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Prediction of state-of-health and remaining useful life is crucial to the safety of lithium-ion batteries. Existing
state-of-health and remaining useful life prediction methods are not effective in revealing the correlation among
features. Establishing the correlation can help identify features with high similarities and aggregate them to
improve the accuracy of predictive models. Moreover, existing methods, such as recurrent neural networks and
long short-term memory, have limitations in state-of-health and remaining useful life predictions as they are
not capable of using the most relevant part of time-series data to make predictions. To address these issues,
a two-stage optimization model is introduced to construct an undirected graph with optimal graph entropy.
Based on the graph, the graph convolutional networks with different attention mechanisms are developed to
predict the state-of-health and remaining useful life of a battery, where the attention mechanisms enable the
neural network to use the most relevant part of time series data to make predictions. Experimental results have
shown that the proposed method can accurately predict the state-of-health and remaining useful life with a
minimum root-mean-squared-error of 0.0104 and 5.80, respectively. The proposed method also outperforms
existing data-driven methods, such as gradient-boosting decision trees, long short-term memory, and Gaussian

process.

1. Introduction

Lithium-ion batteries have been widely used in many industries such
as unmanned aerial vehicles, electric vehicles, and portable electron-
ics [1,2]. The performance of a lithium-ion battery will deteriorate
with repeated charge and discharge cycles, which is also known as
battery aging [3]. Battery aging results in severe economic losses and
even catastrophic disasters such as fire hazards or explosions because of
flammable electrolytes. For example, Sony recalled 9.6 million laptops
due to abnormal battery aging issues in 2007, which led to around
$430 million in economic losses [4]. In 2018, a battery fire happened
in a cement plant in South Korea, which resulted in over $3 million in
damage [5]. Therefore, it is important to monitor lithium-ion battery
health conditions.

State-of-health (SOH) and remaining useful life (RUL) are com-
monly used to measure the health condition of lithium-ion batter-
ies. SOH refers to the ratio of the maximum battery capacity to its
rated capacity [6]. RUL refers to the number of remaining charge
and discharge cycles that a battery reaches its minimum acceptable
capacity. Numerous methods have been introduced to predict the SOH
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and RUL of lithium-ion batteries, and these methods can be clas-
sified into two groups: model-based and data-driven methods. The
model-based methods are built upon equivalent circuit models [7] and
electrochemical models [8] to make predictions. In comparison with
model-based methods, data-driven methods can be classified into three
categories: filter-based [9], machine learning [10], and deep learning
methods [11]. While existing data-driven methods are effective in
predicting SOH and RUL, these methods are not capable of identifying
the correlation among features [12,13]. This correlation can be used
to identify features with high similarities as well as aggregate similar
features to improve the robustness of a predictive model. Moreover,
most of the existing deep learning methods with recurrent characteris-
tics, such as long short term memory (LSTM) [14] and recurrent neural
network (RNN) [15] based methods, have limitations in SOH and RUL
predictions as these methods are not capable of using the most relevant
part of time-series data [16]. To address these issues, we first construct
an undirected graph and use the topological structure of the graph to
better reveal the feature correlation. To construct such an undirected
graph, a two-stage optimization model is introduced to obtain a graph
with optimal entropy by maximizing graph entropy and minimizing
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graph density simultaneously, where maximizing the graph entropy
can maximize the information communicated rate among different
features and minimizing the graph density can reduce the redundant
edges. Next, the spectral graph convolution operation is introduced to
develop a graph convolutional network (GCN) to aggregate features
with high similarities based on the constructed undirected graph. In
addition, in order to use the most important part of a time series to
make predictions, an LSTM network with dual attention mechanisms
is introduced to predict the SOH and RUL of a battery, where the
local attention mechanism and global attention mechanism are incor-
porated. These attention mechanisms can generate attention vectors
with weights representing the importance of the time series data at
different time points, and using these attention vectors can allow an
LSTM network to use the most important part of a time series to
make predictions. The contributions of this work can be summarized
as follows:

» A two-stage optimization method is introduced to construct an
undirected graph with optimal entropy so that the correlation
among different features can be identified by using the topologi-
cal structure of the constructed graph.

Two types of graph convolutional networks with different atten-
tion mechanisms are developed to respectively predict the SOH
and RUL of a lithium-ion battery, where these attention mech-
anisms incorporate the local attention mechanism and global
attention mechanism.

The remainder of this paper is organized as follows. Section 2
reviews the data-driven methods for SOH and RUL predictions. Sec-
tion 3 introduces the optimal entropy-enabled graph convolution LSTM
network with dual attention mechanisms for SOH and RUL predictions.
Section 4 demonstrates the effectiveness of the proposed method using
a case study and compares the proposed method with other predictive
models of SOH and RUL reported in the literature. Section 5 discusses
the impact of the proposed optimal entropy graph and the availability
of data from charge cycles. Section 6 concludes this research work and
directs future work.

2. Data-driven methods for SOH and RUL predictions

The data-driven methods for SOH and RUL predictions fall into
three categories: (1) filter-based methods, (2) machine learning meth-
ods, and (3) deep learning methods. The filter-based methods mainly
include extended Kalman filter (EKF), unscented Kalman filter (UKF),
and particle filter (PF). For example, Zhang et al. [17] proposed an
adaptive unscented Kalman filter method to estimate the SOH and
RUL of a lithium-ion battery, where a three-dimensional open circuit
voltage model was used to reduce prediction errors. The effectiveness
of the proposed Kalman filter was evaluated by a lithium-ion battery
cell operated under different operating conditions. The results have
shown that the proposed methodology can achieve a less than 2%
prediction error. Yan et al. [18] introduced an extended Kalman filter
based on Lebesgue sampling to predict the SOH and RUL of a battery.
The experimental results have shown that the proposed Kalman filter
can not only reduce computational complexities, but also enable a good
performance in SOH prediction. Zhang et al. [19] presented a particle
filter method based on optimal sampling methodology to enable a
better prediction performance. A Kalman filter was used to generate
a distribution for the proposed particle filter, and the optimal sampling
method was used to deal with the inadequacy of particle variety. Zhang
et al. [20] presented a novel method for RUL prediction of lithium-
ion batteries based on the Kalman filter. The proposed Kalman filter
approach considered the parametric uncertainty by using the Wiener
process. Experiment results have shown that the proposed Kalman filter
approach outperforms the traditional data-driven methods.

