

https://doi.org/10.1130/G48927.1

Manuscript received 7 February 2022 Revised manuscript received 20 April 2022 Manuscript accepted 9 October 2022

Published online 3 January 2023

© 2023 Geological Society of America. For permission to copy, contact editing@geosociety.org

Natural growth of gold dendrites within silica gels

Thomas Monecke¹, T. James Reynolds^{1,2}, Tadsuda Taksavasu¹, Erik R. Tharalson¹, Lauren R. Zeeck¹, Mario Guzman¹, Garrett Gissler¹ and Ross Sherlock³

¹Department of Geology and Geological Engineering, Colorado School of Mines, Golden, Colorado 80401, USA ²FLUID INC., Denver, Colorado 80202, USA

³Mineral Exploration Research Centre, Harquail School of Earth Sciences, Laurentian University, Sudbury, ON P3E 6H5, Canada

ABSTRACT

High-grade ores in low-sulfidation epithermal precious metal deposits include banded quartz veins that contain gold dendrites. The processes by which dendrite growth takes place have been subject to debate for decades, especially given that these deposits are known to form from dilute thermal liquids that contain only trace amounts of gold. It is shown here that growth of gold dendrites in epithermal veins at the McLaughlin deposit in California (western USA) originally took place within bands of gel-like noncrystalline silica. The gel provided a framework for the delicate dendrites to form. The high permeability of the gel allowed the diffusion and advection of gold from the thermal liquids flowing across the top of the silica layers to the sites of crystal growth within the gel. Over time, the gel hardened to form opal- ${\bf A}_{\rm G}$. This silica phase is thermodynamically unstable and recrystallized to quartz that has a distinct mosaic texture.

INTRODUCTION

Mineral deposition in low-sulfidation epithermal gold deposits occurs in the shallow subsurface, typically within hundreds of meters below the water table, from thermal liquids that have temperatures of as much as 250 °C. The ore-forming fluids are dilute aqueous solutions with low (<2 mol%) CO₂ contents (Hedenquist et al., 2000; Simmons et al., 2005). The deposits include banded quartz veins, some of which have bonanza-type (>31 g per tonne Au) grades (Hedenquist et al., 2000; Sanematsu et al., 2006; Tharalson et al., 2019; Zeeck et al., 2021). Although the occurrence of gold dendrites having fractal geometries within high-grade banded quartz veins was first described over a century ago (Lindgren, 1915), their mechanism of formation has remained enigmatic (Saunders, 1990, 1994; Saunders and Schoenly, 1995; Sherlock and Lehrman, 1995).

Early researchers, including Lindgren (1915), hypothesized that gold dendrites in low-sulfidation epithermal veins grew within a yielding silica gel deposited along the vein walls, with the gel maturing and recrystallizing to fine-grained quartz over time. This early model was based on hand-specimen observations and the advent of colloid chemistry and crystal synthesis (Holmes, 1917) but has never been tested through microtextural studies on vein samples.

The currently prevailing model links the formation of gold dendrites in epithermal veins to physical processes of metal enrichment (Saunders, 1990, 1994; Saunders and Schoenly, 1995). It advocates that gold colloids are formed deep in the hydrothermal system due to supersaturation, perhaps from boiling. The gold colloids are then mechanically transported by the hydraulic action of the thermal liquid and grow larger through physical aggregation. Ultimately, the nanoparticles are thought to deposit along the vein walls through density accumulation or scavenging from the liquid by charged surfaces on the interface between the vein and the thermal liquid. It is envisaged that upward growth of the dendrites at the tips of the dendrite branches exposed to the thermal liquid occurs simultaneously with the deposition of noncrystalline silica, successively building up a silica layer that hosts gold dendrites. Noncrystalline silica, which forms scales in geothermal power plants (Simmons and Browne, 2000; Reyes et al., 2003; Taksavasu et al., 2018), coprecipitating with the gold thereby provides a framework for the growing gold dendrites and assists in the preservation of the delicate ore textures (Saunders, 1990, 1994; Saunders and Schoenly, 1995).

The two models represent end-member scenarios given that they propose that gold dendrites either form within a previously existing layer of gel-like silica or grow by physical processes of deposition in open space. We provide textural observations suggesting that gold dendrites can indeed grow within layers of silica gel, as originally envisaged more than a century ago, which does not necessitate gold transport in colloidal form in the thermal liquids. The textural evidence presented was discovered in high-grade ores from the McLaughlin deposit in California (western USA), which represents a young (<2.2 Ma; Sherlock et al., 1995) and well-preserved low-sulfidation epithermal deposit that has not been subjected to tectonic or metamorphic overprint.

