T .
(W3) The difference quotients of the global warping function h are bounded from above

and below, that is, there exist constants c,C ∈ (0,+∞) with c < C and cC ≤ 1 such that
c ≤ [h(s) − h(t)]/(s − t) ≤ C, for all s, t ∈ T with s < t .

Assumption (W1) implies the dM-continuity of the random process Y in conjunction with
the continuity of the warping function h; (W2) excludes the possibility that any part of the
trajectory μ could be flat. This is necessary to ensure the uniqueness of the warping func-
tions, and will be used to establish the uniform convergence of the proposed estimates for
the pairwise warping functions; see Section 5.4. Assumption (W3) guarantees there are no
plateaus or steep increases in the global warping function and its inverse.

5.2. Pairwise warping. For any i, i′ ∈ {1, . . . , n} such that i 
= i ′, the random pairwise
warping function gi′i : T → T is a temporal transformation from Yi′ toward Yi defined by

gi′i (t) = hi′
(
h−1

i (t)
)
, for all t ∈ T .

We note that gi′i ∈W . Moreover, we assume that (warping) functions in W can be parameter-
ized by linear splines (as in Tang and Müller (2008)). Let tk = kτ/(p + 1), for k = 1, . . . , p,
be p equidistant knots in T , with t0 = 0 and tp+1 = τ . For any function g ∈ W , defining a
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coefficient vector θg = [g(t1), . . . , g(tp+1)]�, the piecewise linear formulation of g can be
expressed as

(5.3) g(t) = θ�
g A(t), for all t ∈ T ,

where A(t) = [A1(t), . . . ,Ap+1(t)]�, Ak(t) = A
(1)
k (t) − A

(2)
k+1(t), A

(1)
k (t) = (t − tk−1)/(tk −

tk−1) · 1[tk−1,tk), A
(2)
k (t) = (t − tk)/(tk − tk−1) · 1[tk−1,tk), for k = 1, . . . , p + 1 and A

(2)
p+2 = 0.

Due to the definition of the warping function space W , the parameter space � of the spline
coefficient vector θg is

(5.4) � = {
θ ∈ R

p+1 : 0 < θ1 < · · · < θp+1 = τ
}
.

The corresponding family of warping functions is W = WLS = {g ∈ W : g = θ�
g A with

θg ∈ �}. We assume that the pairwise warping function gi′i can be represented by (5.3), that
is,

(5.5) gi′i (·) = θ�
gi′iA(·), with θgi′i ∈ �.

5.3. Samples and estimation. For each i = 1, . . . , n, suppose available observations for
the process Yi are {(Tij ,Zij )}mi

j=1, where Zij = Pij (Yi(Tij )), and {(Tij ,Pij )}mi

j=1 are mi in-
dependent realizations of (Ti,Pi). To estimate the warping functions hi , a first step is to
estimate the processes Yi by local Fréchet regression. Specifically, as per (3.4), the estimated
trajectories are

(5.6) Ŷi(t) = argmin
z∈M

1

mi

mi∑
j=1

v̂(Tij , t, bi)d
2
M(Zij , z), for all t ∈ T ,

where v̂ is as defined after (3.4) and bi = bi(mi) > 0 are bandwidth sequences.
Our next step is to obtain an estimator for the pairwise warping functions gi′i as per (5.5),

for any distinct i′, i ∈ {1, . . . , n}. This is equivalent to estimating the corresponding spline co-
efficients θgi′i ∈ �, which can be obtained by minimizing the integral of the squared distance
between Ŷi′ with time shifted toward Ŷi and Ŷi over the time domain T , with a regularization
penalty on the magnitude of warping. Specifically, an estimator for θgi′i is

θ̂gi′i = argmin
θ∈�

CŶ ,λ(θ; Ŷi′, Ŷi),

with CŶ ,λ(θ; Ŷi′, Ŷi) =
∫
T

[
d2
M

(
Ŷi′

(
θ�A(t)

)
, Ŷi(t)

) + λ
(
θ�A(t) − t

)2]
dt,

(5.7)

whence we obtain an estimator ĝi′i of the pairwise warping functions

(5.8) ĝi′i (t) = θ̂�
gi′iA(t), for all t ∈ T .

