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Abstract

The Hong-Ou-Mandel interference experiment is a fundamental demonstration of nonclassical

interference and a basis for many investigations of quantum information. This experiment involves

the interference of two photons reaching a symmetric beamsplitter. When the photons are made

indistinguishable in all possible ways, an interference of quantum amplitudes results in both pho-

tons always leaving the same beamsplitter output port. Thus, a scan of distinguishable parameters,

such as the arrival time difference of the photons reaching the beamsplitter, produces a dip in the

coincidences measured at the outputs of the beamsplitter. The main challenge for its implementa-

tion as an undergraduate laboratory is the alignment of the photon paths at the beamsplitter. We

overcome this difficulty by using a pre-aligned commercial fiber-coupled beamsplitter. In addition,

we use waveplates to vary the distinguishability of the photons by their state of polarization. We

present a theoretical description at the introductory quantum mechanics level of the two types of

experiments, plus a discussion of the apparatus alignment and list of parts needed.
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I. INTRODUCTION

In 1987 C.K. Hong, Z.Y. Ou, and L. Mandel reported on one of the most consequential

experiments in quantum optics.1 It is an experiment that demonstrates the ensuing quantum

interference of two properly prepared photons after each arrives separately at an adjacent

input port of a symmetric beamsplitter. When all of the properties of the two photons

are identical, a striking phenomenon appears: the two photons always exit together at the

same output port of the beamsplitter and never exit at separate output ports. This effect

is a purely nonclassical phenomenon. The proper way to understand it is from a quantum-

mechanical perspective, where the amplitudes for the various possibilities interfere. This

result mimics a form of interaction between photons, but one that is solely due to quantum

effects, similar to the exchange interaction of electrons in atoms. This quantum interaction

has been used for a number of purposes,2 such as entanglement,3,4 entanglement swapping,5

teleportation,6 implementation of CNOT gates,7 and ultimately, quantum computing with

photons.8

The essence of the Hong-Ou-Mandel (HOM) interference phenomenon is shown in Fig. 1.

When two photons arrive separately at adjacent input ports of a beamsplitter, there are

four possible outcomes. Either the two photons exit together out of the same output port

in one of two possible ways, as shown in Figs. 1(a) and 1(b), or they exit out of separate

ports in one of two possible ways, as shown in Figs. 1(c) and 1(d). Following Feynman,9

consider the event when both photons exit out of separate output ports of the beamsplitter.

If the photons are indistinguishable, the probability for the event is the square of the sum

of the probability amplitudes for each possibility considered separately. If the possibilities

are distinguishable, then the probability of the event is the sum of the probabilities of the

possibilities.

Now assume the beamsplitter to be a symmetric one, i.e., with equal probabilities to

transmit and reflect light, and equal amplitudes for reflection and transmission from either

side of the beamsplitter. It is common to call the probability amplitudes for transmission

and reflection t and r, respectively. The absolute value for both t and r has to be 1/
√

2,

so that the probability of transmission and reflection is 1/2 in each case. However, to

conserve energy, or equivalently, probability, the transmission and reflection amplitudes have

to be out of phase by π/2 for the case of the symmetric beamsplitter.10,11 It is common to
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FIG. 1. Schematic of the four possible paths of two photons, each incident separately on adjacent

input ports of a beamsplitter.

attach this phase to the reflection amplitude, so r = exp(iπ/2)/
√

2 = i/
√

2 and t = 1/
√

2.

The probability amplitude that both photons come out of separate output ports of the

beamsplitter has two terms: when both transmit, it is tt = 1/2 [Fig. 1(c)]; and both reflect,

it is rr = −1/2 [Fig. 1(d)]. The probability for the event is then

Pind = |tt+ rr|2 = 0. (1)

That is, the two possibilities interfere destructively.

If the photons are distinguishable, such as when they arrive at the beamsplitter at dis-

tinguishable different times, then the probability is

Pdis = |tt|2 + |rr|2 = 1/2. (2)

Distinguishable different times means that a measurement of the two arrival times of the

photons can be used to distinguish between the two possibilities. Other distinguishing

attributes are the photons’ polarization, energy, or spatial mode.

