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Residual Random Greedy (RRGreedy) is a natural randomized version of the greedy 
algorithm for submodular maximization. It was introduced to address non-monotone 
submodular maximization [1] and plays an important role in the deterministic algorithm 
for monotone submodular maximization that beats the (1/2)-factor barrier [2]. In this 
work, we analyze RRGreedy for monotone submodular functions along two fronts: (1) 
For matroid constrained maximization of monotone submodular functions with bounded 
curvature α, we show that RRGreedy achieves a (1/(1 + α))-approximation in the worst-
case (i.e., irrespective of the randomness in the algorithm). In particular, this implies that 
it achieves a (1/2)-approximation in the worst-case (not just in expectation). (2) We 
generalize RRGreedy to k matroid intersection constraints and show that the generalization 
achieves a (1/(k + 1))-approximation in expectation relative to the optimum value of the 
Lovász relaxation over the intersection of k matroid polytopes. Our results suggest that
RRGreedy is at least as good as Greedy for matroid and matroid intersection constraints.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

A set function f : 2N → R+ is submodular if f (A) +
f (B) ≥ f (A ∩ B) + f (A ∪ B) for every pair of subsets 
A, B ⊆ N , and is monotone if f (B) ≥ f (A) for every pair 
of subsets A ⊆ B ⊆ N . Submodular functions arise in sev-
eral areas including combinatorial optimization, game the-
ory, and economics. The problem of maximizing a mono-
tone submodular function subject to matroid intersection 
constraints has been extensively studied in the approx-
imation literature. Here, we are given a monotone sub-
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modular function f : 2N → R+ by a valuation oracle and 
matroids M j = (N , I j) for j = 1, . . . , k by independent 
set oracles, and the goal is to find a common indepen-
dent set I ∈ ∩k

j=1I j so as to maximize f (I). Throughout 
this work, we will be interested in non-negative mono-
tone submodular functions. For subsets U , A ⊆ N , we use 
f (U |A) := f (U ∪ A) − f (A) to denote the marginal gain in 
function value.

For single matroid constraint, Fisher, Nemhauser, and 
Wolsey [3] showed that the greedy algorithm achieves 
a (1/2)-approximation. The greedy algorithm, denoted
Greedy, builds a candidate set A by starting with A := ∅
and repeatedly adding an element u into A such that 
u + A ∈ I and the marginal gain f (u|A) is maximized. 
It is known that no polynomial-time algorithm can yield 
(1 − 1/e + ε)-approximation for any constant ε > 0 [4]. In 
a breakthrough work, Călinescu, Chekuri, Pál, and Vondrák 
[5] designed a randomized (1 − 1/e)-approximation. Very 
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RRGreedy (M, f )
Input: A matroid M = (N ,I) and

a monotone submodular function f : 2N →R+
Initialize A ← ∅
While there exists u ∈ N − A such that A + u ∈ I:

Let M be a subset of N − A that maximizes∑
u∈M f (u|A) such that M ∪ A ∈ I

Let u be a uniformly random element from M
A ← A + u

Return A

Fig. 1. RRGreedy for matroid constraint.

recently, Buchbinder, Feldman, and Garg [2] designed the 
first deterministic algorithm that broke the (1/2)-factor 
barrier. One of the main ingredients of their improved 
approximation is a randomized version of the greedy al-
gorithm, known as RRGreedy (short for Residual Random 
Greedy). As part of their proof, they showed that RRGreedy

achieves (1/2)-approximation in expectation. In this work, 
we investigate RRGreedy along two fronts: (1) What is the 
approximation factor of RRGreedy for monotone submod-
ular functions with bounded curvature, and (2) Is there a 
generalization of RRGreedy for matroid intersection with 
good approximation guarantee?

RRGreedy was introduced by Buchbinder, Feldman, 
Naor, and Schwartz [1] to address non-monotone sub-
modular maximization as a natural way to randomize the 
greedy strategy. Instead of choosing an element that max-
imizes the marginal gain with respect to the current set, 
it considers a set of good choices to add and randomly 
chooses one among them. We state RRGreedy for matroid 
constraint in Fig. 1.

It is easy to see that RRGreedy achieves the optimum 
value for modular functions while previous works have 
shown that it achieves (1/2)-approximation in expecta-
tion for monotone submodular functions [2,1]. Is there a 
smooth interpolation of its approximation factor based on 
distance to modularity of the submodular function? Con-
forti and Cornuéjols [6] introduced the notion of curvature 
as a measure of distance to modularity of a set func-
tion. The curvature of f : 2N → R+ is defined as α :=
1 − minu∈N : f (u)>0( f (N ) − f (N − u))/ f (u). We note that 
α = 0 if and only if f is modular and 0 ≤ α ≤ 1 for 
monotone submodular functions. Conforti and Cornuéjols 
showed that Greedy achieves (1/(1 + α))-approximation 
for matroid constraint. Their result gives a unified expla-
nation for the approximation factor of Greedy for both 
modular as well as monotone submodular functions. Given 
this status of Greedy, can we analyze the approximation 
factor of RRGreedy for bounded curvature functions? Is 
it at least as good as Greedy? We address this in Theo-
rem 1.1. Our theorem shows a surprisingly strong result 
about RRGreedy: it is at least as good as Greedy in the 
worst-case and not just in expectation (i.e., for all random 
choices).

Next, we turn to k matroid intersection constraints 
where k ≥ 2. Fisher, Nemhauser, and Wolsey [3] considered 
the natural extension of Greedy, where the next element 
u is chosen to be the one with maximum f (u|A) sub-
ject to u + A being independent in all matroids. We will 
denote this extension also as Greedy. They showed that
2

Greedy achieves (1/(k + 1))-approximation. We note that 
for k = 1, the expected approximation factor of RRGreedy

and the approximation factor of Greedy coincide. While
Greedy has a natural generalization for k ≥ 2 matroid con-
straints, it is apriori unclear if there is a natural general-
ization of RRGreedy to k ≥ 2 matroid constraints and even 
if so, would its approximation ratio be comparable to that 
of Greedy? In this work, we present a generalization of
RRGreedy for matroid intersection constraints and show 
that the approximation factor of the generalization is in-
deed at least as good as Greedy.

Although we do not improve the approximation factors 
of the respective problems, our results present evidence 
suggesting that RRGreedy might be a viable algorithm for 
improving the approximation factors. We show surprising 
results which were not known for RRGreedy. Our results 
raise several interesting open questions about RRGreedy

that we summarize in the conclusion section.

1.1. Our contributions

Our first result is about the approximation factor of
RRGreedy for maximizing a monotone submodular func-
tion with bounded curvature subject to matroid constraint. 
We recall that RRGreedy achieves an optimum for α = 0
and a (1/2)-approximation in expectation for α = 1. We 
show the following:

Theorem 1.1. RRGreedy achieves a (1/(1 +α))-approximation
for all random choices in the algorithm.

