l‘)

Check for
updates

Faster Connectivity in Low-Rank
Hypergraphs via Expander
Decomposition

Calvin Beideman'®™) | Karthekeyan Chandrasekaran!, Sagnik Mukhopadhyay?,
and Danupon Nanongkai?

! University of Illinois, Urbana-Champaign, Champaign, IL, USA
{calvinb2,karthe}@illinois.edu
2 University of Sheffield, Sheffield, UK
s.mukhopadhyay@sheffield.ac.uk
3 University of Copenhagen, Copenhagen, Denmark

Abstract. The connectivity of a hypergraph is the minimum number
of hyperedges whose deletion disconnects the hypergraph. We design
an O, (p + min{AgnQ,nr/Aﬁ,A%n%}) (The O,(-) notation hides
terms that are subpolynomial in the main parameter and terms that
depend only on 7) time algorithm for computing hypergraph connectiv-
ity, where p := ZEeE le| is the input size of the hypergraph, n is the
number of vertices, r is the rank (size of the largest hyperedge), and A
is the connectivity of the input hypergraph. Our algorithm also finds a
minimum cut in the hypergraph. Our algorithm is faster than existing
algorithms if 7 = O(1) and A = n*. The heart of our algorithm is a
structural result showing a trade-off between the number of hyperedges
taking part in all minimum cuts and the size of the smaller side of any
minimum cut. This structural result can be viewed as a generalization
of an acclaimed structural theorem for simple graphs [Kawarabayashi-
Thorup, JACM 19 (Fulkerson Prize 2021)]. We extend the framework of
expander decomposition to hypergraphs to prove this structural result. In
addition to the expander decomposition framework, our faster algorithm
also relies on a new near-linear time procedure to compute connectivity
when one of the sides in a minimum cut is small.

Keywords: Hypergraphs + Connectivity + Expander decomposition

1 Introduction

A hypergraph G = (V, E) is specified by a vertex set V and a collection E of
hyperedges, where each hyperedge e € E is a subset of vertices. In this work, we
address the problem of computing connectivity/global min-cut in hypergraphs
with low rank (e.g., constant rank). The rank of a hypergraph, denoted r, is
the size of the largest hyperedge—in particular, if the rank of a hypergraph is
2, then the hypergraph is a graph. In the global min-cut problem, the input

© Springer Nature Switzerland AG 2022
K. Aardal and L. Sanit4d (Eds.): IPCO 2022, LNCS 13265, pp. 70-83, 2022.
https://doi.org/10.1007/978-3-031-06901-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-06901-7_6&domain=pdf
https://doi.org/10.1007/978-3-031-06901-7_6

Faster Connectivity in Low-Rank Hypergraphs 71

is a hypergraph with hyperedge weights w : E — R, and the goal is to find
a minimum weight subset of hyperedges whose removal disconnects the hyper-
graph. Equivalently, the goal is to find a partition of the vertex set V into two
non-empty parts (C, V'\ C) so as to minimize the weight of the set of hyperedges
intersecting both parts. For a subset C C V', we will denote the weight of the
set of hyperedges intersecting both C and V' \ C by d(C), the resulting function
d:V — Ry as the cut function of the hypergraph, and the weight of a min-cut
by A(G) (we will use A when the graph G is clear from context).

If the input hypergraph is simple—i.e., each hyperedge has unit weight and no
parallel copies—then the weight of a min-cut is also known as the connectivity of
the hypergraph. We focus on finding connectivity in hypergraphs. We emphasize
that, in contrast to graphs whose representation size is the number of edges, the
representation size of a hypergraph G = (V, E) is p :=) . |e|. We note that
p < rm, where r is the rank and m is the number of hyperedges in the hypergraph,
and moreover, r < n, where n is the number of vertices. We emphasize that the
number of hyperedges m in a hypergraph could be exponential in the number of
vertices.

Previous Work. Since the focus of our work is on simple unweighted hypergraphs,
we discuss previous work for computing global min-cut in simple unweighted
hypergraphs/graphs (i.e., computing connectivity) here. Although global min-
cut in weighted graphs has a rich literature, fast computation of global min-cut
in simple unweighted graphs was initiated more recently in a seminal work by
Kawarabayashi and Thorup (Fulkerson Prize 2021) [20]. The current fastest algo-
rithms to compute graph connectivity (i.e., when r = 2) are randomized and run
in time O(m) [11,13,15,18,20,25]. In contrast, algorithms to compute hyper-
graph connectivity are much slower. Furthermore, for hypergraph connectiv-
ity /global min-cut, the known randomized approaches are not always faster than
the known deterministic approaches. There are two broad algorithmic approaches
for global min-cut in hypergraphs: vertex-ordering and random contraction. We
discuss these approaches now.

Nagamochi and Ibaraki [26] introduced a groundbreaking vertex-ordering
approach to solve global min-cut in graphs in time O(mn). In independent works,
Klimmek and Wagner [21] as well as Mak and Wong [24] gave two different
generalizations of the vertex-ordering approach to compute hypergraph connec-
tivity in O(pn) time. Queyranne [29] generalized the vertex-ordering approach
further to solve non-trivial symmetric submodular minimization.! Queyranne’s
algorithm can be implemented to compute hypergraph connectivity in O(pn)
time. Thus, all three vertex-ordering based approaches to compute hypergraph
connectivity have a run-time of O(pn). This run-time was improved to O(p+An?)