In comparison with the filter-based methods, machine learning
methods have the potential to achieve better prediction performance
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as they are more effective in dealing with complex data. Therefore,
machine learning methods such as support vector machine, ensemble
learning, and Gaussian process have been introduced for battery SOH
and RUL predictions [21,22]. For example, Li et al. [23] proposed
a battery SOH predictive model based on support vector regression.
The battery health attributes were extracted and fed into the support
vector regression method for SOH predictions. The experimental results
have shown that the proposed method can improve the prediction
accuracy by 30% in terms of mean absolute errors and root mean
squared errors. Gou et al. [24] presented an ensemble learning method
to predict the RUL of the lithium-ion battery, where multiple random
vector functional link networks were combined to improve the predic-
tion performance. The numerical results have demonstrated that the
proposed ensemble learning methodology can predict the RUL with
high precision. Richardson et al. [25] proposed a Gaussian process
regression method to predict the SOH of a battery. An explicit mean
function was used to exploit the prior health information of lithium-ion
batteries. The numerical results have demonstrated that the proposed
Gaussian process can accurately predict the SOH in both short and long
runs.

Deep learning methods with recurrent characteristics such as RNN
and LSTM have been increasingly used for SOH and RUL predic-
tions [26,27]. For example, Tang and Yuan [28] used a bidirectional
gated recurrent neural network to predict the SOH and RUL of the
battery. The empirical model decomposition was used to decompose
the sensor measurements into low and high-frequency signals, the low
and high signals were respectively fed into a deep neural network
and a bidirectional gated recurrent neural network for predictions. The
numerical results have shown that the proposed method can make
accurate predictions under both constant and random charging and
discharging modes. Park et al. [29] introduced a LSTM-based battery
RUL prediction method to reduce the risk of battery failures. The
proposed method employed a multi-channel architecture for more flex-
ibility and generalization while processing different types of variables.
The experimental results have shown that the proposed method can
significantly improve the prediction performance by 63.7% in terms
of mean absolute percentage error. Qu et al. [15] combined the LSTM
network with the particle swarm optimization method for SOH and
RUL prediction. The empirical mode decomposition method was im-
plemented to eliminate the noise effects of sensor measurements. The
experimental results have shown that the proposed method can achieve
a higher prediction accuracy in comparison with methods reported in
the literature. Wang et al. [30] introduced an improved feedforward-
LSTM network to predict the state-of-charge and reliability of a battery
cell by considering different types of variations. An optimal sliding win-
dow and a steady-state screening method were proposed to reduce the
state-of-charge prediction redundancy. The experimental results have
shown that the proposed method can predict the state of charge with
a prediction error of 0.0353. However, these deep learning methods
with recurrent features have difficulties in predicting the SOH and RUL
with long time-series data as they are highly dependent on the final
vector output and do not allow one to use the entire time series while
predicting. Moreover, the existing data-driven methods are not effective
in identifying the correlation of features.

In summary, numerous studies have been reported on SOH and RUL
predictions. However, most of these methods are not able to reveal
the correlation of extracted features, and the existing deep learning
methods are not able to use the most relevant part of the series data
to make predictions. To address these issues, we introduce an optimal
entropy-enabled graph convolution LSTM network with dual attention
mechanisms to consider the correlation of the temporal features ex-
tracted from sensor measurements and use the most important parts
of the time series to make predictions.
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Fig. 1. Flow diagram of the proposed optimal entropy-enabled graph convolution network with dual attention mechanisms.

3. Optimal entropy graph convolutional LSTM network with dual
attention mechanisms

Fig. 1 shows a flow diagram of the proposed optimal entropy graph
convolutional LSTM network with dual attention mechanisms. First, an
undirected graph with optimal entropy is constructed with a two-stage
method. Second, the constructed graph is fed into the graph convo-
lutional networks (GCNs) for mining the correlations among different
features by using the topological structure of the constructed graph.
Third, the outputs of the GCNs are fed into two LSTM networks with
different attention mechanisms to predict the SOH and RUL of a battery
respectively. More specifically, temporal features are extracted from
sensor measurements, and then the extracted features are used to derive
a covariance matrix and mutual information of features; a masking
function is applied to the covariance matrix to construct a first-stage
graph; the mutual information of temporal features and the first-stage
graph are fed into the proposed graph entropy optimization model to
construct the second-stage graph by maximizing graph entropy and
minimizing graph density simultaneously. The topological structure of
the constructed second-stage graph is used to perform spectral graph
convolution operations to better reveal the feature correlations; and the
outputs of the GCNs are fed into an LSTM network with a local attention
mechanism and an LSTM network with a global attention mechanism
to predict the SOH and RUL of a battery, respectively. More details of
these steps are provided in Sections 3.1 and 3.2.

3.1. Two-stage graph construction

The most commonly used sensor measurements for battery health
management are voltage, current, and temperature. In this work, we
extract multiple temporal features from these three sensor measure-
ments in both charge and discharge cycles as these features have
been demonstrated as effective in SOH and RUL predictions [31].
The extracted temporal features include time to the maximum voltage
in charge cycles, time charged under a constant voltage mode, time
charged under a constant current mode, time to the minimum current
in charge cycles, time to the maximum temperature in charge cycles,
time to the minimum voltage in discharge cycles, time discharged under
a constant current mode, and time to the maximum temperature in
discharge cycles.