GEOLOGICAL SETTING

The McLaughlin deposit is located \sim 120 km north of San Francisco within the Coast Ranges of California. Mineralization is located in the structural footwall of the Stony Creek fault separating the Middle Jurassic Coast Range ophiolite in the southwest from Upper Jurassic sedimentary rocks of the Great Valley sequence to the northeast (Sherlock et al., 1995; Tosdal et al., 1996). The deposit was mined by open pit between 1983 and 1996 CE. It contained a total pre-mining mineral resource of 24.3 million tonnes of ore grading 4.49 g per tonne gold (Tosdal et al., 1996). The main ore body was a pipe-like sheeted vein complex that developed within a dilatant zone between tholeiitic basalt and a mélange consisting of sedimentary rocks and serpentinite. The sheeted vein complex is a zone, as much as 100 m in width, that is composed of crosscutting veins that are centimeters to meters in width (Sherlock and Lehrman, 1995; Sherlock et al., 1995; Tosdal et al., 1996).

METHODS

Field work at the McLaughlin deposit included representative sampling of high-grade ores (Sherlock et al., 1995). Opaline vein samples used for this study were taken from the 1580

CITATION: Monecke, T., et al., 2023, Natural growth of gold dendrites within silica gels: Geology, v. 51, p. 189-192, https://doi.org/10.1130/G48927.1

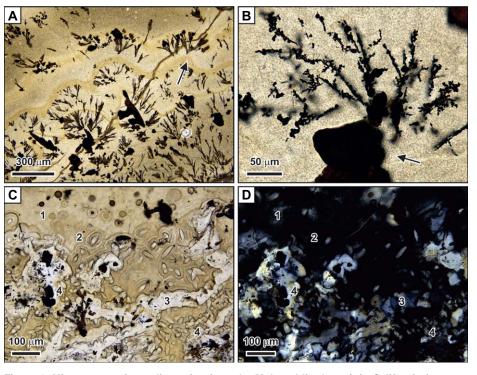


Figure 1. Microtextures in opaline veins from the McLaughlin deposit in California (western USA) observed in thin sections in plane-polarized (A–C) and crossed-polarized light (D). (A) Gold and sphalerite dendrites within an opal-A_G matrix. Opal-A_G band hosting dendrites has a wavy upper surface indicative of hydraulic shaping (arrow). The large opaque crystals are pyrargyrite. (B) Gold dendrite grown within an opal-A_G matrix. The silica matrix surrounding the large pyrargyrite crystal appears to be slightly deformed (arrow). (C) Recrystallization textures developed in silica matrix. Concentrically banded silica spheres having a heterogeneous turbid appearance occur in the opal-A_G matrix (1). Doubly terminated quartz crystals are present within cores of the concentric features (2). Zones of completely recrystallized quartz are present (3). Some of the gold and sphalerite dendrites, as well as the pyrargyrite crystals, are surrounded or encapsulated by quartz (4). (D) Image of the same field of view as in C in crossed-polarized light showing that the matrix containing relict microsphere is at least partially isotropic. The mosaic texture is caused by intergrowth of anhedral quartz grains having interpenetrating grain boundaries.

bench (feet above sea level) of the sheeted vein complex. Polished thin sections were obtained and studied petrographically. Semiquantitative chemical analyses of ore minerals were performed on a TESCAN MIRA3 LMH Schottky field emission—scanning electron microscope equipped with a single-crystal yttrium aluminum garnet (YAG) backscatter electron detector and a Bruker XFlash 6-30 silicon drift detector for energy-dispersive X-ray spectroscopy. The instrument was operated at 15 kV using a working distance of 10 mm.

TEXTURAL RELATIONSHIPS

The opaline veins at the McLaughlin deposit are composed primarily of relict silica microspheres, which are mostly isotropic under crossed-polarized light. The relict microspheres of opal- $A_{\rm G}$ (cf. Smith, 1998), which are presumably deformed and slightly modified through recrystallization, have spherical to oblate shapes, are 1–5 μ m in size, and are variably fused together. Due to the spherical shapes of the relict microspheres, cavities between them have sickle-like shapes. Adjacent bands of silica

show subtle differences in color and packing density. Individual bands of opal-A_G are of variable thicknesses, commonly exhibiting botryoidal and wavy surfaces (Fig. 1A).

