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Abstract

In this paper, we investigate how field programmable gate arrays can serve as hardware accelerators
for real-time semantic segmentation tasks relevant for autonomous driving. Considering
compressed versions of the ENet convolutional neural network architecture, we demonstrate a
fully-on-chip deployment with a latency of 4.9 ms per image, using less than 30% of the available
resources on a Xilinx ZCU102 evaluation board. The latency is reduced to 3 ms per image when
increasing the batch size to ten, corresponding to the use case where the autonomous vehicle
receives inputs from multiple cameras simultaneously. We show, through aggressive filter reduction
and heterogeneous quantization-aware training, and an optimized implementation of
convolutional layers, that the power consumption and resource utilization can be significantly
reduced while maintaining accuracy on the Cityscapes dataset.

1. Introduction

Deep Learning has strongly reshaped computer vision in the last decade, bringing the accuracy of image
recognition applications to unprecedented levels. Improved pattern recognition capabilities have had a
significant impact on the advancement of research in science and technology. Many of the challenges faced
by future scientific experiments, such as the CERN High Luminosity Large Hadron Collider [1] or the Square
Kilometer Array observatory [2], and technological challenges faced by, for example, the automotive
industry, will require the capability of processing large amounts of data in real-time, often through edge
computing devices with strict latency and power-consumption constraints. This requirement has generated
interest in the development of energy-effective neural networks, resulting in efforts like tinyML [3], which
aims to reduce power consumption as much as possible without negatively affecting the model accuracy.
Advances in deep learning for computer vision have had a crucial impact on the development of
autonomous vehicles, enabling the vehicles to perceive their environment at ever-increasing levels of
accuracy and detail. Deep neural networks are used for finding patterns and extracting relevant information
from camera images, such as the precise location of the surrounding vehicles and pedestrians. In order for an
autonomous vehicle to drive safely and efficiently, it must be able to react fast and make quick decisions.

© 2022 The Author(s). Published by IOP Publishing Ltd
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This imposes strict latency requirements on the neural networks that are deployed to run inference on
resource-limited embedded hardware in the vehicle.

In addition to algorithmic development, computer vision for autonomous vehicles has benefited from
technological advances in parallel computing architecture [4]. The possibility of performing network
training and inference on graphics processing units (GPUs) has made large and complex networks
computationally affordable and testable on real-life problems. Due to their high efficiency, GPUs have
become a common hardware choice in the automotive industry for on-vehicle deep learning inference.

Going beyond GPUs, as embedded computer vision-based systems are being developed and deployed in
an emerging number of industries, including automotive, healthcare and surveillance, deep learning
hardware accelerators are also utilizing field-programmable gate arrays (FPGAs) and application specific
integrated circuits (ASICs). Such accelerators are also exploiting the possibility to parallelize the vast number
of operations, thereby reducing latency and increasing throughput. In contrast to ASICs, for which the
design cannot be modified upon fabrication, FPGAs are flexible and reconfigurable, and commonly used for
prototyping and validating ASIC implementations. To fairly compare the performance and efficiency
between GPUs and FPGA:s is very difficult due to the strong dependence on the details of, for example, the
implementation, open software support, data transfers and hardware design. See [5] for a recent survey on
efficient semantic segmentation networks using GPUs.

In this paper, we investigate the possibility of exploiting FPGAs as a low-power, inference-optimized
alternative to GPUs. By applying aggressive filter-reduction and quantization of the model bit precision at
training time, and by introducing a highly optimized firmware implementation of convolutional layers, we
achieve the compression required to fit semantic segmentation models on FPGAs. We do so by exploiting and
improving the h1s4ml library, which provides an automatic conversion of a given Deep Neural Network into
C++ code, which is given as input to a high level synthesis (HLS) library. The HLS library then translates
this into FPGA firmware, to be deployed on hardware. Originally developed for scientific applications in
particle physics that require sub-microsecond latency [6—12], h1s4ml has been successfully applied outside
the domain of scientific research [13, 14], specifically in the context of tinyML applications [15].

Applying model compression at training time is crucial in order to minimize resource-consumption and
maximize the model accuracy. To do so, we rely on quantization-aware training (QAT) through the
QKeras [16] library, which has been interfaced to h1s4ml in order to guarantee an end-to-end optimal
training-to-inference workflow [13].

