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Residual Random Greedy (RRGREEDY) is a natural randomized version of the greedy
algorithm for submodular maximization. It was introduced to address non-monotone
submodular maximization [1] and plays an important role in the deterministic algorithm
for monotone submodular maximization that beats the (1/2)-factor barrier [2]. In this
work, we analyze RRGREEDY for monotone submodular functions along two fronts: (1)
For matroid constrained maximization of monotone submodular functions with bounded
curvature o, we show that RRGREEDY achieves a (1/(1 + «))-approximation in the worst-
case (i.e., irrespective of the randomness in the algorithm). In particular, this implies that
it achieves a (1/2)-approximation in the worst-case (not just in expectation). (2) We
generalize RRGREEDY to k matroid intersection constraints and show that the generalization
achieves a (1/(k + 1))-approximation in expectation relative to the optimum value of the
Lovasz relaxation over the intersection of k matroid polytopes. Our results suggest that
RRGREEDY is at least as good as GREEDY for matroid and matroid intersection constraints.
© 2022 Elsevier B.V. All rights reserved.
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modular function f: PN R by a valuation oracle and
matroids M; = (N, Z;) for j=1,...,k by independent
set oracles, and the goal is to find a common indepen-

1. Introduction

A set function f : 2N R, is submodular if f(A) +

f(B) > f(AN B) + f(A U B) for every pair of subsets
A,B C N, and is monotone if f(B) > f(A) for every pair
of subsets A € B C A. Submodular functions arise in sev-
eral areas including combinatorial optimization, game the-
ory, and economics. The problem of maximizing a mono-
tone submodular function subject to matroid intersection
constraints has been extensively studied in the approx-
imation literature. Here, we are given a monotone sub-
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dent set [ € ﬂ’]‘.:]Zj so as to maximize f(I). Throughout
this work, we will be interested in non-negative mono-
tone submodular functions. For subsets U, A € N, we use
fWU|A) .= f(UUA) — f(A) to denote the marginal gain in
function value.

For single matroid constraint, Fisher, Nemhauser, and
Wolsey [3] showed that the greedy algorithm achieves
a (1/2)-approximation. The greedy algorithm, denoted
GREEDY, builds a candidate set A by starting with A :=0
and repeatedly adding an element u into A such that
u+ A e€Z and the marginal gain f(u|A) is maximized.
It is known that no polynomial-time algorithm can yield
(1 —1/e + €)-approximation for any constant € > 0 [4]. In
a breakthrough work, Calinescu, Chekuri, Pal, and Vondrak
[5] designed a randomized (1 — 1/e)-approximation. Very
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RRGREEDY (M, f)
Input: A matroid M = (N, Z) and
a monotone submodular function f:2V — R
Initialize A < @
While there exists u € NV — A such that A+ ueZ:
Let M be a subset of A" — A that maximizes
> uem f(u|A) such that MUA e
Let u be a uniformly random element from M
A<—A+u
Return A

Fig. 1. RRGREEDY for matroid constraint.

recently, Buchbinder, Feldman, and Garg [2] designed the
first deterministic algorithm that broke the (1/2)-factor
barrier. One of the main ingredients of their improved
approximation is a randomized version of the greedy al-
gorithm, known as RRGREEDY (short for Residual Random
Greedy). As part of their proof, they showed that RRGREEDY
achieves (1/2)-approximation in expectation. In this work,
we investigate RRGREEDY along two fronts: (1) What is the
approximation factor of RRGREEDY for monotone submod-
ular functions with bounded curvature, and (2) Is there a
generalization of RRGREEDY for matroid intersection with
good approximation guarantee?

RRGREEDY was introduced by Buchbinder, Feldman,
Naor, and Schwartz [1] to address non-monotone sub-
modular maximization as a natural way to randomize the
greedy strategy. Instead of choosing an element that max-
imizes the marginal gain with respect to the current set,
it considers a set of good choices to add and randomly
chooses one among them. We state RRGREEDY for matroid
constraint in Fig. 1.

It is easy to see that RRGREEDY achieves the optimum
value for modular functions while previous works have
shown that it achieves (1/2)-approximation in expecta-
tion for monotone submodular functions [2,1]. Is there a
smooth interpolation of its approximation factor based on
distance to modularity of the submodular function? Con-
forti and Cornuéjols [6] introduced the notion of curvature
as a measure of distance to modularity of a set func-
tion. The curvature of f : 2N R, is defined as o :=
1 — mingep: fuy>0(fN) — FN —u))/ f(u). We note that
o =0 if and only if f is modular and 0 <« <1 for
monotone submodular functions. Conforti and Cornuéjols
showed that GREEDY achieves (1/(1 4+ «))-approximation
for matroid constraint. Their result gives a unified expla-
nation for the approximation factor of GREEDY for both
modular as well as monotone submodular functions. Given
this status of GREEDY, can we analyze the approximation
factor of RRGREEDY for bounded curvature functions? Is
it at least as good as GREEDY? We address this in Theo-
rem 1.1. Our theorem shows a surprisingly strong result
about RRGREEDY: it is at least as good as GREEDY in the
worst-case and not just in expectation (i.e., for all random
choices).

Next, we turn to k matroid intersection constraints
where k > 2. Fisher, Nemhauser, and Wolsey [3] considered
the natural extension of GREEDY, where the next element
u is chosen to be the one with maximum f(u|A) sub-
ject to u 4+ A being independent in all matroids. We will
denote this extension also as GREEDY. They showed that
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GREEDY achieves (1/(k + 1))-approximation. We note that
for k =1, the expected approximation factor of RRGREEDY
and the approximation factor of GREEDY coincide. While
GREEDY has a natural generalization for k > 2 matroid con-
straints, it is apriori unclear if there is a natural general-
ization of RRGREEDY to k > 2 matroid constraints and even
if so, would its approximation ratio be comparable to that
of GREEDY? In this work, we present a generalization of
RRGREEDY for matroid intersection constraints and show
that the approximation factor of the generalization is in-
deed at least as good as GREEDY.

Although we do not improve the approximation factors
of the respective problems, our results present evidence
suggesting that RRGREEDY might be a viable algorithm for
improving the approximation factors. We show surprising
results which were not known for RRGREEDY. Our results
raise several interesting open questions about RRGREEDY
that we summarize in the conclusion section.

