An Easier-To-Align Hong-Ou-Mandel Interference Demonstration

Nicholas S. DiBrita* and Enrique J. Galvez'
Department of Physics, Colgate University, Hamilton, NY 13346, USA
(Dated: January 15, 2023)

Abstract

The Hong-Ou-Mandel interference experiment is a fundamental demonstration of nonclassical
interference and a basis for many investigations of quantum information. This experiment involves
the interference of two photons reaching a symmetric beamsplitter. When the photons are made
indistinguishable in all possible ways, an interference of quantum amplitudes results in both pho-
tons always leaving the same beamsplitter output port. Thus, a scan of distinguishable parameters,
such as the arrival time difference of the photons reaching the beamsplitter, produces a dip in the
coincidences measured at the outputs of the beamsplitter. The main challenge for its implementa-
tion as an undergraduate laboratory is the alignment of the photon paths at the beamsplitter. We
overcome this difficulty by using a pre-aligned commercial fiber-coupled beamsplitter. In addition,
we use waveplates to vary the distinguishability of the photons by their state of polarization. We
present a theoretical description at the introductory quantum mechanics level of the two types of

experiments, plus a discussion of the apparatus alignment and list of parts needed.



I. INTRODUCTION

In 1987 C.K. Hong, Z.Y. Ou, and L. Mandel reported on one of the most consequential
experiments in quantum optics.! It is an experiment that demonstrates the ensuing quantum
interference of two properly prepared photons after each arrives separately at an adjacent
input port of a symmetric beamsplitter. When all of the properties of the two photons
are identical, a striking phenomenon appears: the two photons always exit together at the
same output port of the beamsplitter and never exit at separate output ports. This effect
is a purely nonclassical phenomenon. The proper way to understand it is from a quantum-
mechanical perspective, where the amplitudes for the various possibilities interfere. This
result mimics a form of interaction between photons, but one that is solely due to quantum
effects, similar to the exchange interaction of electrons in atoms. This quantum interaction
has been used for a number of purposes,? such as entanglement,®* entanglement swapping,®
teleportation,® implementation of CNOT gates,” and ultimately, quantum computing with

photons.®

The essence of the Hong-Ou-Mandel (HOM) interference phenomenon is shown in Fig. 1.
When two photons arrive separately at adjacent input ports of a beamsplitter, there are
four possible outcomes. Either the two photons exit together out of the same output port
in one of two possible ways, as shown in Figs. 1(a) and 1(b), or they exit out of separate
ports in one of two possible ways, as shown in Figs. 1(c) and 1(d). Following Feynman,’
consider the event when both photons exit out of separate output ports of the beamsplitter.
If the photons are indistinguishable, the probability for the event is the square of the sum
of the probability amplitudes for each possibility considered separately. If the possibilities
are distinguishable, then the probability of the event is the sum of the probabilities of the
possibilities.

Now assume the beamsplitter to be a symmetric one, i.e., with equal probabilities to
transmit and reflect light, and equal amplitudes for reflection and transmission from either
side of the beamsplitter. It is common to call the probability amplitudes for transmission
and reflection ¢ and r, respectively. The absolute value for both ¢ and r has to be 1/v/2,
so that the probability of transmission and reflection is 1/2 in each case. However, to
conserve energy, or equivalently, probability, the transmission and reflection amplitudes have

to be out of phase by 7/2 for the case of the symmetric beamsplitter.'®! Tt is common to
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FIG. 1. Schematic of the four possible paths of two photons, each incident separately on adjacent

input ports of a beamsplitter.

attach this phase to the reflection amplitude, so r = exp(ir/2)/v2 = i/v/2 and t = 1//2.
The probability amplitude that both photons come out of separate output ports of the
beamsplitter has two terms: when both transmit, it is t¢ = 1/2 [Fig. 1(c)]; and both reflect,
it is rr = —1/2 [Fig. 1(d)]. The probability for the event is then

Pug = [tt +17]* = 0. (1)

That is, the two possibilities interfere destructively.
If the photons are distinguishable, such as when they arrive at the beamsplitter at dis-

tinguishable different times, then the probability is
Puis = [tt]* + |rr]> = 1/2. (2)

Distinguishable different times means that a measurement of the two arrival times of the
photons can be used to distinguish between the two possibilities. Other distinguishing
attributes are the photons’ polarization, energy, or spatial mode.