As a baseline, we start from the ENet [17] architecture, designed specifically to perform pixel-wise
semantic segmentation for tasks requiring low latency operations. We modify the architecture, removing
resource-consuming asymmetric convolutions, and dilated or strided convolutions. In addition, we apply
filter ablation and quantization at training time. Finally, we optimize the implementation of convolutional
layers in h1s4ml in order to significantly reduce the resource consumption. With these steps, we obtain a
good balance between resource utilization and accuracy, enabling us to deploy the whole network on a Xilinx
ZCU102 evaluation board [18].

This paper is organized as follows: The baseline dataset and model are described in sections 2 and 3,
respectively. The model compression and the specific optimization necessary to port the compressed model
to the FPGA are described in sections 4 and 5. Conclusions are given in section 6.

2. Dataset

Our experiments are performed using the Cityscapes dataset [19], which involves 5000 traffic scene images
collected in 50 different cities with varying road types and seasons. These images have fine-grained semantic
segmentation annotations with pixel-level classification labels. We have limited ourselves to the four
semantic classes Road, Car, Person and Background. According to the standard Cityscapes split, 2975 images
are used for training, 500 for validation and 1525 for testing. We crop and resize the original images to have
an input resolution of 240 152 pixels. As a pre-processing step, we normalize all pixel values (integer values
in the range [0, 255]) to be in the [0, 1] range by dividing each one by 256. In this way all inputs are smaller
than one and can be represented by a fixed-point datatype using only 8 bits (log,(256)) (see section 4). An
example image from the dataset is shown in figure 1, together with a visualization of its semantic
segmentation mask.

For evaluation metrics we use two typical figures of merit for semantic segmentation:

e The model accuracy (Acc), defined as Acc = %, where TP, TN, FP, and FN are the fraction of

true positives, true negatives, false positives, and false negatives, respectively.
o The mean of the class-wise Intersection over Union (mloU), i.e. the average across classes of the Intersection-

Over-Union (defined as IOU = ﬁ}iﬂ\,).
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Figure 1. An downsampled image from the Cityscapes dataset (left) and the corresponding semantic segmentation target (right),
in which the pixels belong to one of the classes {background (blue), road (teal), car (yellow), person (red)}.

Table 1. Model architecture parametrized by the number of filters in the bottlenecks f;, withi =1,...,5.

Layer Type Output resolution
Initial Downsample fo x 120 x 76
3% bottleneck 1 Downsample fi x 60 x 38
3x bottleneck 2 Downsample f» x30x 19
3x bottleneck 3 f3x30x 19
3x bottleneck 4 Upsample fa x 60 x 38
3x bottleneck 5 Upsample f5 X 120 X 76
Final Upsample 4 x 240 x 152
Maxpool(2)
Pad(2)
Conv(3,29)
Skip
connection
BatchNorm
\\ / Upsample(2)
Concat Pad(1)
ReLLU Conv(2,4)
Figure 2. Initial (left) and final (right) block architecture. In the two diagrams, conv(k, f) represents a convolutional layer with f
k X k filters; maxpool(k) and upsample(k) represent a k X k max pooling or upsample layer, respectively; and pad(p) represents
padding by p pixels in the lower and right directions.

3. Baseline model

The architecture we use is inspired by a fully convolutional residual network called Efficient Neural Network
(ENet) [17]. This network was designed for low latency and minimal resource usage. It is designed as a
sequence of blocks, summarized in table 1. The initial block, shown in the left figure in figure 2, encodes the
input into a 32 x 120 x 76 tensor, which is then processed by a set of sequential blocks of bottlenecks. The
first three blocks constitute the downsampling encoder, where each block consists of a series of layers as
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Maxpool(2,2) Main branch
. Skip branch
Main branch Conv(2,f;)
‘
| Pad(1) | | Conv(L.f,) |
4 v
| Conv(2,1;) | | BatchNorm |
7
BatchNorm Upsample(2)
i
Pad(2) Conv(3.f;)
Conv(3.1;) BatchNorm
Skip branch
Conv(1,f,) ReLU
Conv(1.f,) | BatchNorm | [ Conv(if,) |
¥ v
A A
BatchNorm | Upsample(2) | | BatchNorm |
"
Add Add
Figure 3. Downsample encoder (left) and upsample decoder (right) blocks. In the figures, Conv(k, f) represents a convolutional
layer with f k x k filters, Maxpool(k) represents a k X k max pooling layer, Upsample(k) represents a k x k upsampling layer, and
Pad(p) represents padding by p pixels in the lower and right directions. Blue boxes represent convolutional and batch
normalization layers that in the model used are single merged layers.

