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Abstract 
Series of univariate distributions indexed by equally spaced time points are ubiquitous in applications and their 
analysis constitutes one of the challenges of the emerging field of distributional data analysis. To quantify such 
distributional time series, we propose a class of intrinsic autoregressive models that operate in the space of 
optimal transport maps. The autoregressive transport models that we introduce here are based on 
regressing optimal transport maps on each other, where predictors can be transport maps from an overall 
barycenter to a current distribution or transport maps between past consecutive distributions of the 
distributional time series. Autoregressive transport models and their associated distributional regression 
models specify the link between predictor and response transport maps by moving along geodesics in 
Wasserstein space. These models emerge as natural extensions of the classical autoregressive models in 
Euclidean space. Unique stationary solutions of autoregressive transport models are shown to exist under a 
geometric moment contraction condition of Wu & Shao [(2004) Limit theorems for iterated random 
functions. Journal of Applied Probability 41, 425–436)], using properties of iterated random functions. We 
also discuss an extension to a varying coefficient model for first-order autoregressive transport models. In 
addition to simulations, the proposed models are illustrated with distributional time series of house prices 
across U.S. counties and annual summer temperature distributions. 
Keywords: distributional data analysis, distributional regression, distributional time series, iterated random function, 
optimal transport, Wasserstein space 

1 Introduction 
Distributional data analysis (DDA) deals with data that include random distributions as data el-
ements. While such data are prevalent in many applied problems (Matabuena & Petersen, 2021;  
Menafoglio et al., 2018), this area is still in its early development. An important instance where 
one encounters distributional data arises for sequences of dependent distributions that are indexed 
by discrete time. Such distributional time series are ubiquitous. For instance, the distribution of the 
log returns of the stocks included in a stock index is expected to contain more information than the 
index itself, which only conveys the mean of the distribution but not any further information in-
herent in the distribution such as quantiles. Elucidating the nature of such financial time series is 
for example of interest for risk management (Bekierman & Gribisch, 2021; Kokoszka et al., 
2019). We will illustrate the proposed methods with the time series of distributions of house prices 
that are formed from U.S. county house price data and may inform economic policy (Bogin et al., 
2019; Oikarinen et al., 2018) and also with time series of annual distributions of temperatures ag-
gregated over the summer, where a rise in night time temperatures and more frequent extremes 
have been related to global warming. 
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Other pertinent examples include the analysis of sequences of age-at-death distributions over 
calendar years, which is instrumental for the study of human longevity (Mazzuco & Scarpa, 
2015; Ouellette & Bourbeau, 2011; Shang & Hyndman, 2017) and also the study of the distribu-
tions of correlations between pairs of voxels within brain regions that can be derived from fMRI 
Bold signals (Petersen & Müller, 2016), where such distributions may be observed repeatedly for 
the same subject in longitudinal studies. 

Distributions can be equivalently represented as either density, quantile or cumulative distribu-
tion functions, assuming that all of these exist. Each of these representations comes with certain 
constraints (for example, density functions are nonnegative and integrate to 1). An important ob-
servation is that the spaces where these objects live are nonlinear. As a consequence, common stat-
istical tools that are available in linear function spaces such as the Hilbert space L2 that is utilized 
in functional time series analysis (Bosq, 2000) are inadequate and there is a need for the develop-
ment of adequate statistical methodology. It is the goal of this paper to contribute to the develop-
ment of autoregressive models for one-dimensional distributions, given that autoregressive models 
are popular in time series analysis and have been also considered for distributional time series in 
recent work based on mapping to tangent spaces in the Wasserstein manifold (Chen et al., 2022;  
Zhang et al., 2022). 

Existing approaches for distributional regression are based on various transformation ap-
proaches that include mapping the distributions into a Hilbert space as implemented in the log 
quantile distribution approach (Kokoszka et al., 2019; Petersen & Müller, 2016) or through loga-
rithmic maps in the Wasserstein manifold (Chen et al., 2022), where one uses the Wasserstein met-
ric in the distribution space and maps the distributions to a tangent space that is a L2 space, 
anchored at a suitable distribution, often chosen as a barycenter. One then can implement func-
tional regression models in the ensuing L2 space, and analyse these models by employing parallel 
transport. While the log quantile distribution transformation approach to distributional regres-
sion can lead to large metric deformations, the tangent bundle approach is extrinsic and there 
are some difficulties with the required inverse exponential maps that are caused by the injectivity 
requirement that one needs to numerically address in finite sample situations. Various projection 
methods have been devised to tackle this problem (Bigot et al., 2017; Chen et al., 2022; Pegoraro 
& Beraha, 2022), while in other recent work on extrinsic modelling it has been ignored (Zhang 
et al., 2022), which can lead to inferior performance. 

Since the autoregressive transport models we propose here are intrinsic, they bypass the construc-
tion of a tangent space and the ensuing problems with mapping and projection. For the case where 
only the responses are distributional but predictors are vectors, one can apply Fréchet regression 
(Petersen & Müller, 2019). Concurrently with this paper, a distributional regression model with 
one predictor was proposed for the independent case (Ghodrati & Panaretos, 2022), where the 
goal is to learn a single best transport map that maps the predictor distribution to the response dis-
tribution, so the model parameter is the transport map learned from the data. This is akin to fitting a 
linear regression model where the slope parameter is fixed at 1. A nice feature of this simple model is 
that finding the best transport map has been shown to be equivalent to an isotonic regression prob-
lem, which can be solved by standard optimization techniques. 

In this paper, we propose a novel class of intrinsic distributional regression models for the au-
toregressive modelling of distributional time series. The proposed models are based on transports 
of the probability measures. The most popular notion of transport of distributions is optimal 
transport, which commonly refers to moving distributions along geodesics in the Wasserstein 
space, i.e., the space of distributions equipped with the Wasserstein metric. The key innovation 
in the proposed regression model is that both predictors and responses are taken to be transports 
of distributions, rather than distributions themselves, in contrast to the currently available distri-
butional regression models. Our focus is on univariate distributions with bounded support on the 
real line, which is the most relevant case in statistical data analysis. Moreover, in data applications 
the distributions that are part of the data sample are not known a priori and in practice need to be 
estimated from data they generate by nonparametric methods. Such methods include kernel dens-
ity estimation and related approaches, and for practical implementations a bounded interval that 
defines the domain needs to be fixed beforehand. For the relatively uncommon applications that 
require the distributions to be supported on the entire real line it is common practice to truncate  
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the target distribution at a large enough interval and to target the truncated distribution, with neg-
ligible error. 

Typical examples for predictor or response transports are the transports defined by pushing 
distributional barycenters (Fréchet means) forward to individual distributions, and in the dis-
tributional time series framework also the transports pushing the distribution at time (j − 1) 
to that at time j, which may serve as predictors for the transports pushing the distribution at 
time j forward to that at time j + 1. The idea of considering transports rather than distribu-
tions as predictors or responses, especially transports from barycenters, is motivated by the 
classical simple linear regression model for scalar predictors and responses. This model can 
be written in transport form as E(Y − μY |X − μX) = β(X − μX), where μY = EY, μX = EX and 
β is the slope parameter, where both responses Y − μY and predictors X − μX can be inter-
preted as transports pushing the barycenters μX, μY forward to the individual data X, Y. 
As we show here, this transport interpretation of linear regression provides a natural ap-
proach to extend classical regression to distributional regression modelling by regressing 
transports on each other. 

We focus here on autoregressive transport models (ATM) that permit an inherent geometrical 
interpretation by relating geodesics in transport space to each other, where a first order ATM (or 
ATM(1)) connects transports related to time (j − 1) to transports related to time j. As in the inde-
pendent case, geometric transport interpretations can also be applied to the case of scalar or vector 
time series in Euclidean space, motivating the extension to distributional time series where trans-
ports are very natural. One of our main results is the existence and uniqueness of a stationary so-
lution for ATM(1) processes, for which we utilize the geometric-moment contraction condition 
(Wu & Shao, 2004) for iterated random maps. While the proposed models generally involve scalar 
coefficients and are well interpretable, we also consider an extension for ATM(1) processes, where 
the ATM features a functional rather than scalar coefficient. We show that this functional coeffi-
cient can also be estimated consistently from samples. The definition of ATMs of order p 
(ATM(p)) is obtained as a straightforward extension; these models possess a multi-layer structure. 
We demonstrate that ATMs are useful to capture the dynamic evolution of distributions for both 
real and synthetic data. 