1.1. Our contributions

Our first result is about the approximation factor of
RRGREEDY for maximizing a monotone submodular func-
tion with bounded curvature subject to matroid constraint.
We recall that RRGREEDY achieves an optimum for o =0
and a (1/2)-approximation in expectation for ¢ = 1. We
show the following:

Theorem 1.1. RRGREEDY achieves a (1/(1+«))-approximation
for all random choices in the algorithm.

The theorem highlights two important features of
RRGREEDY. Firstly, it shows that the approximation ratio of
RRGREEDY is at least as good as GREEDY even for bounded
curvature functions. Secondly, for arbitrary submodular
functions (i.e., when curvature o = 1), RRGREEDY achieves
a (1/2)-approximation in the worst-case and not only just in
expectation as was known before [2,1]. If we consider the
execution of a randomized algorithm as a branching tree
where the algorithm’s decision can be viewed as follows a
particular branch based on the outcome of a random coin
toss, then our result says that every branch of the execu-
tion tree would still lead to a (1/2)-approximation. This
also tells us that the greedy algorithm is forgiving in terms
of mistakes: even if we make certain kind of mistakes in
greedy, we would still get a (1/2)-approximation! In par-
ticular, instead of picking the element u with maximum
f(u]A), we could have chosen an arbitrary element u € M,
where M is a set in the contracted matroid M /A with
maximum sum of marginals ), f(u|A), and it would
still lead to a (1/2)-approximation. We note that this re-
sult was previously known only for partition matroids [7].

Next, we generalize RRGREEDY for k matroid intersec-
tion constraints. For the case of k = 2, a natural gen-
eralization is to define the set M to be a common in-
dependent set in Mj/A and M;/A that maximizes
> uem f(]A). We recall that the problem of finding a
maximum weight common independent set in two ma-
troids is solvable in polynomial time [8]. This leads to the
algorithm given in Fig. 2. We show that this algorithm
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2MATROIDINTERSECTIONRRGREEDY (M1, M3, f)
Input: Matroids Mj = (N, Z) for b=1,2 and
a monotone submodular function f:2V — R
Initialize A < @
While there exists u € N — A such that A+u €7y NZ;:
Let M be a subset of A" — A that maximizes
> uem f(W|A) such that MUA € Iy N I,
Let u be a uniformly random element from M
A<—A+u
Return A

Fig. 2. RRGREEDY for 2 matroid intersection constraints.

(i.e., 2MATROIDINTERSECTIONRRGREEDY) achieves a (1/3)-
approximation.

Theorem 1.2. For an arbitrary common independent set T and
the set A output by 2MATROIDINTERSECTIONRRGREEDY, we have
that

Efanz L0

3

Remark 1.3. A natural question is whether Theorem 1.2 is
tight, i.e., does 2MATROIDINTERSECTIONRRGREEDY achieve an
approximation factor that is better than 1/3, perhaps 1/2?
Based on computer experiments, we were able to show
the following: There exist matroids M; and M; and a
monotone submodular function f such that the best pos-
sible approximation factor achieved for all random choices
in the execution of 2MATROIDINTERSECTIONRRGREEDY is at
most 13/33. This example is described in the appendix.

Remark 1.4. Based on the result in Theorem 1.1, one might
conjecture that the statement of Theorem 1.2 may also
hold in the worst case (and not just in expectation). How-
ever, we were able to rule out this conjecture with a
computer-generated example.

Next, we generalize RRGREEDY for k matroid intersec-
tion constraints where k > 3. We note that the algorithm
in Fig. 2 does not generalize to k > 3 since the problem
of finding a maximum weight common independent set in
three matroids is NP-hard. Instead, we take an alternative
perspective of RRGREEDY. We view RRGREEDY for k =1 as
optimizing over the matroid polytope to obtain a solution
x € [0, 1]N and then sampling an element u with prob-
ability proportional to x(u). We recall that extreme point
solutions x to the matroid polytope are integral and hence,
this naturally leads to the choice M = support(x). This per-
spective leads to a natural generalization of RRGREEDY for
k > 2 matroid intersection constraints: optimize over the
intersection of k matroid polytopes to obtain a point z
and then sample a point u with probability proportional to
z(u) to add to the current set A. For a fixed set A that is
independent in all k matroids, we consider the following
LP whose feasible region is the intersection of the k ma-
troid polytopes (where r; is the rank function of the j’th
matroid):

max Y z(u) f (u|A)
ueN

(LP(A))
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MATROIDINTERSECTIONRRGREEDY (M7, ..., My, f)
Input: Matroids M = N, Zj) for j e [k] and
a monotone submodular function f:2V — R
Initialize A < @
While there exists u € V' — A such that A+ u e ﬂﬁzllj:
Let z be an optimum solution to LP(A)
Let u be an element in A" — A sampled with
probability z(u)/ ", canr—a 2(V)
A<—A+u
Return A

Fig. 3. RRGREEDY for k matroid intersection constraints.

> 2w <ri(SUA) —|AIYSC N, jelk]
ueS—A

z(u)>0YueN

zw)y=1VueA.

We use this LP to generalize RRGREEDY for k-matroid in-
tersection as shown in Fig. 3.

In order to analyze MATROIDINTERSECTIONRRGREEDY, we
compare the objective value of the set returned by the al-
gorithm with the optimum objective value of the Lovasz
relaxation. For a set S C NV, let XS € {0, l}N denote the
indicator vector of S. For a function f : 2N R, the con-
vex closure f~ : [0, 1]N — R is defined as f~(y) :=

mind > Asf(S): Y Asx®=y.As=0VSCN
SCN SCN

(1)

We note that the definition we use here is not the same
as the original definition of the Lovasz relaxation. It is well
known that the convex closure of a function f is equiva-
lent to the Lovasz relaxation in the cube [0, 1]V when f is
submodular [9].

We show the following result for the algorithm Ma-
TROIDINTERSECTIONRRGREEDY.