The optimization model of establishing a graph with optimal en-
tropy is a nonlinear integer optimization problem. Directly solving such
an optimization problem may result in establishing a local optimization
graph with very less edges. To address this issue, we propose a two-
stage method in which a first-stage graph is pre-constructed and the
first-stage graph is used as the initial graph to construct a second-stage
graph with optimal graph entropy. To construct a first-stage graph, a
covariance matrix C € R™" is constructed for these extracted features,
the element ¢, ;s of the matrix can be written as Eq. (1),

1 not
€y =—
Kok Y Z

i j=1 j=

(€8]

(i j e = X )0 j o — X 1)
1

i=1,...,n j=1,..,t;; k=1,...,m.

where x; ;, refers to the kth extracted feature for battery unit i in
the charge and discharge cycle j; n is the total number of battery
units; m refers to the total number extracted features; #; is the total
number of charge and discharge cycles for battery unit i. X , rep-
resents the expectation of the feature k, which can be written as
X = 2 Z:_":l x;jx/ 2izy t;- A masking function M() is applied to
the covariance matrix to derive an adjacency matrix A; of the first-
stage graph G, and this function can be written as a,lc. v =M ) =1
if ¢ 4 > € and a}{yk, = M(c; ) =0if ¢, s <&, where a}{’k, is the element
of the adjacency matrix A, a}{’k, = 1 refers to an edge between the
features k and &/, a}{’ = 0 represents that there is not an edge between
features k and k/, and ¢ is the threshold to determine the edges in the
first-stage graph. In this work, we set € equals to zero for simplification,
meaning that there is an edge if two features are positively correlated.

Next, the mutual information of the temporal features is derived,
which aims at measuring the mutual dependency among these fea-
tures [32]. The mutual information between the features k and k’ can
be written as Eq. (2), which can be explained as the KL-divergence
between the joint distribution and the multiplication of two marginal
distributions.

Wi = Dgp (Pypry | P ® Pyr) 2)

The binning method is used to estimate the joint and marginal distribu-
tions, where the extracted features are grouped into multiple bins for
probability estimations [33]. By using the binning method, Eq. (2) can
be written as Eq. (3) which is in a format of discrete distributions,

B B
wer = Y by, kK'Y loglpy 4, /0y, (K)py, (K] ©)
bi=1by=1

where B, is the number of bins used to estimate the probability
distribution of the feature k; and B, is the number of bins used to
estimate the probability distribution of the feature k’. The derived
mutual information of the temporal features is used as the edge weight
of the graph. The mutual information and the first-stage graph are
used to derive the second-stage graph, where an optimization model
is introduced to obtain a graph enables a balance between the graph
entropy and graph density. Graph entropy is a measurement of the
information rate of a graph [34]. Maximizing the graph entropy can
maximize the information communicated rate among different features,
meaning that every single feature can utilize as well as aggregate
the data of all other features while predicting so that the prediction
performance can be largely improved. However, solely maximizing the
graph entropy may lead to obtaining a complete graph with the highest
graph density [34]. Such a complete graph with the highest graph
density may incorporate some redundant edges resulting in excessive
and redundant feature aggregations while predicting. Therefore, the
constructed graph should simultaneously maximize the graph entropy
to increase the information communicated rate and minimize the graph
density to reduce the redundant edges.

The entropy of a weighted graph G = (V, E, w) has been introduced
in some studies [35], which can be written as Eq. (4),

I(G,w) = - Z dy,log(dy,), dyy = wy,/ Z Wyy (C))

uvek uvek



Y. Wei and D. Wu

Covariance Adjacency Stage-one
Matrix C Matrix A4 Graph G
|
- B | masking
lMMm | Skk
o
Eallc,lc’
wig | |-eeee- - Nonllnenr B'|nary N
Optimization Ay g /
Mutual Stage-two
Information Graph G,

Fig. 2. The framework of the proposed two-stage graph construction method.

where V, E, w refer to the vertex set, edge set, and edge weights; u
and v are vertex points in the vertex set; w,, is the weight between
two vertex points u and v. Similarly, we use the definition of graph
entropy for a weighted graph to formulate an optimization model in
order to construct the second-stage graph with maximum graph entropy
and minimum graph density. The formulated optimization problem is
written as Eq. (5),

max 1(G,,w)— a||w”al|, (5)

where I(G,, w) is the graph entropy for the second-stage graph G,; w is
the weight vector stores the mutual information of different features;
is the penalty parameter determining the level of the sparse connections
of the second-stage graph; and a is a vector that stores binary variables

k,,‘v’k More specifically, Eq. (5) can also be rewritten as Eq. (6),

m m m m
max Z Z dy o log(dy 4r) — az Z l10y g 'ai,k/|

k=1Kk'=1 k=1Kk'=1
dyjr =Wy pr - a k//zzwkk" Kk
k=1k'=1 (6)
2 _ 2
A = Qg @ kk’ =0orl;
kk,—O ifk=4k; kk,: kk,,lfa =1;

k=1,....m; K =1,....m

where w, “ is the mutual information between the extracted features
k and k’; a! , is element of the adjacency matrix A; and denotes the

%
edge status of the first-stage graph; ak o = 1 represents that there is an
edge between the features k and k' in the first-stage graph; ak v =0

represents that there 1s not an edge between the features k and k’ in
the first-stage graph; ak v isa binary variable that denotes the status

of edges of the second-stage graph; a2 , = 1 represents that there is an

k!
edge between the features k and &’ in the second-stage graph, ak v =0
represents that there is not an edge between the features k and k' in
the second-stage graph.