We note that the previous analysis applies to bosons, like the photon. For fermions (for

example, electrons), the amplitude rule of Eq. (1) is not a sum but a difference of the two
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probability amplitudes.9 This fact is due to the exchange symmetry of indistinguishable

fermions, which unlike bosons, cannot occupy the same state (i.e., both fermions having

the same momentum). Thus, in the HOM experiments with electrons,12 the probability of

Eq. (1) is 1. Feynman explains the distinction between bosons and fermions with a similar

type of experiment, of identical particles in a head-on collision.9 This phenomenon is more

formally described in terms of the symmetry of the two-particle wavefunction, presented in

Sec. III. Ultimately, the HOM experiment is a demonstration of the superposition of the

state of two particles and how it leads to measurable interference effects that are purely

quantum mechanical.

Recreation of this demonstration is not straightforward, mostly because the experimental

alignment requires much effort and expertise, and thus is time consuming. To see the interfer-

ence, both photons created from the same source—spontaneous parametric down-conversion

(described below)— have to travel exactly the same distance to the beamsplitter, so setting

up the photon paths needs very careful alignment. Additionally, the experiment requires

hardware that facilitates scanning the photon path difference by tens of micrometers. A final

challenge occurs at the beamsplitter. The photons’ spatial mode must fully overlap at the

beam splitter and along the output paths. Otherwise they will be spatially distinguishable.

For educational purposes, this demonstration has been done before in free space,13 where the

experimentalists implemented the following clever method of alignment: a Mach-Zehnder

interferometer was set up such that its separate arms were the two photon paths. Once the

paths were aligned to be equal via interferometry, the first beamsplitter was replaced by the

down-conversion crystal.

The purpose of this article is to report on a Hong-Ou-Mandel interference demonstration

that eliminates the free-space alignment of the photon beams reaching the beamsplitter. In-

stead, we use a commercial pre-aligned device. The cost of this device is within the norm for

component hardware in common use in quantum optics instructional physics laboratories.

This new system adds its own complication, though. That is, the down-converted photons

need to be coupled to single-mode fibers. We find this extra effort to be a worthwhile trade-

off. In Appendix A, we provide a suggested procedure for the required alignment. We also

note that this experiment is already sold commercially as a black-box-type experiment.14,15

Our experiment is based on the beam-splitting component in one of these commercial prod-

ucts, but our aim is a demonstration in which students set up the entire apparatus, and it
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is done at a lesser cost.

The article is organized as follows. In Sec. II, we provide a detailed description of the

experimental apparatus. Section III follows with a quantum-mechanical description of the

phenomenon that fits within the curricular formalism of an undergraduate course, along

with the experimental results. Two appendices give alignment procedures, a parts list and

component costs.

II. APPARATUS

A diagram of the apparatus is shown in Fig. 2. The figure has been sectioned to high-

light important parts. The first section is the source of photon pairs via type-I spontaneous

parametric down-conversion. A pump laser emitted horizontally polarized light of wave-

length 405.4 nm. It was steered toward a beta barium borate (BBO) crystal that produced

photon pairs that were vertically polarized. Up to this point, this is a standard setup for un-

dergraduate quantum optics experiments.16,17 In the central section, collimators (C) collect

photons into optical fibers. They were placed at ±3◦ from the incident pump-beam direc-

tion, and located 1-m away from the crystal. Bandpass filters (F), set to collect photons

that are near the degenerate wavelength of 810.8 nm, were attached to the collimators along

with a mounted iris. Before we continue with more detail of the central section, we add

that the third section is also standard: single-photon avalanche diode detectors (SPAD) fed

digital electronic pulses from photon detections to an electronic counting and coincidence

unit, which in turn fed data to a laptop/desktop with data acquisition programs written in

MATLAB.17

The central portion of the apparatus has several new components. Figure 3 shows a pho-

tograph that emphasizes this section of the apparatus. The main component is a commercial

pre-aligned fiber-coupled beamsplitter (FCBS). Because the polarization of the light has to

be maintained, the fibers are single mode and polarization maintaining (PMOF). The two

fiber inputs of the FCBS are connected to the collimators and the fiber outputs are con-

nected to the two SPADs. The first departure from the standard experiments was the use

of PMOFs. They significantly restricted the input light. To maximize the coupling of the

down-converted photons to the fiber, we used collimators with adjustable focus (C). These

collimators have fiber connectors type FC, which lock the fibers into a specific orientation.
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FIG. 2. Sections of the apparatus. A 405-nm pump laser beam was steered to a BBO crystal to

generate vertically polarized photons. A fiber-coupled beamsplitter (FCBS) provided the photon

interference. Other hardware components included half-wave plates (Ŵθ and Ŵφ) oriented by angles

θ and φ to the vertical, respectively, with one on a motorized rotation mount (MW); bandpass filters

(F); adjustable-focus collimators (C), with one of them mounted on a motorized translation stage

(MS) on top of a manual stage; polarization-maintaining optical fibers (PMOF); and single-photon

avalanche diode detectors (SPAD).