! The input here is a symmetric submodular function f : 2 — R via an evaluation
oracle and the goal is to find a partition of V' into two non-empty parts (C,V '\ C) to
minimize f(C). We recall that a function f : 2V — R is symmetric if f(A) = f(V\A)
for all A C V and is submodular if f(A) + f(B) > f(A N B) + f(A U B) for
all A,B C V. The cut function of a hypergraph d : V — R, is symmetric and
submodular.

72 C. Beideman et al.

by Chekuri and Xu [7]: They designed an O(p)-time algorithm to construct a
min-cut-sparsifier, namely a subhypergraph G’ of the given hypergraph with
size p’ = O(An) such that A(G') = A(G). Applying the vertex-ordering based
algorithm to G’ gives the connectivity of G within a run-time of O(p + An?).

We emphasize that all algorithms discussed in the preceding paragraph are
deterministic. Karger [16] introduced the influential random contraction app-
roach to solve global min-cut in graphs which was adapted by Karger and
Stein [17] to design an O(n?) time algorithm?. Kogan and Krauthgamer [22]
extended the random contraction approach to solve global min-cut in r-rank
hypergraphs in time O, (mn?). Ghaffari, Karger, and Panigrahi [12] suggested
a non-uniform distribution for random contraction in hypergraphs and used it
to design an algorithm to compute hypergraph connectivity in O((m + An)n?)
time. Chandrasekaran, Xu, and Yu [4] refined their non-uniform distribution to
obtain an O(pn3logn) time algorithm for global min-cut in hypergraphs. Fox,
Panigrahi, and Zhang [10] proposed a branching approach to exploit the refined
distribution leading to an O(p +n" log? n) time algorithm for hypergraph global
min-cut, where r is the rank of the input hypergraph. Chekuri and Quanrud
[5] designed an algorithm based on isolating cuts which achieves a runtime of
O(y/pn(m + n)3) for global min-cut in hypergraphs.

Thus, the current fastest known algorithm to compute hypergraph connec-
tivity is a combination of the algorithms of Chekuri and Xu [7], Fox, Panigrahi,
and Zhang [10], and Chekuri and Quanrud [5] with a run-time of

0) <p—|— min {/\nz,nr, pn(m + n)1~5}) .

1.1 Owur Results

In this work, we improve the run-time to compute hypergraph connectivity in
low rank simple hypergraphs.

Theorem 1. [Algorithm] Let G be an r-rank n-vertex simple hypergraph of size
p. Then, there exists a randomized algorithm that takes G as input and runs in

time .
N r— n r—
O, <p + min {)\T—i’nQ, = AT=ind })
—1

to return the connectivity A of G with high probability. Moreover, the algorithm
returns a min-cut in G with high probability.

Our techniques can also be used to obtain a deterministic algorithm that
runs in time
A . 2 (=3 o n”
O, [p+min < An“, A7=1n JrT .

of n, we say that f(n) = o}
O(g(n)) if f(n) = O(g(n)'*°"
hat () Or(g(n)) if f(n) = O(yg
) and O, (f(n)) analogously.

(g9(n)) if f(n) =
)), where the o(1)
(n)h(r)) for some

2 For functions f(n) and g(n) o

O(g(n)polylog(n)) and f(n)
is with respect to n. We say

t
function h. We define O,.(f(n)

Faster Connectivity in Low-Rank Hypergraphs 73

Our deterministic algorithm is faster than Chekuri and Xu’s algorithm when 7 is
a constant and X\ = 2(n("=2/2), while our randomized algorithm is faster than
known algorithms if 7 is a constant and A = n®(). We summarize the previous
fastest algorithms and our results in Table 1.

Table 1. Comparison of results to compute hypergraph connectivity (simple
unweighted r-rank n-vertex m-hyperedge p-size hypergraphs with connectivity \).

Deterministic Randomized
Previous run-time O(p + \n?) [7] O(p +min{An2, n", \/pn(m + n)'5}})
[5,7,10]

Our run-time O (p + min {)\nZ,)\%nZ + "TT}) O, (p—i— min {)\:'%?nZ, il s Nar=4 n%})

—

Our algorithm for Theorem 1 proceeds by considering two cases: either (i)
the hypergraph has a min-cut where one of the sides is small or (ii) both sides
of every min-cut in the hypergraph are large. To account for case (i), we design
a near-linear time algorithm to compute a min-cut; to account for case (ii), we
perform contractions to reduce the size of the hypergraph without destroying a
min-cut and then run known algorithms on the smaller-sized hypergraph lead-
ing to savings in run-time. Our contributions in this work are twofold: (1) On
the algorithmic front, we design a near-linear time algorithm to find a min-cut
where one of the sides is small (if it exists); (2) On the structural front, we show
a trade-off between the number of hyperedges taking part in all minimum cuts
and the size of the smaller side of any minimum cut (see Theorem 2). This struc-
tural result is a generalization of the acclaimed Kawarabayashi-Thorup graph
structural theorem [19,20] (Fulkerson prize 2021). We use the structural result
to reduce the size of the hypergraph in case (ii). We elaborate on this structural
result now.