The formulated optimization problem is a nonlinear integer opti-
mization problem with nonlinear constraints, many algorithms can be
used to solve this problem such as the genetic algorithm, particle swarm
optimization, and spatial branch and bound [36]. In this work, we
use the most often used algorithm, the genetic algorithm, to derive
a local optimal solution for simplification. After solving the proposed
optimization problem, the value of the variable a? A for all k and k' can
be used to derive the second-stage graph. Fig. 2 shows the framework
of the proposed two-stage graph construction method. In summary, a
covariance matrix C and mutual information w, ;, are derived from
the extracted temporal features; a masking function is applied to the

covariance matrix C to derive the adjacency matrix A; and the element
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al k! of the adjacency matrix is used to construct the stage-one graph
G . Moreover, both the mutual information w ; for all features and the
element of the adjacency matrix are fed into the proposed nonlinear
binary optimization problem to derive the optimal value of variables
Vk; and these variables are used to construct the stage-two graph

kk”
G,.

3.2. Graph convolutional LSTM network with dual attention mechanisms

Fig. 3 illustrates the framework of the proposed graph convolutional
LSTM network with dual attention mechanisms. The extracted feature
matrices X; for all battery unit i are added in the stage-two graph G,,
where each node of the graph G, represents each feature. The spectral
graph convolution operations are performed to utilize the topological
structure of the stage-two graph, and the outputs of the GCNs are
fed into an LSTM network to further extract temporal correlations of
features. The output of the LSTM network is connected with a local
attention mechanism and a global attention mechanism to predict the
SOH and RUL, respectively. More detailed descriptions of the proposed
graph convolutional LSTM network with dual attention mechanisms
can be founded in the remaining paragraphs of Section 3.2.

To use the topological structure of the stage-two graph, the convo-
lutional operation on the graph G, can be defined as Eq. (7), where
F represents the graph Fourier transform and %~ is the inverse graph
Fourier transform; f refers to the graph filter provided by the stage-two
graph G,. Moreover, X; € R™i is the feature matrix for battery unit i,
where m is the number of features and ¢; is the number of charge and
discharge cycles for battery unit i.

fCe)Xi = F NF (o FX) @

The graph Fourier transform for graph filter f and feature matrix
X; can be written as OTf and OTX ; respectively, where Q is the
eigenvector of the Laplacian matrix. Then, Eq. (7) can be written as
Eq. (8), where A is the diagonal matrix that stores the eigenvalue and

A =diag(d;, Ay, ..., A,); ¢ refers to a collection of trainable parameters
in the graph filter.
[(6,)X; =07 f 00" X)) = 0f (MO X, ®)

For the constructed stage-two graph G,, the normalized Laplacian

matrix £ is defined as Eq. (9), where I € R™" refers to an identity

matrix; A, is the adjacency matrix for the second-stage graph G,; and

D represents the degree matrix and the entry of the degree matrix can
; 2

be written as Dy = ¥)_, a; /-

£=1-D"'24,D'? 9

The eigendecomposition of the Laplacian matrix can be written as
£ = QAQ~". The eigendecomposition of the Laplacian matrix can also
be written as £ = QAQT as the Laplacian matrix is a real symmetric
matrix. Therefore, Eq. (7) can also be written as Eq. (10).

fCe )X = fp(D)X; (10

Solving the Eq. (10) can be computationally expensive due to the
eigendecomposition process. It has been suggested that a truncated
Chebyshev polynomials can be used to approximate the convolutional
operation on a graph [37], and the Eq. (10) can be rewritten as Eq. (11).
In this equation, C,(£) refers to the Chebyshev polynomial in the order
of p, and £ is the scaled Laplacian matrix.

P-1
FoOX; = Y CDX; an
p=0
To further reduce the computational complexity, the first order Cheby-
shev polynomials are only taken into account [38]. Then, Eq. (11) can
be written as Eq. (12).

FoD)X; = oCo(D)X; + ¢, C (D)X, = (D72 4,D'? + D)X, 12)
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Fig. 3. The framework of the proposed graph convolutional networks with dual attention mechanisms.

To avoid the gradient vanishing or explosion problem, the adjacency
matrix A, € R™" with a self connection is introduced, which can be
written as Eq. (13), where the parameter f denotes the level of self
connection for extracted features and I € R™ ™ is an entity matrix.

A=A +p-1 13)

By aggregating all equations we can obtain f(-g,)X; = ¢D~'/2A, D'/
X;, where Dy v = ¥, _, k - Next, we write the ¢ in the matrix format
that is @ € R", and the spectral convolutional operational can be
written as Eq. (14), where A, equals D~'/24,D'/2,

f6,)X; = A X, a4

The graph convolutional layer is obtained based upon the graph convo-
lution operation in Eq. (14). In this work, we add bias weight into the
graph convolutional layer to increase the robustness and performance,
and such a layer can be written as Eq. (15), where o, refers to the
activation function, (=1 is the weight matrix at layer [ — 1, b~ is
the bias weight matrix at layer / — 1, and AU/~D refers to the output of
the GCNs at the layer / — 1.

A = 6,(A,h¢ D@D 4 =D 15)

Next, the output of the GCNs A" at the last (Lth) GCN layer
is fed into an LSTM network with dual attention mechanisms for
further mining temporal correlations of features. The general idea of
attention-based models is to simulate the data retrieval process in a
data management system [39]. In this work, we introduce an LSTM
network with a local attention mechanism and an LSTM network with
a global attention mechanism to predict the SOH and RUL of a battery,
respectively. The SOH predictions are highly dependent on the most
recent sensor measurements, thus, a local attention mechanism is used
to calculate the local attention value k(‘j”h) for SOH predictions. The
formula used to calculate local attention values can be written as
Eq. (16),

J+s
h h h
kl(.,sjo ) = exp(scffjo ))/ Z sc?fqg ) (16)
q=j=s
where s refers to the window size of the local attention mechanism;
and sc(”h) is the alignment score between the final output v(‘“’h) of the

(svh)

LSTM network and the hidden state v;”"” at time j for SOH predlctlons.

