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Abstract

Series of univariate distributions indexed by equally spaced time points are ubiquitous in applications and their
analysis constitutes one of the challenges of the emerging field of distributional data analysis. To quantify such
distributional time series, we propose a class of intrinsic autoregressive models that operate in the space of
optimal transport maps. The autoregressive transport models that we introduce here are based on
regressing optimal transport maps on each other, where predictors can be transport maps from an overall
barycenter to a current distribution or transport maps between past consecutive distributions of the
distributional time series. Autoregressive transport models and their associated distributional regression
models specify the link between predictor and response transport maps by moving along geodesics in
Wasserstein space. These models emerge as natural extensions of the classical autoregressive models in
Euclidean space. Unique stationary solutions of autoregressive transport models are shown to exist under a
geometric moment contraction condition of Wu & Shao [(2004) Limit theorems for iterated random
functions. Journal of Applied Probability 41, 425-436)], using properties of iterated random functions. We
also discuss an extension to a varying coefficient model for first-order autoregressive transport models. In
addition to simulations, the proposed models are illustrated with distributional time series of house prices
across U.S. counties and annual summer temperature distributions.

Keywords: distributional data analysis, distributional regression, distributional time series, iterated random function,
optimal transport, Wasserstein space

1 Introduction

Distributional data analysis (DDA) deals with data that include random distributions as data el-
ements. While such data are prevalent in many applied problems (Matabuena & Petersen, 2021;
Menafoglio et al., 2018), this area is still in its early development. An important instance where
one encounters distributional data arises for sequences of dependent distributions that are indexed
by discrete time. Such distributional time series are ubiquitous. For instance, the distribution of the
log returns of the stocks included in a stock index is expected to contain more information than the
index itself, which only conveys the mean of the distribution but not any further information in-
herent in the distribution such as quantiles. Elucidating the nature of such financial time series is
for example of interest for risk management (Bekierman & Gribisch, 2021; Kokoszka et al.,
2019). We will illustrate the proposed methods with the time series of distributions of house prices
that are formed from U.S. county house price data and may inform economic policy (Bogin et al.,
2019; Oikarinen et al., 2018) and also with time series of annual distributions of temperatures ag-
gregated over the summer, where a rise in night time temperatures and more frequent extremes
have been related to global warming.
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Other pertinent examples include the analysis of sequences of age-at-death distributions over
calendar years, which is instrumental for the study of human longevity (Mazzuco & Scarpa,
2015; Ouellette & Bourbeau, 2011; Shang & Hyndman, 2017) and also the study of the distribu-
tions of correlations between pairs of voxels within brain regions that can be derived from fMRI
Bold signals (Petersen & Miiller, 2016), where such distributions may be observed repeatedly for
the same subject in longitudinal studies.

Distributions can be equivalently represented as either density, quantile or cumulative distribu-
tion functions, assuming that all of these exist. Each of these representations comes with certain
constraints (for example, density functions are nonnegative and integrate to 1). An important ob-
servation is that the spaces where these objects live are nonlinear. As a consequence, common stat-
istical tools that are available in linear function spaces such as the Hilbert space L? that is utilized
in functional time series analysis (Bosq, 2000) are inadequate and there is a need for the develop-
ment of adequate statistical methodology. It is the goal of this paper to contribute to the develop-
ment of autoregressive models for one-dimensional distributions, given that autoregressive models
are popular in time series analysis and have been also considered for distributional time series in
recent work based on mapping to tangent spaces in the Wasserstein manifold (Chen et al., 2022;
Zhang et al., 2022).

Existing approaches for distributional regression are based on various transformation ap-
proaches that include mapping the distributions into a Hilbert space as implemented in the log
quantile distribution approach (Kokoszka et al., 2019; Petersen & Miiller, 2016) or through loga-
rithmic maps in the Wasserstein manifold (Chen et al., 2022), where one uses the Wasserstein met-
ric in the distribution space and maps the distributions to a tangent space that is a L? space,
anchored at a suitable distribution, often chosen as a barycenter. One then can implement func-
tional regression models in the ensuing L? space, and analyse these models by employing parallel
transport. While the log quantile distribution transformation approach to distributional regres-
sion can lead to large metric deformations, the tangent bundle approach is extrinsic and there
are some difficulties with the required inverse exponential maps that are caused by the injectivity
requirement that one needs to numerically address in finite sample situations. Various projection
methods have been devised to tackle this problem (Bigot et al., 2017; Chen et al., 2022; Pegoraro
& Beraha, 2022), while in other recent work on extrinsic modelling it has been ignored (Zhang
et al., 2022), which can lead to inferior performance.

Since the autoregressive transport models we propose here are intrinsic, they bypass the construc-
tion of a tangent space and the ensuing problems with mapping and projection. For the case where
only the responses are distributional but predictors are vectors, one can apply Fréchet regression
(Petersen & Miiller, 2019). Concurrently with this paper, a distributional regression model with
one predictor was proposed for the independent case (Ghodrati & Panaretos, 2022), where the
goal is to learn a single best transport map that maps the predictor distribution to the response dis-
tribution, so the model parameter is the transport map learned from the data. This is akin to fitting a
linear regression model where the slope parameter is fixed at 1. A nice feature of this simple model is
that finding the best transport map has been shown to be equivalent to an isotonic regression prob-
lem, which can be solved by standard optimization techniques.

In this paper, we propose a novel class of intrinsic distributional regression models for the au-
toregressive modelling of distributional time series. The proposed models are based on transports
of the probability measures. The most popular notion of transport of distributions is optimal
transport, which commonly refers to moving distributions along geodesics in the Wasserstein
space, i.e., the space of distributions equipped with the Wasserstein metric. The key innovation
in the proposed regression model is that both predictors and responses are taken to be transports
of distributions, rather than distributions themselves, in contrast to the currently available distri-
butional regression models. Our focus is on univariate distributions with bounded support on the
real line, which is the most relevant case in statistical data analysis. Moreover, in data applications
the distributions that are part of the data sample are not known a priori and in practice need to be
estimated from data they generate by nonparametric methods. Such methods include kernel dens-
ity estimation and related approaches, and for practical implementations a bounded interval that
defines the domain needs to be fixed beforehand. For the relatively uncommon applications that
require the distributions to be supported on the entire real line it is common practice to truncate
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the target distribution at a large enough interval and to target the truncated distribution, with neg-
ligible error.