The veins contain many bands of opal-A_G that are host to ore minerals. The ore minerals occur as single crystals or polycrystalline aggregates within the silica matrix. Most notable are dendritic aggregates of gold (millesimal fineness of 593–790, n = 70). The gold dendrites form as aggregates as much as 500 µm long which are intergrown with sphalerite and minor pyrargyrite (Figs. 1A and 1B). Large dendritic gold aggregates are oriented approximately perpendicular to the silica bands, whereas smaller dendrites are randomly oriented (Figs. 1A and 1B). Mineralized bands also contain delicate sphalerite dendrites as well as euhedral to subhedral crystals of pyrargyrite that are as much as \sim 200 μm in size. In some cases, the opal-A_G matrix varies in packing density around the larger stubby pyrargyrite crystal (Fig. 1B), possibly suggesting that the matrix was yielding during crystal growth and pushed aside by the growing crystals. Minor pyrite crystals ranging as large as

 $\sim\!\!100~\mu m$ are present, some of which contain galena inclusions.

The opal-A_G in the mineralized bands is variably recrystallized, exhibiting a range of textures. This includes concentrically banded silica spheres having a heterogeneous turbid appearance (Fig. 1C). In plane-polarized light, the <50-µm-sized silica spheres differ in color from the surrounding opal-A_G matrix, and some may have matured to a degree where small doubly terminated quartz crystals have nucleated in the cores. When near to one another, these evolved to complex quartz aggregates of doubly terminated quartz crystals that are suspended in the matrix (Fig. 1C). In some locations, growth of the quartz crystals resulted in the formation of massive clear quartz (Fig. 1C). In crossedpolarized light, these zones exhibit a mosaic texture in which quartz grains have irregular and interpenetrating grain boundaries and differ in orientation (Fig. 1D). Relict microspheres are common in the mosaic quartz and can be identified by high-magnification optical microscopy. In many cases, clear quartz aggregates and crystals formed through recrystallization of the opal-A_G encapsulating ore mineral dendrites or small complexly shaped aggregates of ore minerals (Figs. 1C and 1D).

MECHANISM FOR DENDRITE GROWTH

The textural relationships at the McLaughlin deposit suggest that the gold dendrites have grown within the layers of noncrystalline microspherical silica, not solely at the interface between the silica host and thermal liquid. The delicate dendrites occur throughout the opal-A_G layers and not preferentially at the top of the bands. They are commonly oriented perpendicular to the bands and appear to have grown toward the top of the microspherical matrix that hosts them based on the shape of the dendrite branching. Although some of the larger gold aggregates are oriented, many of the small dendrites are randomly oriented, arguing against a model of dendrite growth taking place only along tips exposed in the open part of the vein. The silica provided a framework in which the delicate dendrites grew.

The gold hosted within individual colloform bands of noncrystalline silica at McLaughlin may have formed by a mechanism of crystal growth not unlike that of the synthesis of crystals in silica gels under laboratory conditions (Brenner et al., 1966; Kotru et al., 1986; Oaki and Imai, 2003; Raj et al., 2008). In crystal synthesis, a silica gel is obtained through slight acidification of sodium metasilicate (water glass) following impregnation with a reactant. An overhead feed solution is added. Within days, downward diffusion of the feed solution causes the growth of crystals in the chemically inert gel which provides a three-dimensional

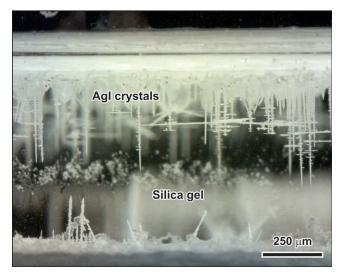


Figure 2. Delicate silver iodide (AgI) crystals experimentally grown in silica gel. The gel was prepared from 20 ml of sodium metasilicate solution and 10 ml of 1 N acetic acid. It was then mixed with 10 ml of 3 M AgNO₃ and allowed to mature at 25 °C for one week. After maturation, 10 ml of 3 M potassium iodide (KI) solution was poured over the top of the gel. The chemical reaction of AgNO₃ and KI initially started at a slow rate to precipitate small white to colorless AgI crystals near the boundary between the gel and KI solution. Over the next

seven days, the reaction front migrated down in the beaker, and the gel behind the reaction front became clear and large Agl crystals grew within the clear silica gel. Experimental setup is from Brenner et al. (1966) and Halberstadt (1967).

structure in which the crystals grow and are held in position of their formation. Different crystal morphologies develop as a function of the degree of supersaturation, with polyhedral forms developing at near-equilibrium conditions and dendritic shapes being dominant at far-from-equilibrium conditions (Oaki and Imai, 2003).