We use the general alignment function [40] to calculate the alignment

score, which can be written as Eq. (17),

Sci(s_oh) (S(;h)TW(soh) (soh) a7
J il Lj

where I/Vk(mh> € RZon*Zon is the trainable weight matrix for SOH

predictions; and z,,, refers to the number of hidden nodes in the LSTM
(soh) .

soh
network for SOH predictions. Next, a context vector c;

and fed into a single layer neural network with the hnear activation
(591 of the battery unit i. Eq. (18) shows

is created

function to predict the SOH y;
the creation of the context vector.

CESOh) — tz k(mh) Esjoh) (18)
j=1

The RUL predictions are dependent on all historical sensor measure-
ments as historical measurements include usage pattern information. To
consider all historical measurements, a global attention mechanism is
used to calculate the global attention value kf.:f‘” for RUL predictions.
The formula is used to calculate global attention values can be written
as Eq. (19).

I’

k(rul) exp(sc(rul))/ Z (rul) (19)

Similarly, we use general alignment function to calculate the alignment

score, which can be written as Eq. (20),

s — (rul)TW(ruI) (rul) (20
ij il ij

where WI:'“I) € R#w*%u is the trainable weight matrix, and z,,, refers

to the number of hidden nodes in another LSTM network for RUL

(rul) is created and fed into a single
) of the battery unit i.

prediction. Next, a context vector c;
layer neural network to predict the RUL y,
Eq. (21) shows the creation of the context vector.

(rul) z k(rul) (rul) (21)
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Fig. 4. The voltage, current, and temperature measurements evolve with the increment of charge cycles for battery No. 5.

Table 1
Extracted temporal features from current, voltage, and temperature measurements.

Table 2
The detailed structure used in the case study for SOH predictions.

Symbol Description No. of layers Descriptions Output dimensions
X Time to the max voltage in charging 1 Input 30 x 165 x 8
X5 Time charged under a constant voltage mode 2 Graph convolutional layer 30 x 165 x 8
X3 Time charged under a constant current mode 3 LSTM layer 30 x 165 x 100
Xy Time to the minimum current in charging 4 Local attention layer 30 x 5 x 100
X5 Time to the max temperature in charging 5 Flatten layer 30 x 500
X¢ Time to the minimum voltage in discharging 6 Dense layer 30 x 1
X5 Time discharged under a constant current mode
Xg Time to the max temperature in discharging
Table 3

4. Case study
4.1. Data description

A battery dataset generated by the NASA Ames Prognostics Center
of Excellence [41] was used to demonstrate the effectiveness of the
proposed method. Battery No. 5, No. 6, No. 7, and No. 18 in this dataset
were used in this case study, and these batteries were operated under
different operating conditions: charging, discharging, and impedance.
The temperature, current, and voltage were measured during charge
and discharge cycles. In charge cycles, a constant current mode at
1.5 A was carried out until the measured voltage reached 4.2 V, and
resumed in a constant voltage mode until the measured current was
dropped to 20 mA. In discharge cycles, a constant load mode at 2 A was
applied until the voltage measurement dropped to 2.7 V, 2.5V, 2.2V,
and 2.5 V for batteries No. 5, No. 6, No. 7, and, No. 18 respectively.
The experiment was terminated when the battery capacity had been
reduced by 30%. The maximum of these batteries was 2Ahr, and the
end-of-life capacity was 1.4Ahr.

Fig. 4 shows the voltage, current, and temperature measurements
evolve with the increment of charge cycles for battery No. 5. We could
observe from this figure that the trajectories of the voltage, current,
and temperature evolve with the increment of charge cycles. To capture
these trajectory changes, temporal features were extracted from these
measurements in both charge and discharge cycles. Table 1 shows the
symbol and the descriptions of these extracted temporal features.

4.2. Graph constructions

The extracted temporal features were used to derive the covariance
matrix and mutual information, and the covariance matrix was used to
construct the first-stage graph. Both the constructed first-stage graph
and the extracted mutual information were fed into the proposed non-
linear binary optimization model to construct the second-stage graph.
In order to derive the second-stage graph, the only hyperparameter
that should be determined is the penalty parameter a, we set up «
0.1 in this case study to optimize the performance of the proposed

The detailed structure used in the case study for RUL predictions.

No. of layers Descriptions Output dimensions
1 Input 30 x 165 x 8
2-11 Graph convolutional layers 30 x 165 x 8

12 LSTM layer 30 x 165 x 100
13 Global attention layer 30 x 165 x 100
14 Flatten layer 30 x 16500

15 Dense layer 30 x1

method. Fig. 5 shows the constructed first-stage graph and second-
stage graph for this case study. Next, the second-stage graph was fed
into the proposed graph convolutional networks with dual attention
mechanisms to predict SOH and RUL.

4.3. Structure and hyperparameters

In this section, the structure and hyperparameters of the proposed
method are presented to optimize the SOH and RUL prediction perfor-
mance. Table 2 shows the detailed structure for SOH predictions, and
Table 3 shows the detailed structure for RUL predictions. In Tables 2
and 3, 30 refers to the batch size, 165 refers to the second dimension of
the parameter @, 8 represents the number of features, and 100 refers to
the number of hidden nodes in the LSTM layer. Moreover, the number
5 in Table 2 refers to the window size of the local attention layer. The
learning rate of this case study is 0.00005 and we add the /, norm
regularization to the parameter matrix @ with a penalty coefficient of
0.01.

4.4. SOH prediction

The SOH of a battery refers to the ratio between the current capacity
and the maximum capacity, which can be written as Eq. (22), where
SOH, ; is the SOH for battery unit i in the charge and discharge cycle
Jj> C"® refers to the maximum capacity of the battery unit i, and y, ;
refers to the current capacity for battery unit i in cycle j.
SOH,; = % (22)

1
Fig. 6 shows the SOH predictions for Battery No. 5, No. 6, No. 7,

and No. 18 when at least 20 charge and discharge cycles have been
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Fig. 5. The constructed first-stage graph and second-stage graph.