The theorem highlights two important features of
RRGreedy. Firstly, it shows that the approximation ratio of
RRGreedy is at least as good as Greedy even for bounded 
curvature functions. Secondly, for arbitrary submodular 
functions (i.e., when curvature α = 1), RRGreedy achieves 
a (1/2)-approximation in the worst-case and not only just in 
expectation as was known before [2,1]. If we consider the 
execution of a randomized algorithm as a branching tree 
where the algorithm’s decision can be viewed as follows a 
particular branch based on the outcome of a random coin 
toss, then our result says that every branch of the execu-
tion tree would still lead to a (1/2)-approximation. This 
also tells us that the greedy algorithm is forgiving in terms 
of mistakes: even if we make certain kind of mistakes in 
greedy, we would still get a (1/2)-approximation! In par-
ticular, instead of picking the element u with maximum 
f (u|A), we could have chosen an arbitrary element u ∈ M , 
where M is a set in the contracted matroid M/A with 
maximum sum of marginals 

∑
u∈M f (u|A), and it would 

still lead to a (1/2)-approximation. We note that this re-
sult was previously known only for partition matroids [7].

Next, we generalize RRGreedy for k matroid intersec-
tion constraints. For the case of k = 2, a natural gen-
eralization is to define the set M to be a common in-
dependent set in M1/A and M2/A that maximizes ∑

u∈M f (u|A). We recall that the problem of finding a 
maximum weight common independent set in two ma-
troids is solvable in polynomial time [8]. This leads to the 
algorithm given in Fig. 2. We show that this algorithm 
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2MatroidIntersectionRRGreedy (M1,M2, f )
Input: Matroids Mb = (N ,Ib) for b = 1,2 and

a monotone submodular function f : 2N →R+
Initialize A ← ∅
While there exists u ∈ N − A such that A + u ∈ I1 ∩ I2:

Let M be a subset of N − A that maximizes∑
u∈M f (u|A) such that M ∪ A ∈ I1 ∩ I2

Let u be a uniformly random element from M
A ← A + u

Return A

Fig. 2. RRGreedy for 2 matroid intersection constraints.

(i.e., 2MatroidIntersectionRRGreedy) achieves a (1/3)-
approximation.

Theorem 1.2. For an arbitrary common independent set T and 
the set A output by 2MatroidIntersectionRRGreedy, we have 
that

E[ f (A)] ≥ f (T )

3
.

Remark 1.3. A natural question is whether Theorem 1.2 is 
tight, i.e., does 2MatroidIntersectionRRGreedy achieve an 
approximation factor that is better than 1/3, perhaps 1/2? 
Based on computer experiments, we were able to show 
the following: There exist matroids M1 and M2 and a 
monotone submodular function f such that the best pos-
sible approximation factor achieved for all random choices 
in the execution of 2MatroidIntersectionRRGreedy is at 
most 13/33. This example is described in the appendix.

Remark 1.4. Based on the result in Theorem 1.1, one might 
conjecture that the statement of Theorem 1.2 may also 
hold in the worst case (and not just in expectation). How-
ever, we were able to rule out this conjecture with a 
computer-generated example.

Next, we generalize RRGreedy for k matroid intersec-
tion constraints where k ≥ 3. We note that the algorithm 
in Fig. 2 does not generalize to k ≥ 3 since the problem 
of finding a maximum weight common independent set in 
three matroids is NP-hard. Instead, we take an alternative 
perspective of RRGreedy. We view RRGreedy for k = 1 as 
optimizing over the matroid polytope to obtain a solution 
x ∈ [0, 1]N and then sampling an element u with prob-
ability proportional to x(u). We recall that extreme point 
solutions x to the matroid polytope are integral and hence, 
this naturally leads to the choice M = support(x). This per-
spective leads to a natural generalization of RRGreedy for 
k ≥ 2 matroid intersection constraints: optimize over the 
intersection of k matroid polytopes to obtain a point z
and then sample a point u with probability proportional to 
z(u) to add to the current set A. For a fixed set A that is 
independent in all k matroids, we consider the following 
LP whose feasible region is the intersection of the k ma-
troid polytopes (where r j is the rank function of the j’th 
matroid):

max
∑

z(u) f (u|A) (LP(A))

u∈N

3

MatroidIntersectionRRGreedy (M1, . . . ,Mk, f )
Input: Matroids M j = (N ,I j) for j ∈ [k] and

a monotone submodular function f : 2N →R+
Initialize A ← ∅
While there exists u ∈ N − A such that A + u ∈ ∩k

j=1I j :
Let z be an optimum solution to LP(A)

Let u be an element in N − A sampled with
probability z(u)/

∑
v∈N−A z(v)

A ← A + u
Return A

Fig. 3. RRGreedy for k matroid intersection constraints.∑
u∈S−A

z(u) ≤ r j(S ∪ A) − |A| ∀ S ⊆ N , j ∈ [k]

z(u) ≥ 0 ∀ u ∈ N
z(u) = 1 ∀ u ∈ A.

We use this LP to generalize RRGreedy for k-matroid in-
tersection as shown in Fig. 3.

In order to analyze MatroidIntersectionRRGreedy, we 
compare the objective value of the set returned by the al-
gorithm with the optimum objective value of the Lovász 
relaxation. For a set S ⊆ N , let χ S ∈ {0, 1}N denote the 
indicator vector of S . For a function f : 2N →R+ , the con-
vex closure f − : [0, 1]N →R is defined as f −(y) :=

min

⎧⎨
⎩

∑
S⊆N

λS f (S) :
∑
S⊆N

λSχ
S = y, λS ≥ 0 ∀ S ⊆ N

⎫⎬
⎭ .

(1)

We note that the definition we use here is not the same 
as the original definition of the Lovász relaxation. It is well 
known that the convex closure of a function f is equiva-
lent to the Lovász relaxation in the cube [0, 1]N when f is 
submodular [9].

We show the following result for the algorithm Ma-

troidIntersectionRRGreedy.

Theorem 1.5. Let A be the set returned by MatroidIntersec-

tionRRGreedy and let t be any feasible point for LP(∅). Then,

E[ f (A)] ≥
(

1

k + 1

)
f −(t).

The theorem shows that the expected approximation 
factor of RRGreedy for k matroid intersection is at least 
that of Greedy. Moreover, our approximation guarantee 
is relative to the optimum value of the Lovász relaxation 
over the k matroid intersection polytope. Thus, it could be 
viewed as bounding the integrality gap. We note that our 
techniques underlying the proof of Theorem 1.5 can also be 
extended to show that the approximation factor of Greedy

is also the same factor relative to the optimum value of the 
Lovász relaxation over the k matroid intersection polytope.

