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ABSTRACT

Demonstrations and natural language instructions are two common ways to spec-
ify and teach robots novel tasks. However, for many complex tasks, a demon-
stration or language instruction alone contains ambiguities, preventing tasks from
being specified clearly. In such cases, a combination of both a demonstration
and an instruction more concisely and effectively conveys the task to the robot
than either modality alone. To instantiate this problem setting, we train a single
multi-task policy on a few hundred challenging robotic pick-and-place tasks and
propose DelL-TaCo (Joint Demo-Language Task Conditioning), a method for con-
ditioning a robotic policy on task embeddings comprised of two components: a
visual demonstration and a language instruction. By allowing these two modalities
to mutually disambiguate and clarify each other during novel task specification,
Del-TaCo (1) substantially decreases the teacher effort needed to specify a new
task and (2) achieves better generalization performance on novel objects and in-
structions over previous task-conditioning methods. To our knowledge, this is the
first work to show that simultaneously conditioning a multi-task robotic manipu-
lation policy on both demonstration and language embeddings improves sample
efficiency and generalization over conditioning on either modality alone. See ad-
ditional materialsat https://deltaco-robot.github.io.

1 INTRODUCTION

A significant barrier to deploying household robots is the inability of novice users to teach new
tasks with minimal time and effort. Recent work in multi-task learning suggests that training on a
wide range of tasks, instead of the single target task, helps the robot learn shared perceptual
representations across the different tasks, improving generalization (Kalashnikov et al., 2021; Yu et
al., 2019; Jang et al., 2021; Shridhar et al., 2021). We study the problem of how to more efficiently
specify new tasks for multi-task robotic policies while also improving performance.

Humans often learn complex tasks through multiple concurrent modalities, such as simultaneous
visual and linguistic (speech/captioning) streams of a video tutorial. One might reasonably expect
robotic policies to also benefit from multi-modal task specification. However, previous work in mul-
titask policies condition only on a single modality during evaluation: one-hot embeddings, language
embeddings, or demonstration/goal-image embeddings. Each has limitations.

One-hot encodings for each task (Kalashnikov et al., 2021; Ebert et al., 2021) suffice for learning a
repertoire of training tasks but perform very poorly on novel tasks where the one-hot embedding is
out of the training distribution, since one-hot embedding spaces do not leverage semantic similarity
between tasks to more rapidly learn additional tasks. Conditioning policies on goal-images (Nair et
al.,, 2017; 2018; Nasiriany et al., 2019) or training on video demonstrations (Smith et al., 2020;
Young et al., 2020) often suffer from ambiguity, especially when there are large differences between
the environment of the demonstration and the environment the robot is in, hindering the understand-
ing of a demonstration’s true intention. In language-conditioned policies (Blukis et al., 2018; 2019;
Mees et al., 2021; 2022), issues of ambiguity are often even more pronounced, since humans specify
similar tasks in very linguistically dissimilar ways and often speak at different levels of granular-ity,
skipping over common-sense steps and details while bringing up other impertinent information.
Grounding novel nouns and verbs not seen during training compounds these challenges.
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Figure 1: DelL-TaCo Overview. Unlike current multitask methods that condition on a single task
specification modality, DeL-TaCo simultaneously conditions on both language and demonstrations
during training and testing to resolve any ambiguities in either task specification modality, enabling
better generalization to novel tasks and significantly reducing teacher effort for specifying new tasks.
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We posit that in a broad category of tasks, current unimodal task representations are often too ineffi-
cient and ambiguous for novel task specification. In these tasks, current task-conditioning methods
would need either a large number of diverse demonstrations to disambiguate the intended task, or a
long, very detailed, fine-grained language instruction. Both are difficult for novice users to provide.
We argue that conditioning the policy on both a demonstration and language not only ameliorates the
ambiguity issues with language-only and demonstration-only specifications, but is much easier and
more cost-effective for the end-user to provide.

We propose Del-TaCo (Figure 1), a new task embedding scheme comprised of two component
modalities that contextually complement each other: demonstrations of the target task and corre-
sponding language descriptions. To our knowledge, this is the first work to demonstrate that speci-
fying new tasks to robotic multi-task policies simultaneously with both demonstrations and language
reduces teacher effort in task specification and improves generalization performance, two important
characteristics of deployable household robots. With bimodal task embeddings, ambiguity is bidi-
rectionally resolved: instructions disambiguate intent in demonstrations, and demonstrations help
ground novel noun and verb tokens by conveying what to act on, and how. To learn several hundred
tasks, we train a single imitation learning (IL) policy, conditioned on joint demonstration-language
embeddings, to predict low-level continuous-space actions for a robot given image observations.
Task encoders are trained jointly with the policy, making our model fully differentiable end-to-end.

To summarize, our main contributions are as follows: (1) We present a broad distribution of highly-
randomized simulated robotic pick-and-place tasks where instructions or demonstrations alone are
too ambiguous and inefficient at specifying novel tasks. (2) We propose a simple architecture, Del-
TaCo, for training and integrating demonstrations and language into joint task embeddings for few-
shot novel task specification. This framework is flexible and learning algorithm-agnostic. (3) We
show that Del-TaCo significantly lowers teacher effort in novel task-specification and improves
generalization performance over previous unimodal task-conditioning methods.

2 RELATED WORK

2.1 MULTI-TASK LEARNING

The most straightforward way to condition multi-task policies is through one-hot vectors (Ebert
et al., 2021; Kalashnikov et al., 2021; Walke et al., 2022; Yu et al., 2021). We instead use embed-
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ding spaces that are shaped with pretrained language models so that semantically similar tasks are
encoded in similar regions of the embedding space, which helps improve generalization. Multi-task
robotic policies have also been studied in other settings and contexts that do not fall under the class of
approaches we take in this paper, such as hierarchical goal-conditioned policies (Gupta et al., 2022),
probabilistic modeling techniques (Wilson et al., 2007), distillation and transfer learning (Parisotto et
al., 2015; Teh et al., 2017; Xu et al., 2020; Rusu et al., 2015), data sharing (Espeholt et al., 2018;
Hessel et al., 2019), gradient-based techniques (Yu et al., 2020), policy modularization (Andreas et
al., 2017; Devin et al., 2017) and task modularization (Yang et al., 2020).