Theorem 2. [Structure] Let G = (V, E) be an r-rank n-vertex simple hyper-
graph with m hyperedges and connectivity \. Suppose X > r(4r?)". Then, at least
one of the following holds:

1. There exists a min-cut (C,V \ C) such that

log (£+)

| o
min|C,|V\ €]} <r - <0

)

2. The number of hyperedges in the union of all min-cuts is

5 2\ 71 -
O | 9 +2 <6T> mlogn :OT(Wf)
A A1

The Kawarabayashi-Thorup structural theorem for graphs [19,20] states that
if every min-cut is non-trivial, then the number of edges in the union of all min-
cuts is O(m/)), where a cut is defined to be non-trivial if it has at least two

74 C. Beideman et al.

vertices on each side. Substituting » = 2 in our structural theorem recovers this
known Kawarabayashi-Thorup structural theorem for graphs. We emphasize that
the Kawarabayashi-Thorup structural theorem for graphs is the backbone of the
current fastest algorithms for computing connectivity in graphs and has been
proved in the literature via several different techniques [13,15,20,30,31]. Part of
the motivation behind our work was to understand whether the Kawarabayashi-
Thorup structural theorem for graphs could hold for constant rank hypergraphs
and if not, then what would be an appropriate generalization. We discovered that
the Kawarabayashi-Thorup graph structural theorem does not hold for constant
rank hypergraphs: There exist hypergraphs in which (i) the min-cut capacity A
is £2(n), (ii) there are no trivial min-cuts, and (iii) the number of hyperedges in
the union of all min-cuts is a constant fraction of the number of hyperedges—
see the full version of this work [1] for such an example. The existence of such
examples suggests that we need an alternative definition of trivial min-cuts if
we hope to extend the Kawarabayashi-Thorup structural theorem for graphs
to r-rank hypergraphs. Conclusion 1 of Theorem 2 can be viewed as a way to
redefine the notion of trivial min-cuts. We denote the size of a cut (C,V '\ C) to
be min{|C|, |V \ C|}—we emphasize that the size of a cut refers to the size of
the smaller side of the cut as opposed to the capacity of the cut. A min-cut is
small-sized if the smaller side of the cut has at most r — log(A\/4r)/logn many
vertices. With this definition, Conclusion 2 of Theorem 2 can be viewed as a
generalization of the Kawarabayashi-Thorup structural theorem to hypergraphs
which have no small-sized min-cuts: it says that if there is no small-sized min-cut,
then the number of hyperedges in the union of all min-cuts is O,.(m/)\%1)

We mention that the factor A=%/("=1) in Conclusion 2 of Theorem 2 cannot
be improved: There exist hypergraphs in which every min-cut has at least /n
vertices on both sides and the number of hyperedges in the union of all min-
cuts is @(m - A\~ ("=1))—see the full version of this work [1]. We also note that
the structural theorem holds only for simple hypergraphs/graphs and is known
to fail for weighted graphs. As a consequence, our algorithmic techniques are
applicable only in simple hypergraphs and not in weighted hypergraphs.

1.2 Technical Overview

Concepts used in the proof strategy of Theorem 2 will be used in the algorithm of
Theorem 1 as well, so it will be helpful to discuss the proof strategy of Theorem
2 before the algorithm. We discuss this now. We define a cut (C,V \ C) to be
moderate-sized if min{|C|, |V \ C|} € (r —log(A\/4r)/logn,4r?) and to be large-
sized if min{|C|,|V \ C|} > 4r?; we recall that the cut (C,V \ C) is small-sized
if min{|C|, |V \ C|} <r —log(A/4r)/logn.

Proof Strategy for the Structural Theorem (Theorem?2). We assume that A\ >
r(4r?)" as in the statement of Theorem 2. The first step of our proof is to
show that every min-cut in a hypergraph is either large-sized or small-sized
but not moderate-sized—in particular, we prove that if (C,V \ C) is a min-
cut with min{|C|, |V \ C|} < 4r2, then it is in fact a small-sized min-cut (see

Faster Connectivity in Low-Rank Hypergraphs 75

Lemma 2 with the additional assumption that A > r(4r%)"). Here is the informal
argument: For simplicity, we will show that if (C,V \ C) is a min-cut with
min{|C|, [V\C|} < 4r%, then min{|C|, |V \C|} < r. For the sake of contradiction,
suppose that min{|C/|,|V \ C|} > r. The crucial observation is that since the
hypergraph has rank r, no hyperedge can contain the smaller side of the min-cut
entirely. The absence of such hyperedges means that even if we pack hyperedges
in G as densely as possible while keeping (C,V \ C) as a min-cut, we cannot
pack sufficiently large number of hyperedges to ensure that the degree of each
vertex is at least A. A more careful counting argument extends this approach to
show that min{|C|, |V \ C|} < r —log A/ logn.