The rest of the paper is organized as follows. In Section 2, we provide some preliminary discus-
sion on basic concepts such as Wasserstein space, optimal transport maps and geodesics. We also 
introduce addition and scalar multiplication operations for the space of transport maps. Section 3 
includes methodology and theoretical results for ATM(1) models. Extensions to ATM(p) models 
and versions of ATM(1) models with functional coefficients are the topics of Sections 4 and 5. 
Numerical considerations and applications to simulated and real data can be found in Section  
6. Conclusions are in Section 7, while the Online supplementary material contains proofs and tech-
nical details. 

2 The space of transport maps 
Define W to be the set of probability distributions on (S, B (S)) with finite second moments, where 
S = [s1, s2] is a bounded closed interval in R and B (S) is the Borel σ-algebra on S. We assume 
there is an underlying probability space (Ω, A, P) of W-valued random variables that induces a 
probability measure on the space W with respect to which we can calculate moments for random 
variables taking values in W. 

For any measurable function T :S → S and μ ∈ W, let T#μ denote the pushforward measure of 
μ, i.e., for any B ∈ B (S), T#μ(B) = μ({x : T(x) ∈ B}). If μ1 is absolutely continuous with respect to 
the Lebesgue measure, then the 2-Wasserstein metric (dW) on W can be written using the Monge 
formulation (Villani, 2003) 

dW(μ1, μ2) = inf
T:T#μ1=μ2

∫S (T(x) − x)2 dμ1(x)
􏽮 􏽯1/2

= ∫S (T12(x) − x)2 dμ1(x)
􏽮 􏽯1/2

= ∫10 (F−1
2 (u) − F−1

1 (u))2du
􏽮 􏽯1/2

.

(1)  
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Here μ1, μ2 ∈ W, F1 = F(μ1) and F2 = F(μ2) are the cumulative distribution functions (cdf) of 
μ1, μ2, respectively, and 

F−1
1 (u) : = inf {x ∈ S : F1(x) ≥ u}, F−1

2 (u) : = inf {x ∈ S : F2(x) ≥ u} 

are the corresponding quantile functions, defined as left-continuous inverses of the cdf. A map T 
that satisfies T#μ1 = μ2 is a transport map from μ1 to μ2 and T12 = F−1

2 ◦ F1 is referred to as the op-
timal transport map that pushes the probability measure μ1 forward to the measure μ2. 

For a nonempty interval I ⊂ R, the length of a given curve γ : I →W is 
L(γ) : = sup

􏽐k
i=1 dW(γ(ti−1), γ(ti)), where the supremum is taken over all k ∈ N and t0 ≤ t1 ≤ · · · ≤ 

tk in I. For absolutely continuous μ1, McCann’s interpolant (McCann, 1997) is the curve 
γ : [0, 1] →W given by 

γ(a) = (id + a(T12 − id))#μ1, 

where a ∈ [0, 1] and id is the identity map. McCann’s interpolant is the geodesic in W that cor-
responds to the optimal transport from μ1 to μ2, where we do not distinguish between this geo-
desic and the transport map T12; we note that L(γ) = dW(μ1, μ2) and γ has constant speed 
dW(γ(a1), γ(a2)) = (a2 − a1)dW(μ1, μ2) for any 0 ≤ a1 ≤ a2 ≤ 1. 

Our focus is on a time series of distributions {μi}i=1,2,...,n ⊂ W, which is assumed to possess some 
stationarity properties, including stationarity of the mean. This means that there exists a common 
Fréchet mean or barycenter μF , given by 

μF : = argmin
ν∈W

Ed2
W(ν, μi) for all i = 1, 2, . . . , n, 

where existence and uniqueness are assured by the fact that the Wasserstein space for one- 
dimensional distributions is a Hadamard space (Kloeckner, 2010). 

We now consider the space of all Lebesgue integrable functions on S, 
Lp(S) = {f :S → R | ‖f‖Lp < ∞}, where 1 ≤ p < ∞, λ is the Lebesgue measure and ‖f‖Lp : = ( ∫S
|f |p dλ)1/p is the usual Lp-norm. Define the set T as 

T = {T :S → S |T(s1) = s1, T(s2) = s2, T is nondecreasing}. (2) 

Since T is a closed subset of Lp(S), it is a complete metric space with respect to the Lp-norm, i.e., 
the limit of every Cauchy sequence of points in T is still in T . In addition, T ⊂ Lp(S) can be 
equivalently identified as T = {T :S → S |T : = F−1

1 ◦ F2}, where, as above, F1, F2 are the cdfs of 
probability measures μ1, μ2 ∈ W. Here, F1, F2 may not be continuous and are not necessarily 
strictly increasing. For any T ∈ T , the representation T = F−1

1 ◦ F2 is not unique and one may 
choose F2 to be the cdf of a uniform distribution, in which case T is represented by F−1

1 only, 
which then is unique. This not only induces a metric on T but also shows that W and T are 
isometric with this induced metric. This isometry induces a probability measure on T that is 
inherited from the corresponding measure on W. Furthermore, for every T ∈ T , there exists 
a uniquely defined inverse transport map T−1 ∈ T ; for any given representation T = F−1

1 ◦ F2, 
T−1 = F−1

2 ◦ F1. 
To build an autoregressive model for elements in T , we introduce addition and scalar multipli-

cation operations in the transport space T as follows. 

• Addition: T1 ⊕ T2 : = T2 ◦ T1, where T1, T2 ∈ T . 
• Scalar multiplication: For any x ∈ S and T ∈ T , for any α ∈ R with −1 ≤ α ≤ 1, let 

α ⊙ T(x) : =
x + α(T(x) − x), 0 < α ≤ 1

x, α = 0

x + α(x − T−1(x)), −1 ≤ α < 0.

⎧
⎪⎨

⎪⎩
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For any |α| > 1, let b = ⌊|α|⌋, the integer part of α, and set a = |α| − b. We then define a scalar 
multiplication in transport space by 

α ⊙ T(x) : =

(a ⊙ T) ◦ T ◦ T ◦ . . . ◦ T􏽼��������􏽻􏽺��������􏽽
b compositionsof T

(x), α > 1

(a ⊙ T−1) ◦ T−1 ◦ T−1 ◦ . . . ◦ T−1
􏽼������������􏽻􏽺������������􏽽

b compositionsof T−1

(x), α < −1,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

These operations are motivated as follows. Addition of transports is defined as their simple con-
catenation, which is a straightforward extension from the case of transports in Rp, where trans-
ports correspond to vectors V that are added to a vector argument c, so that TV(c) = V + c.

Consecutively applying two transport maps TV1 and then TV2 then means adding the sum of 
the two vectors V1 + V2 to the argument vector c, so that TV2 ◦ TV1 (c) = V1 + V2 + c. For scalar 
multiplication, given 0 < α < 1, a transport vector αV defines the transport TαV(c) = αV + c and 
therefore transports an argument vector c to a point on the straight line (geodesic) between c 
and c + V. So if T1 is the optimal transport that pushes μF to (T1)#μF , it is natural to define α ⊙ 
T1 such that it pushes μF to a distribution lying on the geodesic from μF to (T1)#μF where its lo-
cation on the geodesic is characterized by a fraction of length α when measuring length from 
the starting point μF . When α is negative, c + αV = c + |α|( − V), where −V can be interpreted 
as the transport map that pushes c + V to c and thus is the inverse transport T−1

V of the transport 
TV. The obvious extension to optimal transport maps in distribution spaces then leads to the above 
definition of scalar multiplication, which is further illustrated in Figure 1. A distinction from the 
vector space case is that the addition ⊕ for optimal transport maps is not commutative. For scalar 
multiplication with factors α that are such that |α| > 1, if α is an integer we decompose the map Tα 

into an iterative sum of maps T, and if α is not an integer we apply the integer part of α first and after 
this apply an additional transport map that is a scalar multiplication of T with the left-over fractional 
part of α. 