2.2 LEARNING WITH LANGUAGE AND DEMONSTRATIONS

Conditioning Multitask Policies on Language or Demonstrations. Our work largely tackles the
same problem as BC-Z (Jang et al., 2021) of generalizing to novel tasks with multi-task learning.
BC-Z trains a video demonstration encoder to predict the pretrained embeddings of corresponding
language instructions, while jointly training a multi-task imitation learning policy conditioned on
either the instruction or demonstration embeddings. Lynch & Sermanet (2021); Mees et al. (2021)
learn a similar policy conditioned on either language or goal images. All of these approaches learn to
map a demonstration or goal image to a similar embedding space as its corresponding language
instruction. During training, Mees et al. (2022) use both demonstrations and language to learn
associations between demonstration embeddings and language-conditioned latent plans, but during
evaluation, only use the language embedding to produce a latent plan. With a slightly different ar-
chitecture, Shao et al. (2020) learn a policy that maps natural language verbs and initial observations to
full trajectories by training a video classifier on a large dataset of annotated human videos.

While all of these prior approaches use both demonstrations and language during training, their
policies are conditioned on either a language instruction or visual image/demonstration embedding
during testing. By contrast, ours is conditioned on both demonstration and language embeddings
during training and testing, which we show improves generalization performance and reduces human
teacher effort on a broad category of tasks.

Pretrained Multi-modal Models for Multitask Policies. Another recent line of work leverages
pretrained vision-language models to learn richer vision features for downstream policies. CLI-
Port (Shridhar et al., 2021) uses pre-trained CLIP (Radford et al., 2021) to learn robust Transporter-
based (Zeng et al., 2020) robot policies. Our method resembles CLIPort, its 3-dimensional successor
PerAct (Shridhar et al., 2022), and the previously mentioned multi-task policy methods in that we
train on expert trajectories associated with language task descriptions, but in CLIPort and PerAct,
the policy is only conditioned on language during training and testing; demonstrations are used only as
buffer data for imitation learning. Our method, however, learns tasks during training or testing by
using both language and a demonstration to condition the policy.

ZeST (Cui et al., 2022) and Socratic Models (Zeng et al., 2022) demonstrate that pretrained vision-
language models encode valuable information for robotic goal selection and task specification.
R3M (Nair et al., 2022) pretrains a ResNet (He et al., 2015) policy backbone on language-annotated
videos from Ego4D (Grauman et al., 2021) to boost downstream task performance. While our mo-
tivation is similar to ZeST in using a pretrained language model to leverage the structure of the
pretrained embedding space, we assume access to both language and demonstrations for learning
novel tasks and condition on task embeddings from both, which is unlike the ZeST and R3M prob-
lem settings where the policies are not directly task-conditioned.

2.3 OTHER APPLICATIONS OF LANGUAGE FOR ROBOTICS

Language-shaped state representations. On the MetaWorld multitask benchmark (Yu etal., 2019), a
number of prior works have investigated using language instructions to learn better state repre-
sentations.  Sodhani et al. (2021) use language instruction embeddings to compute an attention-
weighted context representation over a mixture of state encoders. Silva et al. (2021) learn a goal
encoder that transforms language instruction embeddings to shape the state encoder representations.

Hierarchical Learning with Language. Our approach can be loosely framed as hierarchical learn-
ing, where we have two high-level task encoders that output language and demonstration embed-
dings, both of which the low-level policy is conditioned on to output actions. Prior work has used
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language instructions in hierarchical learning for shaping high-level plan vectors (Mees et al., 2022) or
skill representations (Garg et al., 2022), which are then fed to a low-level policy to output the ac-tion.
Karamcheti et al. (2021) use an autoencoder-based architecture to predict higher-dimensional robot
actions from lower-dimensional controller actions and language instructions, where the lan-guage is
fed into both the encoder and decoder. All of these prior approaches condition on a single high-level
policy, whereas ours incorporates guidance from two high-level encoders for both demon-strations and
language to learn novel tasks, giving the low-level policy access to certain information expressible
only through their combination.

Language for Rewards and Planning. Language has also been used for reward shaping in RL
(Nair et al., 2021; Goyal et al., 2019; 2020). Pretrained language models have also been leveraged for
their ability to propose plans in long-horizon tasks (Huang et al., 2022; Ahn et al., 2022; Chen et al.,
2022). While we work with IL instead of RL and mainly deal with highly variable pick-and-place
tasks, we do not use language for training reward functions or for planning, though our multi-modal
task specification framework is compatible with these additional uses of language.

3 PROBLEM SETTING

3.1 MULTI-TASK IMITATION LEARNING

We define a set of n tasks {Ti}?= and split them into training tasks U and test tasks V , where (U, V)
is a bipartition of {T;}7_ . For each task T;, we assume access to a set of m expert trajectories
{tij}M2, and a single language description li. Given continuous state space S, continuous action
space A, and task embedding space Z, the goal is to train a Markovian policyt:S x Z = M(A) that
maps the current state and task embeddings to a probability distribution over the continuous action
space.

During training, we assume access to a buffer D ,; of trajectories for only the tasks in U and their
associated natural language descriptions. We define each trajectory as a fixed-length sequence of

state-action pairs Tij = séi)j, all , s(li)j, al! ,... , Where j is the trajectory index for task

T; @ U with task embedding zi. W& use behavidral cloning (BC) (Hussein et al., 2017; Pomerleau,
1988) to update the parameteés of 1t to maximize the log probability of t a(tij)st,j, z; , though our

framework is agnostic to the learning algorithm and would work for RL approaches as well.

During evaluation, we assume access to a buffer D, of trajectories for only the tasks in V and their
associated natural language descriptions. Unlike D . where we have m demonstrations for each
task, in D, we have just a single demonstration for @ach task. For all test tasks T BV, we rollout the
policy for a fixed number of timesteps by taking action a B n(a|s ,z ). The z for all test tasks is
computed beforehand and held constant throughout each test trajectory.