summarized in the left diagram in figure 3. The final two blocks provide an upsampling decoder, as illustrated
in the right diagram in figure 3. The final block is shown in the right diagram of figure 2.

Some differences from the original architecture in [17] is that we do not use asymmetric, dilated, or
strided convolutions. To further reduce the resource usage, we use three bottlenecks per block instead of five,
and we merge convolutional layers with batch normalization layers by rescaling convolutional filter weights
with batch normalization parameters (implemented through a QConv2DBatchnorm layer). When we use
QAT, this allows us to directly quantize the merged weights during the forward pass, rather than quantizing
the batch normalization parameters and the convolutional filters separately. This merging of layers saves
resources on the FPGA, since only the merged weights are used. Performing the merging already during
training, ensures that the weights used during training and during inference are quantized the same way. The
baseline ENet model is obtained fixing the six f hyperparameters of table 1 to (32,64, 64,64,128,48). This
choice results in an architecture with 1.1 x 10® parameters, yielding a mIoU = 63.2% and an accuracy of
91.5%.

Note that, in a real world application, such as autonomous driving, this computer vision task of
performing frame-by-frame semantic segmentation constitutes only a sub-task in the full software stack. For
example, the outputs of this network will typically need to be transformed into 3d world coordinates and
tracked over time before being sent to the planning and decision-making modules. Hence, the
single-frame-based metrics, such as accuracy and mloU, are primarily used to compare different semantic
segmentation models, but they are insufficient for gauging the performance of the full autonomous driving
stack in real world driving.

4. Model compression

We consider two compression techniques for the model at hand: filter-wise homogeneous pruning, obtained
by reducing the number of filters on all the convolutional layers; and quantization, i.e. reducing the number

4
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Table 2. Architecture reduction through internal filter ablation and corresponding performance. As a reference, the baseline architecture
is reported on the first row. Highlighted in bold the three models considered further in this work.

Model name fi f1 f2 f3 fa fs Parameters mloU (%) Accuracy (%)

Enet 32 64 64 64 128 48 1.1 x 10° 63.2 91.5
Enetl6 32 16 16 16 16 16 5 x 10* 54.3 87.9
Enetl2 32 12 12 12 12 12 3 x 10* 52.0 86.8
Enet8 32 8 8 8 8 8 1.4 x 10* 49.4 85.6
Enet6 32 6 6 6 6 6 9 x 10° 45.9 84.0
Enet4 32 4 4 4 4 4 5 % 10° 36.6 81.5

of bits allocated for the numerical representation of the network components and the output of each layer
computation.

In addition, we use the AutoQKeras library [13], distributed with QKeras, to optimize the numerical
representation of each component at training time as a hyperparameter. This is done using a mathematical
model of the inference power consumption as a constraint in the loss function.

4.1. Filter multiplicity reduction
Normally, network pruning consists of zeroing specific network parameters that have little impact on the
model performance. This could be done at training time or after training. In the case of convolutional layers,
a generic pruning of the filter kernels would result in sparse kernels. It would then be difficult to take
advantage of pruning during inference. To deal with this, filter ablation (i.e. the removal of an entire kernel)
was introduced [20]. When filter ablation is applied, one usually applies a restructuring algorithm (e.g. Keras
Surgeon [21]) to rebuild the model into the smaller-architecture model that one would use at inference. In
this work, we take a simpler (and more drastic) approach: we treat the number of filters in the convolutional
layers as a single hyperparameter, fixed across the entire network. We then reduce its value and repeat the
training, looking for a good compromise between accuracy and resource requirements.

We repeat the procedure with different target filter multiplicities. The result of this procedure is
summarized in table 2, where different pruning configurations are compared to the baseline Enet model.