Theorem 1.5. Let A be the set returned by MATROIDINTERSEC-
TIONRRGREEDY and let t be any feasible point for LP(#). Then,

1 _
ELf(A)] > (m)f o

The theorem shows that the expected approximation
factor of RRGREEDY for k matroid intersection is at least
that of GREEDY. Moreover, our approximation guarantee
is relative to the optimum value of the Lovasz relaxation
over the k matroid intersection polytope. Thus, it could be
viewed as bounding the integrality gap. We note that our
techniques underlying the proof of Theorem 1.5 can also be
extended to show that the approximation factor of GREEDY
is also the same factor relative to the optimum value of the
Lovasz relaxation over the k matroid intersection polytope.

1.2. Related work
As mentioned earlier, Conforti and Cornuéjols [6] in-

troduced the notion of curvature as a measure of dis-
tance to modularity of a monotone submodular function.
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They showed that GREEDY for matroid constraint achieves
a (1/(1 + «a))-approximation, where « is the curvature
of the monotone submodular function. For uniform ma-
troid, they showed that GREEDY achieves a (1/a)(1 —e~%)-
approximation. This result also recovers the (1 — e~ 1)-
approximation guarantee for the case of o = 1 which
was shown by Fisher, Nemhauser, and Wolsey [3]. Re-
cent works have extended the results for uniform ma-
troids beyond submodular functions [10]. Vondrak intro-
duced a slightly different definition of curvature, denoted
by ¢ [11], and showed that the continuous greedy algo-
rithm of [5] achieves a (1/c)(1 — e~ ¢)-approximation for
any matroid. Subsequently, Sviridenko, Vondrak, and Ward
showed a different algorithm that achieves a (1 — «/e)-
approximation for any matroid [12].

For k > 2 matroid intersection constraints, Fisher, Nem-
hauser, and Wolsey showed that GREEDY achieves a (1/(k+
1))-approximation. Conforti and Cornuéjols showed that it
achieves a (1/(k + «))-approximation, where « is the cur-
vature of the monotone submodular function. Lee, Sviri-
denko, and Vondrdk [13] gave a polynomial-time local-
search algorithm that achieves a (1/k + €)-approximation
for k > 2 matroid intersection constraints for arbitrary cur-
vature (for any constant €). We observed via an additional
lemma from their main theorem that their algorithm also
achieves a (1/(k — 1+ o + €))-approximation for monotone
submodular functions with curvature «.

For k > 3 matroid intersection constraints, the case
where the submodular function is in fact a modular func-
tion (i.e., a linear function) is also of special interest.
In particular, if the modular function is the cardinality
function, then Lau, Ravi, and Singh [14] showed an it-
erative rounding algorithm that achieves a (1/(k — 1))-
approximation relative to the LP-optimum value. For ar-
bitrary modular functions, Lee, Sviridenko, and Vondrak
[13] showed that their local search algorithm achieves a
(1/(k — 1 + €))-approximation. A well-known open ques-
tion for modular functions is whether the integrality gap
of the LP is at least (1/(k — 1)). In a recent work, Linhares,
Olver, Swamy, and Zenklusen [15] showed that the inte-
grality gap for k =3 is indeed 1/2.

1.3. Preliminaries

Let N be a finite set of size n and f : 2N R, be a
set function. We use + and — to as a shorthand for set
union and difference, respectively. We repeat the defini-
tions of submodularity and monotonicity for the sake of
completeness. Let f(U|S) denote f(U + S) — f(S) where
U,S €2V, A set function f:2V — R, is submodular if
and only if for all SCTCN and u e N — T, we have
f@|S) > f(u|T). Additionally, the function f is monotone
if f(S) < f(T) for all SC T € N. A submodular function is
modular if there are weights w : N'— R defined on ev-
ery element of the ground set such that f(S) =3, ¢ w(s)
for all S € V. Throughout the paper, we assume that f is
a monotone, submodular function satisfying f (%) = 0.2 We

2 Functions satisfying these three properties are sometimes called poly-
matroid functions in the literature.
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note that this immediately implies that f(X) > 0 for every
X € S. We may assume that f(¥) =0 without loss of gen-
erality since otherwise we may work with the normalized
function g : 2N 5 R defined by g(S) := f(S) — f(®) for
all S € NV which is non-negative, submodular, and mono-
tone. It is clear that subtracting f(¥) from the function
does not change the optimum solution of the problem,
so a set which is a c-approximation with respect to the
function g (for ¢ < 1) is still a c-approximation with re-
spect to f since g(S) > c - g(OPT) implies that f(S) >
c-f(OPT)+(1—o)f(@) >c- f(OPT).

Matroids were introduced by Whitney [16] and Naka-
sawa [17]. A matroid M is a pair (M, Z) where N is a
ground set and Z C 2N s the family of independent sets
satisfying the following, so-called independence axioms: (I1)
PeZ (I2) XCYeI=XeZ and (I3) X,Y €Z, |X| <
Y| = 3JeeY — X sit. X+ecZ. A maximal independent
set is called a base. The independent set axioms imply that
all bases have the same size called the rank of the matroid.
The rank function r: 2V — Z of a matroid M = (N, 7)
is defined as r(S) := max{|X| | X € S, X € Z}. Contracting
a matroid M by an independent set S € Z is denoted by
M/S: here, a set | C N —S is an independent set of M/S
if IUS is independent in M. It is easy to verify that M/S
is a matroid with rank function ' : 2V -5 — Z 4 given by
r'(X) =r(XUS) —|S|. We will need the following well
known result about matroids (see e.g. [18, Theorem 5.3.4]).

Lemma 1.6. Let A, B be independent sets in a matroid M such
that |A| = |B|. Then, there exists a bijection h : A — B such
that h(a) = a for alla € A N B and the set B — h(a) + a is an
independent set for all a € A.

2. Analyzing RRGREEDY for bounded curvature functions
under matroid constraint

In this section we analyze the approximation factor
of RRGREEDY for submodular functions with curvature o
under matroid constraint. We show that the approxima-
tion factor of RRGREEDY is at least that of GREEDy, i.e.,
it achieves a (ﬁ)-approximation. Furthermore, we show
that the approximation ratio holds in the worst-case: any
set output by RRGREEDY is a (ﬁ)—approximation. We
need the following well known fact about matroids.

Lemma 2.1. Let P, Q be bases of M. Forall p € P — Q, there
existsq € Q — P such that P — p +q and Q — q + p are bases
of M.