3.2 TASK ENCODER NETWORKS

To obtain the task embedding z;, we have two encoders (which are either trained jointly with policy
rt or frozen from a pretrained model): a demonstration encoder, f 4o, Tjj = 2 mapping
trajectories of task T; to demonstration embeddings, and a language encodetieip,iy s || > 2
mapping task instruction strings |; to language embeddings. Previous work hasnaxplored using
z; as a one-hot task vector, language embedding z , or goal image/demonstration embedding
Z4em o, DUt our approach Del-TaCo uses task embedding z; = [z4ey o 42 ] based on both the
indtrugtion and demonstration embedding during training and testing to learn novel tasks.

4 METHOD

4.1 ARCHITECTURE

Demonstration and Language Encoders. The encoder f 4., is a CNN network trained from
scratch. Following Jang et al. (2021), we input the demonstesation as an array of m x n frames (in
raster-scan order) from the trajectory for faster processing. (We use (m, n) = (1, 2) or (2, 2) in our
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Figure 2: Method Architecture. DelL-TaCo uses three main networks: the policy i, a demonstra-
tion encoder f 4., , and a language encoder f . During both training and testing, the policy is
conditioned on the demonstration and languagel embeddings for the task.

g

experiments.) We freeze a pretrained DistilBERT (Sanh et al., 2019) as the encoder f |, , where
Z) 4 g, is simply the average of all DistilBERT-embedded tokens in |, (we found this works better
than taking the [CLS] token embedding).

Policy Network. We use a ResNet-18 (He et al., 2015) as the visual backbone for the policy T,
followed by a spatial softmax layer (Finn et al., 2016) and fully connected layers.

Task Conditioning Architecture. BC-Z (Jang et al., 2021) inputs the task embedding into the
ResNet backbone via FiLM (Perez et al., 2018) layers, which apply a learned affine transformation to
the intermediate image representations after each residual block. BC-Z’s task embeddings are
either from demonstrations or language. Since our policy conditions on both, the main architectural
decision was finding the best way to feed task embeddings from multiple modalities into the policy.

Empirically, a simple approach performed best. The demonstration embeddings z 4.,, are fed into
the policy’s ResNet backbone via FiLM, while the language task embeddings z| ;¢ and robot pro-
prioceptive state (6 joint angles, end-effector xyz coordinates, and gripper open/close state) are
concatenated to the output of the spatial softmax layer. Our full network architecture is shown in
Figure 2, hyperparameters are in Appendix B, and architectural ablations are in Table 8.

4.2 TRAINING AND LOSSES

The training procedure for DelL-TaCo is summarized in Algorithm 1. During each training iteration,
we sample a size k subset of training tasks M = {T, , ..., T, } BU. Givenatrajectoryt fortask T

m, and corresponding natural language instruction | ; we compute the demonstration embeddings z
= d T ) anddanguagg embeddings z = f 14 klg) mWe ggllggt the embeddings of tasks in M
in matrices Zdgemo = [Zdemo,my, ---, Zdemo,mk] and Ziang = [Zlang,m1, ceey Zlang,mk]-

To train the demonstration encoder, Jang et al. (2021) use a cosine distance loss to directly regress
demonstration embeddings to their associated language embeddings. However, this causes demon-
stration embeddings to be essentially equivalent to the associated language embeddings for each
task, undercutting the value of passing both to our policy. To preserve information unique to each
modality while enabling the language and demonstration embedding spaces to shape each other, we
train with a CLIP-style (Radford et al., 2021) contrastive loss for our demonstration encoder:

1_g
Ldemo(zdemo, Z|ang) = CrOSSE ntrOpy 7Zemoz|ang, | (1)

B

where | is the identity matrix and B is a tuned temperature scalar. We use the standard BC log-
likelihood loss as the policy loss term for some trajectory composed of state-action pairs xt,i,j =
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sm, Ay iextracted from an expert demonstration t;j for task T, :

t, ) ) .
i Loolicy(Tij) = - |0gnat,§$t,j§ Zdemo,m;i, Zlang,m; (2)

Xt,i,iB
Both fqemo and m networks are trained jointly with the following loss, for a tuned a > 0:

L(rt, fdemo, flang) = Lpolicy(Tij) + Oldemo(Zdemo, ZIang) (3)
Where L it ) is summed over all trajectories in the batch of training tasks M (we omit this
double summation in Equation 2 for brevity). Note that the language encoder does not have a loss
term because we use a frozen, pretrained language model and rely on the pretrained embedding
space to shape the demonstration encoding space.

4.3 EVALUATION

During evaluation, we want the robot to perform some novel task T \@ V. Recall that T §, U, our
set of training tasks. From our problem setup description in Section 3.1, we have access to a
validation task buffer D | with a single demonstration T, and a natural language instruction |, of
task T,,. We encode the demonstration with f .., ,and the language with f and pass both task
embeddings to the policy. Details are summarized gn Algorithm 2.

Algorithm 1 DelL-TaCo: Training Algorithm 2 DelL-TaCo: Evaluation

Input: Dirain Input: Dval
1: while not done do 1: for validation task Tv in V do
2: M & k random train tasks from U 2: Get 1 demo tv and language |v from Dval
3:  SampleX; = {1 }J?’:‘é Dtrain 3:  Zdemo € fdemo(Tv) //Encode demo

4: X &< {X;|TiEBM} 4: Ziang € fiang(lv) //Encode language
50 L <« {li|Ti @M} //Lang. instructions 5. fortimet=0,..,H - 1do
6: Zdemo € fdemo(X) //Demo encoder 6: Take action at B mt(a|st, Zdemo, Ziang)
7:  Ziang € flang(L) //Language encoder 7:  end for

8:  Update 1T, fgemo 0N L(TT, faemo, flang) // per 8: end for

Eqn. 3
9: end while

5 EXPERIMENTS

We empirically investigate the following questions: (1) Does there exist a distribution of tasks that
are more clearly specified with both language and demonstrations rather than either alone? (2) Does
conditioning on both language instructions and video demonstrations with DelL-TaCo improve gen-
eralization performance on novel tasks? (3) If so, how much teacher effort is reduced by specifying a
new task with both language and demonstrations than with either modality alone?