Now, in order to prove Theorem 2, it suffices to prove Conclusion 2 under
the assumption that all min-cuts are large-sized, i.e., min{|C|, |V \ C|} > 4r? for
every min-cut (C, V\C). Our strategy to prove Conclusion 2 is to find a partition
of the vertex set V such that (i) every hyperedge that is completely contained in
one of the parts does not cross any min-cut, and (ii) the number of hyperedges
that intersect multiple parts (and therefore, possibly cross some min-cut) is small,
ie., Or(m .)_1/(“1)). To this end, we start by partitioning the vertex set of
the hypergraph G into Xi,..., Xy such that the total number of hyperedges
intersecting more than one part of the partition is Or(m .)*1/(“1)) and the
subhypergraph induced by each X; has conductance £2,(A\~/("=1)) (see Sect. 1.3
for the definition of conductance)—such a decomposition is known as an expander
decomposition. An expander decomposition immediately satisfies (ii) since the
number of hyperedges intersecting more than one part is small. Unfortunately, it
may not satisfy (i); yet, it is very close to satisfying (i)—we can guarantee that for
every min-cut (C,V \ C) and every X;, either C includes very few vertices from
X;, or C includes almost all the vertices of X; i.e., min{|X; N C|,|X; \ C|} =
O, (A=), We note that if min{|X; N C|,|X; \ C|} = 0 for every min-cut
(C,V \ C) and every part X; then (i) would be satisfied; moreover, if a part
X, is a singleton vertex part (i.e., | X;| = 1), then min{|X; N C|,|X; \ C|} =0
holds. So, our strategy, at this point, is to remove some of the vertices from
X, to form their own singleton vertex parts in the partition in order to achieve
min{|X; N C|,|X; \ C|} = 0 while controlling the increase in the number of
hyperedges that cross the parts. This is achieved by a TRIM operation and a
series of SHAVE operations.

The crucial parameter underlying TRIM and SHAVE operations is the notion
of degree within a subset: We will denote the degree of a vertex v as d(v) and
define the degree contribution of a vertex v inside a vertex set X, denoted by
dx(v), to be the number of hyperedges containing v that are completely con-
tained in X. The TRIM operation on a part X; repeatedly removes from X;
vertices with small degree contribution inside Xj, i.e., dx,(v) < d(v)/2r until
no such vertex can be found. Let X denote the set obtained from X; after the
TRIM operation. We note that our partition now consists of X7, ..., X} as well as
singleton vertex parts for each vertex that we removed with the TRIM operation.
This operation alone makes a lot of progress towards our goal-—we show that
min{| X! N C|,|X/\ C|} = O(r?), while the number of hyperedges crossing the

76 C. Beideman et al.

partition blows up only by an O(r) factor (see Claims 3 and 4). The little progress
that is left to our final goal is achieved by a series of (O(r?) many) SHAVE oper-
ations. The SHAVE operation finds the set of vertices in each X! whose degree
contribution inside X/ is not very large, i.e., dx;(v) < (1— r=2)d(v) and removes
this set of vertices from X/ in one shot—such vertices are again declared as sin-
gleton vertex parts in the partition. We show that the SHAVE operation strictly
reduces min{| X/ N C|,| X!\ C|} without adding too many hyperedges across the
parts (see Claims 3 and 5)—this argument crucially uses the assumption that all
min-cuts are large-sized (i.e., min{|C|, |V \ C|} > 472). Because of our guarantee
from the TRIM operation regarding min{|X/ N C|, | X/ \ C|}, we need to perform
the SHAVE operation O(r?) times to obtain a partition that satisfies conditions
(i) and (ii) stated in the preceding paragraph.

Algorithm from Structural Theorem (Theorem 1). We now briefly describe our
algorithm: Given an r-rank hypergraph G, we estimate the connectivity A to
within a constant factor in O(p) time using an algorithm of Chekuri and Xu
[7]. Next, we use the estimated connectivity value k = ©()) to obtain a sub-
hypergraph G’ with size p’ = O,(An) such that all min-cuts are preserved in
time O(p). The rest of the steps are run on this subhypergraph G’. We have
two possibilities as stated in Theorem 2. We account for these two possibili-
ties by running two different algorithms: (i) Assuming that some min-cut has
size less than r — log(A\/4r)/logn, we design a near-linear time algorithm to
find a min-cut. This algorithm is inspired by recent vertex connectivity algo-
rithms, in particular the local vertex connectivity algorithm of [9,28] and the
sublinear-time kernelization technique of [23]. This algorithm runs in O,(p)
time. (ii) Assuming that every min-cut is large-sized, we design a fast algo-
rithm to find a min-cut. For this, we find an expander decomposition X of
G, perform a TRIM operation followed by a series of O(r?) SHAVE operations,
and then contract each part of the trimmed and shaved expander decomposi-
tion to obtain a hypergraph G”. This reduces the number of vertices in G”
to O,(n/AY("=1) and consequently, running the global min-cut algorithm of
either [10] or [6] or [5] (whichever is faster) on G” leads to an overall run-time
of Oy (p 4 min{ \("=3)/(r=1)p2 pyr /\r/(r=1) \(Gr=7)/(r=4)y7/41Y for step (ii). We
return the cheaper of the two cuts found in steps (i) and (ii). The correctness
of the algorithm follows by the structural theorem and the total run-time is
Or(p + min{nr/Ar/(rfl)’)\(r73)/(7‘71)n2’)\(57“77)/(4’)"74)717/4}).

We note here that the expander decomposition framework for graphs was
developed in a series of works for the dynamic connectivity problem [8,27,32,33].
Very recently, it has found applications for other problems [2,3,14]. Closer to our
application, Saranurak [31] used expander decomposition to give an algorithm to
compute edge connectivity in graphs via the use of TRIM and SHAVE operations.
The TRIM and SHAVE operations were introduced by Kawarabayashi and Thorup
[20] to compute graph connectivity in deterministic O(mlog'?n) time. Our line
of attack is an adaptation of Saranurak’s approach. Since our structural theorem
is meant for hypergraph connectivity (and is hence, more complicated than what
is used by [31]), we have to work more.