Let T be an arbitrary base in the matroid and let A be
the set output by RRGREEDY. We will now use Lemma 2.1
to get a bijection from A—T to T — A that satisfies a non-
increasing condition. This bijection is our key insight to
prove Theorem 1.1.

Lemma 2.2. Let T be an arbitrary base in the matroid. In the
execution of RRGREEDY, let u; be the element chosen from the
set M; in the i’th iteration of the while loop, let A; be the set after
i iterations of the while loop, m be the number of iterations of
the while loop and let A be the set output by RRGREEDY. Then,
there exists a mapping ¢ : T — A — A — T such that
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1. for every w € T — A we have ¢ (w) = u; for some i € [m]
with f(w|A) < f(uilAi-1), and
2. ¢ is a bijection.

Proof. For every 0 <i <m, we will define a set T; C T that
will be a base of M/A;. Let To :=T. The set T; will be
defined recursively based on the choices of the algorithm.
We may assume that the set M; is a base of M/A;_1 since
f is monotone, so we get |M;| = |T;—1]| for all i € [m]. We
define a bijection h: A — T such that for all u; € A

1 filAi—1) = f(h(upl|Ai—1),
2. h(uj) =u; if u; € T;_1, and
3. Ti—1 +u; — h(u;) is a base of M/A;_1.

We now define h(u;) assuming we have A;_1, M;, and
Ti—q1.If u; € MjNTj_q1, we set h(u;) := u; and all properties
are satisfied (here Ti_1 + u;j — h(u;) = Tij_1). If u; € M; —
Ti_1, we set h(uj) :=t where t € T;_1 — Aj_1 is acquired
from Lemma 2.1 by considering the matroid M/A;_1 and
bases P := M;, Q := T;_1. With this choice, we now prove
that the above-mentioned properties are satisfied. The first
property is satisfied because M; 4+t — u; is a base of
M/Ai_1 and if f(uij|lAi—1) < f(t|Ai—1), then it would im-
ply that ZueMi+[_ui fw|Ai—1) > ZueMi f(u|A;i_1), contra-
dicting the optimality of M;. The third property is satisfied
by Lemma 2.1.

We set T; := T;_1 — h(u;j). Consequently, T; is a base of
M/ A; by the third property and the fact that A; = A;_1 +
uj.

Using the bijection h, we now construct the required
bijection ¢ between T —A and A—T. Let w € T — A. Then,
there exists a unique uj, € A where uj, = h=1(w) since h
is a bijection. By submodularity and the first property of h,
we have

fWIA) = fF(WAjo—1) < fUjolAjp—1)-

If uj, ¢ T, then we define ¢(w) :=uj,. If uj, € T, then
it must be the case that uj, ¢ Tj,_q: suppose for contra-
diction uj, € Tj,—1, then by the second property of the
bijection h, we have h(uj)) =uj, € A, but h(uj,) =w ¢ A,
a contradiction. Therefore, we have uj, ¢ Tj,_1. Since h is
a bijection, there exists a unique index ji < jo such that
h(uj,) = uj,. Once again, by submodularity and the first
property of h, we have

f(ujolAjo—l) = f(ujolAj1—l) = f(uj1 |Aj1—])~

If uj, ¢ T, then we define ¢(w) :=uj,. Otherwise, if uj, €
T, then it must be the case that uj, ¢ Tj,_1 by the second
property of the bijection h. Since h is a bijection, there ex-
ists a unique index j» < ji such that h(uj,) = uj,. Once
again, by submodularity and the first property of h, we
have

f(uﬁ |Aj17‘1) = f(uﬁ |Aj27]) = f(ujzlAj271)~

Ifuj, ¢ T, then we define ¢ (w) :=uj,. Otherwise, we con-
tinue to trace back by the same argument as above until
we arrive at an element uj, ¢ T and define ¢(w) :=uj;,.
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We note that the tracing back procedure has to terminate
since the indices are strictly decreasing: jo > j1 > j2 >
...> jr. Thus, for every w € T — A, we have a sequence
of indices jo > j1 > j2 > ...> jr such that

1 w,uj,,...,uj,_, €T and uj, € A\T,
2. f(WIA) < fujolAj—1) <... < F(uj,|Aj—1),
3. h(uj;)=uj, , foreveryi=r,...,1and h(uj) =w.

By these properties, we have uj € A — T and moreover,
F(WIA) < f(uj,|Aj1).

We now prove that ¢ is indeed a bijection. Since
|IT — A| = |A — T|, it suffices to show that ¢ is a one-to-
one mapping. Suppose for contradiction, we have two dis-
tinct elements w, w’ € T — A such that ¢(w) = ¢(w’). Let
(jo, j1,...,jr) and (io,i1,...,ip) be the sequence of in-
dices that are encountered while defining ¢ (w) and ¢ (w’)
respectively. Since w # w’ and h is a mapping it follows
that uj, # uj,. Since ¢(w) = ¢(w’), we have uj, = uj,. It
follows that there exists a pair of indices j, and iy such
that uj, # u;, but uj,,, = uj,,,. However, we know that
h(uj,,,) =uj, and h(u;,,,) = u;,. This contradicts the fact
that h is a mapping. O

Remark 2.3. A natural question that arises from our proof
of Lemma 2.2 is whether we could have simply defined ¢
to be h~! restricted to A — T. For this to work we would
need h(ANT) = ANT; however, this condition fails since
the second property of h holds only for elements u; € Tj_q
but not necessarily for elements u; € T. Consider the fol-
lowing scenario. Suppose for some u; € A — T we have
h(uj) = w. It may be the case that for some j > i, we
have that u; = w (i.e, the algorithm picks w in an iter-
ation j > i) and now we cannot set h(w) = w since h is a
bijection and we have already set h(u;) = w.

We need the following lemma from [6].

Lemma 2.4. (Conforti and Cornuéjols [6]) Given T € N and an
ordered set A = {u1, uy, ..., us}, define A; :={uq,ua, ..., u;}
for1 <i<t.Then, f(T) is at most

a Y failAiip+ Y fwilAii+ Y. f(wlA).

ujeA-T ujeANT weT—A
We now restate and prove Theorem 1.1.