(a) Battery No.5 (b) Battery No.6

SOH

(c) Battery No.7

——True SOH
- - ~Predicted SOH

(d) Battery No.18

——True SOH
- - ~Predicted SOH

0.95

0.9 0.9

0.85
I

0.8 308

0.75
07

07 A

020 50 100 150 200 020 50 100 150 200

Number of Cycles Number of Cycles

Fig. 6. The SOH predictions for Battery No. 5, No. 6, No. 7, and No. 18.
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Table 4

Symbols and descriptions of the proposed method (OEGC-LSTM-DA) and comparable methods (LSTM-DA, OEGC-LSTM, and LSTM) in SOH

predictions.

Method symbol Description

OEGC-LSTM-DA
LSTM-DA
OEGC-LSTM
LSTM

optimal entropy graph convolutional LSTM network with dual attention mechanisms
LSTM network with dual attention mechanisms

optimal entropy graph convolutional LSTM network without attention mechanism

long short term memory network

observed. It can be observed from this figure that the proposed method
can predict the SOH of batteries with high accuracy as the trajectory
of the predicted SOH is closed to the trajectory of the true SOH.

To demonstrate the effectiveness of the proposed method, the pro-
posed method is compared with other methods listed in Table 4.
OEGC-LSTM-DA is the proposed method which is the optimal entropy
graph convolutional LSTM network with dual attention mechanisms.
LSTM-DA is a comparable method which is the LSTM network with dual
attention mechanisms. OEGC-LSTM is also a comparable method which
is the optimal entropy graph convolutional LSTM network without
attention mechanism. LSTM serves as a benchmark method which
is the traditional long short term memory network. The compari-
son between OEGC-LSTM-DA (proposed method) and LSTM-DA is to
demonstrate the effectiveness of the proposed optimal entropy graph
convolution operation. The comparison between OEGC-LSTM-DA (pro-
posed method) and OEGC-LSTM is to demonstrate the effectiveness of
the proposed dual attention mechanisms.

Fig. 7 shows the SOH prediction performance of the proposed
method (OEGC-LSTM-DA), LSTM-DA, OEGC-LSTM, and LSTM in terms
of root mean squared error (RMSE). Table 5 shows the average RMSE
of the proposed method (OEGC-LSTM-DA), LSTM-DA, OEGC-LSTM, and
LSTM in SOH predictions for all battery units. Based on this figure
and table, we can conclude that the proposed method (OEGC-LSTM-
DA) can improve the SOH prediction performance. For example, when
at least 20 cycles have been observed for battery No. 7, the RMSE
of the proposed method is 0.0109. However, the RMSE of LSTM-DA,
OEGC-LSTM, and LSTM ranges from 0.0114 to 0.0530. When at least
40 cycles have been observed, the average RMSE of the proposed
method is 0.0135. However, the average RMSE of LSTM-DA, OEGC-
LSTM, and LSTM ranges from 0.0158 to 0.0307. Although LSTM-D
outperforms the proposed method (OEGC-LSTM-DA) when the predic-
tion starting point is 60, the proposed method still achieves a lower

Table 5
The average RMSE of the proposed method (OEGC-LSTM-DA), LSTM-DA, OEGC-LSTM,
and LSTM in SOH predictions for all battery units.

Number of observed cycles Average
20 40 60 80
OEGC-LSTM-DA 0.0146 0.0135 0.0165 0.0168 0.0154
LSTM-DA 0.0205 0.0181 0.0158 0.0212 0.0189
OEGC-LSTM 0.0154 0.0158 0.0167 0.0146 0.0156
LSTM 0.0511 0.0307 0.0301 0.0237 0.0339

average RMSE of 0.0154 in comparison with that LSTM-DA has an
average RMSE of 0.0189. Moreover, another interesting finding is that
the SOH prediction performance of methods listed in Table 4 does
not increase with the increment of the observed charge and discharge
cycles. The primary reason for such a finding is that the battery cells
used in this case study have more frequent rest time when approaching
their end-of-life (EOL), the rest time is completely random and leads
to the capacity regeneration phenomenon. The capacity regeneration
phenomenon brings more uncertainties while predicting the SOH so the
methods listed in Table 4 achieve a worsened SOH performance when
more charge and discharge cycles have been observed.

Moreover, the proposed method is compared with the existing
methods reported in the literature to further demonstrate the effec-
tiveness of the proposed method. Table 6 shows the RMSE of the
proposed method (OEGC-LSTM-DA), LSTM-DA, OEGC-LSTM, LSTM,
multiple Gaussian regression model(MGPR), gradient boosting decision
tree (GBDT), logic regression (LR) method, Gaussian process regression
(GPR) method, and logic regression with Gaussian process regression
(LR-GPR) method [10,42,43] when over 40 cycles have been observed.
Based on this table, we can conclude that the proposed method out-
performs the existing methods reported in the literature. For example,
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Fig. 7. The SOH prediction performance of the proposed method (OEGC-LSTM-DA), LSTM-DA, OEGC-LSTM, and LSTM in terms of RMSE.
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Fig. 8. RUL predictions for Battery No. 5, No. 6, and No. 18 when at least 40 cycles have been observed.

Table 6
The RMSE of the proposed method (OEGC-LSTM-DA), LSTM-DA, OEGC-LSTM, LSTM,
and other methods reported in the literature in SOH predictions.

Table 7
The RMSE of the proposed method (OEGC-LSTM-DA), LSTM-DA, OEGC-LSTM, LSTM,
and other methods reported in the literature in RUL predictions.