To illustrate that textures similar to those observed at McLaughlin can be synthesized, we conducted a simple laboratory experiment growing delicate silver iodide dendrites in a gel (Fig. 2). Similar to this crystal growth experiment, gold at McLaughlin may have formed through deposition of a silica gel along the vein walls, followed by growth of gold dendrites within the gel layer by diffusion or advection of solutes through the gel from thermal liquids flowing across the top of the silica layer. However, the experimental growth of silver iodide does not replicate the observation that most of the dendrites in natural samples grew upward toward the top of the gel layers, perhaps because the experiment was not designed to mimic flow conditions in veins.

Quantitatively, the high abundance of gold in the opal-A_G layers at McLaughlin suggests that the silica and the gold were not coprecipitated from the thermal liquids. At 230 °C and a salinity of 2.5 wt% NaCl (Sherlock et al., 1995), 1 L of thermal liquid has a silica solubility of 0.278 g L⁻¹ at 27.6 bar (cf. Akinfiev and Diamond, 2009), which is equivalent to 0.133 cm³ of opal-A_G. At a content of 2 ppb Au (Simmons et al., 2016), 1 L of thermal liquid contains $0.556\times 10^{-9}\ g$ Au and could form a grain of gold that is $0.288 \times 10^{-10} \text{ cm}^3$ in size. On the scale of Figure 1B, this would mean that a cube of opal-A_G having a dimension of $100 \times 100 \times 100 \ \mu m$ would contain a gold grain that is $0.06 \times 0.06 \times 0.06$ μm in size. The observed abundance of gold is clearly much higher (Fig. 1B). If the silica gel formed from silica colloids transported by the thermal fluids (Saunders, 1990), only a small percentage of the silica would be deposited to form the gel layer, presumably because silica colloids have a negative surface charge (Abendroth, 1970) limiting aggregation and deposition. In contrast, gold formed through metal transport to the sites of dendrite growth by a large amount of liquid flowing over the top of the layers of previously accumulated silica gel. The difference in depositional mode and growth mechanism between silica and gold are envisaged to be responsible for the significant precious metal enrichment.

RECRYSTALLIZATION

Following growth of the gold dendrites in a yielding gel matrix, the gel must have hardened to form opal- $A_{\rm G}$, which is now making up the mineralized bands in the veins from the McLaughlin deposit. However, the microtextural evidence suggests that the opal- $A_{\rm G}$ continued to mature and recrystallize given that some of the originally microspherical bands are now composed of mosaic quartz (Figs. 1C and 1D).

Investigations on silica deposits formed by hot springs (Herdianita et al., 2000; Lynne and Campbell, 2004; Rodgers et al., 2004; Lynne et al., 2005) and silica scales in geothermal power plants (Reyes et al., 2003; Raymond et al., 2005) confirmed that opal- $A_{\rm G}$ is thermodynamically unstable. Maturation involves the transformation of noncrystalline opal- $A_{\rm G}$ into opal-CT, which in turn recrystallizes into opal-C and then into quartz. Maturation of noncrystalline silica to quartz has been achieved in hydrothermal experiments in as little as days to months (Bettermann and Liebau, 1975;

Oehler, 1976). Textural reequilibration is heterogeneous in the vein samples investigated, with some colloform bands still being at least partially isotropic in crossed-polarized light while others are largely recrystallized. Complete textural reequilibration results in the formation of a quartz mosaic texture, which is the most common quartz texture encountered in epithermal deposits worldwide (Dong et al., 1995; Moncada et al., 2012).

IMPLICATIONS

The textural observations made at the McLaughlin deposit suggest that gold dendrites contained in low-sulfidation epithermal veins can form through growth within silica gels. In contrast to the model proposed by Saunders (1990), gold dendrite growth within silica gels is not dependent on colloidal metal transport in the thermal liquids, which may explain why aggregates of gold and sphalerite have similar morphologies in the investigated samples. The textural evidence is also not consistent with earlier studies at McLaughlin highlighting the importance of hydrocarbons in scavenging colloidal gold from the thermal liquids by hydrostatic attraction (Sherlock et al., 1995).