Typical examples for predictor or response transports are the transports defined by pushing
distributional barycenters (Fréchet means) forward to individual distributions, and in the dis-
tributional time series framework also the transports pushing the distribution at time (j — 1)
to that at time j, which may serve as predictors for the transports pushing the distribution at
time j forward to that at time j+ 1. The idea of considering transports rather than distribu-
tions as predictors or responses, especially transports from barycenters, is motivated by the
classical simple linear regression model for scalar predictors and responses. This model can
be written in transport form as E(Y — uy|X — pux) = B(X — pix), where uy =EY, pyx =EX and
B is the slope parameter, where both responses Y —uy and predictors X — uy can be inter-
preted as transports pushing the barycenters uy, uy forward to the individual data X, Y.
As we show here, this transport interpretation of linear regression provides a natural ap-
proach to extend classical regression to distributional regression modelling by regressing
transports on each other.

We focus here on autoregressive transport models (ATM) that permit an inherent geometrical
interpretation by relating geodesics in transport space to each other, where a first order ATM (or
ATM(1)) connects transports related to time (j — 1) to transports related to time j. As in the inde-
pendent case, geometric transport interpretations can also be applied to the case of scalar or vector
time series in Euclidean space, motivating the extension to distributional time series where trans-
ports are very natural. One of our main results is the existence and uniqueness of a stationary so-
lution for ATM(1) processes, for which we utilize the geometric-moment contraction condition
(Wu & Shao, 2004) for iterated random maps. While the proposed models generally involve scalar
coefficients and are well interpretable, we also consider an extension for ATM(1) processes, where
the ATM features a functional rather than scalar coefficient. We show that this functional coeffi-
cient can also be estimated consistently from samples. The definition of ATMs of order p
(ATM(p)) is obtained as a straightforward extension; these models possess a multi-layer structure.
We demonstrate that ATMs are useful to capture the dynamic evolution of distributions for both
real and synthetic data.

The rest of the paper is organized as follows. In Section 2, we provide some preliminary discus-
sion on basic concepts such as Wasserstein space, optimal transport maps and geodesics. We also
introduce addition and scalar multiplication operations for the space of transport maps. Section 3
includes methodology and theoretical results for ATM(1) models. Extensions to ATM(p) models
and versions of ATM(1) models with functional coefficients are the topics of Sections 4 and 5.
Numerical considerations and applications to simulated and real data can be found in Section
6. Conclusions are in Section 7, while the Online supplementary material contains proofs and tech-
nical details.

2 The space of transport maps

Define W to be the set of probability distributions on (S, 23(S)) with finite second moments, where
S =[s1, s3] is a bounded closed interval in R and 23(S) is the Borel o-algebra on S. We assume
there is an underlying probability space (Q, A, P) of W-valued random variables that induces a
probability measure on the space W with respect to which we can calculate moments for random
variables taking values in W.

For any measurable function T: S — S and u € W, let Tyu denote the pushforward measure of
u, i.e., for any B € 28(S), Tup(B) = u({x : T(x) € B}). If iy is absolutely continuous with respect to
the Lebesgue measure, then the 2-Wasserstein metric (d)y) on W can be written using the Monge
formulation (Villani, 2003)

) 12
dylpy, 1) = T:Tl’&f:h{js (T(x) = %) duuy ()}

= [Is (Trato) =02 duy )} =[5 o) = B o]
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Here uy, 4, € W, F; = F(iy) and F, = F(u,) are the cumulative distribution functions (cdf) of
U1 o, respectively, and

Fi'(u):=inf{x € S:Fi(x) > u}, F;'(u):=inf{x € S:Fa(x) > u}

are the corresponding quantile functions, defined as left-continuous inverses of the cdf. A map T
that satisfies Tuu; = p, is a transport map from g, to 4, and T, = F;! o Fy is referred to as the op-
timal transport map that pushes the probability measure u; forward to the measure x,.

For a nonempty interval ICR, the length of a given curve y:I—> W s
L(y):=sup Zle dw(y(ti—1), y(t;)), where the supremum is taken overall k € Nand#) <# <--- <
t, in I. For absolutely continuous u;, McCann’s interpolant (McCann, 1997) is the curve
y:[0, 1] = W given by

ya) = (id + a(T12 — id))yuy,

where a € [0, 1] and id is the identity map. McCann’s interpolant is the geodesic in W that cor-
responds to the optimal transport from g, to u,, where we do not distinguish between this geo-
desic and the transport map Tiz; we note that L(y) =dw(u;, 15) and y has constant speed
dw(y(ar), y(@2)) = (a2 — a1)dw(uy, 1) for any 0 <ay <ap < 1.

Our focus is on a time series of distributions {u;};-1 >, € W, which is assumed to possess some
stationarity properties, including stationarity of the mean. This means that there exists a common
Fréchet mean or barycenter u, given by

iy =argmin Edyy(v, ;) foralli=1,2, ..., n,
vew

where existence and uniqueness are assured by the fact that the Wasserstein space for one-
dimensional distributions is a Hadamard space (Kloeckner, 2010).

We now consider the space of all Lebesgue integrable functions on S,
L?(S)={f:S — R||Ifllzr < 0}, where 1 <p < 0, 4 is the Lebesgue measure and ||f||»:= (s
If1P d2)'/? is the usual L?-norm. Define the set T as

T ={T:8— S|T(s1) =s1, T(s2) =s3, Tis nondecreasing}. (2)

Since T is a closed subset of L?(S), it is a complete metric space with respect to the L-norm, i.e.,
the limit of every Cauchy sequence of points in 7 is still in 7. In addition, 7 c L?(S) can be
equivalently identified as 7 ={T:S — S| T: = F;! o F,}, where, as above, F;, F, are the cdfs of
probability measures u;, u, € W. Here, F1, F, may not be continuous and are not necessarily
strictly increasing. For any T € T, the representation T = F;! o F, is not unique and one may
choose F; to be the cdf of a uniform distribution, in which case T is represented by F;! only,
which then is unique. This not only induces a metric on 7 but also shows that W and T are
isometric with this induced metric. This isometry induces a probability measure on 7 that is
inherited from the corresponding measure on W. Furthermore, for every T € T, there exists
a uniquely defined inverse transport map T~! € T; for any given representation T = F;! o F,
T-'=F' o Fy.