5.1 SEeTUP
Environment. We develop a Pybullet (Coumans — ove | pample Training Tasks | Example Test Tasks
& Bai, 2007-2022) simulation environment with a .
! . . . == H‘H/‘
WidowX 250 robot arm, 32 possible objects of di- Name ‘! b'b

bin.

verse colors apd shapes for -manlpulatl-on, anq 2 - "%1’3 g’ M’g’
different containers. The action space is continu- Color T A A

object i let bin.”
ous, representing an (x, y, z) change in the robot’s ue w
, rep gan(x,y,z) g X ﬁa&;miﬂ

end effector position, plus the binary gripper state Shape
(closed/opened). We subdivide the workspace into
four qua.drants. Two-quadrants are randomly chosen grouped by the object identifier types (un-
to contain the two different containers, and three of derlined in each language instruction). All 6
the 32 possible objects are dropped at random loca-  container identifiers are seen in both training

tions in the remaining two quadrants. RGB image and testing.
observations are size 48 x 48 x 3 and fed into the

policy. The input format of each demo for f ., is
an m x n array of images extracted from the drajectory. Details are in Appendix H.

Figure 3: Sample train and test tasks,
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Task Objective. To explore the first question, we design the following set of pick-and-place tasks
where the objective is to grasp the target object and place it in the target container. Both the target
object and container can be inferred from the demonstration and language instruction. In every
task, the scene contains three visually distinct objects (of which exactly one of them is the target
object) and two visually distinct containers (of which exactly one of them is the target container). To
make the task more challenging, the distractor objects on the scene are chosen adversarially,
whenever possible, to match either the color or shape of the target object. Thus, a robotic policy that
disregards both the task demonstration and instruction and picks any random object and places it into
any random container would solve the task with 1-in-6 odds.

Language Instructions for Each Task. Figure 3 shows a selection of our training and testing tasks.
Each task is specified through language with a single template-based instruction of the format “put
[target object identifier] in [target container identifier].”

We make this environment more challenging by having task instructions refer to containers by either
their color or quadrant position and objects by either their name, color, or shape. We use six different
container identifiers in the task instructions to convey which container to drop the object in: red,
green, front, back, left, and right. Thus, if the robot is provided a demonstration of grasping a cup
and placing it in the red container in the front left quadrant, and it encounters an initialization with the
containers in different locations, it does not know whether to place the cup in the red, front, or left
container. This ambiguity can only be resolved with the language instruction. Conversely, aspects of
the task, such as which object to grasp, are most clearly expressed through the demonstration rather
than the instruction, since for novel tasks, the language instruction contains object identifiers
unfamiliar to the policy. The task instructions also refer to the objects through different types of
identifiers: their unique names (32 strings such as “fountain vase”), color (8 strings such as “black-
and-white colored object”), or shape (10 strings such as “trapezoidal prism shaped object”).

The multiple identifiers help simulate ambiguity that arises from informal human instructions, where
different humans may refer to the same object or container through different attributes, enabling
demonstrations and instructions to complement each other when the robot learns a new task. In
total, there are 50 target object identifiers (32 + 8 + 10) and 6 target container identifiers, giving us
300 pick-and-place tasks. We train and evaluate on a bipartition of these 300 tasks. See Appendix A
for a list of all our train and test tasks.

Success Metric. In calculating the success rate, a successful trajectory is defined as one that (1)
picks up the correct object and (2) places it in the correct container. Appendix D details the number of
seeds and trials used to calculate success rates and standard deviations.

Data. Using a scripted policy (details in Appendix C), we collect roughly 130 successful demon-
strations for each training task, and a single successful demonstration for each test task. All demon-
strations are 30 timesteps long. Depending on our experimental scenario (see Section 5.2), we train on
65% to 80% of the 300 tasks, so our training buffer contains roughly 26,000-31,000 trajectories.

5.2 GENERALIZATION PERFORMANCE ON NOVEL TASKS

To test generalization, we run experiments under two scenarios: (A) generalization to novel objects,
colors and shapes, and (B) generalization to only novel colors and shapes.

5.2.1 SCENARIO A: NOVEL OBJECTS, COLORS, AND SHAPES

Table 1 (plots in Figure 8) shows our results in experimental scenario A, where we train on 24/32
objects, 4/8 colors, and 5/10 shapes (a total of 198 training tasks) and evaluate on the remaining 102
tasks. The overall success rates show much room for improvement on this challenging benchmark
for a number of reasons. The robot must not only know how to pick-and-place the 8/32 objects it has
never seen during training, but must also understand novel instructions that refer to these ob-jects
by either their name, color, or shape. Additionally, training a multitask policy to perform well on
hundreds of tasks remains an open question with current multitask robot learning algorithms—a
problem compounded in difficulty by the adversarial selection of distractor objects in our environ-
ment as mentioned earlier in Section 5.1.

We lower-bound the performance of our task conditioning methods by first running a one-hot con-
ditioned policy, with the expectation that it performs worse than conditioning on language and/or
demonstrations for the reasons mentioned in Section 1. As an upper-bound, we directly train a



Published as a conference paper at ICLR 2023

Table 1: Evaluation on Novel Objects, Colors, and Shapes. (p) = pretrained.

Demo Encoder Language Encoder Task Conditioning Success Rate + SD (%)
- - One-hot (lower bound) 6.6+ 1.3
- - One-hot Oracle (upper bound) 47.9t 4.8

Language-only 13.7+ 1.9
CLIP (p) Demo-only 8.0+ 1.9
DelL-TaCo (ours) 15.3+ 1.8
- DistilBERT (p) Language-only 10.4+ 1.6
CNN - Demo-only 146 2.2
CNN DistilBERT (p) Del-TaCo (ours) 19.9+ 1.8
CNN - BC-Z (Jang et al., 2021); Demo-only 8.8+ 2.0
CNN DistilBERT (p) MCIL (Lynch & Sermanet, 2021); Demo-only + Language-only 9.4+ 1.8
Table 2: Evaluation on Novel Colors and Shapes. (p) = pretrained.
Demo Encoder Language Encoder Task Conditioning Success Rate + SD (%)
- - One-hot (lower bound) 10.3 + 1.8
- - One-hot Oracle (upper bound) 50.9 + 4.9
- DistilBERT (p) Language-only 15.8+ 2.8
CNN - Demo-only 17.0+ 2.7
CNN DistilBERT (p) DelL-TaCo (ours) 26.3+ 4.1

one-hot oracle on only the 102 evaluation tasks and evaluate on those same tasks. No other method in
the table is trained on any evaluation tasks. (For consistency, the one-hot oracle is trained on the same
total number of trajectories as the other methods.)