Theorem 1.1. RRGREEDY achieves a (1/(1+«))-approximation
for all random choices in the algorithm.

Proof. By construction, RRGREEDY outputs a base in the
matroid. We will show that for every base T and for every
base A output by RRGREEDY, we have that f(A) > % Let
u; be the element chosen in the i’th iteration of the while
loop and let A; be the set A after i iterations of the while
loop (Aop = ¥). By Lemma 2.2, we have that

doofwlA < Y filAiy). (2)

weT—A u;jeA-T
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Using Lemma 2.4, we have that f(T)

<a Y fuilAin+ Y fuilAi)+ Y. f(wlA)

ujeA-T u;eANT weT—A

<o Y filAiio+ Y fuilAi)

ujeA-T u;eANT

+ ) filAis)

ujeA-T

=a Y flAi-)+f(A)<A+a)f(A). O

ujeA-T

(By inequality (2))

3. RRGreedy for k-matroid intersection

In this section, we consider the problem of maximiz-
ing a monotone submodular function subject to matroid
intersection constraints. Here, we are given a monotone
submodular function f : 2N R, and matroids M; =
N, Zj) for j=1,...,k for k> 2 and the goal is to find a
common independent set [ € ﬂ’]‘.:]Zj that maximizes f(I).
We note that, in contrast to Theorem 1.1, the approxima-
tion factors of the algorithms in this section hold only
in expectation and not in the worst-case. We will ana-
lyze 2MATROIDINTERSECTIONRRGREEDY and MATROIDINTER-
SECTIONRRGREEDY (both of which were presented in Sec-
tion 1.1) and prove Theorems 1.2 and 1.5.

For ease of understanding, we begin by analyzing the
approximation factor of 2MATROIDINTERSECTIONRRGREEDY
and prove Theorem 1.2 in Section 3.1. Next, we follow the
ideas underlying this analysis to bound the approximation
factor of MATROIDINTERSECTIONRRGREEDY, i.e., the general-
ization of RRGREEDY for arbitrary k, and prove Theorem 1.5.
We need the following proposition.

Proposition 3.1. For all independent sets P, Q in a matroid
M = (N, T) there exists a function h : P — QU{d} where d
is a dummy element such that

1. Q —h(a)+aeZforallae P and
2. h is injective when restricted to h=1(Q), ie., for all
p1, p2 € P ifh(p1), h(p2) € Q, then h(p1) # h(p2).

Proof. First we consider the case when |P| < |Q]|. By the
exchange property of matroids, there exists V € Q — P
such that |V UP|=1|Q| and V UP € Z. By Lemma 1.6,
there exists a bijection h: P UV — Q. The bijection maps
elements in V to themselves, so elements of P map to
unique elements of Q and both properties are satisfied.
Next, we consider the case when |Q| < |P|. There exists
VCP—-Q suchthat VUQ €Z and |V U Q| =|P|. This
implies that [P — V|=1]Q|, so we can use Lemma 1.6 to
get h: P —V — Q. All elements in v € V have the prop-
erty that Q + v € Z, so we define h(v) :=d for all ve V.
Such a mapping h satisfies both properties. 0O

3.1. Generalization of RRGreedy for k =2

In this section, we analyze the approximation factor of
2MATROIDINTERSECTIONRRGREEDY which was presented in
Section 1.1. We restate and prove Theorem 1.2
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Theorem 1.2. For an arbitrary common independent set T and
the set A output by 2MATROIDINTERSECTIONRRGREEDY, we have
that

Erfan= 10
3

Proof. In the execution of 2MATROIDINTERSECTIONRRGREEDY,
let M; be the set M and u; be the element chosen in the
i'th iteration of the while loop. Let A; be the set A after i
iterations of the while loop. We now define sets T; which
will be useful in the analysis. Let Tg := T. The sets T; will
be defined inductively so that A; U T; € Z1 N Zy. Assuming
we have A;_1, M, and T;_1, we use Proposition 3.1 with
P=M;, Q =T;_1, and M = M, /A;_1 to obtain functions
hp : Mi — Ti_1U{d}, where d is a dummy element, such
that for b € {1, 2},

1. Ti—1 —hp(u) +ueZy/A;j_1 for every u € M; and
2. hy is injective when restricted to hb’1 (Ti_1).

With such functions hy and hy, we define T; :=T;_1 —
hi(uj) — ha(uj). We note that the first property of hp im-
plies that A; UT; € Z; N 1,.

To prove the theorem, we will show that for every iter-
ation i, we have that

2E[f(AD]+E[f(A; UTy]
> 2E[f(Ai-D)] +E[f(Ai-1 UTi—1)]. 3)
This would imply the theorem as follows: let m be the
number of iterations executed by the algorithm. Then,
SELf (Am)]=2ELf (Am)] + E[f (A U Trn)]

> 2E[f(A0)] + E[f (Ao UTo)]

= f(D).

We note that T, = ¢ because the algorithm outputs a
maximal common independent set.

We now prove inequality (3). We first fix the choices
made by the algorithm in the first i — 1 iterations. Con-
sequently, the sets Aj_1, Mj, and T;_; are fixed. From the
second property of hj, we obtain that

> uem; f )] Ai—1)

Ey, [f (hp(u)|Ai—1)] = M (4)
S ZWQTF] f(W|Ai—1) (5)
[Mi|

for b =1, 2. The inequality follows because the sum in the
LHS contains unique elements of T;_j. If d appears in the
sum, we can think of f(d|A;_1) =0 since f is not defined
on d. We have, E,[f(A)] — f(Ai-1)

= Ey,[f (il Ai—1)]

_ Zuew, f@lAi-n)

a |M;|
ZWGT,’,1 f(w]Ai-1)

>

- M

(6)
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o By [f (@] Ai- D] + Ey [f (h2 (i) Ai—1)]

(7
2

o Byl thi ] Aioa UTD] + Ey; [f (ha )| Ai—1 U Ti)]
- 2

(8)
> Eui[f({hl(ui)7h22(ui)}|Ai—1 UT))] (9)
_ F(TisqUA;_) —Ey[f(Ai-1 U Ty

2

. f(Tic1UAi_y) ; Ey; [f (A UT)] ' (10)