1.2. Related work

As mentioned earlier, Conforti and Cornuéjols [6] in-
troduced the notion of curvature as a measure of dis-
tance to modularity of a monotone submodular function. 
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They showed that Greedy for matroid constraint achieves 
a (1/(1 + α))-approximation, where α is the curvature 
of the monotone submodular function. For uniform ma-
troid, they showed that Greedy achieves a (1/α)(1 − e−α)-
approximation. This result also recovers the (1 − e−1)-
approximation guarantee for the case of α = 1 which 
was shown by Fisher, Nemhauser, and Wolsey [3]. Re-
cent works have extended the results for uniform ma-
troids beyond submodular functions [10]. Vondrák intro-
duced a slightly different definition of curvature, denoted 
by c [11], and showed that the continuous greedy algo-
rithm of [5] achieves a (1/c)(1 − e−c)-approximation for 
any matroid. Subsequently, Sviridenko, Vondrák, and Ward 
showed a different algorithm that achieves a (1 − α/e)-
approximation for any matroid [12].

For k ≥ 2 matroid intersection constraints, Fisher, Nem-
hauser, and Wolsey showed that Greedy achieves a (1/(k +
1))-approximation. Conforti and Cornuéjols showed that it 
achieves a (1/(k + α))-approximation, where α is the cur-
vature of the monotone submodular function. Lee, Sviri-
denko, and Vondrák [13] gave a polynomial-time local-
search algorithm that achieves a (1/k + ε)-approximation 
for k ≥ 2 matroid intersection constraints for arbitrary cur-
vature (for any constant ε). We observed via an additional 
lemma from their main theorem that their algorithm also 
achieves a (1/(k −1 +α +ε))-approximation for monotone 
submodular functions with curvature α.

For k ≥ 3 matroid intersection constraints, the case 
where the submodular function is in fact a modular func-
tion (i.e., a linear function) is also of special interest. 
In particular, if the modular function is the cardinality 
function, then Lau, Ravi, and Singh [14] showed an it-
erative rounding algorithm that achieves a (1/(k − 1))-
approximation relative to the LP-optimum value. For ar-
bitrary modular functions, Lee, Sviridenko, and Vondrák 
[13] showed that their local search algorithm achieves a 
(1/(k − 1 + ε))-approximation. A well-known open ques-
tion for modular functions is whether the integrality gap 
of the LP is at least (1/(k − 1)). In a recent work, Linhares, 
Olver, Swamy, and Zenklusen [15] showed that the inte-
grality gap for k = 3 is indeed 1/2.

1.3. Preliminaries

Let N be a finite set of size n and f : 2N → R+ be a 
set function. We use + and − to as a shorthand for set 
union and difference, respectively. We repeat the defini-
tions of submodularity and monotonicity for the sake of 
completeness. Let f (U |S) denote f (U + S) − f (S) where 
U , S ∈ 2N . A set function f : 2N → R+ is submodular if 
and only if for all S ⊆ T ⊆ N and u ∈ N − T , we have 
f (u|S) ≥ f (u|T ). Additionally, the function f is monotone
if f (S) ≤ f (T ) for all S ⊆ T ⊆N . A submodular function is 
modular if there are weights w : N →R≥0 defined on ev-
ery element of the ground set such that f (S) = ∑

s∈S w(s)
for all S ⊆ N . Throughout the paper, we assume that f is 
a monotone, submodular function satisfying f (∅) = 0.2 We 

2 Functions satisfying these three properties are sometimes called poly-
matroid functions in the literature.
4

note that this immediately implies that f (X) ≥ 0 for every 
X ⊆ S . We may assume that f (∅) = 0 without loss of gen-
erality since otherwise we may work with the normalized 
function g : 2N → R defined by g(S) := f (S) − f (∅) for 
all S ⊆ N which is non-negative, submodular, and mono-
tone. It is clear that subtracting f (∅) from the function 
does not change the optimum solution of the problem, 
so a set which is a c-approximation with respect to the 
function g (for c ≤ 1) is still a c-approximation with re-
spect to f since g(S) ≥ c · g(O P T ) implies that f (S) ≥
c · f (O P T ) + (1 − c) f (∅) ≥ c · f (O P T ).

Matroids were introduced by Whitney [16] and Naka-
sawa [17]. A matroid M is a pair (N , I) where N is a 
ground set and I ⊆ 2N is the family of independent sets
satisfying the following, so-called independence axioms: (I1) 
∅ ∈ I , (I2) X ⊆ Y ∈ I ⇒ X ∈ I , and (I3) X, Y ∈ I, |X | <
|Y | ⇒ ∃e ∈ Y − X s.t. X + e ∈ I . A maximal independent 
set is called a base. The independent set axioms imply that 
all bases have the same size called the rank of the matroid. 
The rank function r : 2N → Z+ of a matroid M = (N , I)

is defined as r(S) := max{|X | | X ⊆ S, X ∈ I}. Contracting
a matroid M by an independent set S ∈ I is denoted by 
M/S: here, a set I ⊆N − S is an independent set of M/S
if I ∪ S is independent in M. It is easy to verify that M/S
is a matroid with rank function r′ : 2N−S → Z+ given by 
r′(X) = r(X ∪ S) − |S|. We will need the following well 
known result about matroids (see e.g. [18, Theorem 5.3.4]).

Lemma 1.6. Let A, B be independent sets in a matroid M such 
that |A| = |B|. Then, there exists a bijection h : A → B such 
that h(a) = a for all a ∈ A ∩ B and the set B − h(a) + a is an 
independent set for all a ∈ A.

2. Analyzing RRGREEDY for bounded curvature functions 
under matroid constraint

In this section we analyze the approximation factor 
of RRGreedy for submodular functions with curvature α
under matroid constraint. We show that the approxima-
tion factor of RRGreedy is at least that of Greedy, i.e., 
it achieves a ( 1

1+α )-approximation. Furthermore, we show 
that the approximation ratio holds in the worst-case: any 
set output by RRGreedy is a ( 1

1+α )-approximation. We 
need the following well known fact about matroids.

Lemma 2.1. Let P , Q be bases of M. For all p ∈ P − Q , there 
exists q ∈ Q − P such that P − p + q and Q − q + p are bases 
of M.

Let T be an arbitrary base in the matroid and let A be 
the set output by RRGreedy. We will now use Lemma 2.1
to get a bijection from A − T to T − A that satisfies a non-
increasing condition. This bijection is our key insight to 
prove Theorem 1.1.

Lemma 2.2. Let T be an arbitrary base in the matroid. In the 
execution of RRGreedy, let ui be the element chosen from the 
set Mi in the i’th iteration of the while loop, let Ai be the set after 
i iterations of the while loop, m be the number of iterations of 
the while loop and let A be the set output by RRGreedy. Then, 
there exists a mapping φ : T − A → A − T such that
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1. for every w ∈ T − A we have φ(w) = ui for some i ∈ [m]
with f (w|A) ≤ f (ui |Ai−1), and

2. φ is a bijection.