To collect photon pairs with the same polarization, both collimators were mounted to have

the same orientation of the FC connectors in their mount.

The collimators were mounted on mirror mounts via adapters. One of the collimators’

mount was attached to a magnetic mount and placed in contact with an aluminum plate with

a 1-m radius of curvature (see Fig. 2), with center of curvature located approximately at the

position of the crystal. The purpose of the latter was to allow the flexibility to translate the

collimator sideways to optimize coincidence counts. The curved path reduced/eliminated

the walk-off error that would be introduced if the collimator was translated linearly sideways.

The other collimator’s mirror mount was mounted on a double stack of translation stages

set to move the collimator toward or away from the crystal. The bottom stage, attached to

the breadboard, was a standard manual translation stage with a micrometer screw, whose

purpose was to make coarse adjustments. On top of it was a small motorized translation

stage (MS) for doing an automatic scan of the crystal-collimator distance. The two stages

changed the photon-path difference.

The last component of the arrangement was a pair of half-wave plates. One was mounted

on a manual rotation mount and the other on a motorized rotation mount (MW). They are
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FIG. 3. Photograph of the apparatus showing the main components: down-conversion crystal

(BBO), motorized rotation mount (MW); and linear stage (MS), polarization-maintaining optical

fiber (PMOF); fiber-coupled beamsplitter (FCBS); and photon detectors (SPAD).

needed for two purposes: (1) to ensure that the photons enter the optical fibers with the

same polarization orientation, and (2) for scanning the polarization distinguishability of the

photons as described in Sec. III C.

III. TWO SITUATIONS

We describe the experiments in three parts. First, we describe the HOM interference

itself. Next, we describe two situations where we can turn the interference on and off, one

based on the path length and the other based on the polarization.
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A. The HOM Interference

This HOM interference phenomenon has been described before in terms of number

states.13,18 Here, we use an alternative approach in terms of momentum states. Photons

1 and 2 leaving their place of birth can arrive at the beamsplitter in a state with either

momentum |x〉 or |y〉, as labeled in Fig. 2. Each photon can be in these two possible states.

Thus, the full state of both photons is the tensor product of the two photon spaces. Due

to the bosonic nature of the quantum state of the two photons, they must be described by

a wavefunction that is symmetric by the interchange of the two particles. Thus, the initial

state of the two photons is given by

|ψ〉i =
1√
2

(|x〉1|y〉2 + |y〉1|x〉2) (3)

To manipulate the state of the light, we can use the matrix notation of quantum mechan-

ics: |x〉 = (1 0)T and |y〉 = (0 1)T , with T denoting the transpose of the matrix. The two

product states are then given by

|x〉1|y〉2 =

1

0


1

⊗

0

1


2

=


0

1

0

0

 (4)

and

|y〉1|x〉2 =

0

1


1

⊗

1

0


2

=


0

0

1

0

 , (5)

which results in the initial state given by

|ψ〉i =
1√
2


0

1

1

0

 . (6)

The symmetric beamsplitter must apply to each photon space, resulting in an operator
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acting on the larger space

B̂2 =

t r
r t

⊗
t r
r t

 =
1

2


1 i i −1

i 1 −1 i

i −1 1 i

−1 i i 1

 , (7)

with t and r as defined in Sec. I. The final state is obtained in a straightforward way by

applying the beamsplitter operator to the initial state

|ψ〉f = B̂2|ψ〉i =
i√
2


1

0

0

1

 (8)

Notice that to within an overall phase, this state is equivalent to

|ψ〉f =
1√
2

(|x〉1|x〉2 + |y〉1|y〉2) . (9)

That is, in the final state both photons end up traveling along the same direction. Should we

put photon detectors at each output of the beamsplitter, we would not get any coincidences.

Note that Eq. (8) is a nonseparable (entangled) state of the two photons in the momentum

degree of freedom.