Observe that(T ,⊕) is a (non-Abelian) group with the identity map as identity. For any T ∈ T , 
the inverse is T−1. By the definition of ⊕, we have 

(T1 ⊕ T2) ⊕ T3 = T3 ◦ (T2 ◦ T1) = (T3 ◦ T2) ◦ T1 = T1 ⊕ (T2 ⊕ T3), 

which entails the associativity of ⊕. Regarding the relation between ⊙ and ⊕, distributive laws do 
not hold, i.e., there exists α, β ∈ R and T1, T2 ∈ T such that 

α ⊙ (T1 ⊕ T2) ≠ (α ⊙ T1) ⊕ (α ⊙ T2), (α + β) ⊙ T1 ≠ (α ⊙ T1) ⊕ (β ⊙ T1).

A simple example is as follows. Set S = [0, 1], T1(x) = x2, T2(x) = (x + x2)/2 and α = 0.6, β = 0.7. 
Simple algebra shows that (α + β) ⊙ T1 = 0.7x2 + 0.3x4 ≠ 0.3(0.4x + 0.6x2) + 0.7(0.4x + 
0.6x2)2 = (α ⊙ T1) ⊕ (β ⊙ T1). In addition, the coefficient of x4 in the 4th order polynomial 
(with respect to x) α ⊙ (T1 ⊕ T2) is 0.3, while x4 has coefficient 0.63 in (α ⊙ T1) ⊕ (α ⊙ T2), which 
indicates that α ⊙ (T1 ⊕ T2) ≠ (α ⊙ T1) ⊕ (α ⊙ T2). 

3 Autoregressive transport models of order 1 
3.1 Model and stationary solution 
We first consider a time series {Xi}i=1,2,...,n ⊂ Rp with constant mean E[Xi] = μ ∈ Rp. The vector au-
toregressive model of order 1 (VAR(1)) with scalar coefficient is 

Xi − μ = β(Xi−1 − μ) + ϵi, (3) 

where β ∈ R and {ϵi}i=1,2,...,n ⊂ Rp are the i.i.d innovations with mean 0. In this Euclidean time ser-
ies model, the vector Xi − μ can be interpreted as the optimal transport map pushing μ to Xi, which 
provides the inspiration for the proposed ATM.  
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In general metric spaces, differences cannot be formed and thus a direct extension of model (3) is 
not feasible. However, in transport spaces with uniquely defined optimal transports along geode-
sics we can reinterpret differences of elements in terms of such optimal transports. Specifically, in 
Wasserstein space, we define the difference between two distributions μ2 and μ1 to be the optimal 
transport map that pushes μ1 to μ2, i.e., 

μ2 ⊖ μ1 = F−1
2 ◦ F1, (4) 

where in (4) F1 = F(μ1), F2 = F(μ2) are the cdfs of measures μ1, μ2, respectively. We also require 
appropriate generalizations for the random innovations ϵi that now become random transports. 
Extending the notion of additive noise for Euclidean data, we model noise in transport space as 
random transport maps in T constrained in such a way that their Fréchet mean (barycenter) is 
the identity transport. A noise contaminated version of a transport map T ∈ T is thus T ⊕ ϵ, 
where E(ϵ) = id.

Motivated by model (3), the autoregressive transport model of order 1 (ATM(1)) is 

Ti = α ⊙ Ti−1 ⊕ εi, where Ti = μi ⊖ μF , (5) 

where α ∈ R is the model parameter and the εi are i.i.d random distortion transport maps with 
mean E(εi) = id. The proposed ATM approximates the optimal transport map at time t = i with 
the scaled transport map α ⊙ Ti−1, in analogy to the VAR(1) model Xi − c = β(Xi−1 − c) + ϵi, which 
can be interpreted as approximating the optimal transport map Xi − c with the scaled transport 
map β(Xi−1 − c); see Figure 2 for an illustration. While (3) provides the usual formulation of the 
VAR(1) model, another way to view the model is by relating past differences to current differences, 
i.e., model (3) gives rise to the alternative model 

Xi − Xi−1 = β(Xi−1 − Xi−2) + ϵi. (6) 

The difference Xi − Xi−1 can be interpreted as the optimal transport map between Xi−1 and Xi. In 
Wasserstein space, autoregressive transport models of order 1 (ATM(1)) can analogously be built 
with optimal transports between adjacent distributions, 

Ti = α ⊙ Ti−1 ⊕ εi, where Ti = μi+1 ⊖ μi, (7) 

where the εi are again i.i.d random distortion maps with E(εi) = id. 

Figure 1. Motivating the definition of the addition ⊕ and scalar multiplication ⊙ operations for 0 < α < 1 in the 
Wasserstein optimal transport space for transports T1, T2 (right), while in R2 optimal transports are defined by 
vectors V1, V2 (left).   
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Next we show the existence of stationary solutions for models (5) and (7). For any S, T ∈ T , 1 ≤ 
q < ∞ and random distortion map ε, we utilize the distances dq(S, T) = ‖S − T‖Lq on T and define 
ϕε,􏽥ϕi,m : T → T by 

ϕε(S) = α ⊙ S ⊕ ε, 􏽥ϕi,m(S) = ϕεi
◦ ϕεi−1

◦ · · · ◦ ϕεi−m+1
(S).

Then under a suitable contraction condition, stationary solutions exist. 

Theorem 1 Suppose there exists η > 0, S0 ∈ T , C > 0 and r ∈ (0, 1) such that 

E dη
q

􏽥ϕi,m(S0),􏽥ϕi,m(T)
􏼐 􏼑􏽨 􏽩

≤ Crmdη
q(S0, T) (8) 

holds for a given 1 ≤ q < ∞ and all m ∈ N and all T ∈ T . Then, for all S ∈ T , 
􏽥Ti : = limm→∞􏽥ϕi,m(S) ∈ T exists almost surely and does not depend on S. In 

addition, 􏽥Ti is a stationary solution to the following system of stochastic 
transport equations 

Ti = α ⊙ Ti−1 ⊕ εi, i ∈ Z (9) 

and is unique almost surely. 

The proof utilizes the theory of iterated random function systems (Diaconis & Freedman, 
1999), where a crucial element is the geometric-moment contraction condition (8) of Wu and 
Shao (2004). Regarding sufficient conditions for (8) when q = 1, easy algebra shows that d1(α ⊙ 
S, α ⊙ T) = αd1(S, T) for a positive α. From the corresponding result on the L1 distance of cdfs 
(see, e.g., Shorack & Wellner, 2009), one immediately finds 

d1(S, T) = ∫S |S(x) − T(x)|dx = ∫S |S−1(x) − T−1(x)| dx, 

which then entails that d1(α ⊙ S, α ⊙ T) = −αd1(S, T) when α < 0. Suppose for any S, T ∈ T , 
E[d1(εi ◦ S, εi ◦ T)] ≤ Ld1(S, T), where L is some positive constant such that αL ∈ (0, 1), then 
(8) is seen to hold with η = 1 and r = αL by iterating the argument. Moreover, E[d1(εi ◦ S, εi ◦ T)] ≤ 
Ld1(S, T) holds if the {εi} satisfy E[|εi(x) − εi(y)|] ≤ L|x − y|. 