We note that the previous analysis applies to bosons, like the photon. For fermions (for

example, electrons), the amplitude rule of Eq. (1) is not a sum but a difference of the two
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probability amplitudes.” This fact is due to the exchange symmetry of indistinguishable
fermions, which unlike bosons, cannot occupy the same state (i.e., both fermions having
the same momentum). Thus, in the HOM experiments with electrons,'? the probability of
Eq. (1) is 1. Feynman explains the distinction between bosons and fermions with a similar
type of experiment, of identical particles in a head-on collision.? This phenomenon is more
formally described in terms of the symmetry of the two-particle wavefunction, presented in
Sec. III. Ultimately, the HOM experiment is a demonstration of the superposition of the
state of two particles and how it leads to measurable interference effects that are purely

quantum mechanical.

Recreation of this demonstration is not straightforward, mostly because the experimental
alignment requires much effort and expertise, and thus is time consuming. To see the interfer-
ence, both photons created from the same source—spontaneous parametric down-conversion
(described below)— have to travel exactly the same distance to the beamsplitter, so setting
up the photon paths needs very careful alignment. Additionally, the experiment requires
hardware that facilitates scanning the photon path difference by tens of micrometers. A final
challenge occurs at the beamsplitter. The photons’ spatial mode must fully overlap at the
beam splitter and along the output paths. Otherwise they will be spatially distinguishable.
For educational purposes, this demonstration has been done before in free space,'® where the
experimentalists implemented the following clever method of alignment: a Mach-Zehnder
interferometer was set up such that its separate arms were the two photon paths. Once the
paths were aligned to be equal via interferometry, the first beamsplitter was replaced by the

down-conversion crystal.

The purpose of this article is to report on a Hong-Ou-Mandel interference demonstration
that eliminates the free-space alignment of the photon beams reaching the beamsplitter. In-
stead, we use a commercial pre-aligned device. The cost of this device is within the norm for
component hardware in common use in quantum optics instructional physics laboratories.
This new system adds its own complication, though. That is, the down-converted photons
need to be coupled to single-mode fibers. We find this extra effort to be a worthwhile trade-
off. In Appendix A, we provide a suggested procedure for the required alignment. We also
note that this experiment is already sold commercially as a black-box-type experiment.!41°

Our experiment is based on the beam-splitting component in one of these commercial prod-

ucts, but our aim is a demonstration in which students set up the entire apparatus, and it
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is done at a lesser cost.

The article is organized as follows. In Sec. II, we provide a detailed description of the
experimental apparatus. Section III follows with a quantum-mechanical description of the
phenomenon that fits within the curricular formalism of an undergraduate course, along
with the experimental results. Two appendices give alignment procedures, a parts list and

component costs.

II. APPARATUS

A diagram of the apparatus is shown in Fig. 2. The figure has been sectioned to high-
light important parts. The first section is the source of photon pairs via type-I spontaneous
parametric down-conversion. A pump laser emitted horizontally polarized light of wave-
length 405.4 nm. It was steered toward a beta barium borate (BBO) crystal that produced
photon pairs that were vertically polarized. Up to this point, this is a standard setup for un-
dergraduate quantum optics experiments.'®7 In the central section, collimators (C) collect
photons into optical fibers. They were placed at +3° from the incident pump-beam direc-
tion, and located 1-m away from the crystal. Bandpass filters (F), set to collect photons
that are near the degenerate wavelength of 810.8 nm, were attached to the collimators along
with a mounted iris. Before we continue with more detail of the central section, we add
that the third section is also standard: single-photon avalanche diode detectors (SPAD) fed
digital electronic pulses from photon detections to an electronic counting and coincidence
unit, which in turn fed data to a laptop/desktop with data acquisition programs written in
MATLAB.7