If we put detectors at the two outputs of the beamsplitter, the probability of detecting

photon 1 in one detector and photon 2 in the other, and vice versa, is

Pc = P (x1, y2) + P (y1, x2) (10)

Pc = |〈x|1〈y|2|ψ〉f |
2 + ||〈y|1〈x|2|ψ〉f |

2 (11)

Pc = 0. (12)

In our photon counting experiment, when a photon impinges on a detector, the detector

outputs a pulse that is sent to an electronic circuit. The circuit is set to record when a

photon arrives at each of the two detectors within a certain time window, an event defined

to be a coincidence. In our HOM experiment, the time window is about 40 ns and the

interference effect results in no coincidences being detected.

Let us also consider the situation when there is no interference, that is, when the photons

are distinguishable. For example, suppose we know that one photon arrives before the
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other because the length of paths of the photons from the crystal to the beamsplitter are

distinguishably not the same. Suppose also that the photon arrival time from different paths

is still within the experimental coincidence window. What would we measure?

One way to analyze the situation is this: assume photon 1 in momentum state |x〉1 arrives

at the beamsplitter distinguishably sooner than photon 2, which is in momentum state |y〉2.

Then, the system’s initial state is |x〉1|y〉2 and the final state will be:

|ψ〉f,a = B̂2|x〉1|y〉2 =
1

2


i

1

−1

i

 (13)

Thus, from Eq. (10), the probability of measuring a coincidence experimentally will be

Pc = 1/2. We get the same result when we consider the other possibility, i.e., initial state

|y〉1|x〉2. To make it symmetric we could say that the first possibility occurs half the time

and the second possibility occurs the other half. This still gives us Pc = 1/2.

Based on the previous discussion contrasting bosons and fermions, we can repeat this

analysis for the case of fermions. Then, the initial wavefunction must be antisymmetric [i.e.,

Eq. (3) with a minus sign instead of a plus sign] because the total wavefunction must change

sign with particle exchange. The application of the beamsplitter operation preserves the

symmetry of the initial state, yielding an output state that is antisymmetric (i.e., the same

as the initial state), underscoring that identical fermions cannot be in the state of Eq. (9).

Thus, the symmetry of the wave function accounts for the way the amplitudes combine in

Eq. (1) (i.e., plus sign for bosons and minus sign for fermions).

B. The Dip

In parametric down-conversion, photon pairs are emitted with energies E1 = E and

E2 = E0 − E, where E0 is the energy of the pump (parent) photon. Right before being

detected, the photons go through energy filters, which restrict the energy of the photons

further. Thus, the apparatus detects photons in a superposition of energy states:

|ψ〉 =

∫
dE a(E)|E〉1|E0 − E〉2 (14)
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where a(E) is a measure of the overall bandwidth of the photons that are being detected.

The state of the photons in Eq. (14) is non-separable. That is, the photons are in an

entangled state of energy. Their exact energy is unknown to within a range of energies ∆E

determined by a(E) and they constitute a wavepacket. As such, the photons are coherent

to within the coherence time ∆t ∼ h/∆E, where h is Planck’s constant. Because filters are

specified in terms of the wavelength, we can express the energy bandwidth in terms of the

wavelength: ∆E = hc∆λ/λ2, where c is the speed of light in vacuum. Thus, a practical

way to express the coherence is in terms of the length of the wavepacket, also known as the

coherence length

`c = c∆t =
λ2

∆λ
. (15)

If the photons arrive at the beamsplitter within the coherence time, then they can be consid-

ered indistinguishable (assuming all other photon properties are identical). An alternative

reasoning is to say that the difference in the length of the two paths from the crystal to the

beamsplitter is less than the coherence length. What occurs in the intermediate cases? For

that we need to go deeper into the quantum mechanics formalism.

In the previous section we analyzed the two extreme interference situations: the photons

are indistinguishable yielding no coincidences, or the photons are distinguishable and coin-

cidences are observed. In the former case, the photons are in a quantum entangled state. In

the latter, considering the two possibilities, the photons are in a mixed state. To account

for mixed states we need to resort to another quantum-mechanical object for describing the

state of the photons—the density matrix.19

The density matrix for the state of the light in the indistinguishable case is given by the

outer product of the vector matrices:

ρ̂ind = |ψ〉〈ψ| = 1

2


0 0 0 0

0 1 1 0

0 1 1 0

0 0 0 0

 . (16)

When the photons are in the distinguishable case, the density matrix is the weighted sum

of the density matrices for each case considered separately:

ρ̂xy = |x〉1|y〉2〈y|2〈x|1 (17)
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and

ρ̂yx = |y〉1|x〉2〈x|2〈y|1, (18)

with the mixed state for the all the cases given by

ρ̂dis =
1

2
ρ̂xy +

1

2
ρ̂yx =

1

2


0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

 , (19)