Growth of the ore metal dendrites in silica gels at far-from-equilibrium conditions has implications for the understanding of the hydrothermal processes occurring in the epithermal environment. Initial deposition of the noncrystalline silica requires the thermal liquids to periodically reach extreme supersaturation (Saunders, 1990; Simmons and Browne, 2000). Such high degrees of silica supersaturation are most likely achieved through vapor loss associated with catastrophic pressure drops accompanying hydrothermal eruptions on the surface. It is envisaged here that the initial rapid deposition of the gel-like silica layers along faults during such events of fluid flashing was followed by more sustained periods of nonviolent two-phase liquid plus vapor flow. Metal-laden thermal liquids flowing through the open spaces along the structures controlling vein formation provided the source of gold and other elements for diffusion or advection of elements through the previously formed silica gel, enabling growth of the delicate dendrites. Repetition of this process through time results in the development of banded epithermal veins containing multiple layers of high gold grades that alternate with barren quartz bands that record periods of more quiescent fluid flow.

ACKNOWLEDGMENTS

This work was supported, in part, by the U.S. National Science Foundation (NSF) and conducted within the Center to Advance the Science of Exploration to Reclamation in Mining (CASERM) which is a joint industry-university collaborative research center between the Colorado School of Mines and Virginia Tech under the NSF award numbers 1822146 and 1822108.

REFERENCES CITED

- Abendroth, R.P., 1970, Behavior of a pyrogenic silica in simple electrolytes: Journal of Colloid and Interface Science, v. 34, p. 591–596, https://doi.org /10.1016/0021-9797(70)90223-7.
- Akinfiev, N.N., and Diamond, L.W., 2009, A simple predictive model of quartz solubility in water-salt-CO₂ systems at temperatures up to 1000 °C and pressures up to 1000 MPa: Geochimica et Cosmochimica Acta, v. 73, p. 1597–1608, https://doi.org/10.1016/j.gca.2008.12.011.
- Bettermann, P., and Liebau, F., 1975, The transformation of amorphous silica to crystalline silica under hydrothermal conditions: Contributions to Mineralogy and Petrology, v. 53, p. 25–36, https://doi.org/10.1007/BF00402452.
- Brenner, W., Blank, Z., and Okamoto, Y., 1966, Growth of single crystals of lead sulphide in silica gels near ambient temperatures: Nature, v. 212, p. 392–393, https://doi.org/10.1038 /212392b0.
- Dong, G.Y., Morrison, G., and Jaireth, S., 1995, Quartz textures in epithermal veins, Queensland: Classification, origin and implication: Economic Geology, v. 90, p. 1841–1856, https://doi.org/10 .2113/gsecongeo.90.6.1841.
- Halberstadt, E.S., 1967, Growth of single crystals of silver iodide in silica gel: Nature, v. 216, p. 574, https://doi.org/10.1038/216574a0.
- Hedenquist, J.W., Arribas, A., and Gonzalez-Urien, E., 2000, Exploration for epithermal gold deposits, in Hagemann, S.G., and Brown, P.E., eds., Gold in 2000: Reviews in Economic Geology, v. 13, p. 245–277, https://doi.org/10.5382/Rev.13.07.
- Herdianita, N.R., Browne, P.R.L., Rodgers, K.A., and Campbell, K.A., 2000, Mineralogical and textural changes accompanying ageing of silica sinter: Mineralium Deposita, v. 35, p. 48–62, https://doi.org/10.1007/s001260050005.
- Holmes, H.N., 1917, The formation of crystals in gels: Journal of the Franklin Institute, v. 184, p. 743–773, https://doi.org/10.1016/S0016-0032(17)90512-5.
- Kotru, P.N., Gupta, N.K., and Raina, K.K., 1986, Growth of lanthanum tartrate crystals in silica gel: Journal of Materials Science, v. 21, p. 90–96, https://doi.org/10.1007/BF01144704.
- Lindgren, W., 1915, Geology and mineral deposits of the National mining district, Nevada: U.S. Geological Survey Bulletin 601, 66 p., https://doi.org /10.3133/b601.
- Lynne, B.Y., and Campbell, K.A., 2004, Morphologic and mineralogic transitions from opal-A to opal-CT in low-temperature siliceous sinter diagenesis, Taupo Volcanic Zone, New Zealand: Journal of Sedimentary Research, v. 74, p. 561–579, https://doi.org/10.1306/011704740561.
- Lynne, B.Y., Campbell, K.A., Moore, J.N., and Browne, P.R.L., 2005, Diagenesis of 1900-year-old siliceous sinter (opal-A to quartz) at Opal Mound, Roosevelt Hot Springs, Utah, U.S.A.: Sedimentary Geology, v. 179, p. 249–278, https://doi.org/10.1016/j.sedgeo.2005.05.012.
- Moncada, D., Mutchler, S., Nieto, A., Reynolds, T.J., Rimstidt, J.D., and Bodnar, R.J., 2012, Mineral textures and fluid inclusion petrography of the ep-