To build an autoregressive model for elements in 7, we introduce addition and scalar multipli-
cation operations in the transport space 7 as follows.

e Addition: T1 @ T :=T> 0Ty, where T1, T, € T.
e Scalar multiplication: For any x € Sand T € T, for any a € R with -1 < a < 1, let

x+o(T(x) - x), O<ax<1
00 T(x):= X, a=0
x+alx—-T(x), -1<a<0.
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For any |a| > 1, let b = ||al|], the integer part of a, and set a = |a| — b. We then define a scalar
multiplication in transport space by

(@@T)oToTo...oT (x), a>1
b compositionsof T
(@OTHoT'oT o, 0T (x), a<-1,

bcompositionsof T~!

a0 T(x): =

These operations are motivated as follows. Addition of transports is defined as their simple con-
catenation, which is a straightforward extension from the case of transports in R”, where trans-
ports correspond to vectors V that are added to a vector argument ¢, so that Ty(c)=V +c.
Consecutively applying two transport maps Ty, and then Ty, then means adding the sum of
the two vectors Vi + V), to the argument vector ¢, so that Ty, o Ty, (c) = Vi + V3 + c. For scalar
multiplication, given 0 < a < 1, a transport vector aV defines the transport T,y(c) =aV + ¢ and
therefore transports an argument vector ¢ to a point on the straight line (geodesic) between ¢
and ¢+ V. So if Ty is the optimal transport that pushes s to (T1)4tx, it is natural to define a ©
T, such that it pushes px to a distribution lying on the geodesic from u to (T1)uur where its lo-
cation on the geodesic is characterized by a fraction of length a when measuring length from
the starting point u-. When a is negative, ¢+ aV =c + |a|( — V), where —V can be interpreted
as the transport map that pushes ¢ + V to ¢ and thus is the inverse transport Ty of the transport
Ty. The obvious extension to optimal transport maps in distribution spaces then leads to the above
definition of scalar multiplication, which is further illustrated in Figure 1. A distinction from the
vector space case is that the addition @ for optimal transport maps is not commutative. For scalar
multiplication with factors a that are such that |a| > 1, if a is an integer we decompose the map T
into an iterative sum of maps T, and if a is not an integer we apply the integer part of « first and after
this apply an additional transport map that is a scalar multiplication of T with the left-over fractional
part of a.

Observe that(7,@®) is a (non-Abelian) group with the identity map as identity. For any T € T,
the inverse is T~!. By the definition of @, we have

(T )@ T3=T30(T0T)=(T30T2) o T =T, & (T2 & T3),

which entails the associativity of @. Regarding the relation between ® and @, distributive laws do
not hold, i.e., there exists a, § € R and Ty, T, € T such that

aO (T ®@T2)# (a0 T)® (a0 T2), (a+BfOTi#(a0T)dBOT).

A simple example is as follows. Set S = [0, 1], T1(x) = x%, T>(x) = (x + x*)/2 and a = 0.6, = 0.7.
Simple algebra shows that (a+f)© T;=0.7x>+ 0.3x* # 0.3(0.4x + 0.6x%) + 0.7(0.4x +
0.6x2)> = (2 ® T1) ® (8© T1). In addition, the coefficient of x* in the 4th order polynomial
(with respect to x) & © (T} @ T>) is 0.3, while x* has coefficient 0.6% in (¢ © T1) @ (a © T>), which
indicates that a @ (T1 ® T2) # (a O T1) ® (a © T>).

3 Autoregressive transport models of order 1

3.1 Model and stationary solution

We first consider a time series {Xi},_1,__, C R’ with constant mean E[X;] = u € R?. The vector au-
toregressive model of order 1 (VAR(1)) with scalar coefficient is

Xi—u=pXis1 —p) + €, (3)

where f € Rand {¢;},-,,__, C R’ are the i.i.d innovations with mean 0. In this Euclidean time ser-
ies model, the vector X; — u can be interpreted as the optimal transport map pushing x to X;, which
provides the inspiration for the proposed ATM.
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6 Zhu and Muller

Figure 1. Motivating the definition of the addition @ and scalar multiplication ® operations for 0 < a < 1 in the
Wasserstein optimal transport space for transports T;, T, (right), while in R? optimal transports are defined by
vectors V4, V5 (left).

In general metric spaces, differences cannot be formed and thus a direct extension of model (3) is
not feasible. However, in transport spaces with uniquely defined optimal transports along geode-
sics we can reinterpret differences of elements in terms of such optimal transports. Specifically, in
Wasserstein space, we define the difference between two distributions x, and x, to be the optimal
transport map that pushes u; to u,, i.e.,

1 ©u =F' ok, (4)

where in (4) F; = F(iy), F2 = F(u,) are the cdfs of measures uy, u,, respectively. We also require
appropriate generalizations for the random innovations ¢; that now become random transports.
Extending the notion of additive noise for Euclidean data, we model noise in transport space as
random transport maps in 7 constrained in such a way that their Fréchet mean (barycenter) is
the identity transport. A noise contaminated version of a transport map T € T is thus T @ e,
where E(¢) = id.

Motivated by model (3), the autoregressive transport model of order 1 (ATM(1)) is

Ti=a 0 Ti-1 ®¢, where T; =yu; © s, ()

where a € R is the model parameter and the ¢; are i.i.d random distortion transport maps with
mean E(g;) = id. The proposed ATM approximates the optimal transport map at time ¢ =7 with
the scaled transport map a ©® T;_1, in analogy to the VAR(1) model X; — ¢ = B(X;_1 — ¢) + ¢;, which
can be interpreted as approximating the optimal transport map X; — ¢ with the scaled transport
map B(X,—1 — c); see Figure 2 for an illustration. While (3) provides the usual formulation of the
VAR(1) model, another way to view the model is by relating past differences to current differences,
i.e., model (3) gives rise to the alternative model

Xi—Xio1 =pXim1 = Xi2) + €. (6)
The difference X; — X;_1 can be interpreted as the optimal transport map between X;_1 and X;. In
Wasserstein space, autoregressive transport models of order 1 (ATM(1)) can analogously be built
with optimal transports between adjacent distributions,

Ti=a0 Ti-1 ® ¢, where T; =y, © u;, (7)

where the ¢; are again i.i.d random distortion maps with E(g;) = id.
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Figure 2. lllustration of the VAR(1) model X; — ¢ =8(Xi_1 — ¢) + ¢; in R? (left) and the ATM(1) model Ti=a © Ti.1 ®

&, Ti=F~" o Fx in W (right). The coloured dashed lines are geodesics and correspond to the respective optimal

transport maps.

Next we show the existence of stationary solutions for models (5) and (7). Forany S, T € 7,1 <
q < o0 and random distortion map ¢, we utilize the distances dy(S, T) = |S — Tl z« on T and define

bes $in: T — T by

4,(5)=a0S®e,  §u(S)=9,08, o-0d, (S

Then under a suitable contraction condition, stationary solutions exist.

Theorem 1  Suppose there exists 7> 0, Sy € 7, C> 0 and r € (0, 1) such that

E[d)(n(S0), 8in(T)) | < Cd(80, T) (8)

holds foragiven 1 < g< o andallm € Nandall T € T. Then, forallS e T,
T;: = limmﬁw%’m(S) € T exists almost surely and does not depend on S. In

addition, T; is a stationary solution to the following system of stochastic
transport equations

Ti=a0Ti_1®s, i€Z 9)
and is unique almost surely.