The density matrix after the photons go through the beamsplitter is given by

ρ̂f = B̂ρ̂iB̂
+. (20)

Readers can show that this outcome is consistent with |ψ〉f〈ψ|f of Eq. (9). The coincidence

probability will be given by Eq. (10), which when using the density matrix, is expressed in

terms of the trace of the product of the density matrix of the state times the density matrix

of the state being measured (|x〉1|y〉2 or |y〉1|x〉2). This results in

Pc = Tr[ρ̂f ρ̂xy] + Tr[ρ̂f ρ̂yx]. (21)

For the indistinguishable case, we easily find that ρ̂f = ρ̂ind yields Pc = 0; for the distin-

guishable case, ρ̂f = ρ̂dis yields Pc = 1/2.

The intermediate case can be expressed by the state

ρ̂int = pρ̂ind + (1− p)ρ̂dis (22)

where p is the probability that the photons are indistinguishable. This state is similar to

the form of the Werner state.20 This matrix describes the situation when the state of the

photons is partly indistinguishable and partly distinguishable, with p and (1−p) determining

the relative weights. It is left to the reader to show that the final density matrix after the

beamsplitter is

ρ̂int−f =
1

4


1 + p 0 0 1 + p

0 1− p −1 + p 0

0 −1 + p 1− p 0

1 + p 0 0 1 + p

 (23)

Using ρ̂f = ρ̂int−f as given by Eq. 23, Fig. 4(a) shows the calculated coincidence probability

from Eq. (21) as a function of p.
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FIG. 4. (a) Calculated probability of measuring a coincidence as a function of the Werner prob-

ability p; (b) Calculated Werner probability using a simple Gaussian model as a function of the

the delay in overlap of the photon amplitudes x0 relative to the coherence length lc; (c) Calculated

probability of measuring a coincidence as a function of x0/lc.

The landmark experiment by Hong, Ou, and Mandel demonstrated the interference effect

by scanning the difference in path, and therefore the overlap of the interference of the two

photon amplitudes, exhibiting a famous “dip” in the coincidences. We can reproduce the

dip analytically using a simple model. If we consider the photon wavepackets as Gaussians

with a width at half maximum given by `c but displaced by the path difference x0, then p
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is proportional to the overlap integral. If we displace the two Gaussians by x0, then

p(x0) =

∫ +∞

−∞
2

√
2 ln(2)

`cπ
e−4 ln(2)x

2/`2ce−4 ln(2)(x−x0)
2/`2cdx (24)

where we have normalized the overlap such that p(0) = 1, as shown in Fig. 4(b). If we now

plot the coincidence probability as a function of x0 we recreate the famous HOM dip, as

shown in Fig. 4(c). We note that we present this simple model just to capture the essence

of the phenomenon as measured in the laboratory. A more accurate calculation would have

to take into account the actual measured bandwidth of the light and other experimental

details.

After following the alignment procedure outlined in Appendix A and adjusting the wave-

plates so that photons are input into the fibers with the same polarization, the dip can be

found and scanned. In a lab experience lasting only a few hours, the initial alignment is

best done for the students beforehand. Perhaps other students can bring the apparatus to

this point as part of a several-week laboratory exercise, as we do in the add-on lab of our

quantum mechanics course.17 Beyond this point students can be asked to “discover” the dip,

study it in some detail, and investigate the effect of the bandpass filters on the width of

the dip. In Fig. 5, we show the measurement of the dip taken by an undergraduate student

(the first author of this paper), who did the experiment as a senior capstone project. This

scan of coincidences was taken at 4 s per data point. The horizontal scale is the position

of the motorized stage (a Matlab program to acquire such data is posted in our website,

Ref. 17). Data points were taken every 4 stepper-motor steps of the motorized translation

stage, which correspond to a motion of the collimator by 5.33 µm, or a time delay of 18

fs in arrival times of the two photons. Error bars are the standard for Poisson statistics.

Accidental coincidences were of the order of 7 counts.