Inequality (6) is by the choice of the algorithm since
Ai_1UTi_1 € Zy NI, and hence, T;_1 is a valid candidate
for M;. Inequality (7) follows by (5). Inequalities (8) and
(9) follow by submodularity and inequality (10) follows by
monotonicity. Thus, for any fixed choice of A;j_; we have,
2, [f(ADI+Ey[f(AiUT)] > 2f(Ai—1) + f(Ai—1 UTi-1).
So this inequality also holds in expectation when A;_1
is unfixed. This shows that 2IE[f(A;)] + E[f(A; U Ty] is
monotone in i. O

3.2. Generalization of RRGreedy for arbitrary k

In this section, we analyze the approximation factor
of MATROIDINTERSECTIONRRGREEDY and prove Theorem 1.5.
We note that the linear program LP(A) presented in Sec-
tion 1.1 has exponentially many constraints, but it can be
solved in polynomial-time [19]. We first prove certain use-
ful properties of the Lovasz extension in Section 3.2.1. We
prove Theorem 1.1 in Section 3.2.2.

3.2.1. Properties of the Lovdsz extension

We recall that the Lovasz extension of f :2V — R4
is denoted by f~. For ease of notation, let f~(x + A) :=
f*(x+XA) for all AC N and xeRﬁY. For a set S C W,
we define f~(x|S) := g~ (x) where g: AN R, is the
submodular function defined by g(P) = f(P|S).

There are two further definitions of the Lovasz exten-
sion that are equivalent to (1) (see [9]). We state these two
definitions now. Let y € [0, l]N. Let s1,..., S, be an order-
ing of the elements of A/ such that y(sy) > y(sy) > --- >
y(sp) and let S; :={sq,...,s;} fori=1,...,n and Sg =¥.
Then, we have that f~(y)

= () =y fSH =Yy fsjlSi).
j=1 j=1
(11)

Next, consider the base polyhedron B(f) :={x € Rﬁ/ |
x(S) < f(S) for every S C N, x(N) = f(N)}. Although the
non-negativity of x is stated explicitly in the definition of
B(f), this also follows by the monotonicity of the function
f, since x(s) = x(N) —x(N —s)> f(N) — fF(V —5)>0.

For a vector y € Rﬁy , we have

() =max{y'x:xe B(f)}. (12)

The next two lemmas summarize the main properties
of f~ that will be used in the analysis.
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Lemma 3.2. Let y<[0, 1]" and ACN such that AN supp(y) =
#. Then

ffoA =" +A) - f(A.

Proof. Since y € [0,1]" and A N supp(y) =¥, we can or-
der the elements of N in non-increasing order such that
the elements of A appear before the elements of supp(y).
Let iy,...,ij be the ordering of elements of supp(y) and
Sp = {si,|11 <k < p}. Then, by the chain definition (11),

Fm+A) = F(A) + X vi fGi AU Si) = f(A) +
f~WlA). o

The next lemma follows from the definition of the
Lovasz extension given in (12) (i.e., f~(y) is the optimum
value of max yTx over B(f)).2

Lemma 3.3. Let y,z € ]Rﬂy . We have the following properties
for f~:

1. Monotonicity: If y < z, then f~(y) < f~(2).
2. Subadditivity: f~(y)+ f~(2) > f~(y + 2).

Proof. 1. As every x € B(f) has non-negative coordinates
and y <z, the optimum value of max{yTx: x € B(f)}
does not decrease when the objective changes from y
to z.

2. As f~(y) is defined as the maximum of a linear func-
tion over the base polyhedron B(f), it is convex, and
the statement follows. O

3.2.2. Proof of Theorem 1.5

We now prove Theorem 1.5. Our proof strategy is sim-
ilar to the one for two matroid intersection—however, in-
stead of using intermediate sets T;, we will now use inter-
mediate vectors t;.

Let z; be the vector z and u; be the element chosen
in the i’'th iteration of the while loop. Let A; be the set
A after i iterations of the while loop. For notational conve-
nience, let x; := z; — x 4i-1 for each iteration i. We note that
X; > 0 due to the constraints in LP(A;_1) and moreover, x;
is in the matroid polytope of My /A;_1 for all b € [k]. We
now define vectors t; which will be useful in the analy-
sis. Let tg :=t be a feasible point for LP(#). We will define
vectors t; inductively so that x4 +t; is in the matroid
polytope of M, for every b € [k]. Assuming we have A;_1,
xi, and t;_1, we now define t;.

Let b € [k]. Since x; and t;_; are in the matroid polytope
of Mp/A;_1, they can be written as convex combina-
tions of indicator vectors of independent sets in My /A;_1.
Let x; = Zjejb)»jxf and ti1 =Y rcr, arx’ where Jp
and Tp are collections of independent sets in My/A;_1,
Aj,ar =0 for all J € Jp,T € Tp, and Z]e]b}“.] =
ZTE“ ar =1. Let J € Jp, T € Tp. By Proposition 3.1, there

exists a function hé’T : ] = TU{d} where d is a dummy
element such that

3 Although it is not needed in the present work, definitions (11) and
(12) can be generalized to vectors in R”V. Using this generalization, both
statements in Lemma 3.3 hold for every y,ze RV
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1. T—h)T () +ueTy/A; 4 forall ue J and
-1
2. hé’T restricted to (hl{’T) (T) is injective.

Let u € supp(x;). Then, the point

AJ T4+u—h!T @)
rtT .= E —_ b
! <ZS€] 'ueS)‘5> X
Jelp:ue] b:

A J.T
_ o THu _ J hi (u)
X Z (Xi(u)> X"

Jelpue]

is in the matroid polytope of M} /A;_1 because it is a con-
vex combination of characteristic vectors of independent
sets in My /Ai_1 (we use the convention that Xd is the
all zeroes vector for the dummy element d). Consequently,
the convex combination of the rr vectors for T € Tj given

by

A J.T
ZaT-TTZti—l+Xu—ZOIT Z (X,(L))th w
TeT TeT, Jejpue) NF

is in the matroid polytope of M} /A;_1. Now for each u e
supp(x;), define yj := > rcr, @1 2 jc ), uey <x,k(—{4)> X”z{'T(“)
and for each a e N' — A;j_1, define y“(a) := min {ti_l(a),
Zﬁ:] yi (a)}. We recall that u; is the element in supp(x;)

chosen by the algorithm in the i’th iteration. We set t; :=
tiq — y".