Proof. For every 0 ≤ i ≤ m, we will define a set Ti ⊆ T that 
will be a base of M/Ai . Let T0 := T . The set Ti will be 
defined recursively based on the choices of the algorithm. 
We may assume that the set Mi is a base of M/Ai−1 since 
f is monotone, so we get |Mi | = |Ti−1| for all i ∈ [m]. We 
define a bijection h : A → T such that for all ui ∈ A

1. f (ui |Ai−1) ≥ f (h(ui)|Ai−1),
2. h(ui) = ui if ui ∈ Ti−1, and
3. Ti−1 + ui − h(ui) is a base of M/Ai−1.

We now define h(ui) assuming we have Ai−1, Mi , and 
Ti−1. If ui ∈ Mi ∩ Ti−1, we set h(ui) := ui and all properties 
are satisfied (here Ti−1 + ui − h(ui) = Ti−1). If ui ∈ Mi −
Ti−1, we set h(ui) := t where t ∈ Ti−1 − Ai−1 is acquired 
from Lemma 2.1 by considering the matroid M/Ai−1 and 
bases P := Mi , Q := Ti−1. With this choice, we now prove 
that the above-mentioned properties are satisfied. The first 
property is satisfied because Mi + t − ui is a base of 
M/Ai−1 and if f (ui |Ai−1) < f (t|Ai−1), then it would im-
ply that 

∑
u∈Mi+t−ui

f (u|Ai−1) >
∑

u∈Mi
f (u|Ai−1), contra-

dicting the optimality of Mi . The third property is satisfied 
by Lemma 2.1.

We set Ti := Ti−1 − h(ui). Consequently, Ti is a base of 
M/Ai by the third property and the fact that Ai = Ai−1 +
ui .

Using the bijection h, we now construct the required 
bijection φ between T − A and A − T . Let w ∈ T − A. Then, 
there exists a unique u j0 ∈ A where u j0 = h−1(w) since h
is a bijection. By submodularity and the first property of h, 
we have

f (w|A) ≤ f (w|A j0−1) ≤ f (u j0 |A j0−1).

If u j0 /∈ T , then we define φ(w) := u j0 . If u j0 ∈ T , then 
it must be the case that u j0 /∈ T j0−1: suppose for contra-
diction u j0 ∈ T j0−1, then by the second property of the 
bijection h, we have h(u j0 ) = u j0 ∈ A, but h(u j0) = w /∈ A, 
a contradiction. Therefore, we have u j0 /∈ T j0−1. Since h is 
a bijection, there exists a unique index j1 < j0 such that 
h(u j1 ) = u j0 . Once again, by submodularity and the first 
property of h, we have

f (u j0 |A j0−1) ≤ f (u j0 |A j1−1) ≤ f (u j1 |A j1−1).

If u j1 /∈ T , then we define φ(w) := u j1 . Otherwise, if u j1 ∈
T , then it must be the case that u j1 /∈ T j1−1 by the second 
property of the bijection h. Since h is a bijection, there ex-
ists a unique index j2 < j1 such that h(u j2 ) = u j1 . Once 
again, by submodularity and the first property of h, we 
have

f (u j1 |A j1−1) ≤ f (u j1 |A j2−1) ≤ f (u j2 |A j2−1).

If u j2 /∈ T , then we define φ(w) := u j2 . Otherwise, we con-
tinue to trace back by the same argument as above until 
we arrive at an element u jr /∈ T and define φ(w) := u jr . 
5

We note that the tracing back procedure has to terminate 
since the indices are strictly decreasing: j0 > j1 > j2 >

. . . > jr . Thus, for every w ∈ T − A, we have a sequence 
of indices j0 > j1 > j2 > . . . > jr such that

1. w, u j0 , . . . , u jr−1 ∈ T and u jr ∈ A \ T ,
2. f (w|A) ≤ f (u j0 |A j0−1) ≤ . . . ≤ f (u jr |A jr−1),
3. h(u ji ) = u ji−1 for every i = r, . . . , 1 and h(u j0 ) = w .

By these properties, we have u jr ∈ A − T and moreover, 
f (w|A) ≤ f (u jr |A jr−1).

We now prove that φ is indeed a bijection. Since 
|T − A| = |A − T |, it suffices to show that φ is a one-to-
one mapping. Suppose for contradiction, we have two dis-
tinct elements w, w ′ ∈ T − A such that φ(w) = φ(w ′). Let 
( j0, j1, . . . , jr) and (i0, i1, . . . , ip) be the sequence of in-
dices that are encountered while defining φ(w) and φ(w ′)
respectively. Since w �= w ′ and h is a mapping it follows 
that u j0 �= ui0 . Since φ(w) = φ(w ′), we have u jr = uip . It 
follows that there exists a pair of indices j� and im such 
that u j� �= uim but u j�+1 = uim+1 . However, we know that 
h(u j�+1 ) = u j� and h(uim+1 ) = uim . This contradicts the fact 
that h is a mapping. �
Remark 2.3. A natural question that arises from our proof 
of Lemma 2.2 is whether we could have simply defined φ
to be h−1 restricted to A − T . For this to work we would 
need h(A ∩ T ) = A ∩ T ; however, this condition fails since 
the second property of h holds only for elements ui ∈ Ti−1
but not necessarily for elements ui ∈ T . Consider the fol-
lowing scenario. Suppose for some ui ∈ A − T we have 
h(ui) = w . It may be the case that for some j > i, we 
have that u j = w (i.e., the algorithm picks w in an iter-
ation j > i) and now we cannot set h(w) = w since h is a 
bijection and we have already set h(ui) = w .

We need the following lemma from [6].

Lemma 2.4. (Conforti and Cornuéjols [6]) Given T ⊆N and an 
ordered set A = {u1, u2, . . . , ut}, define Ai := {u1, u2, . . . , ui}
for 1 ≤ i ≤ t. Then, f (T ) is at most

α
∑

ui∈A−T

f (ui |Ai−1)+
∑

ui∈A∩T

f (ui|Ai−1)+
∑

w∈T −A

f (w|A).

We now restate and prove Theorem 1.1.

Theorem 1.1. RRGreedy achieves a (1/(1 +α))-approximation
for all random choices in the algorithm.

Proof. By construction, RRGreedy outputs a base in the 
matroid. We will show that for every base T and for every 
base A output by RRGreedy, we have that f (A) ≥ f (T )

1+α . Let 
ui be the element chosen in the i’th iteration of the while 
loop and let Ai be the set A after i iterations of the while 
loop (A0 = ∅). By Lemma 2.2, we have that∑
w∈T −A

f (w|A) ≤
∑

ui∈A−T

f (ui|Ai−1). (2)
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Using Lemma 2.4, we have that f (T )

≤ α
∑

ui∈A−T

f (ui |Ai−1)+
∑

ui∈A∩T

f (ui|Ai−1)+
∑

w∈T −A

f (w|A)

≤ α
∑

ui∈A−T

f (ui |Ai−1) +
∑

ui∈A∩T

f (ui|Ai−1)

+
∑

ui∈A−T

f (ui |Ai−1) (By inequality (2))

= α
∑

ui∈A−T

f (ui|Ai−1) + f (A) ≤ (1 + α) f (A). �

3. RRGreedy for k-matroid intersection

In this section, we consider the problem of maximiz-
ing a monotone submodular function subject to matroid 
intersection constraints. Here, we are given a monotone 
submodular function f : 2N → R+ and matroids M j =
(N , I j) for j = 1, . . . , k for k ≥ 2 and the goal is to find a 
common independent set I ∈ ∩k

j=1I j that maximizes f (I). 
We note that, in contrast to Theorem 1.1, the approxima-
tion factors of the algorithms in this section hold only 
in expectation and not in the worst-case. We will ana-
lyze 2MatroidIntersectionRRGreedy and MatroidInter-

sectionRRGreedy (both of which were presented in Sec-
tion 1.1) and prove Theorems 1.2 and 1.5.