Out of these models, we select two configurations that would be affordable on the FPGA at hand: a
four-filters (Enet4) and an eight-filter (Enet8) configuration. As a reference for comparison, we also consider
one version with 16 filters, Enet16, despite it being too large to be deployed on the FPGA in question. We
then proceed by quantizing these models through QAT to further reduce the resource consumption.

4.2. Homogeneous quantization-aware training

Homogeneous QAT consists of repeating the model training while forcing the numerical representation of its
weight and activation functions to a fixed (T,I) precision, where T is the total number of bits and I is the
number of integer bits. This is done using the straight-through estimator, where quantization functions are
applied to weights and activations during the forward pass of the training, but then assuming the
quantization is the identity function in the backward pass, as the quantization function is not differentiable.
The model training then converges to a minimum that might not be the absolute minimum of the
full-precision training, but that would minimize the performance loss once quantization is applied. For a
complete overview on quantization methods for neural networks, see [22].

In practice, we perform a homogeneous QAT replacing each layer of the model with its QKeras
equivalent and exploiting the existing QKeras-to-h1s4ml interface for FPGA deployment.

We study the impact of QAT for T € 2,4, 8 with I =0, on the pruned models described above (Enet4,
Enet8 and Enet16). The resulting performance is shown in table 3, where we label the three quantization
configurations as Q2, Q4 and Q8, respectively.

The resulting resource utilization for Enet4 and Enet8 falls within the regime of algorithms that we could
deploy on the target FPGA. We observe similar drops in accuracy when going from full precision to Q8 and
from Q4 to Q2, but little differences between the Q4 and Q8 models. In this respect, Q4 would offer a better
compromise between accuracy and resources than Q8.

Out of these, the models with the highest accuracy and mloU that would be feasible to fit on the FPGA, is
the 8 filter model quantized to 8 bits (Enet8Q8) and the 8 filter model quantized to 4 bits (Enet8Q4).

The quantization of the model does not have to be homogeneous across layers. In fact, it has been
demonstrated that a heterogeneous quantization is the best way to maintain high accuracy at low
resource-cost [23]. We therefore define one final model with an optimized combination of quantizers.
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Table 3. Homogeneously and heterogeneously quantized models with indicated bitwidth, filter architecture and number of parameters,
together with their validation mean IOU trained with quantization aware training using QKeras. The corresponding values before
quantization (from table 2) are also reported in the three first rows.

Model name  Quantization fi  fi fr fs fa fs  Parameters mloU (%)  Accuracy (%)
Enetl6 — 32 16 16 16 16 16 5 x 10* 54.3 87.9
Enet8 — 32 8 8 8 8 8 1.4 x 10* 49.4 85.6
Enet4 — 32 4 4 4 4 4 5% 10° 36.6 81.5
Enet16Q8 8 32 16 16 16 16 16 5 x 10* 35.0 79.1
Enet8Q8 8 32 8 8 8 8 8 1.4 x 10* 33.4 77.1
Enet4Q8 8 32 4 4 4 4 4 5% 10° 13.6 53.8
Enet16Q4 4 32 16 16 16 16 16 5 x 10* 34.1 77.9
Enet8Q4 4 32 8 8 8 8 8 1.4 x 10* 33.9 77.6
Enet4Q4 4 32 4 4 4 4 4 5% 10° 13.5 53.6
Enet16Q2 2 32 16 16 16 16 16 5 x 10* 27.4 68.6
Enet8Q2 2 32 8 8 8 8 8 1.4 % 10* 28.7 71.1
Enet4Q2 2 32 4 4 4 4 4 5% 10° 13.4 53.5
EnetHQ Heterogeneous 8 2 4 8 4 3 5.3 x 10° 36.8 81.1
Initial block Block 1 Block 2
08 O 0.80 -0 )
g .! g @) 0.80 4 —e e &P (i °0 (@) ©
° ®
R 2fiters | S ® < P)
S 4 o 4filters S 0.78 ) S
® o6 6 O 6fiters | ¢ ® Oo c0781, @ & ® .O
. 8 O 8filters
. ew R 0.76 1 . @ . i . 077 1 o . . .
5.5 6.0 6.5 7.0 48 50 52 54 56 58 6.0 4.7 4.8 4.9 5.0 5.1
total bits le6 total bits le6 total bits le6
Block 3 Block 4 Block 5
0.80 —0 081q = A A
~® 0.80 ) ' 8 8 .
g07910 ce
o o Sor £
2 0.78 8 3
Zoredy 0% P i e @ i |
® o C% 0.78 @ ©) 06
0771 ° o o _©
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total bits le6 total bits le6 total bits le6
Figure 4. Validation accuracy versus number of bits for the models tested during heterogeneous QAT with AUTOQKERAS, for the
six blocks in the network. The circle size represents the number of filters, while the color refers to the median bits for the
convolutions in the corresponding block. Details on the grid of options considered in the optimization are given in the text.