Figure 2. Illustration of the VAR(1) model Xi − c = β(Xi−1 − c) + ϵi in R2 (left) and the ATM(1) model Ti = α ⊙ Ti−1 ⊕ 
εi , Ti = F−1

i ◦ FF in W (right). The coloured dashed lines are geodesics and correspond to the respective optimal 
transport maps.   
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3.2 Estimation 
As mentioned before, ATM(1) is an extension of the classical AR(1) model in Euclidean space. A 
necessary and sufficient condition for AR(1) to admit a stationary solution is that the model par-
ameter lies in ( − 1, 1), and Theorem 1 together with the subsequent discussion indicates that a 
similar framework applies for ATM(1). Thus, it is natural to assume that the true model parameter 
α of ATM(1) lies in ( − 1, 1). Furthermore, in distributional data analysis and distributional time 
series the distributions that serve as data atoms are usually not known but one rather has available 
i.i.d. samples of real-valued data that have been generated by these distributions and this needs to 
be taken into account in the analysis. In the following, we describe a consistent estimator for α 
based on these samples of real-valued data. We denote the available estimates of transport 
maps Ti by 􏽢Ti, i = 1, · · · , n. Depending on whether α is positive or negative, 􏽢Ti or 􏽢T−1

i is used ac-
cordingly in the proposed method. 

If {T1, · · · , Tn} satisfies model (9), then it holds that 

α =

∫S E[(Ti+1(x) − x)(Ti(x) − x)] dx

∫S E[(Ti(x) − x)2] dx
, if α ≥ 0,

∫S E[(Ti+1(x) − x)(x − T−1
i (x))] dx

∫S E[(x − T−1
i (x))2] dx

, if α < 0.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

This motivates the following least squares type estimators of α, 

􏽢α =
􏽢α+ if l+(􏽢α+) ≤ l−(􏽢α−),

􏽢α− if l+(􏽢α+) > l−(􏽢α−).

􏼚

where 􏽢α+ = argminαl+(α), 􏽢α− = argminαl−(α) and 

l+(α) =
􏽘n

i=2

∫S 􏽢Ti(x) − x − α(􏽢Ti−1(x) − x)
􏼐 􏼑2

dx,

l−(α) =
􏽘n

i=2

∫S 􏽢Ti(x) − x − α(x − 􏽢T−1
i−1(x))

􏼐 􏼑2
dx.

Theorem 2 Suppose T0 ∼i.i.d􏽥T0 and {Ti}
n
i=1 are strictly increasing, continuous and generated 

from equation (9) with −1 < α < 1 and T0 as the initial transport. Under the 
assumptions of Theorem 1 with q = 1, if ∫S E[(T1(x) − x)2] dx > 0, 

|􏽢α − α| = Op τ +
1
��
n

√

􏼒 􏼓

, 

where τ = supi E[d1(􏽢Ti, Ti)]. 

Intuitively, the condition ∫S E[(T1(x) − x)2] dx > 0 ensures that the sequence of transport maps de-
viates from a sequence of identity maps. This is required to arrive at a consistent estimator, since if Ti = 
id almost surely, equation (9) would hold for any α ∈ R and it is then not possible to estimate α con-
sistently. More specifically, if ∫S E[(T1(x) − x)2] dx > 0, then the following application of the 
Cauchy-Schwarz inequality excludes the case of equality and therefore gives rise to the strict inequality 

c′ = ∫S E[(T1(x) − x)2] dx
􏼐 􏼑

∫S E[(x − T−1
1 (x))2] dx

􏼐 􏼑

− ∫S E[(T1(x) − x)(x − T−1
1 (x))] dx

 􏼁2>0, 

where 1/c′ is an implicit constant in the Op for the rate of convergence result Op(τ + 1/
��
n

√
).  
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For practical applications it needs to be taken into account that the underlying distributions are 
almost always unknown. Accordingly, a realistic starting point is that one has available samples of 
independent realizations {Xi,l}

Ni
l=1 that are obtained for each of the distributions μi. There are then 

two independent random mechanisms that generate the data. The first of these generates random 
distributions {μi}

n
i=1; the second generates randomly drawn samples {Xi,l} from each μi. Based on 

the {Xi,l}
Ni
l=1, cdfs {Fi} or quantile functions {Qi} can be estimated with available methodology 

(Falk, 1983; Leblanc, 2012). Denoting the estimated cdfs by 􏽢Fi, the corresponding quantile func-

tion estimates are 􏽢Qi(a) = inf {x ∈ S |􏽢Fi ≥ a}, a ∈ [0, 1]. Alternatively, one can directly estimate 
quantile functions (Cheng & Parzen, 1997) or start with density estimates and convert these to 
cdfs using numerical integration, obtaining rates such as supμ∈W E[d2

W(􏽢μ, μ)] = O(1/
���
N

√
), where 

N = min {Ni : i = 1, 2, · · · , n} (Panaretos & Zemel, 2016) under suitable assumptions or alterna-
tively supμ∈Wac

R
E[d2

W(􏽢μ, μ)] = O(N−2/3) on the set of absolutely continuous distributions (Petersen 
& Müller, 2016). With estimates for quantile functions and cdf in hand, one then obtains optimal 

transport map estimates 􏽢Ti = 􏽢Qi ◦􏽢FF or 􏽢Ti = 􏽢Qi+1 ◦􏽢Fi, where 􏽢FF = 􏽢Q−1
F and 􏽢QF =

􏽐n
i=1

􏽢Qi/n, 
implying 

τ ≲ sup
i

E[d1(􏽢Ti, Ti)] ≲ max
􏽮

sup
i

(E[d2
W(􏽢μi, μi)])

1/2, (E[d2
W(􏽢μF , μF )])1/2

􏽯

for the rate τ in Theorem 2, where a ≲ b means that there exists a constant C > 0 such that a ≤ Cb. 
Depending on assumptions and estimation procedures as mentioned above, one then obtains con-
vergence rates ranging from τ ∼ N−1/4 to τ ∼ N−1/3. 

4 Autoregressive transport models of order p 
4.1 Stationary solution 
Autoregressive transport models of order p (ATM(p)) are defined as 

Ti = αp ⊙ Ti−p ⊕ α p−1 ⊙ Ti−p+1 ⊕ · · ·⊕ α1 ⊙ Ti−1 ⊕ εi, (10) 

where α1, · · · , αp ∈ R are model parameters and εi are i.i.d. random distortion maps with 
E(εi) = id. To show the existence of stationary solutions, we construct a chain of functions and 
again apply the geometric-moment contraction condition (Wu & Shao, 2004). Let T p = T × · · · × 
T be the product space, S = (S1, S2, · · · , S p), R = (R1, R2, · · · , Rp) ∈ T p and define the random 

functions Υε, 􏽥Υi,m : T p → T p as 

Υε(S) = (S2, · · · , Sp, αp ⊙ S1 ⊕ · · ·⊕ α1 ⊙ S p ⊕ ε),

􏽥Υi,m(S) = Υεi ◦ Υεi−1 ◦ · · · ◦ Υεi−m+1 (S), 

where ε, εi are random distortion transports. We employ the product Lq-metric on T p given by 

dq(S, R) =
􏼈􏽐 p

i=1 d2
q(Si, Ri)

􏼉1/2, where q ≥ 1 is a fixed constant in the following. 

Theorem 3 Suppose there exists η > 0, S0 ∈ T p, C > 0 and r ∈ (0, 1) such that 

E dη
q

􏽥Υi,m(S0), 􏽥Υi,m(R)
􏼐 􏼑􏽨 􏽩

≤ Crmdη
q(S0, R) (11) 

holds for all R ∈ T p and m ∈ N. Then, for all S ∈ T p, 

(􏽥Ti−p+1, 􏽥Ti−p+2, · · · , 􏽥Ti) : = lim
m→∞

􏽥Υi,m(S) ∈ T p  
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exists almost surely and does not depend on S. In addition, 

(􏽥Ti−p+1,􏽥Ti−p+2, · · · , 􏽥Ti) is a stationary solution of the following system of sto-
chastic equations 

Ti = αp ⊙ Ti−p ⊕ α p−1 ⊙ Ti−p+1 ⊕ · · ·⊕ α1 ⊙ Ti−1 ⊕ εi, i ∈ Z 

and is unique almost surely. 