For ease of understanding, we begin by analyzing the 
approximation factor of 2MatroidIntersectionRRGreedy

and prove Theorem 1.2 in Section 3.1. Next, we follow the 
ideas underlying this analysis to bound the approximation 
factor of MatroidIntersectionRRGreedy, i.e., the general-
ization of RRGreedy for arbitrary k, and prove Theorem 1.5. 
We need the following proposition.

Proposition 3.1. For all independent sets P , Q in a matroid 
M = (N , I) there exists a function h : P → Q ∪̇{d} where d
is a dummy element such that

1. Q − h(a) + a ∈ I for all a ∈ P and
2. h is injective when restricted to h−1 (Q ), i.e., for all 

p1, p2 ∈ P if h(p1), h(p2) ∈ Q , then h(p1) �= h(p2).

Proof. First we consider the case when |P | ≤ |Q |. By the 
exchange property of matroids, there exists V ⊆ Q − P
such that |V ∪ P | = |Q | and V ∪ P ∈ I . By Lemma 1.6, 
there exists a bijection h : P ∪ V → Q . The bijection maps 
elements in V to themselves, so elements of P map to 
unique elements of Q and both properties are satisfied. 
Next, we consider the case when |Q | < |P |. There exists 
V ⊆ P − Q such that V ∪ Q ∈ I and |V ∪ Q | = |P |. This 
implies that |P − V | = |Q |, so we can use Lemma 1.6 to 
get h : P − V → Q . All elements in v ∈ V have the prop-
erty that Q + v ∈ I , so we define h(v) := d for all v ∈ V . 
Such a mapping h satisfies both properties. �
3.1. Generalization of RRGreedy for k = 2

In this section, we analyze the approximation factor of 
2MatroidIntersectionRRGreedy which was presented in 
Section 1.1. We restate and prove Theorem 1.2
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eorem 1.2. For an arbitrary common independent set T and 
 set A output by 2MatroidIntersectionRRGreedy, we have 
t

f (A)] ≥ f (T )

3
.

of. In the execution of 2MatroidIntersectionRRGreedy, 
 Mi be the set M and ui be the element chosen in the 
 iteration of the while loop. Let Ai be the set A after i

rations of the while loop. We now define sets Ti which 
l be useful in the analysis. Let T0 := T . The sets Ti will 
defined inductively so that Ai ∪ Ti ∈ I1 ∩ I2. Assuming 
 have Ai−1, Mi , and Ti−1, we use Proposition 3.1 with 

Mi , Q = Ti−1, and M =Mb/Ai−1 to obtain functions 
: Mi → Ti−1∪̇{d}, where d is a dummy element, such 
t for b ∈ {1, 2},

. Ti−1 − hb(u) + u ∈ Ib/Ai−1 for every u ∈ Mi and

. hb is injective when restricted to h−1
b (Ti−1).

th such functions h1 and h2, we define Ti := Ti−1 −
ui) − h2(ui). We note that the first property of hb im-

es that Ai ∪ Ti ∈ I1 ∩ I2.
To prove the theorem, we will show that for every iter-

on i, we have that

[ f (Ai)] +E[ f (Ai ∪ Ti)]
2E[ f (Ai−1)] +E[ f (Ai−1 ∪ Ti−1)]. (3)

s would imply the theorem as follows: let m be the 
mber of iterations executed by the algorithm. Then,

[ f (Am)] = 2E[ f (Am)] +E[ f (Am ∪ Tm)]
≥ 2E[ f (A0)] +E[ f (A0 ∪ T0)]
= f (T ).

 note that Tm = ∅ because the algorithm outputs a 
ximal common independent set.
We now prove inequality (3). We first fix the choices 
de by the algorithm in the first i − 1 iterations. Con-
uently, the sets Ai−1, Mi , and Ti−1 are fixed. From the 
ond property of hb , we obtain that

i [ f (hb(ui)|Ai−1)] =
∑

u∈Mi
f (hb(u)|Ai−1)

|Mi| (4)

≤
∑

w∈Ti−1
f (w|Ai−1)

|Mi| (5)

 b = 1, 2. The inequality follows because the sum in the 
S contains unique elements of Ti−1. If d appears in the 

, we can think of f (d|Ai−1) = 0 since f is not defined 
d. We have, Eui [ f (Ai)] − f (Ai−1)

Eui [ f (ui|Ai−1)]∑
u∈Mi

f (u|Ai−1)

|Mi|∑
w∈Ti−1

f (w|Ai−1)
(6)
|Mi |
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≥ Eui [ f (h1(ui)|Ai−1)] +Eui [ f (h2(ui)|Ai−1)]
2

(7)

≥ Eui [ f (h1(ui)|Ai−1 ∪ Ti)] +Eui [ f (h2(ui)|Ai−1 ∪ Ti)]
2

(8)

≥ Eui [ f ({h1(ui),h2(ui)}|Ai−1 ∪ Ti)]
2

(9)

= f (Ti−1 ∪ Ai−1) −Eui [ f (Ai−1 ∪ Ti)]
2

≥ f (Ti−1 ∪ Ai−1) −Eui [ f (Ai ∪ Ti)]
2

. (10)

Inequality (6) is by the choice of the algorithm since 
Ai−1 ∪ Ti−1 ∈ I1 ∩ I2 and hence, Ti−1 is a valid candidate 
for Mi . Inequality (7) follows by (5). Inequalities (8) and 
(9) follow by submodularity and inequality (10) follows by 
monotonicity. Thus, for any fixed choice of Ai−1 we have, 
2Eui [ f (Ai)] +Eui [ f (Ai ∪ Ti)] ≥ 2 f (Ai−1) + f (Ai−1 ∪ Ti−1). 
So this inequality also holds in expectation when Ai−1
is unfixed. This shows that 2E[ f (Ai)] + E[ f (Ai ∪ Ti)] is 
monotone in i. �
3.2. Generalization of RRGreedy for arbitrary k

In this section, we analyze the approximation factor 
of MatroidIntersectionRRGreedy and prove Theorem 1.5. 
We note that the linear program LP(A) presented in Sec-
tion 1.1 has exponentially many constraints, but it can be 
solved in polynomial-time [19]. We first prove certain use-
ful properties of the Lovász extension in Section 3.2.1. We 
prove Theorem 1.1 in Section 3.2.2.