Battery number

Battery number

No. 5 No. 6 No. 7 No. 18 No. 5 No. 6 No. 7 No. 18
OEGC-LSTM-DA 0.0139 0.0136 0.0104 0.0162 OEGC-LSTM-DA 14.93 5.80 31.71 5.84
LSTM-DA 0.0085 0.0283 0.0147 0.0209 LSTM-DA 32.56 42.00 33.01 8.97
OEGC-LSTM 0.0167 0.0138 0.0123 0.0201 OEGC-LSTM 19.26 6.20 31.64 6.35
LSTM 0.0277 0.0320 0.0388 0.0244 LSTM 27.52 40.20 33.62 6.46
MGPR [42] 0.0096 0.0167 0.0129 0.0228 LR-GPR [10] 16.60 21.10 - 13.50
LR-GPR [10] 0.0168 0.0292 - 0.0169 GPR [10] 40.70 29.50 - 20.6
GBDT [43] 0.0192 0.0281 0.0157 - LR [10] 24.00 22.40 - 14.30
GPR [10] 0.0751 0.0406 - 0.0323
LR [10] 0.0289 0.0252 - 0.0221

for battery No. 5, the RMSE of LSTM is 0.0277, but the RMSE of the
proposed method is only 0.0139. For battery No. 18, the RMSE of the
proposed method is 0.0162. However, the RMSE of the other methods
ranges from 0.0169 to 0.0323.

4.5. RUL prediction

In this case study, we assume that a battery reaches its end of
life when it has lost 30% capacity. Fig. 8 shows examples of the RUL
predictions for Battery No. 5, No. 6, and No. 18 when at least 40 cycles
have been observed. It can be observed from these figures that the
proposed method can predict the RUL of batteries with relatively high
precision. For example, for battery No. 5, the predicted RUL is 80.8
cycles when the true RUL is 82 cycles. For battery No. 6, the predicted
RUL is 49.0 cycles when the true RUL is 51 cycles. For battery No. 18,
the predicted RUL is 39.2 cycles when the true RUL is 37 cycles.

To further demonstrate the effectiveness of the proposed method,
the proposed method is compared with methods listed in Table 4 and
other methods reported in the literature. Table 7 shows the RMSE
of the proposed method (OEGC-LSTM-DA), LSTM-DA, OEGC-LSTM,
LSTM, logic regression (LR) method, Gaussian process regression (GPR)
method, and logic regression with Gaussian process regression (LR-
GPR) when at least 40 cycles have been observed. Based on this table,

we can observe that the performance of the proposed method (OEGC-
LSTM-DA) outperforms other methods. For example, for battery No. 18,
the RMSE of the proposed method is 5.84. However, the RMSE of LSTM-
DA, OEGC-LSTM, and LSTM ranges from 6.35 to 8.97, and the RMSE of
other methods reported in the literature ranges from 13.50 to 20.6. For
battery No. 6, the RMSE of the proposed method is 5.80. However, the
RMSE of LSTM-DA, OEGC-LSTM, and LSTM range from 6.20 to 42.00,
and the RMSE of other methods reported in the literature ranges from
21.10 to 29.50.

5. Discussion
5.1. Impact of optimal entropy graph

In this section, the impact of the proposed optimal entropy graph
is demonstrated. We compare the performance of the optimal entropy
graph with the complete graph and a randomly generated graph in both
SOH and RUL predictions. The complete graph refers to an undirected
graph in which every combination of feature nodes is connected with
a single undirected edge, and a random graph refers to an undirected
graph in which the edge of feature nodes are determined randomly.
Table 8 shows the RMSE of using the proposed optimal entropy graph,
the complete graph, and the randomly generated graph in SOH and RUL
predictions when at least 40 cycles have been observed. Based on this
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The RMSE of using the proposed optimal entropy graph, the complete graph, and the randomly generated graph in SOH and RUL predictions.

SOH prediction

RUL prediction

No. 5 No. 6 No. 7 No. 18 No. 5 No. 6 No. 7 No. 18
Optimal entropy graph 0.0139 0.0136 0.0104 0.0162 14.93 5.80 31.71 5.84
Complete graph 0.0141 0.0162 0.0134 0.0173 15.27 7.63 31.78 7.15
Random graph 0.0139 0.0164 0.0122 0.0170 20.41 7.23 31.77 6.67
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Fig. 9. The SOH predictions for Battery No. 5, No. 6, No. 7, and No. 18 with only using condition monitoring data collected from discharge cycles.

table, we can conclude that using the proposed optimal entropy graph
enables better SOH and RUL predictions. For example, the RMSE of the
optimal entropy graph is 0.0136 in SOH prediction for battery No. 6.
However, the RMSE of the complete graph and the randomly generated
graph are 0.0162 and 0.164, respectively. The RMSE of the optimal
entropy graph is 5.84 in RUL prediction for battery No. 18. However,
the RMSE of the complete graph and the randomly generated graph are
7.15 and 6.67, respectively.

5.2. SOH and RUL predictions without data from charge cycles

Condition monitoring data in charge cycles are not always available
in many applications in practice [44]. For example, the condition
monitoring data in charge cycles is not available for unmanned aerial
vehicles during flight. The data in charge cycles is also not available
for electric vehicles as many of the existing electric vehicle charging
stations do not provide such data. To demonstrate the wider applica-
bility of the proposed method in real conditions, we only use condition
monitoring data collected from discharge cycles to make both SOH and
RUL predictions in this section. Fig. 9 shows the SOH predictions with
only using condition monitoring data collected from discharge cycles
for Battery No. 5, No. 6, No. 7, and No. 18 when over 40 charge
and discharge cycles have been observed. Based on this figure, we
can observe that the proposed method can accurately predict the SOH
for all batteries even only using the data collected from the discharge
cycles as the trajectory of the predicted SOH is close to the trajectory
of the true SOH.