The central portion of the apparatus has several new components. Figure 3 shows a pho-
tograph that emphasizes this section of the apparatus. The main component is a commercial
pre-aligned fiber-coupled beamsplitter (FCBS). Because the polarization of the light has to
be maintained, the fibers are single mode and polarization maintaining (PMOF). The two
fiber inputs of the FCBS are connected to the collimators and the fiber outputs are con-
nected to the two SPADs. The first departure from the standard experiments was the use
of PMOFs. They significantly restricted the input light. To maximize the coupling of the
down-converted photons to the fiber, we used collimators with adjustable focus (C). These

collimators have fiber connectors type FC, which lock the fibers into a specific orientation.
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FIG. 2. Sections of the apparatus. A 405-nm pump laser beam was steered to a BBO crystal to
generate vertically polarized photons. A fiber-coupled beamsplitter (FCBS) provided the photon
interference. Other hardware components included half-wave plates (Wg and W¢) oriented by angles
0 and ¢ to the vertical, respectively, with one on a motorized rotation mount (MW); bandpass filters
(F); adjustable-focus collimators (C), with one of them mounted on a motorized translation stage
(MS) on top of a manual stage; polarization-maintaining optical fibers (PMOF); and single-photon
avalanche diode detectors (SPAD).

To collect photon pairs with the same polarization, both collimators were mounted to have

the same orientation of the FC connectors in their mount.

The collimators were mounted on mirror mounts via adapters. One of the collimators’
mount was attached to a magnetic mount and placed in contact with an aluminum plate with
a 1-m radius of curvature (see Fig. 2), with center of curvature located approximately at the
position of the crystal. The purpose of the latter was to allow the flexibility to translate the
collimator sideways to optimize coincidence counts. The curved path reduced/eliminated
the walk-off error that would be introduced if the collimator was translated linearly sideways.
The other collimator’s mirror mount was mounted on a double stack of translation stages
set to move the collimator toward or away from the crystal. The bottom stage, attached to
the breadboard, was a standard manual translation stage with a micrometer screw, whose
purpose was to make coarse adjustments. On top of it was a small motorized translation
stage (MS) for doing an automatic scan of the crystal-collimator distance. The two stages
changed the photon-path difference.

The last component of the arrangement was a pair of half-wave plates. One was mounted

on a manual rotation mount and the other on a motorized rotation mount (MW). They are
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FIG. 3. Photograph of the apparatus showing the main components: down-conversion crystal
(BBO), motorized rotation mount (MW); and linear stage (MS), polarization-maintaining optical

fiber (PMOF); fiber-coupled beamsplitter (FCBS); and photon detectors (SPAD).

needed for two purposes: (1) to ensure that the photons enter the optical fibers with the
same polarization orientation, and (2) for scanning the polarization distinguishability of the

photons as described in Sec. 11T C.

III. TWO SITUATIONS

We describe the experiments in three parts. First, we describe the HOM interference
itself. Next, we describe two situations where we can turn the interference on and off, one

based on the path length and the other based on the polarization.
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A. The HOM Interference

This HOM interference phenomenon has been described before in terms of number
states.!>1® Here, we use an alternative approach in terms of momentum states. Photons
1 and 2 leaving their place of birth can arrive at the beamsplitter in a state with either
momentum |z) or |y), as labeled in Fig. 2. Each photon can be in these two possible states.
Thus, the full state of both photons is the tensor product of the two photon spaces. Due
to the bosonic nature of the quantum state of the two photons, they must be described by
a wavefunction that is symmetric by the interchange of the two particles. Thus, the initial

state of the two photons is given by

), = % (1), ) + [9),]2),) (3)

To manipulate the state of the light, we can use the matrix notation of quantum mechan-
ics: |z) = (1 0)7 and |y) = (0 1)T, with T" denoting the transpose of the matrix. The two

product states are then given by

0
1 0 1
[2)1[y)y = ® = (4)
0 1 0
1 2
0
and
0
0 1 0
) lz)y = ® =1, 1 (5)
1 2
0

which results in the initial state given by

O = = O

The symmetric beamsplitter must apply to each photon space, resulting in an operator
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acting on the larger space

1 ¢+ 7 -1

A tr tr 1 7 1 —1 =2
By, = ® = , (7)

rt rt 2 1 —1 1 ¢

-1 2 ¢+ 1

with ¢ and r as defined in Sec. I. The final state is obtained in a straightforward way by
applying the beamsplitter operator to the initial state

|¢>f = B2|¢>z‘ = E

_ o O =

Notice that to within an overall phase, this state is equivalent to

), = % (1712 + )1 19)a) - (9)

That is, in the final state both photons end up traveling along the same direction. Should we
put photon detectors at each output of the beamsplitter, we would not get any coincidences.
Note that Eq. (8) is a nonseparable (entangled) state of the two photons in the momentum
degree of freedom.