Faster Connectivity in Low-Rank Hypergraphs 77

Organization. We prove the structural theorem in Sect. 2. We defer the proof of
the algorithmic result and all missing proofs to the full version of the work [1]
due to space limitations. We also elaborate on relevant previous work in the full
version.

1.3 Preliminaries

Let G = (V, E) be a hypergraph. Let S,T C V be subsets of vertices. We define
E[S] to be the set of hyperedges completely contained in S, E(S,T) to be the set
of hyperedges contained in S U T and intersecting both S and T, and E°(S,T)
to be the set of hyperedges intersecting both S and T'. With this notation, if S
and T are disjoint, then F(S,T) = E[SUT] — E[S] — E[T] and moreover, if the
hypergraph is a graph, then E(S,T) = E°(S,T). A cut is a partition (S,V \ S)
where both S and V' \ S are non-empty. Let §(S) := E(S,V \ S). For a vertex
v €V, welet §(v) represent §({v}). We define the capacity of (S, V'\ S) as |d(5)],
and call a cut as a min-cut if it has minimum capacity among all cuts in G. The
connectivity of a simple hypergraph G is the capacity of a min-cut in G.

We recall that the size of a cut (S, V' \ S) is min{|S|,|V '\ S|}. We emphasize
the distinction between the size of a cut and the capacity of a cut: size is the car-
dinality of the smaller side of the cut while capacity is the number of hyperedges
crossing the cut.

For a vertex v € V and a subset S C V, we define the degree of v by
d(v) := [6(v)| and its degree inside S by dg(v) := |e € §(v) : e C S|. We define
d := minyey d(v) to be the minimum degree in G. We define vol(S) := ¢ d(v)

and for T C V, volg(T') :=) . ds(v). We define the conductance of a set

. E°(S,X\S
X CV as mln@;ésgx{min{lvol((s)yvc}l())(l\s)}}. For positive integers, i < j, we let

[i,] represent the set {i,s + 1,...,5 — 1,j}. The following proposition will be
useful while counting hyperedges within nested sets.

Proposition 1. Let G = (V, E) be an r-rank n-vertex hypergraph and let T C
S CV. Then,

B S\ 2 (27) (vols(T) = r BT,

1
2 Structural Theorem

We prove Theorem 2 in this section. We call a min-cut (C,V \ C) moderate-
sized if its size min{|C/|, |V \ C|} is in the range (r — log (\/4r)/logn, (\/2)'/).
In Sect.2.1, we show that a hypergraph has no moderate-sized min-cuts. In
Sect. 2.2, we define TRIM and SHAVE operations and prove properties about these
operations. We prove Theorem 2 in Sect. 2.3. We begin with the following lemma
showing the existence of an expander decomposition for low-rank hypergraphs
(which follows from the existence of an expander decomposition for graphs).

78 C. Beideman et al.

Lemma 1 (Existential hypergraph expander decomposition). For every
r-rank n-vertex hypergraph G = (V, E) with p :=) . le| and every positive real
value ¢ < 1/(r — 1), there exists a partition {X1,..., X} of the vertex set V
such that the following hold:

L0, |8(X,)| = O(réplogn), and

2. For every i € [k] and every non-empty set S C X;, we have that

|E°(S, X; \ S)| = ¢ - min{vol(S), vol(X; \ S)}.

2.1 No Moderate-Sized Min-Cuts

The following lemma is the main result of this section. It shows that there are
no moderate-sized min-cuts.

Lemma 2. Let G = (V, E) be an r-rank n-vertex hypergraph with connectivity A
such that X > r27 1. Let (C,V\C) be an arbitrary min-cut. If min{|C|, |[V\C|} >
r —log(\/4r)/logn, then min{|C|,|V \ C|} > (\/2)'/".

Proof. Without loss of generality, let |C| = min{|C|, |V \ C|}. Let ¢t := |C| and
s =1 —log (A/4r)/logn. We know that s < t. Suppose for contradiction that
t < (A\/2)Y/7. We will show that there exists a vertex v with |[§(v)| < A, thus
contradicting the fact that A is the min-cut capacity. We classify the hyperedges
of G which intersect C' into three types as follows: E1 :={e € E: e C C}, Ey :=
{ec E:CCe},and Es:={ec E:0#enC#Canden(V\C) # 0}. We
distinguish two cases:

Case 1: Suppose t < r. Then, the number of hyperedges that can be fully
contained in C'is at most 27, so |Ey| < 2. Since (C, V' \ C) is a min-cut, we have
that A = |0(C)| = |Ez| + | E3|. We note that the number of hyperedges of size i
that contain all of C' is at most (2’:;) Hence,