For motivation of Υε and condition (11), consider the classical AR(p) model in R, i.e., 
Yi =

􏽐p
j=1 βjYi−j + ϵi ∈ R, which can be represented as a vector autoregressive model of order 1 

(VAR(1)) in the form Yi = BYi−1 + ϵi, where Yi = (Yi, · · · , Yi−p+1)T , ϵi = (ϵi, 0, · · · , 0)T ∈ Rp and 

B =

β1 β2 · · · β p−1 βp

1 0 · · · 0 0

0 1 · · · 0 0

0 0 · · · 1 0

⎛

⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎠

.

With (nonrandom) starting points Y0 and Y′0, running the VAR(1) model recursively m times, one 
obtains Ym = BmY0 +

􏽐m
j=1 Bm−jϵj and Y′m = BmY′0 +

􏽐m
j=1 Bm−jϵj. With ‖ · ‖2 denoting the 

Euclidean norm, condition (11) for this model becomes E[‖Ym − Y′m‖2] ≲ rm‖Y0 − Y′0‖2 for 
some 0 < r < 1. With a slight abuse of notation, denoting the spectral norm of B as ‖B‖2, 

E ‖Ym − Y′m‖2
􏼂 􏼃

= ‖Bm(Y0 − Y′0)‖η
2 ≤ ‖Bm‖2‖Y0 − Y′0‖2.

Now if the absolute values of the eigenvalues of B are bounded above by a constant 0 < r < 1, i.e., 
they are inside the unit circle, then ‖Bm‖2 ≲ rm, and this is equivalent to the fact that the roots of 
ϕ(z) = 1 −

􏽐p
j=1 βjz

j all lie outside the unit circle. The latter is a standard assumption for the exist-
ence of stationary solutions of AR(p) processes in Euclidean space. In linear spaces the terms con-
taining the innovation errors in Ym and Y′m cancel, which for this case simplifies the verification of 
Condition (11). 

To select the order of the ATM, we propose an approach based on rolling-window validation 
and refer to Zivot and Wang (2007) for more details on rolling-window analysis for time series. To 
train the ATM(p) on a given sequence {μt, μt+1, · · · , μt+m−1} of length m with starting time t, we 
assume that there exists a pre-sample of length k, i.e., {μt−k, · · · , μt−1}. For each fixed p in a can-
didate set, the sample {μt−k, μt−k+1, · · · , μt−k+m−1} is used as training set to predict the distribution 
at time t − k + m. Denoting this predicted distribution as 􏽢μt−k+m, the prediction accuracy can be 
measured by Wasserstein distance dW(μt−k+m,􏽢μt−k+m). Then roll the window one step forward 
and use {μt−k+1, μt−k+1, · · · , μt−k+m} as training set to make a prediction at time t − k + m + 1 
and compute the error dW(μt−k+m+1,􏽢μt−k+m+1). Rolling the training window forward repeatedly 
until the last window covering time t − 1 to t + m − 2 is reached and computing the error 
dW(μt+m−1,􏽢μt+m−1) then leads to the selection of the autoregressive order p as the minimizer of 
􏽐t+m−1

i=t+m−k dW(μi,􏽢μi) over a candidate set of orders. 

4.2 Estimation of model parameters 
Hereafter, we denote the true model parameters as (α∗1, · · · , α∗p) to avoid confusion. Obvious es-
timates of the ATM(p) parameters α∗1, α∗2, · · · , α∗p are obtained as minimizers of 

Ln(α1, α2, · · · , αp) =
1

n − p

􏽘n

i=p+1

∫S Ti(x) − αp ⊙ Ti−p ⊕ · · ·⊕ α1 ⊙ Ti−1(x)
 􏼁2 dx.

When p > 1, the minimization of Ln(α1, · · · , αp) is challenging, as the functional Ln in general is 
not convex. We propose a back propagation-type algorithm to address this minimization problem.  
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The partial derivatives of α ⊙ Ti(x) with respect to x are 

∂
∂x

α ⊙ Ti(x) =

(1 + a(gb(x, Ti) − 1)) ×
􏽑b−1

l=0 gl(x, Ti)
􏼐 􏼑

, if α > 0,

1, if α = 0,

(1 + a(1 − gb(x, T−1
i ))) ×

􏽑b−1
l=0 gl(x, T−1

i )
􏼐 􏼑

, if α < 0,

⎧
⎪⎪⎨

⎪⎪⎩

where b = ⌊|α|⌋, a = |α| − b, T′, (T−1) are the derivatives of T, T−1, respectively, 
􏽑b−1

l=0 gl(x, T) is 
defined to be 1 if b − 1 < 0 and 

gl(x, T) =
T′(x), if l = 0,

T′(T ◦ T ◦ · · · ◦ T􏽼��������􏽻􏽺��������􏽽
l compositions of T

(x)) if l = 1, 2, · · ·

⎧
⎨

⎩

The partial derivative with respect to α when a > 0 is 

∂
∂α

α ⊙ Ti(x) =
Ti(h(x, Ti)) − h(x, Ti), if α > 0

h(x, T−1
i ) − T−1

i (h(x, T−1
i )), if α < 0,

􏼚

where 

h(x, T) =
x if b = 0,

T ◦ T ◦ · · · ◦ T􏽼��������􏽻􏽺��������􏽽
b compositions of T

(x) if b > 0.

⎧
⎨

⎩

Since α ⊙ Ti(x) is not differentiable w.r.t α if α ∈ Z, we use its subdifferential (subgradient). When 
α = 0, we set ∂α ⊙ Ti(x)/∂α at α = 0 to be any value in the closed interval between Ti(x) − x and 
x − T−1

i (x). In our simulations, ∂α ⊙ Ti(x)/∂α at α = 0 is selected uniformly from Ti(x) − x and 
x − T−1

i (x). When 0 ≠ α ∈ Z, ∂α ⊙ Ti(x)/∂α is set to be the partial derivative of α ⊙ Ti(x) at a point 
α such that α has the same sign as α and |α| < |α| < (|α| + 1). For more details on the back- 
propagation type algorithm for ATM of order p see the display for Algorithm 1. We employ gra-
dient clipping, a common technique used in deep neural networks to prevent exploding gradients. 

Next, we establish consistency for the minimizer of Ln(α1, · · · , αp), i.e., 

􏽥α : = (􏽥α1,􏽥α2, · · · ,􏽥αp)T ∈ argmin
−c≤α1,···,αp≤c

Ln(α1, α2, · · · , αp), 

where c is the same constant as in Theorem 4 below, which demonstrates that (􏽥α1,􏽥α2, · · · ,􏽥αp) con-
verges to the true model parameters in probability with respect to the discrepancy 

Δ(􏽥α, α∗) := ∫S E (􏽥αp ⊙ T1 ⊕ · · ·⊕􏽥α1 ⊙ Tp(x) − α∗p ⊙ T1 ⊕ · · ·⊕ α∗1 ⊙ Tp(x))2
􏽨 􏽩

dx, 

where α∗ = (α∗1, · · · , α∗p)T are the true model parameters. The key step, where the constant c is 
used, is to show that sup−c≤α1,···,αp≤c |Ln(α1, · · · , αp) − E[Ln(α1, · · · , αp)]| = op(1) based on 
Corollary 3.1 of Newey (1991). In practice, we simply set c to be a large enough number. 

Theorem 4 Under the assumptions of Theorem 3 with q = 1, if T0 ∼i.i.d􏽥T0 and {Ti}
n
i=1 are 

strictly increasing, differentiable, bi-Lipschitz continuous with Lipschitz con-
stant K and generated from equation (10) with T0 as the initial transport and 
(α1, · · · , αp) = (α∗1, · · · , α∗p) where −c ≤ α∗1, · · · , α∗p ≤ c for some constant 
c > 0, then 

Δ(􏽥α, α∗)→
p

0 as n → ∞.
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5 Concurrent autoregressive transport model 
A promising extension of ATMs of order 1 is to consider model coefficients that vary with x ∈ S. 
For a function β :S → [ − 1, 1], define the operation 

β ⦾ T(x) : =
x + β(x)(T(x) − x), 0 < β(x) ≤ 1

x, β(x) = 0

x + β(x)(x − T−1(x)), −1 ≤ β(x) < 0.