3.2.1. Properties of the Lovász extension
We recall that the Lovász extension of f : 2N → R+

is denoted by f − . For ease of notation, let f −(x + A) :=
f −(x + χ A) for all A ⊆ N and x ∈ RN+ . For a set S ⊆ N , 
we define f −(x|S) := g−(x) where g : 2N → R+ is the 
submodular function defined by g(P ) = f (P |S).

There are two further definitions of the Lovász exten-
sion that are equivalent to (1) (see [9]). We state these two 
definitions now. Let y ∈ [0, 1]N . Let s1, . . . , sn be an order-
ing of the elements of N such that y(s1) ≥ y(s2) ≥ · · · ≥
y(sn) and let Si := {s1, . . . , si} for i = 1, . . . , n and S0 = ∅. 
Then, we have that f −(y)

=
n∑

j=1

(y(s j) − y(s j+1)) f (S j) =
n∑

j=1

y(s j) f (s j |S j−1).

(11)

Next, consider the base polyhedron B( f ) := {x ∈ RN+ |
x(S) ≤ f (S) for every S ⊆N , x(N ) = f (N )}. Although the 
non-negativity of x is stated explicitly in the definition of 
B( f ), this also follows by the monotonicity of the function 
f , since x(s) = x(N ) − x(N − s) ≥ f (N ) − f (N − s) ≥ 0. 
For a vector y ∈RN+ , we have

f −(y) = max{yT x : x ∈ B( f )}. (12)

The next two lemmas summarize the main properties 
of f − that will be used in the analysis.
7

Lemma 3.2. Let y ∈[0, 1]n and A ⊆N such that A ∩ supp(y) =
∅. Then

f −(y|A) = f −(y + A) − f (A).

Proof. Since y ∈ [0, 1]n and A ∩ supp(y) = ∅, we can or-
der the elements of N in non-increasing order such that 
the elements of A appear before the elements of supp(y). 
Let i1, . . . , i j be the ordering of elements of supp(y) and 
S p = {sik |1 ≤ k ≤ p}. Then, by the chain definition (11), 
f −(y + A) = f (A) + ∑ j

k=1 yik f (sik |A ∪ Sk−1) = f (A) +
f −(y|A). �

The next lemma follows from the definition of the 
Lovász extension given in (12) (i.e., f −(y) is the optimum 
value of max yT x over B( f )).3

Lemma 3.3. Let y, z ∈ RN+ . We have the following properties 
for f −:

1. Monotonicity: If y ≤ z, then f −(y) ≤ f −(z).
2. Subadditivity: f −(y) + f −(z) ≥ f −(y + z).

Proof. 1. As every x ∈ B( f ) has non-negative coordinates 
and y ≤ z, the optimum value of max{yT x : x ∈ B( f )}
does not decrease when the objective changes from y
to z.

2. As f −(y) is defined as the maximum of a linear func-
tion over the base polyhedron B( f ), it is convex, and 
the statement follows. �

3.2.2. Proof of Theorem 1.5
We now prove Theorem 1.5. Our proof strategy is sim-

ilar to the one for two matroid intersection—however, in-
stead of using intermediate sets Ti , we will now use inter-
mediate vectors ti .

Let zi be the vector z and ui be the element chosen 
in the i’th iteration of the while loop. Let Ai be the set 
A after i iterations of the while loop. For notational conve-
nience, let xi := zi −χ Ai−1 for each iteration i. We note that 
xi ≥ 0 due to the constraints in LP(Ai−1) and moreover, xi
is in the matroid polytope of Mb/Ai−1 for all b ∈ [k]. We 
now define vectors ti which will be useful in the analy-
sis. Let t0 := t be a feasible point for LP(∅). We will define 
vectors ti inductively so that χ Ai + ti is in the matroid 
polytope of Mb for every b ∈ [k]. Assuming we have Ai−1, 
xi , and ti−1, we now define ti .

Let b ∈ [k]. Since xi and ti−1 are in the matroid polytope 
of Mb/Ai−1, they can be written as convex combina-
tions of indicator vectors of independent sets in Mb/Ai−1. 
Let xi = ∑

J∈ Jb
λ J χ

J and ti−1 = ∑
T ∈Tb

αT χ T where Jb
and Tb are collections of independent sets in Mb/Ai−1, 
λ J , αT ≥ 0 for all J ∈ Jb, T ∈ Tb , and 

∑
J∈ Jb

λ J =∑
T ∈Tb

αT = 1. Let J ∈ Jb, T ∈ Tb . By Proposition 3.1, there 
exists a function h J ,T

b : J → T ∪̇{d} where d is a dummy 
element such that

3 Although it is not needed in the present work, definitions (11) and 
(12) can be generalized to vectors in RN . Using this generalization, both 
statements in Lemma 3.3 hold for every y, z ∈RN .
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1. T − h J ,T
b (u) + u ∈ Ib/Ai−1 for all u ∈ J and

2. h J ,T
b restricted to 

(
h J ,T

b

)−1
(T ) is injective.

Let u ∈ supp(xi). Then, the point

rT :=
∑

J∈ Jb :u∈ J

(
λ J∑

S∈ Jb :u∈S λS

)
χ T +u−h J ,T

b (u)

= χ T +u −
∑

J∈ Jb :u∈ J

(
λ J

xi(u)

)
χh J ,T

b (u)

is in the matroid polytope of Mb/Ai−1 because it is a con-
vex combination of characteristic vectors of independent 
sets in Mb/Ai−1 (we use the convention that χd is the 
all zeroes vector for the dummy element d). Consequently, 
the convex combination of the rT vectors for T ∈ Tb given 
by

∑
T ∈Tb

αT ·rT = ti−1 +χu−
∑
T ∈Tb

αT

∑
J∈ Jb :u∈ J

(
λ J

xi(u)

)
χh J ,T

b (u)

is in the matroid polytope of Mb/Ai−1. Now for each u ∈
supp(xi), define yu

b := ∑
T ∈Tb

αT
∑

J∈ Jb :u∈ J

(
λ J

xi(u)

)
χh J ,T

b (u)

and for each a ∈ N − Ai−1, define yu(a) := min
{

ti−1(a),∑k
b=1 yu

b (a)
}

. We recall that ui is the element in supp(xi)

chosen by the algorithm in the i’th iteration. We set ti :=
ti−1 − yui .

Claim 3.4. The point χ Ai + ti is feasible for LP(Ai).

Proof. By the definition of yui we get 0 ≤ ti ≤ ti−1 − yui
b

for all b ∈ [k]. We have shown that ti−1 − yui
b is in the ma-

troid polytope of Mb/Ai for all b ∈ [k], so χ Ai + ti−1 − yui
b

is feasible for LP(Ai ). Consequently, the point ti is also in 
the matroid polytope of Mb/Ai for all b ∈ [k], and χ Ai + ti

is feasible for LP(Ai ). �
We now lower bound the marginal improvement of ui

on Ai−1 with an expression that represents the function 
value of yui

b .