The quality of the measured dip can be evaluated by the visibility, defined as v = (Nmax−

Nmin)/(Nmax + Nmin). We actually obtained this value by fitting an inverted Gaussian to

the data, giving v = 0.93, a remarkably good value, which can be attributed largely to the

advantage of using the commercial fiber-coupled beamsplitter. The full width of the dip

at half minimum (FWHM) is about 55 µm, which is of the same order of the calculated

coherence length of 66 µm. With a wider filter of (nominal) 30 nm bandwidth, we got 18

µm, consistent with the calculation (22 µm). There is an asymmetry in the shoulders of

the dip. We saw different shoulders when we did the experiment with different parameters
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FIG. 5. Recording of the coincidences as a function of the position of one of the collimators;

effectively the difference in the path length of the two photons, from the crystal to the beamsplitter.

(filters and position of the collimators). It depends on the shape of a(E) in Eq. (14), which

is related to the shape of the transmission curve of each bandpass filter. We also note that

the dip appears only in the coincidence counts. The singles counts (i.e., photons detected

by each detector separately) are constant throughout the scan. It underscores that it is a

two-photon effect.

C. Polarization Distinguishability

The photons reaching the beamsplitter can be distinguished by other degrees of free-

dom. That is, the path length difference of the photons arriving at the beamsplitter can

be set to zero, while the photons are still distinguishable. One way this can be done is by

manipulating their polarization.18 The photons produced by type-I spontaneous parametric

down conversion have the same polarization. If we rotate the polarization of one of them

by 90◦, then the two photons are distinguishable by polarization and the interference can-

cellation disappears. If the polarization setting is between 0◦ and 90◦, then the coincidence

probability is somewhere in between.

Because polarization is represented by two-dimensional space, we can incorporate it in

the pure-state description of the light. The distinction between this and the situation of

15



Sec. III B is more subtle, involving open and closed quantum systems.21,22 Without getting

too technical, we proceed by calculating the probability for this situation by fully accounting

for polarization in the state of the light. It also provides an additional way to understand

two-photon interference.

If we add the polarization degree of freedom for each photon, this doubles the Hilbert

space of each photon, and therefore the two-photon system becomes a 16-dimensional Hilbert

space. Doing the matrix operations by hand is a bit unwieldy, with 16-element vectors and

16 × 16 operator matrices, but using various software platforms, such as Mathematica or

MATLAB, we can do the laborious linear-algebraic steps easily. If we add polarization to

the photon’s state, then the initial state, where both photons are vertically polarized is given

by

|ψ〉i =
1√
2

(|x, V 〉1|y, V 〉2 + |y, V 〉1|x, V 〉2) , (25)

where we have now added a label V to the momentum state of each photon in order to

specify its polarization. Each product state is of the form

|ϕ〉 =

x
y


1

⊗

H
V


1

⊗

x
y


2

⊗

H
V


2

(26)

where V and H specify vertical and horizontal polarization, respectively. In vector form,

the initial state would be |ψ〉i = 2−1/2(0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0)T . Before the photons

reach the beamsplitter, they go through half-wave plates. For symmetry, we add one for

each momentum input. (Experimentally, two waveplates are needed to keep the optical path

of the two photons as close to equal as possible.) The waveplates for the x and y momentum

states are oriented by angles θ and φ relative to the vertical direction, respectively. We can

express the operator for a half-wave plate oriented an angle θ by

Ŵθ =

− cos 2θ − sin 2θ

− sin 2θ cos 2θ

 . (27)

Because the two waveplates are attached to each momentum state, the operator for the two

waveplates acting on the space of the two photons has the form

Ẑθ,φ = P̂x ⊗ Ŵθ ⊗ P̂y ⊗ Ŵφ + P̂y ⊗ Ŵφ ⊗ P̂x ⊗ Ŵθ, (28)

where P̂x = |x〉〈x| and P̂y = |y〉〈y| are projection operators for the momentum states. It is

left as an exercise for the reader to show that the state |ψ〉′ after the waveplates and before
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the beamsplitter is

|ψ〉′ = Ẑθ,φ|ψ〉i =
1√
2

(|x, 2θ〉1|y, 2φ〉2 + |y, 2φ〉1|x, 2θ〉2) (29)

where for simplicity we have labeled the polarization state by the orientation of the polar-

ization relative to the vertical direction.

The beamsplitter acts only on the momentum states, leaving the polarization states

unchanged. Its operator is given by

B̂4 = B̂ ⊗ Î ⊗ B ⊗ Î , (30)

where Î is the identity, representing the inaction of the beamsplitter on the polarization

degree of freedom. The next steps are mechanical: computing the final state followed by a

calculation of the coincidence probability. At this point in our lab program, we ask students

not just to perform the calculation, but to devise how to calculate the coincidence probability

Pc in the larger space following the prescription of Eq. (10) and produce the result

Pc =
1

2

[
1− cos2(2φ− 2θ)

]
. (31)

Thus, the answer depends only on the relative orientations of the two polarizations, which

is 0 when they are equal.