By the assumption E[h(t)] = t , we have E[gi′i (t) | hi] = E[hi′(h
−1
i (t)) | hi] = h−1

i (t), for all
t ∈ T , which justifies estimating the inverse global warping functions h−1

i by

(5.9) ĥ−1
i (t) = n−1

n∑
i′=1

ĝi′i (t), for all t ∈ T .

Hence, estimators ĥi for the global warping functions hi can be obtained by inversion, with
estimated aligned trajectories given by Ŷi(ĥi(t)), for t ∈ T .
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5.4. Asymptotic results for time warping. In order to obtain the convergence rate for the
proposed estimates ĥi for the warping functions as per (5.9) based on discrete and noisy
observations {(Tij ,Zij )}mi

j=1, an initial step is to derive bounds for the difference between

the actual metric space valued processes Yi and their estimates Ŷi as per (5.6), obtained by
local Fréchet regression. Specifically, a uniform rate of convergence over the time domain T ,
beyond the pointwise results shown by Petersen and Müller (2019), is needed. Furthermore,
the targets of the local Fréchet regression implemented here are random processes Yi rather
than fixed trajectories as per (2.1). Thus, Theorem 2, where the targets are random processes,
needs to be invoked. Subsequently, we derive the rate of convergence for the estimates for
warping functions and time synchronized processes.

For any distinct i′, i = 1, . . . , n, define functions Cμ(·;hi′, hi) : Rp+1 →R,

(5.10) Cμ(θ;hi′, hi) =
∫
T

d2
M

(
μ

(
h−1

i′
[
θ�A(t)

])
,μ

(
h−1

i (t)
))

dt, θ ∈R
p+1.

We show in Lemma S.2 in the Supplementary Material (Chen and Müller (2022)) that for
any distinct i, i ′ = 1, . . . , n, the coefficient vector θgi′i corresponding to the pairwise warping
functions gi′i is the unique minimizer of Cμ(θ;hi′, hi) under certain constraints.

In order to deal with the estimation of n trajectories simultaneously, we make the following
assumption on the bandwidths bi and numbers of discrete observations per trajectory mi .

(W4) There exist sequences m = m(n) and b = b(n) such that (1) inf1≤i≤n mi ≥ m; (2)
0 < C1 < inf1≤i≤n bi/b ≤ sup1≤i≤n bi/b < C2 < ∞, for some constants C1 and C2; and (3)
m → ∞, b → 0 and mb2(− logb)−1 → ∞, as n → ∞.

We then derive an asymptotic bound for the discrepancy between the two objective func-
tions Cμ and CŶ ,λ, whence we obtain the convergence rates for the estimates of the coefficient
vector θgi′i and the corresponding pairwise warping function in conjunction with Theorem 2
as follows.

THEOREM 3. Under (P1), (W1)–(W4), (K0) and (U0)–(U3), for any ε > 0, if bi ∼
m

−(β1−1)/(2β1+4β2−6+2ε)
i for all i = 1, . . . , n, and if λ → 0, as n → ∞, then for any distinct

i ′ and i, it holds for the constrained minimizer θ̂gi′i in (5.7) that

(5.11) ‖θ̂gi′i − θgi′i‖ = O
(
λ1/2) + OP

(
m−1/[2(β1+2β2−3+ε)]),

where m is defined in (W4). Furthermore, for the corresponding estimate of the pairwise
warping function ĝi′i in (5.8) it holds that

(5.12) sup
t∈T

∣∣ĝi′i (t) − gi′i (t)
∣∣ = O

(
λ1/2) + OP

(
m−1/[2(β1+2β2−3+ε)]).