Claim 3.4. The point x % + t; is feasible for LP(A;).

Proof. By the definition of y%i we get 0 <t; <t; 1 — yg"
for all b € [k]. We have shown that t;_1 — ylL)"' is in the ma-
troid polytope of My, /A; for all b e [k], so x ™ +ti_1 — yg"
is feasible for LP(A;). Consequently, the point t; is also in

the matroid polytope of M}, /A; for all b € [k], and x4 +t;
is feasible for LP(A;). O

We now lower bound the marginal improvement of u;
on Aj_p with an expression that represents the function
value of y,".

Claim 3.5. For a fixed choice of A;_1 and for all b € [k], we have
By, [f Wil Ai)] = By [f~ () 1Ai- )]
Proof. We first show the following inequality:

Ey,[f (uilAi—1)]

> Ey, ZO(T Z

TeTy Jelpiuie]

A
( J)f(h,{*T(u,-NAi_l)

X (u)

(13)
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Expanding the RHS using the probability distribution on
u; shows that <ZVEN7AI',1 x,-(v)) RHS

= Y [ X aral wlay

ueN—-Aj_1 \TeTy JeJpue]
J.T
= Y ariy [ D fhyt @A)
TeTp, Je]p uej
< > OlTM(Zf(WIAH)) (14)
TeTp, Je]p weT
=Y ar (Z f(WIAf_1)>
TeTy weT

- ¥

wesupp(ti—1)

- ¥

wesupp(ti—1)

fFwlAig) Y ar

TeTy:weT

fW]Ai—D) - i (w).

Inequality (14) follows by the injectivity of h,{’T. Since
x4i-1 +t;_1 is feasible for LP(A;_1) and x”i-1 4 x; is an
optimal solution for LP(A;_1), the previous expression is
at most

Y f@lAi) X =Eylf@ilAi-nD]l Y xi)

ueN—Ai_ ueN—Ai_4

Z xi(w) | LHS,

ueN—A;_q

thus proving inequality (13).
Let u € supp(x;). Then, we have that

Yar Y (%) £ (n T aiA)

TeTy Je]piue]

(e X (X,A(L))f(hgj(uHAH)

TeTy Jelpue]
— f(Ai—D).

We observe that the point yj is a convex combination of

indicator vectors of sets {hl{’T(u)} for Te Ty and | € Jp.
By definition of Lovasz extension, this implies that

A
Z or Z <X—(il)> f (hl{T(u) +Ai_1)
TeT,  Jejpue]
> [Ty + A1)
By Lemma 32, we have that f~(y)) — f(Ai-1) =
f‘(yglAi,l). Hence, using inequality (13), we have that
Ey;[f(uilAi-1)]
> Ey,[f~ () + Aim)] = f(Aim) =Eu [f~ (v [Ai-D].
O
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Now we have all the ingredients needed to bound the ap-
proximation factor.

Theorem 1.5. Let A be the set returned by MATROIDINTERSEC-
TIONRRGREEDY and let t be any feasible point for LP(#). Then,

1 _
E[f(A)]> (m>f ©.

Proof. Consider a fixed choice of A;_1. By Claim 3.5, we
have that

k
KEy, [fwilAimD)] = Y By [f~ 0y |Ai-D)] (15)
b=1
Using Lemma 3.3 (subadditivity and monotonicity of f7),
we get that

k k
Ey, [Z rw;umu} > By, [f‘ (Z yﬁfmnﬂ
b=1

b=1
(16)
> Ey, [f~0"11Ai-D)]. (17)

Now by Lemma 3.3 (subadditivity) we have,
Eylf~YA-D] = Eylf~o% + tlAi-)] —
Ey[f~E1AZ)] = f(EG—1]Aim1) — Ey [f~ Gl AiZ1)]. We
note that supp(ti_1) N A;_1 =@ and supp(t;) N Aj_1 = 0.
By Lemma 3.2, we have that

f(ticlAi—) — Ey [~ (ti1Ai=1)]
= f"(ti-1 + Ai—1) = Ey [ f~ @+ A

By monotonicity, we get

fr i+ A1) —Ey [ f (& + Ai—)]
> [T (i1 + Ai—) — Ey [~ 6 4+ AD].

Thus, we obtain that kE, [ f (uilAi—1)1> f~(ti—1 + Aj—1) —
Ey,[f~(t + Ap]. Consequently, for any fixed choice of
Ai_1, we have

KEy; [ f(AD]+ Ey, [f~ G+ AD]
>kf(Ai—1) + [~ (tic1 + Aiz1).

So, this inequality also holds when we take expecta-
tion over Aj_1. Thus, we have KE[f(A))] + E[f~(; +
A1 = KE[f(Ai~)] + E[f~(ti—1 + Ai—1)] which implies
that KE[f(A)] + E[f~(A)] = k+ DE[f(A)] = f~(to) =
f~@®. O

Remark 3.6. We note that the above analysis can also be
extended to show that GREEDY outputs a common inde-
pendent set A with f(A) > (1/(k+ 1)) f(t) for any point
t that is feasible to LP(¥). This provides a stronger guaran-
tee for the approximation factor of GREEDY as it is relative
to the optimum value of the Lovasz relaxation over the in-
tersection of matroid polytopes.
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Corollary 3.6.1. If f is modular, then E[f(A)] > % where
A is the set returned by MATROIDINTERSECTIONRRGREEDY and t
is any point that is feasible for LP(9).

Proof. For f being modular, the function f~ is sim-
ply the natural extension of linear functions to fractional
domains, so we have that f~(x) = Z?:l f(si)x;. In the
proof of Theorem 1.5, we showed that KE[ f(u;j|Ai_1)] >
E[f~(y“|Ai—1)] (using inequalities (15) and (17) and tak-
ing expectation over Aj_1). Since f is modular this can
be simplified to KE[f(u;)] > E[f~(y")]. Now we take the
sum over all u; and get,

KE[f(A=KE | " fu) |=E| Y f~(M")

u;eA u;eA

=f"©®. O

Remark 3.7. In Corollary 3.6.1, since we use f~ and allow
t to be fractional, the (1/k)-approximation is relative to
the optimum of the LP relaxation of maximizing a modular
function subject to a k-matroid intersection constraint. This
again matches the guarantee of Greedy.