Next, we examine the performance of policies conditioned with only language, with only one
demonstration, and with both (DelL-TaCo). The language-only policies do not involve training f
dem + and only the language instruction embeddings are fed into the policy via FiLM during
training and testing. The demo-only policies train f ;= as shown in Algorithm 1, but during
training and testing, only the demonstration embedding z ,,,, is passed into the policy via FiLM.
DelL-TaCo (ours) conditions on both demonstration and danguage during training and testing as
shown in Algorithms 1 and 2.

When using pretrained DistilBERT as f |, , ;and a lightweight CNN for f ;.. , DeL-TaCo achieves
the highest performance, increasing the success rate of the second-best conditioning method, demo-
only, from 14.6% to 19.9%. Both methods using demonstration embeddings outperform the
language-conditioned policy perhaps because a visual demonstration is important in conveying the
nature of the chosen object and how the robot should manipulate it. Note that both the demo-only
and Del-TaCo policies train the f ;.,, CNN from scratch without any pretraining, so they must
learn to ground object and containes identifiers from training demonstrations alone.

We also compare to prior methods. BC-Z (Jang et al., 2021) performs worse than our approaches
because its demo encoder is trained to directly regress z ., ,t0Z  , hindering it from performing
better than solely using z; ,,, during testing. MCIL (Lynch & Sermanet, 2021), which trains sepa-
rate encoders for each task embedding modality and avérages the imitation learning losses over the
different encoders, also performs worse than DeL-TaCo because without any task encoder loss term, it
is harder to learn a well-shaped task embedding space, hurting generalization performance.

Finally, to evaluate the effect of pretraining, we use pretrained CLIP (Radford et al., 2021) as the
task encoder (with its language transformer as f |, , ;and vision transformer as f 4., ;) and freeze
it during training. The language-only policy performs significantly better than the video-only pol-icy
most likely because CLIP’s visual transformer was trained mostly on real-world images and
without further finetuning, does not know how to sufficiently differentiate between the simulation
demonstrations of different tasks in our problem setting. Despite this, DeL-TaCo modestly outper-
forms conditioning on language-only or demo-only, demonstrating the value of our method even
with frozen pretrained models.

5.2.2 SceENARIO B: NOVEL COLORS AND SHAPES

In Table 2 (plots in Figure 9), we train on 32/32 objects, 4/8 colors, and 5/10 shapes, and evaluate on
the rest—an easier setting as all objects were seen during training. Since evaluation tasks in this
scenario only refer to objects by their color or shape, we up-sample the color and shape training
tasks to be 50% of each training batch (such up-sampling was not done in scenario A).

We take the highest-performing f 4., ,and f models in Table 1 and again compare conditioning
on language, demonstrations, and both. All methods perform better in scenario B than A. The novel
color and shape task demonstratiéns contain more ambiguity than the novel object demonstrations
because the task with language instruction “put the blue object in the left bin” might have a demon-
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Table 3: Value of Language. Evaluation on Novel Objects, Colors, and Shapes.

Task Conditioning Demo-only DelL-TaCo (ours)
# demos per test-task finetuned on 0 10 25 50 100 0
Success Rate (%) 14.6 14.9 17.4 20.0 24.2 19.9
+ SD (%) £2.2 +1.6 +2.7 +2.4 2.5 +1.8

stration where the robot manipulates the blue cup, but the test-time environment might contain a
blue table instead. This added ambiguity likely explains the increased importance of language and
the wider 9.7% performance gap between DelL-TaCo and demo-only task conditioning.

Analysis. Overall, we see that on this wide range of tasks, language and demonstrations together do
help disambiguate each other during task specification—answering our first question; this leads to
better generalization performance on novel tasks—answering our second question.

5.3 HOW MANY DEMONSTRATIONS IS LANGUAGE WORTH?

To answer our third question, we re-examine experimental scenario A (testing on novel objects, col-
ors, and shapes) but now further finetune the demo-only policy on a variable number of test-task
expert demonstrations. Results are shown in Table 3 (plots in Figure 9). The demo-only policy
only starts to match and surpass DelL-TaCo (underlined) when it is finetuned on 50 demonstrations
(underlined) per evaluation task (a total of around 5,000 demonstrations for all test tasks combined).
This suggests that surprisingly, specifying a new task to DeL-TaCo with a single demonstration and
language instruction performs as well as specifying a new task to a demo-only policy with a single
demonstration and finetuning it on 50 additional demonstrations of that task. This showcases the im-
mense value of language in supplementing demonstrations for novel task specification, significantly
reducing the effort involved in teaching robots novel tasks over demonstration-only methods.

5.4 ABLATIONS AND MULTIMODALITY FOR AMBIGUITY RESOLUTION

We provide extensive ablations of our model and algorithm in Appendix F and further explore the
utility of using multi-modal task specification to resolve ambiguity in Appendix G.

6 CONCLUSION

When specifying tasks through language or demonstrations, ambiguities can arise that hinder robot
learning, especially when the demonstrations or instructions were provided in an environment that
does not perfectly align with the environment the robot is in. In this paper, we showed a problem
setting of learning 300 highly diverse pick and place tasks and propose a simple framework, Del-
TaCo, to resolve ambiguity during task specification by using both language and demonstrations
during both training and testing. Two main obstacles to deploying household robotic systems are the
inability to generalize to new environments and tasks, and prohibitively high end-user effort
needed to teach robots these new tasks. Our results show progress on both fronts: over previous
task-conditioning methods, DelL-TaCo improves generalization performance to new tasks by 5-9%
and reduces human effort on our set of tasks by roughly 50 expert demonstrations per task.