The proof utilizes the theory of iterated random function systems (Diaconis & Freedman,
1999), where a crucial element is the geometric-moment contraction condition (8) of Wu and
Shao (2004). Regarding sufficient conditions for (8) when g = 1, easy algebra shows that di(a ©
S, a0 T)=adi(S, T) for a positive a. From the corresponding result on the L; distance of cdfs
(see, e.g., Shorack & Wellner, 2009), one immediately finds

di(S, T) =I5 I18(x) = T(x)|dx = [s 157" (x) = T (x)| dx,

which then entails that di(¢®© S, a © T) = —ad; (S, T) when a < 0. Suppose for any S, T € T,
E[di(g;08, & 0T)| < Ldy((S, T), where L is some positive constant such that al € (0, 1), then
(8) is seen to hold with # = 1 and » = aL by iterating the argument. Moreover, E[d1(¢; 0 S, &; 0 T)] <
Ld(S, T) holds if the {g;} satisfy E[|ei(x) — &(y)|] < L|x —y.
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3.2 Estimation

As mentioned before, ATM(1) is an extension of the classical AR(1) model in Euclidean space. A
necessary and sufficient condition for AR(1) to admit a stationary solution is that the model par-
ameter lies in (— 1, 1), and Theorem 1 together with the subsequent discussion indicates that a
similar framework applies for ATM(1). Thus, it is natural to assume that the true model parameter
a of ATM(1) lies in ( — 1, 1). Furthermore, in distributional data analysis and distributional time
series the distributions that serve as data atoms are usually not known but one rather has available
i.i.d. samples of real-valued data that have been generated by these distributions and this needs to
be taken into account in the analysis. In the following, we describe a consistent estimator for o
based on these samples of real-valued data. We denote the available estimates of transport
maps T; by T;, i=1, ---, n. Depending on whether a is positive or negative, T; or T; ! is used ac-
cordingly in the proposed method.
If {Ty, ---, T,} satisfies model (9), then it holds that

[s E[(Tis1(x) — 2)(Ti(x) — x)] dx
[s E[(Ti(x) — x)*] dx

[s E(Tia(x) = x)(x = T; ! (x))] dx
[s El(x = T (x))*] dx

1

, ifa>0,

, ifa<O.

This motivates the following least squares type estimators of a,

~ {@r if L(ay) < I-(a-),
o=

. if L(@y) > (@.).

where @, = argmin [, (a), a_ = argmin,/_(a) and

Liw=)"ls (Tt~ x = aTres ()~ ),
=2

I_(a) = i Is (i-(x) - x—alx— i‘_]l (x)))2 dx.
=2

Theorem2  Suppose Ty i To and {T;}:, are strictly increasing, continuous and generated
from equation (9) with —1 < a < 1 and Ty as the initial transport. Under the
assumptions of Theorem 1 with g = 1, if [s E[(T1(x) — x)*] dx > 0,

R 1
o — al _OP<T+75)’
where 7 = sup, E[d, (T}, T})].

Intuitively, the condition [¢ E[(T(x) — x)*] dx > 0 ensures that the sequence of transport maps de-
viates from a sequence of identity maps. This is required to arrive at a consistent estimator, since if T; =
id almost surely, equation (9) would hold for any a € R and it is then not possible to estimate o con-
sistently. More specifically, if [s E[(T(x) —x)*] dx > 0, then the following application of the
Cauchy-Schwarz inequality excludes the case of equality and therefore gives rise to the strict inequality

¢ = (Is E(Ta(x) = x)) dx) ({s Ellx = T7" (x))*] dx)
— (s E[(Ty(x) — x)(x — T7"(x))] dx) >0,

where 1/¢’ is an implicit constant in the Oy, for the rate of convergence result O,(z + 1//n).
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For practical applications it needs to be taken into account that the underlying distributions are
almost always unknown. Accordingly, a realistic starting point is that one has available samples of

independent realizations {X; l}l | that are obtained for each of the distributions y;. There are then

two independent random mechanisms that generate the data. The first of these generates random
distributions {1;}7_;; the second generates randomly drawn samples {X;;} from each y;. Based on

the {X,-J}fi’l, cdfs {F;} or quantile functions {Q;} can be estimated with available methodology
(Falk, 1983; Leblanc, 2012). Denoting the estimated cdfs by E, the corresponding quantile func-

tion estimates are Q;(a) =inf{x € S| F; > a}, a € [0, 1]. Alternatively, one can directly estimate
quantile functions (Cheng & Parzen, 1997) or start with density estimates and convert these to

cdfs using numerical integration, obtaining rates such as sup ¢y E[d3,(@, 1)l = O(1/+/N), where
N=min{N;:i=1,2, ---, n} (Panaretos & Zemel, 2016) under suitable assumptions or alterna-
tively SUP, ey E[d3, (@, 1)] = O(N=%/3) on the set of absolutely continuous distributions (Petersen
& Miiller, 2016). With estimates for quantlle functions and cdf in hand, one then obtains optlmal
transport map estimates T, = Q, oFrorT;= Q,+1 o F,, where Fr = Q; and Q]-‘ S Q /n,
implying

¢ sup Eldy(T;, T0)] < max { sup (E[d5, 7, 1)), (Eld3y @r, 1))

for the rate rin Theorem 2, where a < b means that there exists a constant C > 0 such that a < Cb.
Depending on assumptions and estimation procedures as mentioned above, one then obtains con-
vergence rates ranging from 7 ~ N™V/4 to r ~ N71/3,

4 Autoregressive transport models of order p

4.1 Stationary solution
Autoregressive transport models of order p (ATM(p)) are defined as

Ti=0pOTipy@ap10Tipr1 ®--- D1 O Ti1 Dy (10)

where aq, -, a, € R are model parameters and ¢; are i.i.d. random distortion maps with
E(g;) = id. To show the existence of stationary solutions, we construct a chain of functions and
again apply the geometric-moment contraction condition (Wu & Shao, 2004). Let T/ =T x - - - X
T be the product space, S = (S1, 2, -+, Sp), R=(Rq, Rz, --+, Rp) € T? and define the random
functions Y, :f}’m TP TP as

T:(S) = (S2, "'aSpaapesl®"’®alQSpQS):

Yim(S) =T, 0T, S),

€i-1

-0,

Eimm+1 (

where ¢, ¢; are random distortion transports. We employ the product L9-metric on 7 ? given by
dg(S,R)={X>L, d;(Si, Ri)}l/z, where g > 1 is a fixed constant in the following.

Theorem 3 Suppose there exists # > 0, Sg € 77, C> 0 and r € (0, 1) such that
E[d}(Yin(So), Fin(R)) | < Crd}(So, R) (11)

holds for all R € T? and m € N. Then, for all S € 77,

(Tipst, Tiopaz, -+, Ti) i = lim ¥i,0(8) € T7
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10 Zhu and Muller

exists almost surely and does not depend on S. In addition,

(Tip+1,Ti—p+2, - -+, T;) is a stationary solution of the following system of sto-
chastic equations

Ti=0yQTiy @y 10Tips1 @ @ OTi_1 B, i€Z

and is unique almost surely.