⎧
⎪⎨

⎪⎩

This leads to the following concurrent autoregressive transport model (CAT), 

Ti = β ⦾ Ti−1 ⊕ εi, (12) 

with i.i.d. random distortion transports εi satisfying E(εi) = id. 

Algorithm 1 Back Propagation Algorithm for Fitting ATM(p), p > 1.

Select a grid s1 < x1 < x2 < · · · < xm < s2. 

Select step size η. 

Initialize α0
k = 0 for k = 2, 3, . . ., p and 

α0
1 = argmin

α

1
n − p

􏽘n

i=p+1

􏽘m

j=1

Ti(xj) − α ⊙ Ti−1(xj)
 􏼁2

.

for t = 1, 2, . . . do 

Forward Pass  

For all i = p + 1, . . ., n, j = 1, . . ., m, compute Rt
1,ji = αt−1

p ⊙ Ti−p(xj).

for k = 2, 3, . . ., p do   

For all j, i, compute 

Rt
k,ji = αt−1

p+1−k ⊙ Ti−(p+1−k)(R
t
k−1,ji).

For all j, i, compute Lt
ji = 2 Ti(xj) − Rt

p,ji

􏼐 􏼑
.

Backward Pass  

For all j, i, set Dt
0,ji = 1 .  

for k = 1, 2, . . ., p − 1 do   

For all j, i, compute 

Dt
k,ji = (Dt

k−1,ji) ×
∂

∂x
αt−1

k ⊙ Ti−k(x)
􏼌
􏼌
􏼌
􏼌
x=Rt

p−k,ji

􏼠 􏼡

for all j, i,    

Update αk as 

αt
k = αt−1

k +
η

n − p

􏽘n

i=p+1

􏽘m

j=1

Lt
jiD

t
k−1,ji

∂
∂α

α ⊙ Ti−k(Rt
p−k,ji)

􏼌
􏼌
􏼌
􏼌
α=αt−1

k

􏼠 􏼡

.

Compute αt
p = αt−1

p + η
n−p

􏽐n
i=p+1

􏽐m
j=1 Lt

ji(D
t
p−1,ji)

∂
∂α α ⊙ Ti−p(xj)

􏼌
􏼌
α=αt−1

p

􏼐 􏼑
.

if stopping conditions hold then   

return (αt
1, αt

2, . . ., αt
p)  
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To ensure monotonicity that is required for the transports to be well defined, given the true func-
tion β, we consider a subset of transports T̃ ⊂ T such that β ⦾ T̃ : = {β ⦾ T : T ∈ T̃ } ⊆ T̃ and as-
sume that P(εi ◦ T̃ ⊆ T̃ ) = 1 where εi ◦ T̃ : = {εi ◦ T : T ∈ T̃ }; this obviously holds if the function β 
does not vary, i.e., is constant, whence T̃ = T and P(εi ◦ T̃ ⊆ T̃ ) = 1. Whenever β ⦾ T̃ ⊆ T̃ and 
P(εi ◦ T̃ ⊆ T̃ ) = 1, the random functions 

φε(S) = β ⦾ S ⊕ ε, 􏽥φi,m(S) = φεi
◦ φεi−1

◦ · · · ◦ φεi−m+1
(S), φε, 􏽥φi,m : T̃ → T̃

are well-defined for any S ∈ T̃ . 
An example for this concurrent autoregressive transport model (CAT) is as follows. Let s1 = t1 < 

· · · < tk = s2 be a grid over S and β :S → [0, 1] be such that β is positive and is either increasing or 
decreasing on each grid interval [ti, ti+1]. Here T̃ is selected as a set of transports such that for any 
T ∈ T̃ , T(ti) = ti, T(x) ≥ x if β(x) is increasing and otherwise T(x) < x. The properties required for 
the CAT model are satisfied as T̃ is complete and {εi} can be defined as random distortion maps 
taking values in T̃ . To state our next result, we equip T̃ with the sup-metric 
d∞(f , g) = supx∈S |f (x) − g(x)|. 

Theorem 5 Suppose that T̃ is a complete metric space, P(εi ◦ T̃ ⊆ T̃ ) = 1 and there exists 
η > 0, S0 ∈ T̃ , C > 0 and r ∈ (0, 1) such that 

E dη
∞ 􏽥φi,m(S0), 􏽥φi,m(T)
􏼐 􏼑􏽨 􏽩

≤ Crmdη
∞(S0, T) (13) 

holds for all T ∈ T̃ and m ∈ N. Then, for all S ∈ T̃ , 􏽥Ti : = limm→∞􏽥φi,m(S) ∈ T̃
exists almost surely and does not depend on S. In addition, 􏽥Ti is a stationary 
solution of the system of stochastic equations 

Ti = β ⦾ Ti−1 ⊕ εi, i ∈ Z (14) 

and is unique almost surely. 

The estimation of the CAT model function β proceeds similarly to the estimation of the scalar 
coefficient in the ATM(1). If {T1, · · · , Tn} satisfy model (12), then for all x ∈ S

β(x) =
E[(Ti+1(x)−x)(Ti(x)−x)]

E[(Ti(x)−x)2]
, if β(x) ≥ 0,

E[(Ti+1(x)−x)(x−T−1
i (x))]

E[(x−T−1
i (x))2]

, if β(x) < 0.

⎧
⎨

⎩

This suggests estimates 􏽢β(x) for β(x) given by 

􏽢β(x) =
􏽢β+(x), if l+(􏽢β+(x)|x) ≤ l−(􏽢β−(x)|x),
􏽢β−(x), if l+(􏽢β+(x)|x) > l−(􏽢β−(x)|x),

􏼨

where 􏽢β+(x) = argminβ l+(β|x), 􏽢β−(x) = argminβ l−(β|x) and 

l+(β|x) =
􏽘n

i=2

􏽢Ti(x) − x − β(􏽢Ti−1(x) − x)
􏼐 􏼑2

,

l−(β|x) =
􏽘n

i=2

􏽢Ti(x) − x − β(x − 􏽢T−1
i−1(x))

􏼐 􏼑2
.

Then we obtain pointwise convergence of 􏽢β(x) to β(x) in probability.  
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Theorem 6 Suppose T0 ∼i.i.d􏽥T0 and {Ti}
n
i=1 are strictly increasing, continuous and generated 

from equation (14) with β such that −1 < β(x) < 1 for all x ∈ S and with T0 as 
the initial transport. Under the assumptions of Theorem 5, if 
E[(T1(x) − x)2] > 0, 

|􏽢β(x) − β(x)| = Op τ(x) +
1
��
n

√

􏼒 􏼓

, 

where τ(x) = supi E[|􏽢Ti(x) − Ti(x)|]. 

6 Numerical studies 
In the following, ATMm and CATm indicate models that are based on optimal transport maps {Ti} 
from the Fréchet mean to individual distributions, while ATMd and CATd indicate models based 
on optimal transport maps between adjacent distributions. Specifically, model (5) is denoted as 
ATMm(p), model (7) as ATMd(p), model (12) with Ti = F−1

i ◦ FF as CATm and model (12) with 
Ti = F−1

i+1 ◦ Fi as CATd. 
To examine the performance of these ATMs, we compare them in simulations with a recently 

proposed autoregressive model for distributional time series (Chen et al., 2022), which we refer 
to as WR (Wasserstein Regression). This approach is based on using manifold logarithmic 
maps in the Wasserstein manifold to map distributions to a tangent space anchored by the overall 
barycenter. Since the tangent space is a subspace of a L2-space, functional linear regression tech-
niques can be applied in this space, followed by a projection on the convex injectivity set and an 
application of the exponential map to get back to the Wasserstein manifold. Due to the local lin-
earization this is an extrinsic approach, while the proposed ATMs are intrinsic to the Wasserstein 
manifold. 