Limitations and Future Work. Our work leaves a number of areas for improvement. First, we
experiment only with pick-and-place tasks. Future work may need more interpretable modular en-
coders to handle a wider diversity of manipulation skills and temporally-extended tasks. Second, we
used a rigid set of template-based language instructions for each task, but our framework would likely
benefit from a more diverse instruction set of human paraphrases for each task. Third, we did not find
pretrained vision-language models, such as CLIP, to increase performance in our simulation-based
environment, most likely because of the domain mismatch between our simulation objects and the
more real-world-centric images CLIP was trained on. Investigating ways to better leverage pre-
trained vision-language models for multimodal task specification, in tandem with real-world robotic
tasks and real-world human demonstrations, would be a promising line of future research.
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7 REPRODUCIBILITY STATEMENT

Please see our appendix for details needed to replicate our results. In particular, Appendix A pro-
vides the full list of our 300 tasks, instructions, and objects, as well as train and test task splits.
Appendix B contains architectural hyperparameters and details for network layers, initialization,
and optimizer settings. The remaining appendices detail aspects of our training/evaluation processes
and provide additional ablations that were not fully described in the main text of our paper.

We link to our open-sourced codebase on our project website, https://deltaco-robot.
github.io.

8 ETHICS STATEMENT

This work leverages language model embeddings for task conditioning, which leaves our approach
vulnerable to distributional biases of the language models. Future work should explore adding ad-
ditional safeguards to DeL-TaCo to reason about the safety of language instructions before utilizing
these embeddings for execution by the robot policy.
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Appendices

A  ALL TASKS, INSTRUCTIONS, AND TRAIN-TEST SPLIT

A.1 LisT OF TASKS

All 300 tasks are shown below, by object identifier (rows) and container identifier (columns). The
colors denote groups of tasks which guide our train and test task splits, and the cell numbers denote the
task indices.

e Scenario A (novel objects, colors, and shapes) trains on all gray tasks and tests on

yellow , blue , and green tasks.

e Scenario B (novel colors and shapes) trains on all gray and yellow tasks and tests on

blue and green tasks.

Object Identifier Type Object Identifier green red Co;\rt:rl]r;er Idir;tclser left right
conic cup 0 50 100 150 200 250
fountain vase 1 51 101 151 201 251
circular table 2 52 102 152 202 252

hex deep bowl 3 53 103 153 203 253
smushed dumbbell 4 54 104 154 204 254
square prism bin 5 55 105 155 205 255
narrow tray 6 56 106 156 206 256
colunnade top 7 57 107 157 207 257
stalagcite chunk 8 58 108 158 208 258
bongo drum bowl 9 59 109 159 209 259
pacifier vase 10 60 110 160 210 260
beehive funnel 11 61 111 161 211 261
crooked lid trash can 12 62 112 162 212 262
toilet bowl 13 63 113 163 213 263
pepsi bottle 14 64 114 164 214 264
tongue chair 15 65 115 165 215 265
name modern canoe 16 66 116 166 216 266
pear ringed vase 17 67 117 167 217 267
short handle cup 18 68 118 168 218 268
bullet vase 19 69 119 169 219 269

glass half gallon 20 70 120 170 220 270
flat bottom sack vase 21 71 121 171 221 271
trapezoidal bin 22 72 122 172 222 272
vintage canoe 23 73 123 173 223 273
bathtub 24 74 124 174 224 274
flowery half donut 25 75 125 175 225 275

t cup 26 76 126 176 226 276

cookie circular lidless tin 27 77 127 177 227 277
box sofa 28 78 128 178 228 278

two layered lampshade 29 79 129 179 229 279
conic bin 30 80 130 180 230 280

jar 31 81 131 181 231 281

black and white 37 -7 137 182 237 2827
brown 33 83 133 183 233 283

blue 34 84 134 184 234 284

gray 35 85 135 185 235 285

color white 36 86 136 186 236 286
red 37 87 137 187 237 287

orange 38 88 138 188 238 288

yellow 39 89 139 189 239 289

Vase 40 90 140 190 40 290

chalice 41 91 141 191 241 291
freeform 42 92 142 192 242 292

bottle 43 93 143 193 243 293

canoe 44 94 144 194 244 294

shape cup 45 95 145 195 245 295
bow! 46 96 146 196 246 296
trapezoidal prism 47 97 147 197 247 297
cylinder 48 98 148 198 248 298

round hole 49 99 149 199 249 299

A.2 TASK INSTRUCTION FORMAT
As mentioned in Section 5.1, we use the following template as the language instruction for each task:

“Put [target object identifier string] in [target container identifier string].” For each object identifier,
we build a string referring to the target obj in a specific format shown in Table 4.
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Table 4: Object Identifier String Format for each Object Identifier Type.

Object Identifier Type

Target Object Identifier String

Name
Color
Shape

“Tobject color] colored, [object shape] shaped [object name]”
“[object color] colored object”
“[object shape] shaped object”

Example task instructions (with target object identifier and target container strings underlined):

e Task 4: “Put black and white colored, chalice shaped smushed dumbbell in green bin.”

e Task 292: “Put cup shaped object in right bin.”

A.3 TRAIN AND TEST SPLIT VISUALIZATIONS

We visually show our train-test splits on objects (Figure 4), colors (Figure 5), and shapes (Figure
6).

Figure 4: Train-Test Object Split. Objects are shown in raster-scan task-index order, so the objectin
the second row from top, second column from left, is the “bongo drum bow!”, which is associated with

task index 9.
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Figure 5: Train-Test Color Split.

Figure 6: Train-Test Shape Split.

B DETAILED ARCHITECTURE AND HYPERPARAMETERS

B.1 PoLicy T AND DEMONSTRATION ENCODER fgemo ARCHITECTURE

See Figure 7 for a detailed diagram of the policy and demonstration encoder (for a higher-level
overview, see Figure 2). For the policy backbone, we use a ResNet-18 architecture but made changes to
the strides and number of channels to adapt the network to our small image size. Hyperparameters are
shown in Tables 5 and 6.