Table 9 shows the RMSE of the SOH prediction with using data
collected from charge cycles and without using data collected from
charge cycles, where over 40 cycles have been observed. Based on this
table, we can conclude that the proposed method is not sensitive to the
availability of data collected from charge cycles in SOH predictions. For
example, the RMSE for battery No. 18 is 0.0162 with using data from
charge cycles for SOH predictions, and the RMSE for battery No. 18
is 0.0170 without using data from charge cycles for SOH predictions.
The average RMSE difference between using data collected from charge
cycles and without using data collected from charge cycles for SOH
predictions is only 0.0003. Moreover, even without using the data
collected from charge cycles, the proposed method still outperforms
the other methods listed in Table 6, where the other methods use data
collected from both charge and discharge cycles. For example, without
using data from charge cycles, the RMSE of the proposed method for
battery No. 7 is 0.0088. However, with using data from charge cycles,
the RMSE of other methods listed in Table 6 for battery No. 7 ranges
from 0.0147 to 0.0388. Without using data from charge cycles, the

RMSE of the proposed method for battery No. 5 is 0.0110. However,
with using data from charge cycles, the RMSE of LR-GPR for battery
No. 5 is 0.0168.

Table 10 shows the RMSE of the RUL prediction with using data
collected from charge cycles and without using data collected from
charge cycles, where over 40 cycles have been observed. Based on this
table, we can conclude that the proposed method is not sensitive to the
availability of data collected from charge cycles in RUL predictions.
For example, the RMSE for battery No. 18 is 5.84 with using data from
charge cycles for SOH predictions, and the RMSE for battery No. 18 is
7.00 without using data from charge cycles for SOH predictions. The
average RMSE difference between using data collected from charge
cycles and without using data collected from charge cycles for SOH
predictions is only 1.94. Moreover, even without using the data col-
lected from charge cycles, the proposed method still outperforms the
other methods listed in Table 7, where the other methods use data
collected from both charge and discharge cycles. For example, without
using data from charge cycles, the RMSE of the proposed method for
battery No. 5 is 7.16. However, with using data from charge cycles, the
RMSE of other methods listed in Table 6 for battery No. 5 ranges from
16.60 to 40.70. Without using data from charge cycles, the RMSE of the
proposed method for battery No. 18 is 7.00. However, with using data
from charge cycles, the RMSE of LSTM-DA for battery No. 5 is 8.97.

6. Conclusion and future work

In this paper, a two-stage optimization model was introduced to
construct an undirected graph with optimal graph entropy to maxi-
mize graph entropy and minimize graph density simultaneously. The
first-stage graph was established based on the feature similarity, then
the constructed first-stage graph was fed into the proposed nonlinear
integer optimization model to establish the second-stage graph. Next,
the spectral graph convolution operation was introduced to develop
a graph convolutional network (GCN) to utilize the topological struc-
ture of the graph to better reveal the correlation among extracted
features. Last, the output of GCN was connected to an LSTM network
with dual attention mechanisms to respectively predict the SOH and
RUL of a battery, where dual attention mechanisms enabled an LSTM
network to use the most relevant part of time series data to make
predictions so that time series can be better analyzed. A battery dataset
collected by the NASA Ames Prognostics Center of Excellence was
used to demonstrate the effectiveness of the proposed methodology.
The experimental results have shown that the proposed method can
accurately predict the SOH and RUL with a minimum RMSE of 0.0104
and 5.80, respectively. The proposed method also outperforms existing
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Table 9
The RMSE of the SOH prediction with using data collected from charge cycles and without using data collected from charge
cycles.
Battery Number Average
No. 5 No. 6 No. 7 No. 18
With using data from charge cycles 0.0139 0.0136 0.0104 0.0162 0.0135
Without using data from charge cycles 0.0110 0.0185 0.0088 0.0170 0.0138

Table 10
The RMSE of the RUL prediction with using data collected from charge cycles and without using data collected from charge
cycles.
Battery number Average
No. 5 No. 6 No. 7 No. 18
With using data from charge cycles 14.93 5.80 31.71 5.84 14.57
Without using data from charge cycles 7.16 20.48 31.42 7.00 16.51

data-driven methods, such as gradient boosting decision trees, LSTM,
and the Gaussian process in both SOH and RUL predictions. We also
demonstrated that the proposed optimal graph entropy can better
reveal the feature correlations of condition monitoring data as using
the proposed graph enables a more accurate SOH and RUL prediction
in comparison with using the complete graph and a randomly generated
graph. Moreover, as condition monitoring data from charge cycles
are not always available in practice, we also demonstrated that the
proposed method is not sensitive to the availability of data in charge
cycles. In the case study, we also observe that the SOH prediction
performance does not increase with the increment of the observed
charge and discharge cycles. The primary reason for such a finding is
that the battery cells used in this case study have more frequent rest
time when approaching their end-of-life (EOL), the rest time is com-
pletely random and leads to the capacity regeneration phenomenon.
The capacity regeneration phenomenon brings more uncertainties and
difficulties when predicting.

In the future, datasets for different lithium-ion battery types will
be used to evaluate the effectiveness of the proposed method so that
the wider applicability of this work can be demonstrated. In addition,
there are some challenges in dealing with the battery data in practical
driving conditions, such as the availability of data from charge cycles,
the uncertainty brought by the capacity regeneration phenomenon, and
the randomness resulting from complicated operating conditions. In
this work, we have demonstrated the proposed method can accurately
predict the SOH and RUL even without using data from charge cy-
cles. However, the uncertainty brought by the capacity regeneration
phenomenon and the randomness resulting from complicated operating
conditions has not been addressed yet. Therefore, future work will also
include the development of efficient and effective deep learning meth-
ods to deal with the uncertainty brought by the capacity regeneration
phenomenon. Moreover, we will also devote ourselves to addressing the
randomness issue resulting from the complicated operating conditions
to increase the accuracy and robustness of the SOH and RUL prediction
model.
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