T n—t r—t n—t r—t
By < = < < onh
DB oY (i B ol g B o
i=t+1 =1 =1
Since each hyperedge in E3 contains at most t—1 vertices of C, a uniform random
vertex of C is in such a hyperedge with probability at most (¢ — 1)/t. Therefore,
if we pick a uniform random vertex from C, the expected number of hyperedges
from Ej5 incident to it is at most (%)|E3\ Hence, there exists a vertex v € C

such that
t—1 t—1 —-1
|6(v) N E3| < (t> |Bs| < <t> 16(C)| < (T . > A

Combining the bounds for Fy, Fs, and F3, we have that
[0(v)| = 16(v) N Ex| + |E2| +[6(v) N B3| < |Ex| + [E2| + [6(v) N E3

1 1
<o 4ot 4 (T))\<2T+2nrs+ (T) A
T T

A -1 r+l)\
—2T++(T))\—A—FT <A\
r 2r

2r

Faster Connectivity in Low-Rank Hypergraphs 79

Case 2: Suppose t > r. Then, no hyperedge can contain C' as a proper subset,
so |E2| = 0. For each v € C, the number of hyperedges e of size i such that
v € e CC is at most (:j) Hence,

r—1 r—1

sonei<y () =) s T s

=1

Since each hyperedge in E3 contains at most r — 1 vertices of C, a random
vertex of C is in such a hyperedge with probability at most (r — 1)/t. Therefore,
if we pick a random vertex from C, the expected number of hyperedges from Fs

incident to it is at most (“71)|E3|. Hence, there exists a vertex v € C such that

16(v) N Es| < (7’;1> |Bs| < (7’;1> A

Since t < (A/2)Y/" and t > r, we have that 2t"/\ < t — 7 + 1. Combining this
with our bounds on |6(v) N E4] and |6(v) N E3|, we have that

16(v)

—1 AT
=|6<v>mE1|+6<v>mE3|s2tr-1+(rt)Az(r—1+§)j<A.

2.2 Trim and Shave Operations

In this section, we define the trim and shave operations and prove certain useful
properties about them. Throughout this section, let G = (V, E) be an r-rank, n-
vertex hypergraph with minimum degree § and min-cut capacity A. For X C V,
let TRIM(X) be the set obtained by repeatedly removing from X a vertex v with
dx (v) < d(v)/2r until no such vertices remain, SHAVE(X) := {v € X: dx(v) >
(1—1/r?)d(v)}, and SHAVE,(X) := SHAVE(SHAVE - - - (SHAVE(X))) be the result
of applying k consecutive shave operations to X. We emphasize that TRIM is
an adaptive operation while SHAVE is a non-adaptive operation and SHAVE(X)
is a sequence of shave operations. The next claim shows that TRIM and SHAVE
operations could increase the cut value only by a small factor.

Claim 3. Let X be a subset of V, X' := TRIM(X), and X" := SHAVE(X).
Then

1. |B[X] - BIX']| < |8(X)], |B[X] - E[X"]| < r2(r — DIS(X)], and
2. |5(X")| < 208(X)], and |5(X")] < r*[5(X)].

The following claim shows that the TRIM operation on a set X that has small
intersection with a min-cut further reduces the intersection.

Claim 4. Let (C,V \ C) be a min-cut. Let X be a subset of V and X' :=
TriM(X). If min{|X NC|,|X N (V\C)[} < (6/6r2)Y/ =1 then

min{| X' NC|,| X' n(V\C)|} < 3r?

80 C. Beideman et al.

The following claim shows that the SHAVE operation on a set X which has
small intersection with a large-sized min-cut further reduces the intersection.

Claim 5. Suppose A > r(4r?)". Let (C,V \ C) be a min-cut with min{|C/|,|V \
C|} > 4r2. Let X' be a subset of V and X" := SHAVE(X'). If 0 < min{|X' N
CLIX'n(V\CO)|} <3r2, then

min{|X” N C|,|X” N (V\ O)|} <min{| X' NC|,| X' N (V\C)}—1.

Proof. Without loss of generality, we assume that | X' NC| = min{|X’'NC|,|X'N
(V\QO)|}. Since X" C X', we have that | X" NC| < |X’'NC|. Thus, we only need
to show that this inequality is strict. Suppose for contradiction that | X"’ NC| =
| X’ N C|. We note that 0 < | X" N C| < 3r2.

Let Z:=X'NnC=X"NC, and let C' := C — X’. Since |C| > min{|C|, |V \
C|} > 472 and | Z] < 3r%, we know that C’ is nonempty.

We note that Z C X”. By definition of SHAVE, we have that volx/ (Z) =
Yvez dxi(v) >,y (1—55) d(v) = (1 5) vol(2).

We note that |[E(Z,V \ C)| > |E(Z,X'\C)| = |E(Z,X'\ Z)|, so by Propo-
sition 1, we have that |E(Z, V\C)| > |E(Z, X'\ Z)] > (il) (volx/(Z) —

T

r|E[Z]]) > (T 1) (1= %) vol(Z) — r|Z|"). We also know from the definition

of SHAVE that |E(Z,C'\)| < ZUEZ B({v}, 0\ 2)| < 5,z Frd(v) = 5P
Thus, using our assumption that A > r(4r2)", we have that |E(Z, (V \ C))| >

(22) (-)= (i -

d
_vol(Z) vol(Z) iz > YD) | 2wez V) o
72 r r—1 r2 r
> Lg) |Z|A —rlZ|" > LOSQZ) + (4| Z| - 7| 2|
(Z (Z
> VOT(Q i (47”2)\Z|7’ —rlz|" > Vor(z) > |Bz.0\ 2))

We note that E(Z,(V \ C)) is the set of hyperedges which are cut by C but
not C', while E(Z,C \ Z) is the set of hyperedges which are cut by C’ but not
C'. Since we have shown that |E(Z,V \ C)| > |E(Z,C \ Z)|, we conclude that
[6(C)] > 16(C")]. Since (C,V \ C) is a min-cut and) #= C' C C C V, this is a

contradiction.