If we put detectors at the two outputs of the beamsplitter, the probability of detecting

photon 1 in one detector and photon 2 in the other, and vice versa, is

P. = P(x1,y2) + P(y1, 72) (10)
P = ’<x|1<y|2’¢>f|2+H<y|1<x|2w>f|2 (11)
P.=0. (12)

In our photon counting experiment, when a photon impinges on a detector, the detector
outputs a pulse that is sent to an electronic circuit. The circuit is set to record when a
photon arrives at each of the two detectors within a certain time window, an event defined
to be a coincidence. In our HOM experiment, the time window is about 40 ns and the
interference effect results in no coincidences being detected.

Let us also consider the situation when there is no interference, that is, when the photons

are distinguishable. For example, suppose we know that one photon arrives before the



other because the length of paths of the photons from the crystal to the beamsplitter are
distinguishably not the same. Suppose also that the photon arrival time from different paths
is still within the experimental coincidence window. What would we measure?

One way to analyze the situation is this: assume photon 1 in momentum state |z), arrives
at the beamsplitter distinguishably sooner than photon 2, which is in momentum state |y),.

Then, the system’s initial state is |x),|y), and the final state will be:

Thus, from Eq. (10), the probability of measuring a coincidence experimentally will be
P. =1/2. We get the same result when we consider the other possibility, i.e., initial state
ly);|2),. To make it symmetric we could say that the first possibility occurs half the time
and the second possibility occurs the other half. This still gives us P. = 1/2.

Based on the previous discussion contrasting bosons and fermions, we can repeat this
analysis for the case of fermions. Then, the initial wavefunction must be antisymmetric [i.e.,
Eq. (3) with a minus sign instead of a plus sign| because the total wavefunction must change
sign with particle exchange. The application of the beamsplitter operation preserves the
symmetry of the initial state, yielding an output state that is antisymmetric (i.e., the same
as the initial state), underscoring that identical fermions cannot be in the state of Eq. (9).
Thus, the symmetry of the wave function accounts for the way the amplitudes combine in

Eq. (1) (i.e., plus sign for bosons and minus sign for fermions).

B. The Dip

In parametric down-conversion, photon pairs are emitted with energies £y = E and
Ey = Ey — E, where Ej is the energy of the pump (parent) photon. Right before being
detected, the photons go through energy filters, which restrict the energy of the photons

further. Thus, the apparatus detects photons in a superposition of energy states:
) = [ B o(B)|E), B0 - E), (14)
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where a(FE) is a measure of the overall bandwidth of the photons that are being detected.
The state of the photons in Eq. (14) is non-separable. That is, the photons are in an
entangled state of energy. Their exact energy is unknown to within a range of energies AFE
determined by a(FE) and they constitute a wavepacket. As such, the photons are coherent
to within the coherence time At ~ h/AE, where h is Planck’s constant. Because filters are
specified in terms of the wavelength, we can express the energy bandwidth in terms of the
wavelength: AE = hcAN/A\?, where c is the speed of light in vacuum. Thus, a practical
way to express the coherence is in terms of the length of the wavepacket, also known as the
coherence length
)2

(. = cAt = AN (15)
If the photons arrive at the beamsplitter within the coherence time, then they can be consid-
ered indistinguishable (assuming all other photon properties are identical). An alternative
reasoning is to say that the difference in the length of the two paths from the crystal to the
beamsplitter is less than the coherence length. What occurs in the intermediate cases? For
that we need to go deeper into the quantum mechanics formalism.

In the previous section we analyzed the two extreme interference situations: the photons
are indistinguishable yielding no coincidences, or the photons are distinguishable and coin-
cidences are observed. In the former case, the photons are in a quantum entangled state. In
the latter, considering the two possibilities, the photons are in a mixed state. To account
for mixed states we need to resort to another quantum-mechanical object for describing the
state of the photons—the density matrix.’