We next obtain asymptotic results for local Fréchet regression estimates Ŷi across trajec-
tories i = 1, . . . , n in Corollary 2, which is used in conjunction with Theorem 3 to obtain the
convergence rates for the estimates of the warping functions ĥi , and the aligned trajectories
Ŷi(ĥi(·)) in Corollary 3.

COROLLARY 2. Under (P1), (W1), (W4), (K0) and (U0)–(U3), for any ε > 0 and ε′ ∈
(0,1), if bi ∼ m

−(β1−1)(1−ε′)/(2β1+4β2−6+2ε)
i and lim supn→∞ nm−ε′(β2−1)/[2(β2−1+ε/2)] <

∞, it holds that

(5.13) sup
t∈T

dM
(
Yi(t), Ŷi(t)

) = OP

(
m−(1−ε′)/(β1+2β2−3+ε)),
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for all i = 1, . . . , n;

(5.14) sup
t∈T

n−1
n∑

i=1

dM
(
Yi(t), Ŷi(t)

)α = OP

(
m−α(1−ε′)/(β1+2β2−3+ε)),

for any given α ∈ (0,1].
COROLLARY 3. Under (P1), (W1)–(W4), (K0) and (U0)–(U3), for any ε > 0

and for any ε′ ∈ (0,1), if bi ∼ m
−(β1−1)(1−ε′)/(2β1+4β2−6+2ε)
i for all i = 1, . . . , n and

lim supn→∞ nm−ε′(β2−1)/[2(β2−1+ε/2)] < ∞, and if λ → 0, as n → ∞, it holds for the es-
timated warping functions ĥi that

(5.15) sup
t∈T

∣∣ĥi(t) − hi(t)
∣∣ = O

(
λ1/2) + OP

(
m−(1−ε′)/[2(β1+2β2−3+ε)]) + OP

(
n−1/2)

.

Furthermore, if the mean trajectory μ is Lipschitz dM-continuous, that is, there exists Cμ > 0
such that dM(μ(t1),μ(t2)) ≤ Cμ|t1 − t2| for all t1, t2 ∈ T , then it holds for the estimates of
the aligned trajectories Ŷi(ĥi(·)) that

(5.16)
sup
t∈T

dM
(
Ŷi

(
ĥi(t)

)
, Yi

(
hi(t)

))
= O

(
λ1/2) + OP

(
m−(1−ε′)/[2(β1+2β2−3+ε)]) + OP

(
n−1/2)

.

Defining γ = (1−ε′)−1 −1, ε′ ∈ (0,1) entails γ > 0. To discuss some more specific rates,
under the assumptions of Corollary 3, the minimum number of observations per trajectory m

should be bounded below by a multiple of n2[1−(γ+1)−1]−1[1+ε/(2(β2−1))], which implies that
the rates in the second terms on the right-hand sides of (5.15)–(5.16) are bounded above by a
multiple of n−γ −1[(β2−1+ε/2)/(β2−1)](β1+2β2−3+ε)−1

, where the latter can be arbitrarily close to
n−1/[γ (β1+2β2−3)]. Consider λ = O(n−1). Then, if γ ∈ (0,2(β1 + 2β2 − 3)−1], the estimates
for the warping functions hi and mean trajectory μ as per (5.15)–(5.16) converge with a rate
of n−1/2. Otherwise, if γ > 2(β1 + 2β2 − 3)−1, the rates in (5.15)–(5.16) can be arbitrarily
close to n−1/[γ (β1+2β2−3)]. Taking β1 = β2 = 2 as in Examples 1–2, the estimates ĥi and
Ŷi(ĥi(·)) achieve the root-n rate when γ = 2(β1 + 2β2 − 3)−1 = 2/3 and m � n5(1+ε/2).
When γ > 2/3 and m� n(2+ε)/(1+(γ+1)−1), the rate becomes approximately n−1/(3γ ).