For motivation of Y, and condition (11), consider the classical AR(p) model in R, i.e.,
Y=Y le B;Yi-j + ¢ € R, which can be represented as a vector autoregressive model of order 1
(VAR(l)) in the form Y, =BY;_1 + €, where Y, = (Y,', ceey Y,'_p+1)T, €= (Q, 0, teey O)T € R? and

:Bl ﬁz ﬁp—l ﬁp

1 0 -~ 0 0
B=

o 1 .- 0 0

o o --- 1 0

With (nonrandom) starting points Yo and Y{, running the VAR(1) model recursively 7 times, one
obtains Y, =B"Yo+ Y 7., B"7¢; and Y, =B™Y)+ > B"7¢;. With |- ||, denoting the
Euclidean norm, condition (11) for this model becomes E[||Y,, — Y,,ll2] S 7"1Yo — Yyll, for
some 0 <7< 1. With a slight abuse of notation, denoting the spectral norm of B as || B||,,

E[IY = Y, l12] = 1B"™(Yo = Yo)I5 < IB”[121Yo = Yol

Now if the absolute values of the eigenvalues of B are bounded above by a constant 0 <7 < 1, i.e.,
they are inside the unit circle, then ||B”||, < #”, and this is equivalent to the fact that the roots of
Hz)=1- [;=1 ﬁ,-z’ all lie outside the unit circle. The latter is a standard assumption for the exist-
ence of stationary solutions of AR(p) processes in Euclidean space. In linear spaces the terms con-
taining the innovation errors in Y,, and Y/, cancel, which for this case simplifies the verification of
Condition (11).

To select the order of the ATM, we propose an approach based on rolling-window validation
and refer to Zivot and Wang (2007) for more details on rolling-window analysis for time series. To
train the ATM(p) on a given sequence {g;, 115 * > 41} Of length = with starting time ¢, we
assume that there exists a pre-sample of length &, i.e., {g, 4, -, 1;_1}. For each fixed p in a can-
didate set, the sample {,_p, y_ps1> * > He_prm—1) 1S used as training set to predict the distribution
at time ¢ — k + m. Denoting this predicted distribution as z,_,,,, the prediction accuracy can be
measured by Wasserstein distance dyw(i;_gyms Hi—pen)- Then roll the window one step forward
and use {&,_p1s Me—ps1> * s> Hepm) @S training set to make a prediction at time ¢ —k+m +1
and compute the error dw (i, pips1> Bropems1)- Rolling the training window forward repeatedly
until the last window covering time #—1 to ¢+ m —2 is reached and computing the error
AWy m-1> Upem—1) then leads to the selection of the autoregressive order p as the minimizer of
Zf::ﬁ:nl_k dw(y;, 1t;) over a candidate set of orders.

4.2 Estimation of model parameters
Hereafter, we denote the true model parameters as (], - -, o) to avoid confusion. Obvious es-

timates of the ATM(p) parameters aj, a3, - - -, o are obtained as minimizers of

1 n
Lu(a1, 00, -+, ap) =j Z Is (Tix) -y OTip ® - By O Ti—l(x))zdx~
i=p+1

When p > 1, the minimization of L,(a1, - -+, a;) is challenging, as the functional L, in general is
not convex. We propose a back propagation-type algorithm to address this minimization problem.
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The partial derivatives of a ® T;(x) with respect to x are

; (1 +algylx, T) - 1) x (M7 &, T)),  if a>0,

—a 0 Tix) = 1, if a=0,

ox bt ]
(1+a(l - gy, T x (T &ilx, T71), - if a <0,

where b= |al], a=|a| — b, T', (T-!) are the derivatives of T, T-!, respectively, [[2% g/(x, T) is
defined tobe 1if b —1 <0 and

T'(x), if =0,
g% T)={ ThoTo---oT(x) ifl=1,2, -

I compositions of T

The partial derivative with respect to & when a > 0 is

0 o T )_{ Ti(h(x, Ti)) = h(x, T;), if a>0
9" T b, T = T (b(x, T7Y), if @ <0,
where
x ifb=0,
hix,T)=4ToTo---oT(x) if b>0.
—_—

b compositions of T'

Since a ® Tj(x) is not differentiable w.r.t o if @ € Z, we use its subdifferential (subgradient). When
a=0, we set da © T;(x)/da at a =0 to be any value in the closed interval between T;(x) — x and
x — T (x). In our simulations, da ® Ti(x)/da at o= 0 is selected uniformly from Tj(x) — x and
x = T7Y(x). When 0 # a € Z, 0o ® T;(x)/da is set to be the partial derivative of & ® T;(x) at a point
a such that o has the same sign as a and |a| < |a| < (Ja| + 1). For more details on the back-
propagation type algorithm for ATM of order p see the display for Algorithm 1. We employ gra-
dient clipping, a common technique used in deep neural networks to prevent exploding gradients.

Next, we establish consistency for the minimizer of L,(a1, - - -, ap), i.e.,
~ ~ o~ ~\T .
a:=(a,a, ---,0p) € argmin Ly(a1, a2, -+, 0p),

—cLa 0 <C

where cis the same constant as in Theorem 4 below, which demonstrates that (a1, @, - -, &,) con-
verges to the true model parameters in probability with respect to the discrepancy

NG @)= E[#@ 0T @ @G 0Ty -4 0 Ti @ &d 0 T)x)’|dx,
where a* = (af, -, a;;)T are the true model parameters. The key step, where the constant c is

\Lu(oa, -+, 0p) = E[Lu(as, -+, ap)]| = 0p(1) based on
Corollary 3.1 of Newey (1991). In practice, we simply set ¢ to be a large enough number.

used, is to show that sup_.., .., <

. . . g

Theorem 4  Under the assumptions of Theorem 3 with q = 1, if Ty ‘%" Ty and {T;}., are
strictly increasing, differentiable, bi-Lipschitz continuous with Lipschitz con-
stant K and generated from equation (10) with T} as the initial transport and
(a1, -+, 0p) = (a7, -+, ay) where —c<aj, ---,a; <c for some constant
¢> 0, then

A(a, a*)—p>0 as 7 — oo.
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12 Zhu and Muller

Algorithm 1 Back Propagation Algorithm for Fitting ATM(p), p> 1.

Select a grid s1 <x1 <x2 <+ -+ <Xy < $2.
Select step size 7.