We also include comparisons with the log quantile (LQD) approach, which ignores the manifold 
structure of the distribution space, providing a direct 1:1 mapping of distributions to a Hilbert 
space by the invertible log quantile transformation or other transformations (Petersen & 
Müller, 2016). After applying the LQD transformation, standard autoregressive models for func-
tional time series can be employed in the ensuing Hilbert space (Bosq, 2000), followed by mapping 
back into distribution space by the inverse LQD map. For autoregressive modelling of functional 
time series we used the R package ‘ftsa’. 

6.1 Interpretation of ATMs 
We illustrate the process of transporting distributions by ATMs with a simple example. Let 
μ1, μ2, μ3 be three normal distributions N( − 1, 2.25), N(2.5, 1.44) and N( − 2, 0.81) (here all dis-
tributions are truncated to the interval [ − 10, 10], where the miniscule mass left outside of the 
truncation interval is ignored). We apply ATMm(2) and ATMd(2) models to produce the distribu-
tion μ4 at time t = 4. Figure 3 illustrates the densities of μ2, μ3 as well as the density of μ4 generated 
by ATMm(2), where the Fréchet mean is chosen as the standard normal distribution μ0. For the 
optimal transport maps T2, T3 that map μ0 to μ2 and μ3, respectively, we observe that T2 shifts 
the density of μ0 to the right and increases its variance, while T3 shifts μ0 to the left and decreases 
its variance. 

Note that ATMm(2) transforms μ0 by first applying transport map α1 ⊙ T3, followed by an ap-
plication of transport map α2 ⊙ T2. For example, from the first row of the figure, when 
α1 = 0.5, α2 = 0.5, the resulting overall transport is close to the identity, whereas for 
α1 = 0.5, α2 = 0, the resulting density of μ4 is on the Wasserstein geodesic connecting μ0 and μ3. 
When α1 = 0, it can be seen from the middle row of Figure 3 that the density of μ4 is moving to 
the left with decreasing variance when α2 moves from 0.5 to −0.5. This illustrates the effect of 
the changing value of α2 for the transport α2 ⊙ T2. Similar effects can be seen in the third row 
of the figure. 

The densities of μ1, μ2, μ3 and the density of μ4 that is obtained by applying the difference based 
models ATMd(1) and ATMd(2) are depicted in Figure 4. Denoting by T1 the optimal transport 
map that maps μ1 to μ2 and by T2 the transport map that maps μ2 to μ3, one finds that T1 represents  
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a shift to the right with a simultaneous decrease in variance, while T2 represents a shift to the left, 
also accompanied by a decrease in variance. Applying ATMd with T1, T2 as predictors, i.e., model 
(10) with T3 = α1 ⊙ T2 ⊕ α2 ⊙ T1, leads to the transport map T3, which is then applied to μ3, re-
sulting in μ4. To illustrate the effect of the coefficients, all panels show that decreasing α2 enhances 
a shift to the left, while decreasing α1 is associated with a shift to the right. 

6.2 Reducing non-stationarity 
The following example illustrates that the difference-based models ATMd and CATd are advan-
tageous compared to ATMm, CATm and WR if the assumption that {μ1, · · · , μn} is a stationary 
sequence does not hold. Stationarity of the sequence {μ1, · · · , μn} is a basic assumption for models 
ATMm, CATm and WR, whereas models ATMd and CATd only require stationarity for differen-
ces, i.e., the sequence of optimal transport maps constructed by taking transports between con-
secutive distributions {μ1, · · · , μn} as predictors. 

Consider a sequence of Gaussian distributions {μ1, · · · , μ6} with mean 0 and decreasing stand-
ard deviations 4.8, 4, 3, 1.6, 1.15, 1, respectively. This sequence of distributions is non- 
stationary. We use {μt : t = 1, 2, · · · , 6} as training data and aim to predict the distribution μ7 
with models ATMm(1), ATMd(1), CATm, CATd, WR and LQD. The densities of the training 
data are visualized in the left panel of Figure 5. One would expect μ7 to follow this trend, i.e., 
to also have mean 0 with even smaller variance than μ6. The right panel shows the predicted dens-
ities obtained with the different methods. We find that only ATMd and CATd capture the under-
lying trend and provide reasonable predictions for the next element μ7 in the sequence. 

6.3 Simulations 
We generate random transports according to 

Ti = α4 ⊙ Ti−4 ⊕ α3 ⊙ Ti−3 ⊕ α2 ⊙ Ti−2 ⊕ α1 ⊙ Ti−1 ⊕ εi, i ∈ Z, (15) 

where εi(x) = 1
2 ((1 + ξi)g(h−1(x)) + (1 + ξi)h−1(x)), h(x) = 1

2 ((1 − ξi)g(x) + (1 + ξi)x), x ∈ S = [0, 1] 

and {ξi} ∼i.i.d Uniform( − 1, 1). Here g(x) is the natural cubic spline passing through points 
(0, 0), (0.33, 0.7), (0.66, 0.8), (1, 1). We note that this construction ensures that the εi are trans-
ports. When representing these transports as quantile functions, for 0 < ξi < 1 the function g(x) is 
shifted along the direction perpendicular to the diagonal towards the identity map and for −1 < 
ξi < 0 this shift is applied to g−1 instead; see Figure 6 for an illustration of g and εi(x). By construc-
tion, E(εi) = id. 

To compare prediction accuracy across different models, we generated {Ti}
101
i=1 from the above 

model, using {Ti}
100
i=1 as training set, aiming to predict T101. The Wasserstein distance between 

T101 and its prediction was computed for different combinations of α1, α2 by treating the transport 
maps {Ti} as quantile functions. For these comparisons, we modified LQD to operate on transport 
maps, rather than predictor distributions (as originally devised). The simulation results for 1000 
Monte Carlo replications are in Table 1 (numbers multiplied by 100). The order of ATMm was 
obtained by rolling-window validation based on a pre-sample of size 50. When α2 = 0, model 
(15) reduces to an autoregressive model of order 1. Overall, ATM was found to outperform 
WR and LQD. We also use this example with h(x) chosen as natural cubic spline passing through 
(0, 0), (0.3, 0.5), (0.6, 0.8), (1, 1) to illustrate the empirical rate of convergence of the estimates 
for the parameters of ATMm(1). Figure 7 displays estimation error versus 

��
n

√
based on 200 

Monte Carlo repetitions, demonstrating that finite sample performance with increasing sample 
sizes matches the root-n convergence rate predicted by Theorem 2. 

It is also of interest to consider a sequence of distributions that are not generated from any of the 
examined models. Starting with the sequence of square integrable functions 

Ri(x) = sin(ζ ix), (16) 

where x ∈ [0, 1] and the {ζ i} are generated from the AR(2) model, 
ζ i = α1ζ i−1 + α2ζ i−1 + α3ζ i−3 + α4ζ i−4 + ϵi, ϵii.i.d.∼Uniform( 4π, 4π), we convert the {Ri} to  
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distributions by applying the inverse log quantile density transformation (Petersen & Müller, 
2016), scaling the resulting distributions to be supported on [0, 1]; see Figure 6 (right panel) for 
an illustration. Again, we generate 100 distributions for training and report the results for 
1,000 Monte Carlo replications. The simulation results are in the lower part of Table 1. For 
this case, we find that ATMm(1) is the overall preferred model. 

6.4 Temperature data 
One consequence of global warming may be an increasing frequency of warm summer nights in the 
Northern hemisphere. Inspired by the article of Bhatia and Katz (2021), we studied this with tem-
perature data that were recorded at O’Hare international airport (available at https://www.ncdc. 
noaa.gov/cdo-web/search?datasetid=GHCND). The annual distributions of daily minimum tem-
peratures, aggregating these temperatures over the period June 1 to September 30 over the summer 
months of each year, are illustrated in Figure 8 for the years from 1990 to 2019, where we use the 
distributions prior to 2019 as training data to predict the distribution for the year 2019. 