4. Conclusions and open problems

In this work, we analyzed the approximation factor of
RRGREEDY for monotone submodular maximization subject
to matroid and matroid intersection constraints. Our work
raises many interesting open questions. Firstly, we showed
that RRGREEDY achieves (1/2)-approximation in the worst-
case (not just in expectation) for matroid constraint. An
intriguing open question here is whether RRGREEDY beats
the (1/2)-factor in expectation. Indeed, it beats the (1/2)-
factor in expectation for partition matroid [7]. We conjec-
ture that it beats the (1/2)-factor in expectation for any
matroid. If true this would imply a better deterministic ap-
proximation factor for the algorithm in [2] as their analysis
uses the fact that the approximation factor of RRGREEDY is
1/2.

Another intriguing direction is to understand whether
the approximation factor of RRGREEDY is at least as good
as GREEDY even for specific matroids. In particular, for the
uniform matroid (i.e., for cardinality constraint), we recall
that GREeDY achieves a (1 — 1/e)-approximation [3] and
1/a)(1 — e™) for functions with curvature « [6]. Does
RRGREEDY also achieve these same guarantees in expecta-
tion? This is indeed known for the case of & =1 [1].

We note that 2MATROIDINTERSECTIONRRGREEDY achieves
an optimum when the function is modular (i.e., @ = 0)
and achieves a (1/3)-approximation in expectation for ar-
bitrary monotone submodular functions (i.e., when o = 1).
A natural open question here is whether MATROIDINTERSEC-
TIONRRGREEDY achieves a (1/(k — 1 + 2«))-approximation
for maximizing monotone submodular functions with cur-
vature o subject to k matroid intersection constraints. We
note that this conjecture if true, would also give an algo-
rithm to obtain (1/(k — 1))-approximation for maximizing
a linear function subject to k matroid intersection con-
straints.
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Appendix A

A.1. Upper bound on 2MATROIDINTERSECTIONRRGREEDY
approximation ratio

We now describe a computer generated example that
upper bounds the expected approximation ratio of
2MATROIDINTERSECTIONRRGREEDY by 13/33. To generate the
example, we fix two matroids and fix the choices made by
the algorithm. The choices of the algorithm include the
set M; and the element u; that is chosen in each itera-
tion i. For fixed choices of the algorithm, our goal is to
find a monotone submodular function that is consistent
with the choices of the algorithm and that will minimize
the approximation ratio of the algorithm. The choices of
the algorithm are determined by the function values of
subsets of A/, so we create decision variables f(S) (that
will correspond to the function value f(S)) for all S € N
and encode the decisions of the algorithm with linear con-
straints. We also ensure that the values of the variables
correspond to a monotone submodular function by impos-
ing linear constraints. Since all constraints are linear, we
can write a linear program (LP) that minimizes the ap-
proximation ratio of the algorithm.

We now describe the choice of two matroids that we
use to generate our example. The common independent
sets of two matroids will correspond to matchings in a bi-
partite graph. The bipartite graph that we use is a cycle
with 2t edges for some parameter t. The elements of the
ground set A := [2t] represent the edges of the cycle in
order.

Next, we describe the choices of the algorithm and
an optimal solution. We will set up the example so that
2MATROIDINTERSECTIONRRGREEDY will always output the
matching A = {j € N|j mod 2 = 1} irrespective of the
random choices made by the algorithm. We will also set up
the example so that the matching B = {j € A/|j mod 2 =
0} is the optimal solution.

Let C denote the set of maximal matchings in the graph
and for any matching F, let C(F) denote the set of max-
imal matchings that contain F. Maximal matchings are
used to reduce the number of constraints in the LP. The
example is generated by solving the following LP that has

10
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a variable representing the function value for every subset

of V.

minimize f(A)

> faM)y= " fuM) (18)
ueA—M’ ueS—M’
VM’ C A,VS eC(M)
f(B)= f(X)vXecC (19)
f(B)=1 (20)

f@|S)>0VSCN,VueN -5 (21)

fX+x0)+ f(X+x2) = f(X+x1+x2) + f(X)
VX CN,Vx1,x2e N - X (22)

fW =0 (23)

Constraint (19) ensures optimality of B. Constraints (21)
and (22) ensure that the function values correspond to a
monotone submodular function. Constraints (20) and (23)
are for the purpose of normalization. We now show using

Constraint (18) that 2MATROIDINTERSECTIONRRGREEDY will
indeed return A.

Claim A.1. For all M’ C A, the set S = A — M’ is an optimum
solution to the following:

max { Y f|M")|S M =@, SUM'is amatching { .

uesS

Proof. Let F be a matching such that FUM’ is also match-
ing. Let F’ be the set acquired by adding edges to F so that
it is a maximal matching. Hence, F’ € C(M’). By constraint
(18) and by monotonicity of f, we have that

Yo fwM)= Y faM) =) faM). o

ueA—-M’ ueF’ ueF

Claim A.2. 2MATROIDINTERSECTIONRRGREEDY will always out-
put A.

Proof. We prove by induction on i that 2MATROIDINTERSEC-
TIONRRGREEDY will always choose elements of A in itera-
tions 1,...,i. Let i=1 and M’ = . Now Claim A.1 implies
that A =argmax{}_,.s f(u)|S is a matching}, so the algo-
rithm can choose an element of A in the first iteration.
Now assume that A;_1 € A is the set of elements chosen
by the algorithm in the first i — 1 iterations. The set A —
Ai_1 is a valid candidate for M; and Claim A.1 implies A —
Ai_q :argmax{zues_AHf(u|A1_1)|SUAi_1 is a matching}.
So, the algorithm can choose M; to be A — A;_; and the
algorithm chooses an element of A in iteration i. Hence,
we have A;CA. O

Lemma A.3. The approximation ratio of 2MATROIDINTERSEC-
TIONRRGREEDY is upper bounded by 13/33.

Proof. Solving the LP for t = 6 generates a solution where
f(A)=13/33. O
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