Claim 3.5. For a fixed choice of Ai−1 and for all b ∈ [k], we have

Eui [ f (ui|Ai−1)] ≥Eui [ f −(yui
b |Ai−1)].

Proof. We first show the following inequality:

Eui [ f (ui|Ai−1)]

≥Eui

⎡
⎣ ∑

T ∈Tb

αT

∑
J∈ Jb :ui∈ J

(
λ J

xi(ui)

)
f (h J ,T

b (ui)|Ai−1)

⎤
⎦ .

(13)

ui

=

=

≤
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Expanding the RHS using the probability distribution on 
shows that 

(∑
v∈N−Ai−1

xi(v)
)

R H S

∑
u∈N−Ai−1

⎛
⎝ ∑

T ∈Tb

αT

∑
J∈ Jb :u∈ J

λ J f (h J ,T
b (u)|Ai−1)

⎞
⎠

∑
T ∈Tb, J∈ Jb

αT λ J

⎛
⎝∑

u∈ J

f (h J ,T
b (u)|Ai−1)

⎞
⎠

∑
T ∈Tb, J∈ Jb

αT λ J

(∑
w∈T

f (w|Ai−1)

)
(14)

∑
T ∈Tb

αT

(∑
w∈T

f (w|Ai−1)

)
∑

w∈supp(ti−1)

f (w|Ai−1)
∑

T ∈Tb :w∈T

αT

∑
w∈supp(ti−1)

f (w|Ai−1) · ti−1(w).

equality (14) follows by the injectivity of h J ,T
b . Since 

Ai−1 + ti−1 is feasible for LP(Ai−1) and χ Ai−1 + xi is an 
timal solution for LP(Ai−1), the previous expression is 
 most∑
N−Ai−1

f (u|Ai−1) · xi(u)=Eui [ f (ui |Ai−1)]
∑

u∈N−Ai−1

xi(u)

=
⎛
⎝ ∑

u∈N−Ai−1

xi(u)

⎞
⎠ LH S,

us proving inequality (13).
Let u ∈ supp(xi). Then, we have that

Tb

αT

∑
J∈ Jb :u∈ J

(
λ J

xi(u)

)
f
(

h J ,T
b (u)|Ai−1

)
⎛
⎝ ∑

T ∈Tb

αT

∑
J∈ Jb :u∈ J

(
λ J

xi(u)

)
f
(

h J ,T
b (u) + Ai−1

)⎞
⎠

− f (Ai−1).

e observe that the point yu
b is a convex combination of 

dicator vectors of sets {h J ,T
b (u)} for T ∈ Tb and J ∈ Jb . 

 definition of Lovász extension, this implies that

Tb

αT

∑
J∈ Jb :u∈ J

(
λ J

xi(u)

)
f
(

h J ,T
b (u) + Ai−1

)

f −(yu
b + Ai−1).

 Lemma 3.2, we have that f −(yu
b ) − f (Ai−1) =

(yu
b |Ai−1). Hence, using inequality (13), we have that 

ui [ f (ui |Ai−1)]
Eui [ f −(yui

b + Ai−1)] − f (Ai−1) = Eui [ f −(yui
b |Ai−1)].

�
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Now we have all the ingredients needed to bound the ap-
proximation factor.

Theorem 1.5. Let A be the set returned by MatroidIntersec-

tionRRGreedy and let t be any feasible point for LP(∅). Then,

E[ f (A)] ≥
(

1

k + 1

)
f −(t).

Proof. Consider a fixed choice of Ai−1. By Claim 3.5, we 
have that

kEui [ f (ui|Ai−1)] ≥
k∑

b=1

Eui

[
f −(yui

b |Ai−1)
]
. (15)

Using Lemma 3.3 (subadditivity and monotonicity of f −), 
we get that

Eui

[
k∑

b=1

f −(yui
b |Ai−1)

]
≥ Eui

[
f −

(
k∑

b=1

yui
b |Ai−1

)]

(16)

≥ Eui

[
f −(yui |Ai−1)

]
. (17)

Now by Lemma 3.3 (subadditivity) we have,
Eui [ f −(yui |Ai−1)] ≥ Eui [ f −(yui + ti |Ai−1)] −
Eui [ f −(ti |Ai−1)] = f −(ti−1|Ai−1) − Eui [ f −(ti |Ai−1)]. We 
note that supp(ti−1) ∩ Ai−1 = ∅ and supp(ti) ∩ Ai−1 = ∅. 
By Lemma 3.2, we have that

f −(ti−1|Ai−1) −Eui [ f −(ti|Ai−1)]
= f −(ti−1 + Ai−1) −Eui [ f −(ti + Ai−1)].

By monotonicity, we get

f −(ti−1 + Ai−1) −Eui [ f −(ti + Ai−1)]
≥ f −(ti−1 + Ai−1) −Eui [ f −(ti + Ai)].

Thus, we obtain that kEui [ f (ui |Ai−1)] ≥ f −(ti−1 + Ai−1) −
Eui [ f −(ti + Ai)]. Consequently, for any fixed choice of 
Ai−1, we have

kEui [ f (Ai)] +Eui [ f −(ti + Ai)]
≥ kf (Ai−1) + f −(ti−1 + Ai−1).

So, this inequality also holds when we take expecta-
tion over Ai−1. Thus, we have kE[ f (Ai)] + E[ f −(ti +
Ai)] ≥ kE[ f (Ai−1)] + E[ f −(ti−1 + Ai−1)] which implies 
that kE[ f (A)] + E[ f −(A)] = (k + 1)E[ f (A)] ≥ f −(t0) =
f −(t). �
Remark 3.6. We note that the above analysis can also be 
extended to show that Greedy outputs a common inde-
pendent set A with f (A) ≥ (1/(k + 1)) f −(t) for any point 
t that is feasible to LP(∅). This provides a stronger guaran-
tee for the approximation factor of Greedy as it is relative 
to the optimum value of the Lovász relaxation over the in-
tersection of matroid polytopes.
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Corollary 3.6.1. If f is modular, then E[ f (A)] ≥ f −(t)
k , where 

A is the set returned by MatroidIntersectionRRGreedy and t
is any point that is feasible for LP(∅).