2.3 Proof of Theorem 2

Proof (Proof of Theorem 2). Suppose the first conclusion does not hold. Then,
by Lemma 2, the smaller side of every min-cut has size at least (A\/2)Y/" > 472,
Let (C,V\C) be an arbitrary min-cut. We use Lemma 1 with ¢ = (6r2/X)/("=1)
to get an expander decomposition X = {X7, ..., X)}. We note that ¢ < 1/(r—1)
holds by the assumption that A > r(4r2)". For i € [k], let X] := TRIM(X;) and
X/ := SHAVEg,2(X]).

Faster Connectivity in Low-Rank Hypergraphs 81

Let ¢ € [k]. By the definition of the expander decomposition and our

choice of ¢ = (6r2/\)Y (=1 we have that A > |E°(X; N C,X; N (V\ C))| >
1 1

(GT) " min{vol(X; N C),vol(X; \ O)} > (GT) T min{|X; N C|, |1 X\ O}

Thus, min{|X; N C[,|X; \ C|} < (A\/8)(N/6r2)V/ =1 < (A/6r2)V/ (=1 <
(6/6r2)1/(r=1) Therefore, by Claim 4, we have that min{| X/ N C|, | XN (V\CO)|} <
3r2. We recall that A > r(4r2?)" and every min-cut has size at least 4r2. By 3r2
repeated applications of Claim 5, we have that min{| X/ NC/|, | X/ N(V\C)|} = 0.

Let X" :={X{,..., X}/}. Since min{| X/ NC|,| X/ N (V \ C)|} = 0 for every
min-cut (C,V \ C) and every X/ € X", it follows that no hyperedge crossing a
min-cut is fully contained within a single part of X”’. Thus, it suffices to show
that |E — Uf L E[X]] is small—i e., the number of hyperedges not contained in

any of the parts of X is O (m/)\r 1)

By the first part of Claim 3, we have that |E[X;] — E[X]]| < 2|§(X;)| and
[0(X1)] < 2|6(X;)| for each i € [k]. By the second part of Claim 3, we have
that |§(SHAVE;41(X]))| < r3|6(SHAVE;(X]))| for every non-negative integer j.
Therefore, by repeated application of the second part of Claim 3, for every j €
[3r?], we have that |§(SHAVE;(X]))| < 2r37|6(X;)|. By the first part of Claim
3, for every j € [3r%], we have that |E[SHAVE;_1(X])] — E[SHAVE;(X])]| <
r36(SHAVE; 1 (X]))| < 2r37[6(X;)].

Therefore, ‘E ~ Uk, Ex)| - ’E ~ U, BIX))

|E[X,] — E[X7]]

M=

@
Il
-

X+ 32T: |E[SHAVE;_1 (X])] — E[SHAVE; (X])]|

(e
-

k 3r?
2(6 |+er3J|a =Dl 2+ 2
i=1 j=1

[
™=

@
Il
-

M=

~.
Il
—

'Mw

@
Il
-

o 18(X;)| < 30 Z\E (X5, V\ X;)l.
i=1
Hence,)E - Ule E[X!]| < 4por* Ele |E(X;,V\ X;)|- By Lemma 1, since X is

an expander decomposition for ¢ = (6r%/A)Y/"~1) and since p = 3", le| < mr,
we have that

k 1 1
67»2 r—1 67‘2 r—1
5 |E(X;,V\ X;)| = O(r¢plogn) = O(r) (T) plogn = O(r?) (T) mlogn.
i=1

Thus, |E — Ule EX!) = O(ro*+2(6r2 /A)Y/ ("=Dimlog n), thus proving the sec-

ond conclusion.

82 C. Beideman et al.

Acknowledgement. This project has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 715672. The last two authors are also supported
by the Swedish Research Council (Reg. No. 2015-04659 and 2019-05622). Karthekeyan
and Calvin are supported in part by NSF grants CCF-1814613 and CCF-1907937.

References

1. Beideman, C., Chandrasekaran, K., Mukhopadhyay, S., Nanongkai, D.: Faster
connectivity in low-rank hypergraphs via expander decomposition. CoRR
abs/2011.08097 (2021)

2. Bernstein, A., et al.: Fully-dynamic graph sparsifiers against an adaptive adversary.
CoRR abs/2004.08432 (2020)

3. Bernstein, A., Gutenberg, M.P., Saranurak, T.: Deterministic decremental reach-
ability, SCC, and shortest paths via directed expanders and congestion balancing.
In: FOCS. IEEE Computer Society (2020)

4. Chandrasekaran, K., Xu, C., Yu, X.: Hypergraph k-cut in randomized polynomial
time. Mathematical Programming (Preliminary version in SODA 2018), November
2019

5. Chekuri, C., Quanrud, K.: Isolating cuts, (Bi-)submodularity, and faster algorithms
for connectivity. In: ICALP, pp. 50:1-50:20 (2021)