Initialize o) =0 for k=2, 3, ..., p and

a? = argmm Z Z i(x)) —a O Ti- 1(x,))2.

b.Sh =
fort=1,2,...do

Forward Pass
Foralli=p+1,..,n,7=1,...,m, compute R}
fork=2,3,...,pdo

For all j, i, compute

1ji = a;;_l O Tip(x;)-

t
Rk,fi_ p+1 kOT (p+1- k(Rk 1/1)'

For all j, i, compute L’ﬂ = 2<T,-( ) - prﬂ)
Backward Pass

For all j, i, set Dfy ;=1 .

fork=1,2,..,p—1do

For all j, i, compute

Jd ,_ ..
i = (D) X | 5-07 © Tiog(x) for all j, i,
x x=R’p_k”

Update oy, as

n

m
t -1 Lt
O = 0O Z( kl/x aOTl k( pk/x)

I px:p 1721

|
a=0 )

Compute af, = a;fl +$Zn—p+l Z; 1(U Dtp 1/;)3(;“0 Ti, p(x/)| )
if stopping conditions hold then

t t t
return (o, 05, ..., ap)

5 Concurrent autoregressive transport model

A promising extension of ATMs of order 1 is to consider model coefficients that vary with x € S.
For a function :S — [ — 1, 1], define the operation

x + px)(T(x) - x), 0<Blx) <1
pOT(x):= x, Blx)=0
x+Bx)(x =T (x), -1<p(x)<0

This leads to the following concurrent autoregressive transport model (CAT),

Ti=p@ Ti-1 ®e¢j, (12)

with i.i.d. random distortion transports ¢; satisfying E(e;) = id.
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To ensure monotonicity that is required for the transports to be well defined, given the true func-
tion §, we consider a subset of transports T c T such that # © T:={@T:TeT}CT and as-
sume that P(g;0 7 € T)=1wheresio T : = {g; o T: T € T}; this obviously holds if the function
does not vary, i.e., is constant, whence T =T and P(¢;oT CT)=1. Whenever f® 7 C T and
P(g;i o T C T)=1, the random functions

0,)=pOS®e,  GiuS)=0,00, 000, (S,  GpPim:T > T

are well-defined for any S € 7.
An example for this concurrent autoregressive transport model (CAT) is as follows. Let sy = #1 <
-+ <tp=sy beagrid over Sand : S — [0, 1] be such that £ is positive and is either increasing or
decreasing on each grid interval [#;, #;1]. Here T is selected as a set of transports such that for any
TeT,T(H) =t,T(x)>x if f(x) is increasing and otherwise T(x) < x. The properties required for
the CAT model are satisfied as 7 is complete and {e;} can be defined as random distortion maps
taking values in 7. To state our next result, we equip 7 with the sup-metric

dwo(f> 8) = supyes If (x) — g(x)I.

Theorem 5 Suppose that 7 is a complete metric space, P(g; o 7 C 7) = 1 and there exists
n>0,8 €7,C>0andr e (0,1)such that

E[d2, (in(S0), Bin(T)) | < CP"d (S0, T) (13)

holds forall T € 7 and m € N. Then, forall S € T, T : = limy e Pim(S) € T

exists almost surely and does not depend on S. In addition, T; is a stationary
solution of the system of stochastic equations

Ti=p@Ti-1®s, i€Z (14)

and is unique almost surely.

The estimation of the CAT model function g proceeds similarly to the estimation of the scalar
coefficient in the ATM(1). If {Ty, ---, T,} satisfy model (12), then for allx € S

El(Tur ()-x)Tix)x)] .

Blx) = ‘ E[(Ti(x)-x)*] , ifpx)>0
T AT @-ve-T @0

T EeTP] if B(x) <0

This suggests estimates Blx) for B(x) given by
Blx) = [EJr(x), i.f l+(/i’+(x)|x) < (B_(x)1x),
B_(x), i LB, (x)lx) > L-(B_(x)Ix),

where ,/B\Jr(x) = argmin, [, (Blx), E_(x) = argmin, [ (f|x) and

Lipi) =3 (i) = x — s ) = )

i=2

N

L) = 3 2(To) = x = e = T4 (1)

=2

Then we obtain pointwise convergence of ﬁ(x) to B(x) in probability.
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14 Zhu and Muller

Theorem 6  Suppose Ty i To and {T;}., are strictly increasing, continuous and generated
from equation (14) with g such that =1 < B(x) < 1 for allx € S and with T as
the initial transport. Under the assumptions of Theorem 35, if
E[(T1(x) - x)*] > 0,

Blx) - Blx) = O, (r(x) n %)

where 7(x) = supiE[li(x) = Ti(x)l].

6 Numerical studies

In the following, ATM,,, and CAT,, indicate models that are based on optimal transport maps {T;}
from the Fréchet mean to individual distributions, while ATM, and CAT, indicate models based
on optimal transport maps between adjacent distributions. Specifically, model (5) is denoted as
ATM,,(p), model (7) as ATMy(p), model (12) with T; = F;'! o Fx as CAT,, and model (12) with
T,’ = F;_ll oF; as CATd

To examine the performance of these ATMs, we compare them in simulations with a recently
proposed autoregressive model for distributional time series (Chen et al., 2022), which we refer
to as WR (Wasserstein Regression). This approach is based on using manifold logarithmic
maps in the Wasserstein manifold to map distributions to a tangent space anchored by the overall
barycenter. Since the tangent space is a subspace of a L?-space, functional linear regression tech-
niques can be applied in this space, followed by a projection on the convex injectivity set and an
application of the exponential map to get back to the Wasserstein manifold. Due to the local lin-
earization this is an extrinsic approach, while the proposed ATMs are intrinsic to the Wasserstein
manifold.

We also include comparisons with the log quantile (LQD) approach, which ignores the manifold
structure of the distribution space, providing a direct 1:1 mapping of distributions to a Hilbert
space by the invertible log quantile transformation or other transformations (Petersen &
Miiller, 2016). After applying the LQD transformation, standard autoregressive models for func-
tional time series can be employed in the ensuing Hilbert space (Bosq, 2000), followed by mapping
back into distribution space by the inverse LQD map. For autoregressive modelling of functional
time series we used the R package ‘ftsa’.

6.1 Interpretation of ATMs

We illustrate the process of transporting distributions by ATMs with a simple example. Let
U1, 1y, U3 be three normal distributions N( — 1, 2.25), N(2.5, 1.44) and N( — 2, 0.81) (here all dis-
tributions are truncated to the interval [ — 10, 10], where the miniscule mass left outside of the
truncation interval is ignored). We apply ATM,,,(2) and ATM,(2) models to produce the distribu-
tion y, at time ¢ = 4. Figure 3 illustrates the densities of u,, i3 as well as the density of u, generated
by ATM,,,(2), where the Fréchet mean is chosen as the standard normal distribution #,. For the
optimal transport maps T,, T3 that map g to 1, and u;, respectively, we observe that T shifts
the density of x4, to the right and increases its variance, while T; shifts z, to the left and decreases
its variance.