6. Data illustrations.

6.1. Age of minimum connectivity in brain networks: fMRI data. Much work has been
done in recent years to investigate how normal aging affects functional connectivity in hu-
man brains, which reflects spatial integration of brain activity based on resting-state func-
tional magnetic resonance imaging (rs-fMRI) (Dennis and Thompson (2014), Ferreira and
Busatto (2013), Zonneveld et al. (2019)). Fluctuations in regional brain activity are recorded
by blood oxygen-level dependent (BOLD) signals while subjects relax. This leads to voxel-
specific time series of activation strength. Patterns of subject-specific functional connectivity
are frequently analyzed invoking a spatial parcellation of the brain into a set of predefined
regions (Bullmore and Sporns (2009)). Connectivity between pairwise brain regions in the
parcellation is then usually quantified by what is referred to in the field as temporal Pear-
son correlation of the fMRI time series of the corresponding regions in neuroimaging. When
considering r distinct brain regions, the temporal Pearson correlations then yield correlation
matrices in R

r×r , where each row and column represent one brain region, and one such ma-
trix is obtained for each of m subjects, where in the ADNI data that we analyze for each
subject one fMRI scan is available.
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To study the relationship between age and functional connectivity, it is then natural to ap-
ply local Fréchet regression for the case where the random objects that form the responses
are situated in the space of correlation matrices and age is a scalar predictor. Based on the
correlation matrices, networks of connectivity across regions are constructed by standard
procedures in neuroimaging (Rubinov and Sporns (2010)); see also Phillips et al. (2015) and
Petersen et al. (2016). The resulting networks can then be converted to graph Laplacians,
for which the second smallest eigenvalue is known as the Fiedler value, also referred to as
algebraic connectivity (Fiedler (1973)). The Fiedler value is a measure of the global con-
nectivity of a graph that indicates how well connected a network is (Cai et al. (2019), de
Haan et al. (2012), Phillips et al. (2015)). Based on the results obtained from local Fréchet
regression, we can then express the Fiedler value as a function of age of a subject and iden-
tify the age at which the resting human brain attains the minimum level of connectivity. This
is of interest to understand the aging brain and as brain connectivity has been reported to
mostly decrease during aging while also increases have been reported (Ferreira and Busatto
(2013)).

We investigated the dependence of brain connectivity on age for elderly cognitively normal
people using the resting-state fMRI data obtained from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) database (http://adni.loni.usc.edu). The data used in our analysis consist
of fMRI scans from m = 402 clinically normal elderly subjects at ages ranging from 55.6 to
95.4 years old, where one randomly selected scan is taken for subjects for whom multiple
scans are available.

Our analysis focused on the interregional connectivity of r = 10 hubs (Buckner et al.
(2009), Table 3). Specifically, we considered spherical seed regions of diameter 8 mm cen-
tered at the seed voxels of these hubs. Preprocessing of the BOLD signals was imple-
mented by adopting the standard procedures of head motion correction, slice-timing cor-
rection, coregistration, normalization and spatial smoothing. Subsequently, average signals
of voxels within each seed region were extracted, whence linear detrending and band-
pass filtering were performed to account for signal drift and global cerebral spinal fluid
and white matter signals, including only frequencies between 0.01 and 0.1 Hz, respec-
tively. These steps were performed in MATLAB using the Statistical Parametric Mapping
(SPM12, http://www.fil.ion.ucl.ac.uk/spm) and Resting-State fMRI Data Analysis Toolkit
V1.8 (REST1.8, http://restfmri.net/forum/?q=rest).