4.3. Heterogeneous quantization aware training

Heterogeneous QAT consists in applying different quantization to different network components. For deep
networks, one typically deals with the large number of possible configurations by using an optimization
library. In our case, we use AUTOQKERAS [13]. In AUTOQKERAS, a hyperparameter search over individual layer
quantization conditions and filter counts is performed. Since the model contains skip connections, the scan
over number of filters needs to be handled with care. In particular, we use the block features of AUTOQKERAS
to ensure that the filter count matches throughout a bottleneck, so that the tensor addition of the skip
connection will have valid dimensions.

The search for best hyperparameters, including the choice of indivdual quantizers for kernels and
activations, is carried out using a Bayesian strategy where the balance between accuracy and resource usage is
controlled by targeting a metric derived from them both [13]. In our search we permit e.g. a 4% decrease in
accuracy if the resource usage also is halved at the same time.

The hyperparameter scan is done sequentially over the blocks, i.e. the Bayesian search over quantization
and filter count of the initial layer is performed first and is then frozen for the hyperparameter scan of the first
bottleneck and so on. The rest of the model is kept in floating point until everything in the end is quantized.

Figure 4 shows the outcome of the heterogeneous QAT, in terms of validation accuracy and total number
of bits for the six blocks in the network. The optimal configuration search is performed taking as a baseline
the Enet4 model, scanning the kernel bits in {4,8} and fixing the number of kernels to four times a by-layer
multiplicative chosen in {0.5,0.75,1.0,1.25,1.5,1.75,2.0}. The optimal configuration (EnetHQ) is obtained
forfi=8f=2,f=4,f; =8, f =4,and fs = 3, resulting in 4.7 x 10°> parameters, a mIoU = 36.8% and an
accuracy of 81.1%. Out of all the quantized models, both homogeneous and heterogeneous, this is the one
which performs the best.
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Figure 5. Schematic representation of the new h1s4ml implementation of Convolutional layers, as described in the text.

Table 4. Comparison of previous and proposed h1s4ml implementation of the convolutional layer, in terms of relative reduction of
resource utilization. The estimates are made targeting an xczu9eg-2ffvb1156 MPSoC device on a ZCU102 development kit.

Implementation BRAM DSP FF LUT
Encoded [14] 4752 5632 195344 291919
Line buffer 4064 5632 176 620 305494
Improvement —15% 0% —1% +5%

5. FPGA implementation, deployment and results

5.1. Resource-efficient convolution algorithm

The hls4ml library has an implementation of convolutional layers that is aimed at low-latency designs [14].
However, this implementation comes at the expense of high resource utilization. This is due to the number of
times pixels of the input image are replicated to maintain the state of a sliding input window. For
convolutional layers operating on wider images, like in our case, this overhead can be prohibitively large. In
order to reduce the resource consumption of the convolutional layers of the model, we introduce a new
algorithm that is more resource efficient.

The new implementation, dubbed ‘line buffer’, uses shift registers to keep track of previously seen pixels.
The primary advantage of the line buffer implementation over the previous one is the reduction of the size of
the buffer needed to store the replicated pixels. For an image of size H x W, with a convolution kernel of size
K x L, the line buffer allocates K — 1 buffers (chain of shift registers) of depth W for the rows of the image,
while the previous implementation allocates K? buffers of depth K x (W — K+ 1) for the elements in the
sliding input window.