The density matrix for the state of the light in the indistinguishable case is given by the

outer product of the vector matrices:

0000

) 1{o110

o = 1) (] = 5 . (16)
0110

0000

When the photons are in the distinguishable case, the density matrix is the weighted sum

of the density matrices for each case considered separately:

Pxy = \x>1|y)2<y|2(x|1 (17)
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and
Pyx = Y)112)o (@] {yl; s (18)

with the mixed state for the all the cases given by

0000
1 1 110100
Ais:_Ax _Ax:_ 19
Pd 2py+2py 210010 (19)
0000
The density matrix after the photons go through the beamsplitter is given by
pr = Bp:B*. (20)

Readers can show that this outcome is consistent with |¢) .(¢[, of Eq. (9). The coincidence
probability will be given by Eq. (10), which when using the density matrix, is expressed in
terms of the trace of the product of the density matrix of the state times the density matrix

of the state being measured (|x),|y), or |y),|z),). This results in
P. = Tr[ﬁfiéxy] + Tr[ﬁfﬁyz]' (21)

For the indistinguishable case, we easily find that p; = ping yields P, = 0; for the distin-
guishable case, py = pais yields P, = 1/2.

The intermediate case can be expressed by the state
ﬁint = pﬁmd + (]- - p)ﬁdis (22)

where p is the probability that the photons are indistinguishable. This state is similar to
the form of the Werner state.?° This matrix describes the situation when the state of the
photons is partly indistinguishable and partly distinguishable, with p and (1—p) determining
the relative weights. It is left to the reader to show that the final density matrix after the

beamsplitter is

14p 0 0 14p

) il o 1=p —14p 0

Pint—f = Z (23)
0 —14p 1—p 0
14p 0 0 14p

Using py = pint—r as given by Eq. 23, Fig. 4(a) shows the calculated coincidence probability
from Eq. (21) as a function of p.

12



0.2 04 0.6 0.8

-2 0 2

xg/fc

(c)

-2 0 2

xO/"?c

FIG. 4. (a) Calculated probability of measuring a coincidence as a function of the Werner prob-
ability p; (b) Calculated Werner probability using a simple Gaussian model as a function of the

the delay in overlap of the photon amplitudes z relative to the coherence length [.; (¢) Calculated

probability of measuring a coincidence as a function of xg/I..

The landmark experiment by Hong, Ou, and Mandel demonstrated the interference effect
by scanning the difference in path, and therefore the overlap of the interference of the two
photon amplitudes, exhibiting a famous “dip” in the coincidences. We can reproduce the
dip analytically using a simple model. If we consider the photon wavepackets as Gaussians

with a width at half maximum given by /. but displaced by the path difference xy, then p
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is proportional to the overlap integral. If we displace the two Gaussians by x, then

+°° [21In(
p(o) / gnﬂ p—4In(2)a? /€2 ,—41n(2)(w—20)2/£2 1. (24)

where we have normalized the overlap such that p(0) = 1, as shown in Fig. 4(b). If we now
plot the coincidence probability as a function of zy, we recreate the famous HOM dip, as
shown in Fig. 4(c). We note that we present this simple model just to capture the essence
of the phenomenon as measured in the laboratory. A more accurate calculation would have
to take into account the actual measured bandwidth of the light and other experimental
details.

After following the alignment procedure outlined in Appendix A and adjusting the wave-
plates so that photons are input into the fibers with the same polarization, the dip can be
found and scanned. In a lab experience lasting only a few hours, the initial alignment is
best done for the students beforehand. Perhaps other students can bring the apparatus to
this point as part of a several-week laboratory exercise, as we do in the add-on lab of our
quantum mechanics course.!” Beyond this point students can be asked to “discover” the dip,
study it in some detail, and investigate the effect of the bandpass filters on the width of
the dip. In Fig. 5, we show the measurement of the dip taken by an undergraduate student
(the first author of this paper), who did the experiment as a senior capstone project. This
scan of coincidences was taken at 4 s per data point. The horizontal scale is the position
of the motorized stage (a Matlab program to acquire such data is posted in our website,
Ref. 17). Data points were taken every 4 stepper-motor steps of the motorized translation
stage, which correspond to a motion of the collimator by 5.33 um, or a time delay of 18
fs in arrival times of the two photons. Error bars are the standard for Poisson statistics.
Accidental coincidences were of the order of 7 counts.