Let {yjks}Ss=1 be the signal time series of seed region k of subject j excluding the first four
time points, which were discarded to eliminate nonequilibrium effects of magnetization, for
k = 1, . . . , r and j = 1, . . . ,m. For subject j , the correlation matrix calculated for analyzing
connectivity in fMRI is

(6.1) Rj = (Rj,kl)1≤k,l≤r , Rj,kl =
∑S

s=1(yjks − ȳjk)(yjls − ȳj l)

[∑S
s=1(yjks − ȳjk)2 ∑S

s=1(yjls − ȳj l)2]1/2
.

In the local Fréchet regression, we used age-at-scan as predictor, and the correlation matrices
Rj as response, taken to be elements in the space of correlation matrices of dimension r

equipped with the Frobenius metric, (M, dF ), as in Example 2.
For any correlation matrix R ∈ M, the Fiedler value is the second smallest eigenvalue of

the corresponding graph Laplacian matrix

L(R) = D(R) − A(R).

Here, A(R) = (R− Ir )+ is the adjacency matrix obtained by applying a threshold and setting
the diagonal elements to zero, and D(R) = diag{A(R)1r} is the (node) degree matrix, where
Ir = diag{1r}, 1r = (1, . . . ,1)� ∈ R

r and B+ = (max{Bkl,0})1≤k,l≤r , for any B ∈ R
r×r .

Then the Fiedler value corresponding to R is given by a map � : M →R,

�(R) = λr−1
(
L(R)

)
,

http://adni.loni.usc.edu
http://www.fil.ion.ucl.ac.uk/spm
http://restfmri.net/forum/?q=rest
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FIG. 1. Fiedler values as a function of age, corresponding to the local Fréchet regression estimate of the corre-
lation matrix valued conditional Fréchet mean trajectory as per (6.2), with the minimum attained at 73 years of
age marked by a dashed line.

that yields the (r − 1)th largest, that is, second smallest eigenvalue of L(R), for any R ∈ M.
Note that dF (L(R1),L(R2))

2 ≤ 3dF (R1,R2)
2. In view of the Hoffman–Wielandt inequality

(Hoffman and Wielandt (1953)), � satisfies (D1) with C1 = √
3 and α1 = 1. Applying local

Fréchet regression with bandwidth b = 13.26, chosen by leave-one-out cross validation, the
Fiedler values for the local Fréchet regression estimates ν̂m(t) as per (2.3) of the conditional
mean correlation matrix at age t are

(6.2) �̂(t) = �
(̂
νm(t)

) = λr−1(L
(̂
νm(t)

)
, for t ∈ T .

Figure 1 displays the trajectory �̂ of age-varying Fiedler values obtained for the local
Fréchet regression estimate of the correlation matrix valued conditional Fréchet mean trajec-
tory according to (6.2), based on the correlation matrices obtained from fMRI scans as per
(6.1) for m = 402 normal subjects in the ADNI data. A convex pattern can be seen around
the minimum of �̂, which is attained at 73 years of age. While some studies have found
that functional connectivity decreases during normal aging processes before 80 years of age
(Ferreira and Busatto (2013), Mevel et al. (2013)), we observe for these data that the decrease
is reversed for older ages.

We mention here that a limitation of the current approach is that our methods and theo-
retical justifications are for point estimates only. At this time, we do not have theoretically
justified tools for uncertainty quantification such as confidence intervals for the location of
the extremum point. The construction of such intervals and other tools for uncertainty quan-
tification will be left for future research.

6.2. Time warping for distributional trajectories: Human mortality data. There has been
perpetual interest in understanding human longevity. One particular goal is to gain an un-
derstanding of how the distribution of age-at-death evolves over time. To study this evolu-
tion, human mortality data for different countries are available from the Human Mortality
Database (http://www.mortality.org/). We consider the calendar time period from 1983 to
2013, for which the mortality data for 28 countries are available throughout the period. It is
known that the mortality distributions generally shift to higher ages during this time interval,
which reflects increasing longevity. It is then of interest to ascertain which countries move
faster and which move slower toward increased longevity, quantified by the rightward shift
of the densities of age-at-death.