Measurements for this section of the experiment follow directly from the setup of the

previous ones. Students can also be given the freedom to take the data in whichever form

they decide. For example, the data of Fig. 6 shows a scan of the angle φ of the half-wave

plate on the motorized mount. It follows remarkably close to the expectation of Eq. (31)

for θ = 0. At φ = ±45◦ the two input polarizations are orthogonal, the coincidences are at

a maximum, which corresponds to about 1150 counts, the same as the ones corresponding

to 1/2 probability in Fig. 5. At φ = 0,±90◦ the polarizations are parallel and we get

destructive interference, with about the same value of counts as at the dip. Because of the

simple functional form of the data of Fig. 6, we fitted Eq. (31) with a visibility parameter

v multiplying the cosine function, to the data (not shown to avoid cluttering the figure),

which resulted in an excellent match, with a reduced chi-square of 1.04. The fitted visibility

was v = 0.94, which is quite remarkable for a teaching laboratory experience.
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FIG. 6. Recording of the coincidences as a function of the angular position φ of one of the half-wave

plates, while the other half- wave plate was oriented at θ = 0◦. Thus, the half-wave plate setting

φ is half the difference in the angular orientation of the polarizations of the two photons.

IV. CONCLUSIONS

In summary, we present a simplified version of the Hong-Ou-Mandel experiment that is

suitable for the undergraduate instructional laboratory. The use of a fiber-coupled beam-

splitter greatly simplified the alignments. The development of the experiment involved a

one-semester senior capstone project. Once we knew how to overcome the challenging parts

of the apparatus, disassembly and reassembly proceeded at the same pace as in other single-

photon-type of experiments. In Appendix A, we present some of our recommendations for

set up and alignment. We were quite surprised by the high quality of the data, shown in

Figs. 5 and 6. Free-space alignment normally produces much lower visibilities, because of

difficulties in the alignment. We found that the use of a motorized translation stage greatly

streamlined finding the interference dip, and in making detailed scans. The use of waveplates

helped in finding the best visibility, which was around 0.93-0.94. Such visibilities make this

experiment a strong demonstration of a purely quantum interference effect. The motorized

aspect of the scans also allows the experiment to be performed remotely.23

A discussion of this experiment leads to fundamental concepts of quantum mechanics,

such as the symmetry of the wavefunction. The lack of coincidence is indeed because the
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wavefunction of the two photons must be symmetric due to their bosonic nature. Should an-

other part of the wavefunction, such as polarization24,25 or spatial mode,26 be antisymmetric,

it would require an antisymmetric momentum wavefunction so that the total wavefunction

is symmetric. This situation will lead to a maximum in the coincidences.26,27 Our classical

intuition leads us to associate a physical force (e.g., electromagnetic, gravitational) whenever

there is an interaction, but quantum mechanics allows such an interaction between particles

to exist just because they are identical. This property also manifests tangibly with (identi-

cal) electrons in atoms via the exchange force (see Ref. 28 for an illuminating presentation).

The same is the case here with photons in a beamsplitter, which is also the basis for using

photons in quantum computation.29

The temporal overlap and polarization aspect of the experiments presented above also

underscores the requirement of indistinguishability for interference to occur. It serves as

a basis for discussing another remarkable quantum interference experiment, also known

as the “mind-boggling experiment,” which exploits the indistinguishability aspects of this

interference phenomenon.30 In that experiment, interference between photons of separate

pairs is seen when the two pairs are indistinguishable from each other, which leads to im-

portant consequences for quantum computing purposes, such as entanglement swapping,5

teleportation,6 and the entanglement of multiple qubits. With quantum mechanics making

irreversible inroads into technology, experiments such as this one make students appreciate

the inner-workings of quantum mechanics. It constitutes an important step for understand-

ing the technological tools of the future.

Appendix A: Experimental Set Up and Alignment

Setting up the experiment must be done in stages. A first stage involves aligning the

crystal and collimators for spontaneous parametric down-conversion. We did this with the

simplest of setups. The collimators are attached to multimode fibers. We made marks on

the breadboard where the collimators should be placed, 1-m away from the crystal. We used

an alignment laser and a homemade plumb bob to mimic the path of the down-converted

photons and couple the light into the fibers. Once this was done, we placed 30-nm filters on

the collimators, turned the pump laser and the detectors on, and looked for coincidences.