The quality of the measured dip can be evaluated by the visibility, defined as v = (Nyax —
Niin)/(Nmax + Nmin). We actually obtained this value by fitting an inverted Gaussian to
the data, giving v = 0.93, a remarkably good value, which can be attributed largely to the
advantage of using the commercial fiber-coupled beamsplitter. The full width of the dip
at half minimum (FWHM) is about 55 pm, which is of the same order of the calculated
coherence length of 66 pm. With a wider filter of (nominal) 30 nm bandwidth, we got 18
pum, consistent with the calculation (22 pm). There is an asymmetry in the shoulders of

the dip. We saw different shoulders when we did the experiment with different parameters
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FIG. 5. Recording of the coincidences as a function of the position of one of the collimators;

effectively the difference in the path length of the two photons, from the crystal to the beamsplitter.

(filters and position of the collimators). It depends on the shape of a(E) in Eq. (14), which
is related to the shape of the transmission curve of each bandpass filter. We also note that
the dip appears only in the coincidence counts. The singles counts (i.e., photons detected
by each detector separately) are constant throughout the scan. It underscores that it is a

two-photon effect.

C. Polarization Distinguishability

The photons reaching the beamsplitter can be distinguished by other degrees of free-
dom. That is, the path length difference of the photons arriving at the beamsplitter can
be set to zero, while the photons are still distinguishable. One way this can be done is by
manipulating their polarization.'® The photons produced by type-I spontaneous parametric
down conversion have the same polarization. If we rotate the polarization of one of them
by 90°, then the two photons are distinguishable by polarization and the interference can-
cellation disappears. If the polarization setting is between 0° and 90°, then the coincidence
probability is somewhere in between.

Because polarization is represented by two-dimensional space, we can incorporate it in

the pure-state description of the light. The distinction between this and the situation of
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Sec. III B is more subtle, involving open and closed quantum systems.?"??> Without getting
too technical, we proceed by calculating the probability for this situation by fully accounting
for polarization in the state of the light. It also provides an additional way to understand
two-photon interference.

If we add the polarization degree of freedom for each photon, this doubles the Hilbert
space of each photon, and therefore the two-photon system becomes a 16-dimensional Hilbert
space. Doing the matrix operations by hand is a bit unwieldy, with 16-element vectors and
16 x 16 operator matrices, but using various software platforms, such as Mathematica or
MATLAB, we can do the laborious linear-algebraic steps easily. If we add polarization to
the photon’s state, then the initial state, where both photons are vertically polarized is given

by
_ 1

[¥); NG

where we have now added a label V' to the momentum state of each photon in order to

(2, V)ily, Vg + [y, Vi lz, V)y) (25)

specify its polarization. Each product state is of the form

€T H €T H
p) = ® ® ® (26)
y V y Vv

1 1 2 2

where V' and H specify vertical and horizontal polarization, respectively. In vector form,
the initial state would be |¢), = 27Y2(0000000100000 10 0)”. Before the photons
reach the beamsplitter, they go through half-wave plates. For symmetry, we add one for
each momentum input. (Experimentally, two waveplates are needed to keep the optical path
of the two photons as close to equal as possible.) The waveplates for the 2 and y momentum
states are oriented by angles 6 and ¢ relative to the vertical direction, respectively. We can

express the operator for a half-wave plate oriented an angle 6 by

R —co0s 20 —sin 260
Wy = : (27)
—sin20 cos 20

Because the two waveplates are attached to each momentum state, the operator for the two

waveplates acting on the space of the two photons has the form
Zss =P @Wy @ P,@Wys+ P, @ Wy @ P, @ W, (28)

where P, = |z)(z| and P, = |y)(y| are projection operators for the momentum states. It is

left as an exercise for the reader to show that the state |¢)’ after the waveplates and before
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the beamsplitter is

1

) = Zo %

1/)>z (Ix,29>1|y,2¢>2 + |y,2¢>1|x, 26>2) (29)

where for simplicity we have labeled the polarization state by the orientation of the polar-
ization relative to the vertical direction.
The beamsplitter acts only on the momentum states, leaving the polarization states

unchanged. Its operator is given by
Bi=B®I®B®I, (30)

where I is the identity, representing the inaction of the beamsplitter on the polarization
degree of freedom. The next steps are mechanical: computing the final state followed by a
calculation of the coincidence probability. At this point in our lab program, we ask students
not just to perform the calculation, but to devise how to calculate the coincidence probability

P. in the larger space following the prescription of Eq. (10) and produce the result
1 2
P.= 5 [1— cos®(2¢ — 20)] . (31)

Thus, the answer depends only on the relative orientations of the two polarizations, which

is 0 when they are equal.