The algorithm is illustrated on figure 5. Initially, each new pixel read from the input image stream is
pushed into the shift register chain. If the shift register is full, the first element will be popped and it will be
pushed into the next shift register in chain. The process is repeated for all K — 1 shift registers in the chain.
The popped pixels are stacked with the input pixel into a column vector and are pushed as the rightmost
column of the input window. The pixels popped from the leftmost column of the input window are not used
further. In our implementation, the propagation of new pixels through the shift register chain and the
insertion into the sliding input window are completed in a single clock cycle, making the implementation as
efficient as the existing h1s4ml implementation.

To compute the output from the populated sliding input window, we rely on the existing routines of
h1ls4ml. We rely on a set of counters to keep track of input window state to know when to produce an
output. The algorithm for maintaining the chain of shift registers and populating the sliding input window
can be adapted for use in the pooling layers as well.

To compare the two implementations, we consider the resource utilization of an ENet bottleneck block
consisting of 8 filters, implemented using either method. The results are summarized in table 4. We observe a
substantial reduction in block random access memory (BRAM) usage, at the price of a small increase in
look-up table (LUT) utilization.
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Table 5. Effect of FIFO depth optimization on FPGA resource usage and model latency. The values in the table are taken from Vivado
HLS estimates of resource usage. A comparison using physical resource usage is unfeasible since the model without optimization cannot
be synthesized. The estimates are made targeting an xczu9eg-2ftvb1156 MPSoC device on a ZCU102 development kit.

Optimisation BRAM LUT FF DSp Latency
No 7270 676760 230913 228 3.577 ms
Yes 1398 437559 146 392 228 3.577 ms
Improvement —81% —35% —37% 0% 0%

Table 6. Accuracy, mloU, latency and resource utilization for the EnetHQ, Enet8Q4 and Enet8Q8 models. The latency is quoted for a
batch size b =1 and b = 10. Resources are expressed as a percentage of those available on the xczu9eg-2ffvb1156 MPSoC device on the
ZCU102 development kit. The last row is a comparison to work presented in [24].

Latency (ms)

Model Acc. mloU b=1 b=10 BRAM LUT FF DSP
EnetHQ 81.1% 36.8% 4.9 30.6 224.5(25%) 76718 (30%) 87059 (16%) 450 (18%)
Enet8Q4 77.6% 339% 4.8 30.2 342.0 (37%) 166741 (61%) 90536 (16%) 0

Enet8Q8 77.1% 33.4% 4.8 30.0 508.5 (56%) 126458 (46%) 134385 (25%) 1502 (60%)
ENet [24] — 63.1% 30.38 (720)* — 257 62599 192212 689

2 The former is without considering data transfer, pre- and post-processing. The number in parenthesis includes these additional
overheads, averaged over 58 images, and is more comparable to the numbers we present.

5.2. FIFO depth optimization

With the dataflow compute architecture of hls4ml, layer compute units are connected with FIFOs,
implemented as memories in the FPGA. These FIFOs contribute to the overall resource utilisation of the
design. The read and write pattern of these FIFOs depends on the dataflow through the model, which is not
predictable before the design has been scheduled by the HLS compiler, and is generally complex. With
previous hls4ml releases, these memories have therefore been assigned a depth corresponding to the
dimensions of the tensor in the model graph as a safety precaution.

To optimize this depth and thereby reduce resource consumption, we implemented an additional step in
the compilation of the model to hardware. By using the clock-cycle accurate RTL simulation of the scheduled
design, we can monitor the actual occupancy of each FIFO in the model when running the simulation over
example images. This enables us to extract and set the correct size of the FIFOs, reducing memory usage
compared to the baseline.

2.0
!
across the layers, Oy is the observed occupancy for the Ith layer, and lFl is the corresponding FIFO depth. The

By applying this procedure, we observe a memory efficiency = 19.5%, where the index I runs

corresponding mean occupancy is found to be ), FI =4.7%.

We then resize every FIFO to its observed maximum occupancy and rerun the C-Synthesis, thereby
saving FPGA resources and allowing larger models to fit on the FPGA. Table 5 shows the impact of such an
optimization on the FPGA resources for one example model, Enet8Q8, demonstrating a significant
reduction of resources, which are BRAM, LUT, flip-flop (FF), digital signal processor (DSP).