After optimization, the singles should be above 10000 counts per second (e.g., for us it was
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∼ 60000 s−1 ), and the coincidences between 5% and 10% of the singles counts.

Once the first stage was completed, we disconnected the multimode fibers and attached

the inputs of the fiber-coupled beamsplitter to the collimators. At this point it helped us to

couple the light from a laser into a fiber connected to one of the outputs of the beamsplitter.

We did this with a commercial low-power handheld fiber-coupled laser, which could also

serve as the alignment laser. The purpose of this was to send the light back from the

collimators toward the crystal. We used it to adjust the focus of the collimators to match

the size of the pump laser on the BBO crystal. This mode-matching step is important in

coupling the photons into the fibers.

After the previous stage was set, we observed singles counts of the order 30,000 counts

per second and about 800 coincidences per second. At this point we initiated the search for

the dip in coincidences. Doing this by hand was difficult and tedious, mainly because the

dip is of the order of 10 µm wide, so very small steps of the translation stage are needed,

and that is difficult to do by hand. Much easier is to do a motorized scan. This finds the

dip reliably. We did so both ways, and the motorized way was significantly easier.

Once the dip was found, we switched to narrower bandwidth filters (10 nm), which

increased the width of the dip. At this point the dip was not optimally deep. The next

and final stage involved adding identical waveplates in front of both collimators. Because

they delay the light as it travels through them, we had to find the new location of the dip,

displaced by the slight difference in thickness of the two waveplates. Adjustment of the

relative orientation of the waveplates at the dip location resulted in the best interference

condition.

Appendix B: Parts List

Table I lists the main parts that are needed for this experiment. Other parts can be

obtained from Ref. 17. The central piece for this experiment is the beamsplitter. As men-

tioned earlier, we used a fiber-coupled beamsplitter, listed in the table. It can also be

custom-ordered to a commercial vendor of fiber-optical components, with the specification

that it needs equal-length polarization maintaining fibers and use a 50:50 beamsplitter at

a wavelength of 810 nm. It can also be done with a fiber beamsplitter,15 although we have

not tried it.
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TABLE I. Parts list with vendors, models and rounded prices. Vendor Abbreviations: Newlight

Photonics: New. Phot.; Optsigma: Opto.; Power Technology Inc.: Pow. Tech.; Pacific Laser: Pac.

Las.. SPADs with educational discount are sold by Alpha.31 Electronics circuits are based on field

programmable gate arrays.17,32

Name Number Vendor & Model Price ($) Comment

Bandpass Filter 2 New. Phot. NBF810-30 160 30 nm, 810-nm center.

Bandpass Filter 2 New. Phot. NBF810-10 160 10 nm, 810-nm center.

BBO crystal 1 New. Phot. NCBBO5300-

405(I)-HA3

620 Type-I down-conversion crys-

tal, 5x5x3 mm

Beamsplitter 1 Qubitekk 3000 Fiber coupled.

Collimator 2 Thorlabs CFC8-B 300 Adjustable focus

Collimator adapter 2 Thorlabs AD15F2 30 For mirror mount.

Detectors (SPAD) 2 Excelitas SPCM-AQHR 3000 Dark counts ≤ 1000 cps.

Electronics 1 Altera DE-115 or Red Dog 300 For recording coincidences.

Fiber Laser 1 Thorlabs HLS635 or OZ Op-

tics FOSS

700 1 mW, hand-held.

Filter mount 2 Thorlabs SM1L05 20 Mount for filter, 1-inch ID.

Iris 2 Thorlabs SM1D12 60 Iris mounted on collimator.

Mirror mount 2 Thorlabs KM100T 70 For mounting collimator.

Pump laser 1 Pow. Tech. GPD405-50 510 405-nm laser module, 50 mW.

Rotational mount 1 Opto. GTPC-SPH30 250 Manual.

Rotational adapter 1 Opto. GTPC-ADP25.4-38 100 Adapter for 1-inch aperture.

Rotational mount 1 Pac. Las. RSC-103E 1600 Motorized, USB connected.

Translation stage 1 Thorlabs MT1 330 Manual, with micrometer.

Translation stage 1 Pac. Las. LST-10L 1700 Motorized.

Waveplate 2 New. Phot. WPA03-H-810 330 half-wave, 810 nm, zero order.
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