Proof. For f being modular, the function f − is sim-
ply the natural extension of linear functions to fractional 
domains, so we have that f −(x) = ∑n

i=1 f (si)xi . In the 
proof of Theorem 1.5, we showed that kE[ f (ui |Ai−1)] ≥
E[ f −(yui |Ai−1)] (using inequalities (15) and (17) and tak-
ing expectation over Ai−1). Since f is modular this can 
be simplified to kE[ f (ui)] ≥E[ f −(yui )]. Now we take the 
sum over all ui and get,

kE[ f (A)] = kE

⎡
⎣∑

ui∈A

f (ui)

⎤
⎦ ≥E

⎡
⎣∑

ui∈A

f −(yui )

⎤
⎦

= f −(t). �
Remark 3.7. In Corollary 3.6.1, since we use f − and allow 
t to be fractional, the (1/k)-approximation is relative to 
the optimum of the LP relaxation of maximizing a modular 
function subject to a k-matroid intersection constraint. This 
again matches the guarantee of Greedy.

4. Conclusions and open problems

In this work, we analyzed the approximation factor of
RRGreedy for monotone submodular maximization subject 
to matroid and matroid intersection constraints. Our work 
raises many interesting open questions. Firstly, we showed 
that RRGreedy achieves (1/2)-approximation in the worst-
case (not just in expectation) for matroid constraint. An 
intriguing open question here is whether RRGreedy beats 
the (1/2)-factor in expectation. Indeed, it beats the (1/2)-
factor in expectation for partition matroid [7]. We conjec-
ture that it beats the (1/2)-factor in expectation for any 
matroid. If true this would imply a better deterministic ap-
proximation factor for the algorithm in [2] as their analysis 
uses the fact that the approximation factor of RRGreedy is 
1/2.

Another intriguing direction is to understand whether 
the approximation factor of RRGreedy is at least as good 
as Greedy even for specific matroids. In particular, for the 
uniform matroid (i.e., for cardinality constraint), we recall 
that Greedy achieves a (1 − 1/e)-approximation [3] and 
(1/α)(1 − e−α) for functions with curvature α [6]. Does
RRGreedy also achieve these same guarantees in expecta-
tion? This is indeed known for the case of α = 1 [1].

We note that 2MatroidIntersectionRRGreedy achieves 
an optimum when the function is modular (i.e., α = 0) 
and achieves a (1/3)-approximation in expectation for ar-
bitrary monotone submodular functions (i.e., when α = 1). 
A natural open question here is whether MatroidIntersec-

tionRRGreedy achieves a (1/(k − 1 + 2α))-approximation 
for maximizing monotone submodular functions with cur-
vature α subject to k matroid intersection constraints. We 
note that this conjecture if true, would also give an algo-
rithm to obtain (1/(k − 1))-approximation for maximizing 
a linear function subject to k matroid intersection con-
straints.
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Appendix A

A.1. Upper bound on 2MatroidIntersectionRRGreedy 
approximation ratio

We now describe a computer generated example that 
upper bounds the expected approximation ratio of
2MatroidIntersectionRRGreedy by 13/33. To generate the 
example, we fix two matroids and fix the choices made by 
the algorithm. The choices of the algorithm include the 
set Mi and the element ui that is chosen in each itera-
tion i. For fixed choices of the algorithm, our goal is to 
find a monotone submodular function that is consistent 
with the choices of the algorithm and that will minimize 
the approximation ratio of the algorithm. The choices of 
the algorithm are determined by the function values of 
subsets of N , so we create decision variables f (S) (that 
will correspond to the function value f (S)) for all S ⊆ N
and encode the decisions of the algorithm with linear con-
straints. We also ensure that the values of the variables 
correspond to a monotone submodular function by impos-
ing linear constraints. Since all constraints are linear, we 
can write a linear program (LP) that minimizes the ap-
proximation ratio of the algorithm.

We now describe the choice of two matroids that we 
use to generate our example. The common independent 
sets of two matroids will correspond to matchings in a bi-
partite graph. The bipartite graph that we use is a cycle 
with 2t edges for some parameter t . The elements of the 
ground set N := [2t] represent the edges of the cycle in 
order.

Next, we describe the choices of the algorithm and 
an optimal solution. We will set up the example so that 
2MatroidIntersectionRRGreedy will always output the 
matching A = { j ∈ N | j mod 2 = 1} irrespective of the 
random choices made by the algorithm. We will also set up 
the example so that the matching B = { j ∈ N | j mod 2 =
0} is the optimal solution.

Let C denote the set of maximal matchings in the graph 
and for any matching F , let C(F ) denote the set of max-
imal matchings that contain F . Maximal matchings are 
used to reduce the number of constraints in the LP. The 
example is generated by solving the following LP that has 
10
a variable representing the function value for every subset 
of N .

minimize f (A)∑
u∈A−M ′

f (u|M ′) ≥
∑

u∈S−M ′
f (u|M ′) (18)

∀M ′ ⊆ A,∀S ∈ C(M ′)
f (B) ≥ f (X)∀X ∈ C (19)

f (B) = 1 (20)

f (u|S) ≥ 0∀S ⊆ N ,∀u ∈ N − S (21)

f (X + x1) + f (X + x2) ≥ f (X + x1 + x2) + f (X)

∀X ⊆ N ,∀x1, x2 ∈ N − X (22)

f (∅) = 0 (23)

Constraint (19) ensures optimality of B . Constraints (21)
and (22) ensure that the function values correspond to a 
monotone submodular function. Constraints (20) and (23)
are for the purpose of normalization. We now show using 
Constraint (18) that 2MatroidIntersectionRRGreedy will 
indeed return A.

Claim A.1. For all M ′ ⊆ A, the set S = A − M ′ is an optimum 
solution to the following:

max

{∑
u∈S

f (u|M ′)|S ∩ M ′ = ∅, S ∪ M ′is a matching

}
.

Proof. Let F be a matching such that F ∪ M ′ is also match-
ing. Let F ′ be the set acquired by adding edges to F so that 
it is a maximal matching. Hence, F ′ ∈ C(M ′). By constraint
(18) and by monotonicity of f , we have that∑
u∈A−M ′

f (u|M ′) ≥
∑
u∈F ′

f (u|M ′) ≥
∑
u∈F

f (u|M ′). �

Claim A.2. 2MatroidIntersectionRRGreedy will always out-
put A.

Proof. We prove by induction on i that 2MatroidIntersec-

tionRRGreedy will always choose elements of A in itera-
tions 1, . . . , i. Let i = 1 and M ′ = ∅. Now Claim A.1 implies 
that A = arg max{∑u∈S f (u)|S is a matching}, so the algo-
rithm can choose an element of A in the first iteration. 
Now assume that Ai−1 ⊆ A is the set of elements chosen 
by the algorithm in the first i − 1 iterations. The set A −
Ai−1 is a valid candidate for Mi and Claim A.1 implies A −
Ai−1 =arg max{∑u∈S−Ai−1

f (u|Ai−1)|S ∪ Ai−1 is a matching}. 
So, the algorithm can choose Mi to be A − Ai−1 and the 
algorithm chooses an element of A in iteration i. Hence, 
we have Ai ⊆ A. �
Lemma A.3. The approximation ratio of 2MatroidIntersec-

tionRRGreedy is upper bounded by 13/33.

Proof. Solving the LP for t = 6 generates a solution where 
f (A) = 13/33. �
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