Measurements for this section of the experiment follow directly from the setup of the
previous ones. Students can also be given the freedom to take the data in whichever form
they decide. For example, the data of Fig. 6 shows a scan of the angle ¢ of the half-wave
plate on the motorized mount. It follows remarkably close to the expectation of Eq. (31)
for 0 = 0. At ¢ = £+45° the two input polarizations are orthogonal, the coincidences are at
a maximum, which corresponds to about 1150 counts, the same as the ones corresponding
to 1/2 probability in Fig. 5. At ¢ = 0,£90° the polarizations are parallel and we get
destructive interference, with about the same value of counts as at the dip. Because of the
simple functional form of the data of Fig. 6, we fitted Eq. (31) with a visibility parameter
v multiplying the cosine function, to the data (not shown to avoid cluttering the figure),
which resulted in an excellent match, with a reduced chi-square of 1.04. The fitted visibility

was v = 0.94, which is quite remarkable for a teaching laboratory experience.
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FIG. 6. Recording of the coincidences as a function of the angular position ¢ of one of the half-wave
plates, while the other half- wave plate was oriented at 8 = 0°. Thus, the half-wave plate setting

¢ is half the difference in the angular orientation of the polarizations of the two photons.
IV. CONCLUSIONS

In summary, we present a simplified version of the Hong-Ou-Mandel experiment that is
suitable for the undergraduate instructional laboratory. The use of a fiber-coupled beam-
splitter greatly simplified the alignments. The development of the experiment involved a
one-semester senior capstone project. Once we knew how to overcome the challenging parts
of the apparatus, disassembly and reassembly proceeded at the same pace as in other single-
photon-type of experiments. In Appendix A, we present some of our recommendations for
set up and alignment. We were quite surprised by the high quality of the data, shown in
Figs. 5 and 6. Free-space alignment normally produces much lower visibilities, because of
difficulties in the alignment. We found that the use of a motorized translation stage greatly
streamlined finding the interference dip, and in making detailed scans. The use of waveplates
helped in finding the best visibility, which was around 0.93-0.94. Such visibilities make this
experiment a strong demonstration of a purely quantum interference effect. The motorized
aspect of the scans also allows the experiment to be performed remotely.?3

A discussion of this experiment leads to fundamental concepts of quantum mechanics,

such as the symmetry of the wavefunction. The lack of coincidence is indeed because the
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wavefunction of the two photons must be symmetric due to their bosonic nature. Should an-

2425 or spatial mode,?® be antisymmetric,

other part of the wavefunction, such as polarization
it would require an antisymmetric momentum wavefunction so that the total wavefunction
is symmetric. This situation will lead to a mazimum in the coincidences.?62” Our classical
intuition leads us to associate a physical force (e.g., electromagnetic, gravitational) whenever
there is an interaction, but quantum mechanics allows such an interaction between particles
to exist just because they are identical. This property also manifests tangibly with (identi-
cal) electrons in atoms via the exchange force (see Ref. 28 for an illuminating presentation).
The same is the case here with photons in a beamsplitter, which is also the basis for using
photons in quantum computation.?

The temporal overlap and polarization aspect of the experiments presented above also
underscores the requirement of indistinguishability for interference to occur. It serves as
a basis for discussing another remarkable quantum interference experiment, also known
as the “mind-boggling experiment,” which exploits the indistinguishability aspects of this
interference phenomenon.®® In that experiment, interference between photons of separate
pairs is seen when the two pairs are indistinguishable from each other, which leads to im-
portant consequences for quantum computing purposes, such as entanglement swapping,®
teleportation,® and the entanglement of multiple qubits. With quantum mechanics making
irreversible inroads into technology, experiments such as this one make students appreciate

the inner-workings of quantum mechanics. It constitutes an important step for understand-

ing the technological tools of the future.

Appendix A: Experimental Set Up and Alignment

Setting up the experiment must be done in stages. A first stage involves aligning the
crystal and collimators for spontaneous parametric down-conversion. We did this with the
simplest of setups. The collimators are attached to multimode fibers. We made marks on
the breadboard where the collimators should be placed, 1-m away from the crystal. We used
an alignment laser and a homemade plumb bob to mimic the path of the down-converted
photons and couple the light into the fibers. Once this was done, we placed 30-nm filters on
the collimators, turned the pump laser and the detectors on, and looked for coincidences.