6. Chekuri, C.; Xu, C.: Computing minimum cuts in hypergraphs. In: SODA, pp.
1085-1100. STAM (2017)

7. Chekuri, C., Xu, C.: Minimum cuts and sparsification in hypergraphs. STAM J.
Comput. 47(6), 2118-2156 (2018)

8. Chuzhoy, J., Gao, Y., Li, J., Nanongkai, D., Peng, R., Saranurak, T.: A determin-
istic algorithm for balanced cut with applications to dynamic connectivity, flows,
and beyond. In: FOCS. IEEE Computer Society (2020)

9. Forster, S., Nanongkai, D., Yang, L., Saranurak, T., Yingchareonthawornchai, S.:
Computing and testing small connectivity in near-linear time and queries via fast
local cut algorithms. In: SODA, pp. 2046-2065. ACM/SIAM (2020)

10. Fox, K., Panigrahi, D., Zhang, F.: Minimum cut and minimum k-cut in hypergraphs
via branching contractions. In: SODA, pp. 881-896. STAM (2019)

11. Gawrychowski, P., Mozes, S., Weimann, O.: Minimum cut in O(mlog? n) time. In:
ICALP, pp. 57:1-57:15 (2020)

12. Ghaffari, M., Karger, D., Panigrahi, D.: Random contractions and sampling for
hypergraph and hedge connectivity. In: SODA, pp. 1101-1114. ACM/SIAM (2017)

13. Ghaffari, M., Nowicki, K., Thorup, M.: Faster algorithms for edge connectivity via
random 2-out contractions. In: SODA. ACM/SIAM (2020)

14. Goranci, G., Réacke, H., Saranurak, T., Tan, Z.: The expander hierarchy and its
applications to dynamic graph algorithms. In: SODA, pp. 2212-2228 (2021)

15. Henzinger, M., Rao, S., Wang, D.: Local flow partitioning for faster edge connec-
tivity. In: SODA, pp. 1919-1938. ACM/SIAM (2017)

16. Karger, D.: Global min-cuts in RNC, and other ramifications of a simple min-cut
algorithm. In: SODA, pp. 21-30. ACM/SIAM (1993)

17. Karger, D., Stein, C.: A new approach to the minimum cut problem. J. ACM 43(4),
601-640 (1996)

18. Karger, D.R.: Minimum cuts in near-linear time. J. ACM 47(1), 46-76 (2000).
Announced at STOC 1996

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Faster Connectivity in Low-Rank Hypergraphs 83

Kawarabayashi, K., Thorup, M.: Deterministic edge connectivity in near-linear
time. In: STOC, pp. 665-674. ACM (2015)

Kawarabayashi, K., Thorup, M.: Deterministic edge connectivity in near-linear
time. J. ACM 66(1), 4:1-4:50 (2019)

Klimmek, R., Wagner, F.: A simple hypergraph min cut algorithm. Technical report
B 96-02, Institute of Computer Science, Freie Universitat (1996)

Kogan, D., Krauthgamer, R.: Sketching cuts in graphs and hypergraphs. In: ITCS,
pp. 367-376 (2015)

Li, J., Nanongkai, D., Panigrahi, D., Saranurak, T., Yingchareonthawornchai, S.:
Vertex connectivity in poly-logarithmic max-flows (2021, unpublished)

Mak, W.K., Wong, M.D.F.: A fast hypergraph min-cut algorithm for circuit parti-
tioning. Integr.: VLSI J. 30(1), 1-11 (2000)

Mukhopadhyay, S., Nanongkai, D.: Weighted min-cut: sequential, cut-query, and
streaming algorithms. In: STOC, pp. 496-509. ACM (2020)

Nagamochi, H., Ibaraki, T.: Computing edge-connectivity in multigraphs and
capacitated graphs. SIAM J. Discret. Math. 5(1), 54-66 (1992)

Nanongkai, D., Saranurak, T.: Dynamic spanning forest with worst-case update
time: adaptive, Las Vegas, and O(nl/zfe)-time. In: STOC, pp. 1122-1129. ACM
(2017)

Nanongkai, D., Saranurak, T., Yingchareonthawornchai, S.: Breaking quadratic
time for small vertex connectivity and an approximation scheme. In: STOC, pp.
241-252. ACM (2019)

Queyranne, M.: Minimizing symmetric submodular functions. Math. Program.
82(1-2), 3-12 (1998)

Rubinstein, A., Schramm, T., Weinberg, S.M.: Computing exact minimum cuts
without knowing the graph. In: ITCS, pp. 39:1-39:16 (2018)

Saranurak, T.: A simple deterministic algorithm for edge connectivity. In: SOSA.
STAM (2021)

Saranurak, T., Wang, D.: Expander decomposition and pruning: faster, stronger,
and simpler. In: SODA, pp. 2616-2635. SIAM (2019)

Waulff-Nilsen, C.: Fully-dynamic minimum spanning forest with improved worst-
case update time. In: STOC, pp. 1130-1143. ACM (2017)

	Faster Connectivity in Low-Rank Hypergraphs via Expander Decomposition
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview
	1.3 Preliminaries

	2 Structural Theorem
	2.1 No Moderate-Sized Min-Cuts
	2.2 Trim and Shave Operations
	2.3 Proof of Theorem 2

	References