Note that ATM,,,(2) transforms , by first applying transport map ay © T3, followed by an ap-
plication of transport map a; ® T,. For example, from the first row of the figure, when
a1 =0.5,0, =0.5, the resulting overall transport is close to the identity, whereas for
a1 = 0.5, ap =0, the resulting density of p4 is on the Wasserstein geodesic connecting g, and ;.
When a; =0, it can be seen from the middle row of Figure 3 that the density of y, is moving to
the left with decreasing variance when a; moves from 0.5 to —0.5. This illustrates the effect of
the changing value of a, for the transport ay ® T,. Similar effects can be seen in the third row
of the figure.

The densities of y1, 1y, 113 and the density of u, that is obtained by applying the difference based
models ATM,4(1) and ATM(2) are depicted in Figure 4. Denoting by T; the optimal transport
map that maps u, to 1, and by T the transport map that maps u, to u3, one finds that Ty represents
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a shift to the right with a simultaneous decrease in variance, while T, represents a shift to the left,
also accompanied by a decrease in variance. Applying ATM, with Ty, T5 as predictors, i.e., model
(10) with Ts = a1 © T2 @ a2 ® T4, leads to the transport map T3, which is then applied to s, re-
sulting in u,. To illustrate the effect of the coefficients, all panels show that decreasing a, enhances
a shift to the left, while decreasing oy is associated with a shift to the right.

6.2 Reducing non-stationarity

The following example illustrates that the difference-based models ATM, and CAT, are advan-
tageous compared to ATM,,,, CAT,, and WR if the assumption that {x;, ---, &} is a stationary
sequence does not hold. Stationarity of the sequence {u;, -- -, u,} is a basic assumption for models
ATM,,, CAT,, and WR, whereas models ATM, and CAT, only require stationarity for differen-
ces, i.e., the sequence of optimal transport maps constructed by taking transports between con-

secutive distributions {u;, - -, u,} as predictors.

Consider a sequence of Gaussian distributions {u,, - -, gs} with mean 0 and decreasing stand-
ard deviations 4.8,4, 3, 1.6, 1.15, 1, respectively. This sequence of distributions is non-
stationary. We use {g,:t=1,2, ---, 6} as training data and aim to predict the distribution -

with models ATM,,(1), ATM,(1), CAT,,, CAT,4, WR and LQD. The densities of the training
data are visualized in the left panel of Figure 5. One would expect u- to follow this trend, i.e.,
to also have mean 0 with even smaller variance than u,. The right panel shows the predicted dens-
ities obtained with the different methods. We find that only ATM, and CAT) capture the under-
lying trend and provide reasonable predictions for the next element y- in the sequence.

6.3 Simulations
We generate random transports according to

Ti=40Tiesa @30T 300w 0Ti ®a 0Tio1 e, i€Z, (15)

where &;(x) = 3 (1 +&)g(h™ (%)) + (1 + &b~ (x)), hlx) =3 (1 = &)g(x) + (1 + &)x), x € S=10, 1]

and {&} i Uniform( — 1, 1). Here g(x) is the natural cubic spline passing through points
(0, 0), (0.33, 0.7), (0.66, 0.8), (1, 1). We note that this construction ensures that the &; are trans-
ports. When representing these transports as quantile functions, for 0 < &; < 1 the function g(x) is
shifted along the direction perpendicular to the diagonal towards the identity map and for —1 <
& < 0 this shift is applied to g~! instead; see Figure 6 for an illustration of g and &;(x). By construc-
tion, E(g;) = id.

To compare prediction accuracy across different models, we generated {T,-}Lol1 from the above
model, using {T;}}*? as training set, aiming to predict Tyo;. The Wasserstein distance between
T101 and its prediction was computed for different combinations of a1, a, by treating the transport
maps {T;} as quantile functions. For these comparisons, we modified LQD to operate on transport
maps, rather than predictor distributions (as originally devised). The simulation results for 1000
Monte Carlo replications are in Table 1 (numbers multiplied by 100). The order of ATM,,, was
obtained by rolling-window validation based on a pre-sample of size 50. When a; = 0, model
(15) reduces to an autoregressive model of order 1. Overall, ATM was found to outperform
WR and LQD. We also use this example with /(x) chosen as natural cubic spline passing through
(0, 0), (0.3, 0.5), (0.6, 0.8), (1, 1) to illustrate the empirical rate of convergence of the estimates
for the parameters of ATM,,(1). Figure 7 displays estimation error versus /7 based on 200
Monte Carlo repetitions, demonstrating that finite sample performance with increasing sample
sizes matches the root-n convergence rate predicted by Theorem 2.

It is also of interest to consider a sequence of distributions that are not generated from any of the
examined models. Starting with the sequence of square integrable functions

Ri(x) = sin({ix), (16)

where x€[0,1] and the {{;} are generated from the AR(2) model,
Ci=arlis + 02lioq + a3lisy + aalig + ¢, ciii.d.~Uniform(—4r, 47), we convert the {R;} to

€20z AInr 0 uo Jasn Areiqi - siaeq ‘elulole) 10 Ausieaiun Aq 928091 Z/1LS0pedb/gsssil/S60 L 0L /10p/aonle-aoueApe/gsssiljwoo dnooiwspese//:sdiy woll papeojumoq



16 Zhu and Muller

o] = 05, Qo = 0.5 o) = 05, Qo = 0 o) = 05, Qo = —0.5

a; =0, =0.5

\

\

1
1
1
1

r
1
I
1
1
I
I
I
1
1
1
1
1
i

Figure 3. lllustrating ATM,(2) and ATM,,,(1) models for distributional time series. Each panel depicts the density
functions for distributions x, (dot-dashed), 13 (dashed) (these are the same across all panels) and the density of
distribution p, generated by ATM,, (solid), which varies across panels. For all panels the density of x, (standard
normal) is also included (solid black and always centered around the origin).

distributions by applying the inverse log quantile density transformation (Petersen & Miiller,
2016), scaling the resulting distributions to be supported on [0, 1]; see Figure 6 (right panel) for
an illustration. Again, we generate 100 distributions for training and report the results for
1,000 Monte Carlo replications. The simulation results are in the lower part of Table 1. For
this case, we find that ATM,,(1) is the overall preferred model.

6.4 Temperature data
One consequence of global warming may be an increasing frequency of warm summer nights in the
Northern hemisphere. Inspired by the article of Bhatia and Katz (2021), we studied this with tem-
perature data that were recorded at O’Hare international airport (available at https:/www.ncdc.
noaa.gov/cdo-web/search?datasetid=GHCND). The annual distributions of daily minimum tem-
peratures, aggregating these temperatures over the period June 1 to September 30 over the summer
months of each year, are illustrated in Figure 8 for the years from 1990 to 2019, where we use the
distributions prior to 2019 as training data to predict the distribution for the year 2019.