After optimization, the singles should be above 10000 counts per second (e.g., for us it was
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~ 60000 s7! ), and the coincidences between 5% and 10% of the singles counts.

Once the first stage was completed, we disconnected the multimode fibers and attached
the inputs of the fiber-coupled beamsplitter to the collimators. At this point it helped us to
couple the light from a laser into a fiber connected to one of the outputs of the beamsplitter.
We did this with a commercial low-power handheld fiber-coupled laser, which could also
serve as the alignment laser. The purpose of this was to send the light back from the
collimators toward the crystal. We used it to adjust the focus of the collimators to match
the size of the pump laser on the BBO crystal. This mode-matching step is important in
coupling the photons into the fibers.

After the previous stage was set, we observed singles counts of the order 30,000 counts
per second and about 800 coincidences per second. At this point we initiated the search for
the dip in coincidences. Doing this by hand was difficult and tedious, mainly because the
dip is of the order of 10 ym wide, so very small steps of the translation stage are needed,
and that is difficult to do by hand. Much easier is to do a motorized scan. This finds the
dip reliably. We did so both ways, and the motorized way was significantly easier.

Once the dip was found, we switched to narrower bandwidth filters (10 nm), which
increased the width of the dip. At this point the dip was not optimally deep. The next
and final stage involved adding identical waveplates in front of both collimators. Because
they delay the light as it travels through them, we had to find the new location of the dip,
displaced by the slight difference in thickness of the two waveplates. Adjustment of the
relative orientation of the waveplates at the dip location resulted in the best interference

condition.

Appendix B: Parts List

Table I lists the main parts that are needed for this experiment. Other parts can be
obtained from Ref. 17. The central piece for this experiment is the beamsplitter. As men-
tioned earlier, we used a fiber-coupled beamsplitter, listed in the table. It can also be
custom-ordered to a commercial vendor of fiber-optical components, with the specification
that it needs equal-length polarization maintaining fibers and use a 50:50 beamsplitter at
a wavelength of 810 nm. It can also be done with a fiber beamsplitter,'® although we have

not tried it.
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TABLE I. Parts list with vendors, models and rounded prices. Vendor Abbreviations: Newlight

Photonics: New. Phot.; Optsigma: Opto.; Power Technology Inc.: Pow. Tech.; Pacific Laser: Pac.

Las.. SPADs with educational discount are sold by Alpha.3! Electronics circuits are based on field

programmable gate arrays.

17,32

Name Number Vendor & Model Price ($) Comment

Bandpass Filter 2 New. Phot. NBF810-30 160 30 nm, 810-nm center.

Bandpass Filter 2 New. Phot. NBF810-10 160 10 nm, 810-nm center.

BBO crystal 1 New. Phot. NCBBO5300- 620 Type-I down-conversion crys-
405(I)-HA3 tal, 5x5x3 mm

Beamsplitter 1 Qubitekk 3000 Fiber coupled.

Collimator 2 Thorlabs CFC8-B 300 Adjustable focus

Collimator adapter 2
Detectors (SPAD) 2

Electronics 1
Fiber Laser 1
Filter mount 2
Iris 2
Mirror mount 2
Pump laser 1
Rotational mount 1

Rotational adapter 1

Rotational mount 1
Translation stage 1
Translation stage 1
Waveplate 2

Thorlabs AD15F2
Excelitas SPCM-AQHR
Altera DE-115 or Red Dog

Thorlabs HLS635 or OZ Op-

tics FOSS

Thorlabs SM1L05
Thorlabs SM1D12
Thorlabs KM100T

Pow. Tech. GPD405-50
Opto. GTPC-SPH30
Opto. GTPC-ADP25.4-38
Pac. Las. RSC-103E
Thorlabs MT1

Pac. Las. LST-10L

New. Phot. WPA03-H-810

30 For mirror mount.
3000 Dark counts < 1000 cps.
300 For recording coincidences.

700 1 mW, hand-held.

20 Mount for filter, 1-inch ID.
60 Iris mounted on collimator.
70 For mounting collimator.
510 405-nm laser module, 50 mW.
250 Manual.
100 Adapter for 1-inch aperture.
1600 Motorized, USB connected.
330 Manual, with micrometer.
1700 Motorized.

330 half-wave, 810 nm, zero order.
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