To address this question, we apply the proposed time warping method in the metric
space of probability distributions with the Wasserstein metric, that is, the Wasserstein space

http://www.mortality.org/
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as per Example 1. Before going into the details, we note that we are dealing with time
warping for Wasserstein space valued functional data, which is distinct from time warp-
ing of density functions, where in this context the latter can be considered a special case
of real-valued functional data; the warping of age-at-death density functions at a fixed cal-
endar year would be a different topic. To our knowledge, this is the first time a warp-
ing model for metric-space valued random processes is being proposed. For now, due to
the absence of algebraic operations, the proposed warping model is limited to an adap-
tation of the pairwise warping paradigm. In contrast, for real-valued functional data var-
ious other competitive time-warping methods are available (Marron et al. (2015)) and it
would be an interesting future research topic to extend other warping methods from the
real-valued to the metric space-valued scenario and to compare the performance of such
extensions.

In 1983, all countries start out with their warping functions taking values at the initial
calendar year 1983, and in 2013 they all assume the value at the ending year 2013, so that
the warping effect is considered between these two endpoints. A warping function with val-
ues below those of the identity function indicates that the country to which it belongs is on
an accelerating course towards enhanced longevity, while countries with warping functions
assuming values above those of the identity are on a delayed course.

Comparing the estimated warping functions across countries, we found that for males the
enhancement in longevity of Japanese from 1983 to 2007 and for Icelanders from 2008 to
2013 accelerates the fastest among all of the 28 countries that we consider between 1983
and 2013, while males have the most delayed increased longevity for Lithuania throughout
the period (Figure 2). For females, the movement toward increased longevity is found to be
fastest for Japanese women and slowest for Latvian women. The relative delay in increasing
longevity for Lithuania and Latvia, former Soviet republics, is likely due to the aftermath of
the breakup of the Soviet Union.

The original and aligned trajectories along with the estimated warping functions for two
selected groups of countries are demonstrated in Figures 3 and 4. The former group in-
cludes representative countries for which the pattern of the estimated warping functions
are similar between females and males, while the latter group consists of representative
countries for which the estimated warping functions are mismatched between females and
males.

FIG. 2. Estimated warping functions ĥi as per (5.9) for the mortality distribution trajectories for females (left)
and males (right) for each country in the sample (grey solid curves), where cross-sectional minimum and maximum
warping functions are identified and highlighted in different colors. The black dashed lines represent identity
functions.
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FIG. 3. Density functions corresponding to the original (left) and aligned (middle) trajectories, Ŷi (·) and
Ŷi (ĥi (·)), and the estimated warping functions ĥi (right) during 1983–2013 for three countries, Japan (top),
Luxembourg (middle) and Poland (bottom), for which the estimated warping functions for females and males are
similar, where Ŷi and ĥi are as per (5.6) and (5.9). The blue dashed lines on the right panels represent identity
functions.

Among the countries shown in Figure 3 with similar warping patterns between males
and females, Luxembourg’s warping functions are close to the identity and, therefore, its
longevity increase represents the average increase across all countries, for both males and
females. For Japan, both male and female longevity are strongly accelerated compared to
the other countries considered, in contrast to the situation for Poland, where the increase in
longevity for both males and females is much delayed relative to the average. In addition,
countries shown in Figure 4 exhibit an interesting gender heterogeneity. Both France and
Israel show average longevity increase patterns for one gender, namely males in France and
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FIG. 4. Density functions corresponding to the original (left) and aligned (middle) trajectories, Ŷi (·) and
Ŷi (ĥi (·)), and the estimated warping functions ĥi (right) during 1983–2013 for two countries, France (top) and
Israel (bottom), for which the estimated warping functions for females and males differ, where Ŷi and ĥi are as
per (5.6) and (5.9). The blue dashed lines on the right panels represent identity functions.

females in Israel, but not for the other gender, as females in France and males in Israel exhibit
accelerated increase in longevity.
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