5.3. Results
The hardware we target is a Zynq UltraScale+ MPSoC device (xczu9eg-2fftvb1156) on a ZCU102
development kit, which targets automotive applications. After reducing the FPGA resource consumption
through the methods described above, the highest accuracy models highlighted in table 3 are synthesized.
These are the homogeneously quantized Enet8Q8 and Enet8Q4 models, as well as the heterogeneously
quantized EnetHQ model. To find the lowest latency implementation, we run several attempts varying the
reuse factor (RF) and the clock period. The RF indicates how many times a multiplier can be reused (zero for
a fully parallel implementation). Lower RF leads to lower latency, but higher resource usage. We targeted
reuse factors of 10, 20, 50, 100, and clock periods of 5, 7, 10 ns. For each model, we then chose the
configuration yielding the lowest latency. For Enet8Q8, this is a target clock period of 7 ns and RF = 10. For
Enet8Q4 and EnetHQ we use a clock period of 7 ns and RF = 6.

Inference performance of this model was measured on the ZCU102 target device. The final latency and
resource utilization report is shown in table 6.

We measured the time taken by the accelerator to produce a prediction on batches of images, with batch
sizes of b= 1 and b = 10. The same predictions have been executed 10° times, and the time average is taken as
the latency. The single image latency (batch size of 1) is 4.8—4.9 ms for all three models. Exploiting the data
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flow architecture, the latency to process images in a batch size of 10 is less than 10 times the latency observed
for a batch size of 1. While in a real-world deployment of this model the latency to return the predictions of a
single image is the most important metric, a system comprised of multiple cameras may be able to benefit
from the speedup of batched processing by batching over the images captured simultaneously from different
cameras. The model with the highest accuracy and lowest resource consumption is the heterogeneously
quantized EnetHQ model. This model has an mIoU of 36.8% and uses less than 30% of the total resources.

Similar work on performing semantic segmentation on FPGAs include [24] and a comparison is given in
table 6. Here, the original ENet model [17] is trained and evaluated on the Cityscapes dataset, and then
deployed on a Xilinx Zynq 7035 FPGA using the Xilinx Vitis Al Deep Learning Processor Unit (DPU). There
are some crucial differences between the approach taken here and that of [24]. In order to achieve the lowest
possible latency, we implement a fully on-chip design with high layer parallelism. We optimize for latency,
rather than frame rate, such that in a real-life application the vehicle response time could be minimized.
Keeping up with the camera frame rate is a minimal requirement, but a latency lower than the frame interval
can be utilized. In our approach, each layer is implemented as a separate module and data is streamed
through the architecture layer by layer. Dedicated per-layer buffers ensure that just enough data is buffered in
order to feed the next layer. This is highly efficient, but limits the number of layers that can be implemented
on the FPGA. Consequently, in order to fit onto the FPGA in question, our model is smaller and achieves a
lower mlIoU. Jia et al [24] does not quote a latency, but a frame rate. A best-case latency is then computed as
the inverse of this frame rate, which corresponds to 30.38 ms. However, this does not include any overhead
latency like data transfer, pre- and post-processing. Including these, the average time per image increases to
720 ms.

6. Conclusions

In this paper, we demonstrate that we can perform semantic segmentation on a single FPGA on a Zynq
MPSoC device using a compressed version of ENet. The network is compressed using automatic
heterogeneous quantization at training time and a filter ablation procedure, and is then evaluated on the
Cityscapes dataset. Inference is executed on hardware with a latency of 4.9 ms per image, utilizing 18% of the
DSPs, 30% of the LUTSs, 16% of the FFs and 25 % of the BRAMs. Processing the images in batches of ten
results in a latency of 30 ms per batch, which is significantly faster than ten times the single-image batch
inference latency. This is relevant when batching over images captured from different cameras
simultaneously. By introducing an improved implementation of convolutional layers in h1s4ml, we
significantly reduce resource consumption, allowing for a fully-on-chip deployment of larger convolutional
neural networks. This avoids latency overhead caused by data transfers between off-chip memory and FPGA
processing elements, or between multiple devices. Also taking into account the favorable power-efficiency of
FPGAs, we conclude that FPGAs offer highly interesting, low-power alternatives to GPUs for on-vehicle deep
learning inference and other computer vision tasks requiring low-power and low-latency.
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