For the ATM models we varied p from 1 to 3 and found that p = 3 yielded the best prediction.
The observed and predicted densities for 2019 are shown in Figure 8. The Wasserstein distances
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Figure 4. lllustrating ATM(2) and ATM4(1) models for distributional time series. Each panel depicts the density
functions for distributions x, (dotted), 1, (dot-dashed) and u; (dashed) (these are the same across all panels) and the
density of distribution x, generated by ATMy (solid), which varies across panels.
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Figure 5. Left panel: The training sample introduced in Section 6.2. Right panel: The one-step forecasts obtained for
different methods at t = 7, where only predictions obtained from ATMy(1) and CAT reflect the declining trend in
variances, as only these two predictions have smaller variance compared to the last observed density at t = 6, which
is also plotted on the right panel.
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Figure 6. Auxiliary functions for the simulation. Left panel: The monotone function g (upper left curve), g=' (lower
right curve) and ¢; with & = —0.7 (middle curve) in the simulation (15). Middle panel: Sequence of generated
transport maps 7T, for simulation (15) with a1 = —0.3, ap = 0.2. Right panel: Quantile functions generated for
simulation (16) with a; = -0.3, ap =0.2.

Table 1. Forecasting accuracy comparison for simulations (15) and (16)

(a1, a2, a3, 04) (0.2, -0.5, 0.1, -0.3) (0.5,0,0,0)
Example (15) ATM,, 12.264 11.586
LQD 13.891 13.282
WR 12.535 11.765
Example (16) ATM,, 9.841 9.644
LQD 10.079 9.836
WR 10.082 9.838

Note. The minimizing values are bolded.

between observed and predicted distributions were found to be 0.334 for ATM,(3), 1.01 for
ATM,,,(3), 0.462 for CATy, 1.477 for CAT,,, 1.134 for WR, and 1.255 for LQD. The fitted model
coefficients for the best model, i.e., ATM(3), are a; = —0.724, a; = —0.5, a3 = —0.268. Denote by
L0185 120175 Lao16s Lao1s the observed distributions for the years 2018,2017, 2016, 20135, respect-
ively, and by T3 the optimal transport from ,(;5 to ty914, by T2 the optimal transport from gy,
to pty917 and by Ty the optimal transport from 547 to ft5913. The training set of distributions, i.e.,
the observed data, is illustrated in the form of densities in the left panel of Figure 8, predicted dens-
ities are in the middle panel and the densities of 545, - -+, ta915 in the right panel.

Comparing the densities of 1,17 and 5015, 12016 and those of 15017, 2015 and £591 6, Lespectively,
we find that T; corresponds to a shift to the right and a sharpening of the distribution, T, corre-
sponds to a shift to the left and a smoothing of the distribution and T3 corresponds to a shift to the
right and a sharpening of the distribution. The proposed model applies deformations az ® T3, 02 ©
T, and a1 ® Ty sequentially to uy5. it is likely that ATM, and CATj yield the best results because
of the non-stationarity of this sequence, as the distributions shift to the right over the years, reflect-
ing a warming trend.

6.5 U.S. house price data
Given the sequence of distributions  {uy,uy, ---,4,}, for a starting time
s €lk+1,k+2, ---,n—k}, we used the subset {u, st 11, -5 #g 4—1} to train models and to
produce the prediction 7, ., at time s, + k. The autoregressive order p was selected so as to min-
imize Zf';;k_l dw(w;, 1L;), where 7i; is the predicted distribution at time i by ATM(p) trained on the
sample {¢;_;, - -+, g;_1}- The candidate set for p was {1, 2, 3, 4, 5} whenk =8and {1, 2, 3, 4, 6, 8}
when k > 8. We adopted the rolling window approach (Zivot & Wang, 2007) and used the pre-
diction loss Z:’;’ZH At 4> By, 11) /(1 = 2R).

The US house price data contain bimonthly median house prices for 306 U.S. cities and counties
from June 1996 to August 2015 (available at http:/www.zillow.com). We adjusted the data to
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Figure 7. Log-estimation error of & versus log sample size n for ATM(1), for a = 0.5 (left) and a = —0.5 (right). The
solid black line in each panel is a line with slope -0.5 that is predicted by theory.
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Figure 8. Left panel: Densities of the annual distributions of minimum summer night temperatures at O'Hare
International Airport from 1990-2018. Middle panel: Observed density and predicted densities obtained from various
models for the year 2019. Right figure shows the densities of py01g, 12017, too16, 2015 that are the observed
distributions for years 2018, 2017, 2016, 2015, respectively.
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Figure 9. Distributions of US house prices across counties for 240 months between 1996 and 2015, shown as
densities.
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Table 2. Comparison of prediction errors for the US house price distributional time series, where kis the length of the
training set

k 8 12 18 26 36

ATM,, 1.878 1.754 1.771 2.715 2.952
CAT,, 2.660 2.473 2.345 2.327 2.363
ATM, 1.647 1.611 1.652 1.708 1.778
CAT, 1.797 1.787 1.802 1.845 1.924
WR 4.052 3.986 4.074 4.045 4.322
LQD 3.405 3.079 2.927 2.730 2.860

Notes. Actual prediction errors to be multiplied by 10~3. The minimizing values are bolded.

account for inflation by a monthly adjustment factor (deflator) and constructed the bimonthly
house price distributions over the 306 cities/counties. The preprocessed distributions (equivalently
density or quantile functions) were then scaled to be supported on [0, 1]. Figure 9 presents the
house price densities over time. Setting the learning rate 7 = 1 in Algorithm 1, the prediction results
are summarized in Table 2. In general, ATM, emerged as the best performing model for these data,
which is not surprising due to the non-stationarity of these data.

7 Concluding remarks

Distributional data analysis is challenged by the fact that distributions do not form a vector space
and basic operations such as addition and multiplication are not available. This especially affects
regression models, including distributional autoregressive models for time series analysis. At the
same time, many time series data can be viewed as sequences of distributional data that are in-
dexed by time and there is a need for more advanced statistical tools to model such time series.
A key innovation of this paper is that it provides a novel class of regression models for distribu-
tional data that are intrinsic and enjoy geometric interpretations. These models result from adopt-
ing the point of view that predictors and responses are elements of a space of optimal transports
that is equipped with basic algebraic operations. The existence of stationary solutions of the asso-
ciated ATM models can be guaranteed if a geometric moment-contraction condition is satisfied.

The proposed models not only provide new ways of modelling distributional time series, but
also shed light on the possibility of developing models for time series that take values in other geo-
desic metric spaces. The proposed approach is not limited to optimal transport, and other trans-
ports that correspond to geodesics with respect to relevant metrics in distribution spaces could
similarly be considered, for example Fisher-Rao transports (Dai, 2022). Modelling time series
that take values in the space of multivariate distributions will be a challenging future problem;
see also the discussion of this case in Chen et al. (2022).
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