B.2 TRAINING HYPERPARAMETERS

Table 7 shows our IL training hyperparameters.
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Figure 7: Detailed Architecture of the Policy and Demonstration Encoder.

Table 7: Imitation learning hyperparameters. In each training iteration, we sample 16 random
tasks from our training buffer and get 64 samples for each task, for a total batch size of 1024.

Attribute Value
Number of Tasks per Batch 16
Batch Size per Task 64
Learning Rate 3x 1074 Task
Encoder weight (ain L) 10.0 Contrastive

Learning Temperature (B in Lgemo) 0.1
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Table 5: Policy m hyperparameters.

Attribute Value
Input Height 18
Input Width 48
Input Channels 3
Number of Kernels [16, 32, 64, 128]
Kernel Sizes [7,3,3,3,3]
Conv Strides [1,1,1,1,1]
Maxpool Stride 2
Fully Connected Layers [1024, 512, 256]
Hidden Activations RelLU
FiLM input size 768
FiLM hidden layers 0
Spatial Softmax Temperature 1.0
Learning Rate 3x 107* Policy

Action Distribution
Outputs

Augmentation
Augmentation Padding

Multivariate Isotropic Gaussian N (W, o) Policy

(1, o) Image

Random Crops Image

4

Table 6: fgemo CNN hyperparameters.

Attribute

Value

Demonstration frames

First and Tast timesteps

Demonstration image array size (m, n) (1,2)
Input Height (m- Image height) 48
Input Width (n- Image width) 96
Input Channels 3
Output Size 768
Kernel Sizes [3, 3, 3]
Number of Kernels [16, 16, 16]
Strides [1, 1, 1]

Fully Connected Layers

[1024, 512, 256]

Hidden Activations RelLU
Paddings [1,1,1]
Pool Type Max 2D
Pool Sizes [2,2,1]
Pool Strides [2,2,1]
Pool Paddings [0, 0, 0]

Image Augmentation
Image Augmentation Padding

Random Crops

4

C ScRrIPTED PoLicy DETAILS

We collect 26,000 - 31, 000 training demonstrations using a scripted policy with Gaussian noise
added to the action of each timestep. Details are shown in Algorithm 3. “eePos” stands for end-
effector position. All variables ending in “Pos” are xyz positions. Our training buffer contains only
successful demonstrations.
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Algorithm 3 Scripted Pick and Place
1: pickPos < target object position

2: dropPos < target container position
3: distThresh < 0.02

4: numTimesteps < 30

5: placeAttempted < False

6: for tin [0, numTimesteps) do

7.

8

9

eePos < end effector position
dropPosDist <~ FleePos - dropPosk
: pickPosDist <~ BleePos — pickPosk:
10:  if placeAttempted then

11: action < 0

12:  else if object not grasped AND pickPosDist > distThresh then
13: // Move toward target object

14: action < pickPos - eePos

15:  else if object not grasped then

16: // gripper is very close to object

17: action < pickPos — eePos

18: close gripper // Object is in gripper

19:  else if object not lifted then

20: // Move gripper upward to avoid hitting other objects/containers
21: action <~ [0, 0, 1]

22:  else if dropPosDist > distThresh then

23: // Move toward target container

24: action < dropPos — eePos

25:  else

26: open gripper //Object falls into container

27: placeAttempted < True

28:  endif

29:  noise @ N (0, 0.1)

30: action <& action + noise
31: s < env.step(action)
32: end for

D Success RATE CALCULATION DETAILS

To avoid reporting cherry-picked results, we detail our success rate calculation methodology here.

We run each setting with three random seeds for 800k-900k training steps. An evaluation
set, which we define as rolling out the policy for 2 trials per task for all of the test tasks, is run
every 10k training steps. Thus, there are a total of 80-90 evaluation sets that occur
throughout training. Let seed i attain the success rate r(i, j) on evaluation set j. LetJ = top
10 evaluation set indices for the quantity mean (i, j). Our reported success rate and standard
deviation in the tables are calculated as the following equations:

Reported Success Rate = meanjas (meanir(i, j))
Reported Standard Deviation = meanja; (stddevir(i, j))

Scenario A: Since there are 102 test tasks, each success rate in Tables 1 and 3 is computed from:

2 trials 102 test tasks 10 evaluation sets

x : x x 3 seeds = 6120 evaluation trials
test task  evaluation set seed

Scenario B: Applying the same calculation for the 54 tasks in Scenario B, each success rate in
Table 2 is computed from 3240 evaluation trials.

For Table 3, the best final checkpoint of the three demo-only policy seeds from Table 1 was taken
for finetuning.

19



Published as a conference paper at ICLR 2023

E LEARNING CURVES FOR EXPERIMENTS

Novel Objects, Colors, and Shapes Novel Objects, Colors, and Shapes (CLIP-Pretrained Task Encoder)
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Figure 8: Table 1 learning curves, where all methods are evaluated on novel objects, colors, and

shapes. Left: f .nois @ trained-from-scratch CNN and f is pretrained DistilBERT. Right:

fgemoand f are from pretrained CLIP. The same upper land lower one-hot bounds (dotted) are
shown in both thé left and right plots.
g
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Figure 9: Table 2 and 3 learning curves. Left: Evaluation only on novel colors and shapes. Right:
Evaluation on novel objects, colors, and shapes, using a trained-from-scratch CNN as f ., and
pretrained DistilBERT as f|,,. The performance of the demo-only policy and DelL-TaCo pol-
icy from Table 1 (also depigted in the left plot of Figure 8) are shown as lower and upper dotted
lines, respectively. The solid lines indicate performance during 300k finetuning steps when given x
demonstrations per test-task, where x is indicated in the legend.
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Table 8: Ablations. Evaluation on Novel Objects, Colors and Shapes. (p) = pretrained.