For the ATM models we varied p from 1 to 3 and found that p = 3 yielded the best prediction. 
The observed and predicted densities for 2019 are shown in Figure 8. The Wasserstein distances 

Figure 3. Illustrating ATMm(2) and ATMm(1) models for distributional time series. Each panel depicts the density 
functions for distributions μ2 (dot-dashed), μ3 (dashed) (these are the same across all panels) and the density of 
distribution μ4 generated by ATMm (solid), which varies across panels. For all panels the density of μ0 (standard 
normal) is also included (solid black and always centered around the origin).   
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Figure 4. Illustrating ATMd (2) and ATMd (1) models for distributional time series. Each panel depicts the density 
functions for distributions μ1 (dotted), μ2 (dot-dashed) and μ3 (dashed) (these are the same across all panels) and the 
density of distribution μ4 generated by ATMd (solid), which varies across panels.  

Figure 5. Left panel: The training sample introduced in Section 6.2. Right panel: The one-step forecasts obtained for 
different methods at t = 7, where only predictions obtained from ATMd (1) and CATd reflect the declining trend in 
variances, as only these two predictions have smaller variance compared to the last observed density at t = 6, which 
is also plotted on the right panel.   
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between observed and predicted distributions were found to be 0.334 for ATMd(3), 1.01 for 
ATMm(3), 0.462 for CATd, 1.477 for CATm, 1.134 for WR, and 1.255 for LQD. The fitted model 
coefficients for the best model, i.e., ATMd(3), are α1 = −0.724, α2 = −0.5, α3 = −0.268. Denote by 
μ2018, μ2017, μ2016, μ2015 the observed distributions for the years 2018, 2017, 2016, 2015, respect-
ively, and by T3 the optimal transport from μ2015 to μ2016, by T2 the optimal transport from μ2016 
to μ2017 and by T1 the optimal transport from μ2017 to μ2018. The training set of distributions, i.e., 
the observed data, is illustrated in the form of densities in the left panel of Figure 8, predicted dens-
ities are in the middle panel and the densities of μ2015, · · · , μ2018 in the right panel. 

Comparing the densities of μ2017 and μ2018, μ2016 and those of μ2017, μ2015 and μ2016, respectively, 
we find that T1 corresponds to a shift to the right and a sharpening of the distribution, T2 corre-
sponds to a shift to the left and a smoothing of the distribution and T3 corresponds to a shift to the 
right and a sharpening of the distribution. The proposed model applies deformations α3 ⊙ T3, α2 ⊙ 
T2 and α1 ⊙ T1 sequentially to μ2018. it is likely that ATMd and CATd yield the best results because 
of the non-stationarity of this sequence, as the distributions shift to the right over the years, reflect-
ing a warming trend. 

6.5 U.S. house price data 
Given the sequence of distributions {μ1, μ2, · · · , μn}, for a starting time 
sr ∈ {k + 1, k + 2, · · · ,n − k}, we used the subset {μsr

, μsr+1, · · · , μsr+k−1} to train models and to 
produce the prediction 􏽢μsr+k at time sr + k. The autoregressive order p was selected so as to min-

imize 
􏽐sr+k−1

i=sr
dW(μi,􏽢μi), where 􏽢μi is the predicted distribution at time i by ATM(p) trained on the 

sample {μi−k, · · · , μi−1}. The candidate set for p was {1, 2, 3, 4, 5} when k = 8 and {1, 2, 3, 4, 6, 8} 
when k > 8. We adopted the rolling window approach (Zivot & Wang, 2007) and used the pre-
diction loss 

􏽐n−k
sr=k+1 dW(μsr+k,􏽢μsr+k)/(n − 2k).

The US house price data contain bimonthly median house prices for 306 U.S. cities and counties 
from June 1996 to August 2015 (available at http://www.zillow.com). We adjusted the data to 

Figure 6. Auxiliary functions for the simulation. Left panel: The monotone function  g (upper left curve), g−1 (lower 
right curve) and ϵi with ξi = −0.7 (middle curve) in the simulation (15). Middle panel: Sequence of generated 
transport maps Ti for simulation (15) with α1 = −0.3, α2 = 0.2. Right panel: Quantile functions generated for 
simulation (16) with α1 = −0.3, α2 = 0.2.  

Table 1. Forecasting accuracy comparison for simulations (15) and (16)  

(α1, α2, α3, α4) (0.2, −0.5, 0.1, −0.3) (0.5, 0, 0, 0)  

Example (15) ATMm  12.264  11.586   

LQD  13.891  13.282   

WR  12.535  11.765 

Example (16) ATMm  9.841  9.644   

LQD  10.079  9.836   

WR  10.082  9.838 

Note. The minimizing values are bolded.   
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Figure 7. Log-estimation error of α̂ versus log sample size n for ATM(1), for α = 0.5 (left) and α = −0.5 (right). The 
solid black line in each panel is a line with slope -0.5 that is predicted by theory.  

Figure 8. Left panel: Densities of the annual distributions of minimum summer night temperatures at O’Hare 
International Airport from 1990-2018. Middle panel: Observed density and predicted densities obtained from various 
models for the year 2019. Right figure shows the densities of μ2018, μ2017, μ2016, μ2015 that are the observed 
distributions for years 2018, 2017, 2016, 2015, respectively.  

Figure 9. Distributions of US house prices across counties for 240 months between 1996 and 2015, shown as 
densities.   
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account for inflation by a monthly adjustment factor (deflator) and constructed the bimonthly 
house price distributions over the 306 cities/counties. The preprocessed distributions (equivalently 
density or quantile functions) were then scaled to be supported on [0, 1]. Figure 9 presents the 
house price densities over time. Setting the learning rate η = 1 in Algorithm 1, the prediction results 
are summarized in Table 2. In general, ATMd emerged as the best performing model for these data, 
which is not surprising due to the non-stationarity of these data. 

7 Concluding remarks 
Distributional data analysis is challenged by the fact that distributions do not form a vector space 
and basic operations such as addition and multiplication are not available. This especially affects 
regression models, including distributional autoregressive models for time series analysis. At the 
same time, many time series data can be viewed as sequences of distributional data that are in-
dexed by time and there is a need for more advanced statistical tools to model such time series. 
A key innovation of this paper is that it provides a novel class of regression models for distribu-
tional data that are intrinsic and enjoy geometric interpretations. These models result from adopt-
ing the point of view that predictors and responses are elements of a space of optimal transports 
that is equipped with basic algebraic operations. The existence of stationary solutions of the asso-
ciated ATM models can be guaranteed if a geometric moment-contraction condition is satisfied. 

The proposed models not only provide new ways of modelling distributional time series, but 
also shed light on the possibility of developing models for time series that take values in other geo-
desic metric spaces. The proposed approach is not limited to optimal transport, and other trans-
ports that correspond to geodesics with respect to relevant metrics in distribution spaces could 
similarly be considered, for example Fisher-Rao transports (Dai, 2022). Modelling time series 
that take values in the space of multivariate distributions will be a challenging future problem; 
see also the discussion of this case in Chen et al. (2022). 
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Table 2. Comparison of prediction errors for the US house price distributional time series, where k is the length of the 
training set 

k 8 12 18 26 36  

ATMm 1.878 1.754 1.771 2.715 2.952 

CATm 2.660 2.473 2.345 2.327 2.363 

ATMd 1.647 1.611 1.652 1.708 1.778 

CATd 1.797 1.787 1.802 1.845 1.924 

WR 4.052 3.986 4.074 4.045 4.322 

LQD 3.405 3.079 2.927 2.730 2.860 

Notes. Actual prediction errors to be multiplied by 10−3. The minimizing values are bolded.   
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the results of numerical studies can be accessed at https://drive.google.com/drive/folders/ 
1GCVJSNwgRN7FNYMEQt38RUxPlVYQI7xO?usp=sharing. 

Supplementary material 
Supplementary material are available at Journal of the Royal Statistical Society: Series B online. 
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