Demo Encoder Language Encoder Task Encoder Loss Task Conditioning Arch. Task Conditioning Success Rate + SD (%)
Best non-oracle result from Table 1

CNN DistilBERT (p) Contrastive FiLM (demo), Concat (lang) DelL-TaCo (ours) 19.9+ 1.8
Language Encoder Ablations

- DistilBERT (finetuned) - FiLM Language-only 12.6+ 5.0

CNN DistilBERT (finetuned) Contrastive FiLM (demo), Concat (lang) DelL-TaCo (ours) 12.1+ 5.6

- DistilRoBERTa (p) - FiLM Language-only 12.4+ 2.1

CNN DistilRoBERTa (p) Contrastive FiLM (demo), Concat (lang) DelL-TaCo (ours) 16.6 + 1.5

- miniLM (p) - FiLM Language-only 13.7+ 2.3

CNN miniLM (p) Contrastive FiLM (demo), Concat (lang) DelL-TaCo (ours) 20.9+ 2.3

CLIP (p) CLIP (p) + MLP head Contrastive FiLM (lang), Concat (demo) DeL-TaCo (ours) 15.8+ 2.3

Demo Encoder Ablations

R3M (p) + MLP head DistilBERT (p) Contrastive FiLM (demo), Concat (lang) Del-TaCo (ours) 13.2+ 1.8
Task Encoder Loss Ablations

CNN DistilBERT (p) Cosine distance FiLM (demo), Concat (lang) DeL-TaCo (ours) 12.2+ 2.5

CNN DistilBERT (p) None FiLM (demo), Concat (lang) DelL-TaCo (ours) 12.5+ 2.6

Task Conditioning Architecture Ablations
CNN DistilBERT (p) Contrastive Concat (demo + lang) DelL-TaCo (ours) 10.6 + 4.2
CNN DistilBERT (p) Contrastive FiLM (demo + lang) Del-TaCo (ours) 17.3+ 2.7

F ABLATION ANALYSIS

In Table 8, we compare the performance of different language encoders, demonstration encoders,
task encoder loss types, and task conditioning architectures in Experimental Scenario A to our best
model from Table 1 (top row).

Language Encoder Ablations. Finetuning the language model did not improve performance, most
likely because the model becomes significantly harder to train jointly with a relatively deep language
encoder. Perhaps training the policy and finetuning the language model in separate stages may yield
better results. We also compare with other language models such as DistilRoBERTa (Sanh et al.,
2020) and miniLM (Wang et al., 2020). These were chosen because they have (1) a relatively small
number of parameters for computational efficiency, and (2) were shown to achieve high performance
on language-conditioned robotic policies when compared to other common language models (Mees et
al.,, 2022). When using CLIP as the demo and language encoder, we did not notice much of a
performance difference from adding a finetuneable MLP head on top of the frozen CLIP language
encoder.

Demonstration Encoder Ablations. Using pretrained demonstration encoders, such as R3M, did
not perform better than training a small CNN from scratch—a similar takeaway from our experi-
ments with pretrained CLIP.

Loss Ablations. Our approach outperforms using a BC-Z-styled cosine-distance loss term L
demdZ demd NiFnd = Zdemo' Ziang(Where Bzy 2 = Bz = 1). Our contrastive task
encoder loss term is crucial; withegt it (setting oo = 0in Eqn. 3), performance drops substantially.

Task Conditioning Architecture Ablations. Concatenating z 4., and z before feeding into
FiLM layers causes a slight drop in performance compared to our architecturédmFigure 2, and sim-ply
concatenatingz = 4., .andz to the image observation embfeddings without FiLM dramatically
decreases performance. lan

g

G ADDITIONAL AMBIGUITY EXPERIMENTS

In Tables 1 and 2, we examined the effects of conditioning the multitask policy on a demonstration
that is ambiguous about the target container, plus an unambiguous language instruction that clearly
specifies both the target object and container for each pick-and-place task. We label this as ambiguity
scheme (i).

To further examine the utility of multi-modal task conditioning, we experimented with a different
ambiguity scheme (ii) in which the language instruction is ambiguous about the target object but
unambiguous about the target container, and the demonstration is unambiguous about the target
object but ambiguous about the target container. This scheme allows us to test how well two task-
conditioning modalities complement each other if each modality unambiguously conveys only a
single aspect of the task.
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Table 9: Ambiguity Experiments

Ambiguity Scheme Demo Ambiguity Language Ambiguity Task Conditioning Success Rate + SD (%)

- None Language-only 10.4+ 1.6

(i) (From Table 1) container - Demo-only 146+ 2.2
container None DelL-TaCo (ours) 19.9+ 1.8

- object Language-only 15.8+ 2.3

(ii) container - Demo-only 22.7+ 2.4
container object DelL-TaCo (ours) 26.7+ 5.2

To introduce ambiguity on the target objects, in scheme (ii), we place two identical objects on the
scene in different parts of the tray, plus a third visually distinct distractor object. Exactly one of
these two identical objects is the target object. The language instruction is ambiguous because it
does not convey the positional identifier that describes which side of the tray the target object is at.
However, the demonstration unambiguously conveys the target object by showing the robot picking
up the target object from the correct part of the tray.

The results are shown in Table 9. By displaying two identical objects as we do in scheme (ii), we
visually reveal that the target object is one of the two identical objects (and not the third, distinct
object on the scene), causing scheme (ii) to have higher overall success rates than scheme (i). We see
that the gap between DelL-TaCo and the demo-only policy slightly decreases from more than 5% in
scheme (i) to 4% in scheme (ii) because the language instruction unambiguously specifies the task in
scheme (i), complementing the demonstration which is ambiguous on both the target object and
container, whereas in scheme (ii), both the language instruction and demonstration are ambiguous in
one aspect (either in specifying the container or the object), narrowing the performance gap between
Del-TaCo and the demo-only policies.

H DEMONSTRATION FORMATTING FOR fgemo

We represent each demonstration as an m x n image array consisting of observations from the first
timestep, the last timestep, and mn - 2 other randomly selected timesteps from the trajectory, ar-
ranged in raster-scan order. For our CLIP and R3M experiments, we use (m, n) = (2, 2) because
CLIP and R3M perform a center square crop on each input image, so we made the demonstration ar-
ray square. When using our trained-from-scratch f 4., , we used (m, n) = (1, 2) for computational
efficiency. This sufficed for our tasks because pick-and-place was not a particularly long horizon
task, so including more frames did not improve performance.
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