- ithermal Ag-Au deposits at Guanajuato, Mexico: Application to exploration: Journal of Geochemical Exploration, v. 114, p. 20–35, https://doi.org/10.1016/j.gexplo.2011.12.001.
- Oaki, Y., and Imai, H., 2003, Experimental demonstration for the morphological evolution of crystals grown in gel media: Crystal Growth & Design, v. 3, p. 711–716, https://doi.org/10.1021/cg034053e.
- Oehler, J.H., 1976, Hydrothermal crystallization of silica gel: Geological Society of America Bulletin, v. 87, p. 1143–1152, https://doi.org/10.1130/0016-7606(1976)87<1143:HCOSG>2.0.CO:2.
- Raj, A.M.E., Jayanthi, D.D., and Jothy, V.B., 2008, Optimized growth and characterization of cadmium oxalate single crystals in silica gel: Solid State Sciences, v. 10, p. 557–562, https://doi.org/10.1016/j.solidstatesciences.2007.10.019.
- Raymond, J., Williams-Jones, A.E., and Clark, J.R., 2005, Mineralization associated with scale and altered rock and pipe fragments from the Berlín geothermal field, El Salvador: Implications for metal transport in natural systems: Journal of Volcanology and Geothermal Research, v. 145, p. 81–96, https://doi.org/10.1016/j.jvolgeores .2005.01.003.
- Reyes, A.G., Trompetter, W.J., Britten, K., and Searle, J., 2003, Mineral deposits in the Rotokawa geothermal pipelines, New Zealand: Journal of Volcanology and Geothermal Research, v. 119, p. 215–239, https://doi.org/10.1016/S0377-0273(02)00355-4.
- Rodgers, K.A., et al., 2004, Silica phases in sinters and residues from geothermal fields of New Zealand: Earth-Science Reviews, v. 66, p. 1–61, https://doi.org/10.1016/j.earscirev.2003.10.001.
- Sanematsu, K., Watanabe, K., Duncan, R.A., and Izawa, E., 2006, The history of vein formation determined by 40 Ar/39 Ar dating of adularia in the Hosen-1 vein at the Hishikari epithermal gold deposit, Japan: Economic Geology, v. 101, p. 685–698, https://doi.org/10.2113/gsecongeo.101.3.685.
- Saunders, J.A., 1990, Colloidal transport of gold and silica in epithermal precious-metal systems: Evidence from the Sleeper deposit, Nevada: Geology, v. 18, p. 757–760, https://doi.org/10.1130/0091-7613(1990)018<0757:CTOGAS>2.3.CO;2.
- Saunders, J.A., 1994, Silica and gold textures in bonanza ores of the Sleeper deposit, Humboldt County, Nevada: Evidence for colloids and implications for epithermal ore-forming processes: Economic Geology, v. 89, p. 628–638, https://doi.org/10.2113/gsecongeo.89.3.628.
- Saunders, J.A., and Schoenly, P.A., 1995, Boiling, colloid nucleation and aggregation, and the genesis of bonanza Au-Ag ores of the Sleeper deposit, Nevada: Mineralium Deposita, v. 30, p. 199–210, https://doi.org/10.1007/BF00196356.
- Sherlock, R.L., and Lehrman, N.J., 1995, Occurrences of dendritic gold at the McLaughlin mine hot-spring gold deposit: Mineralium Deposita, v. 30, p. 323–327, https://doi.org/10.1007/BF00196368.

- Sherlock, R.L., Tosdal, R.M., Lehrman, N.J., Graney, J.R., Losh, S., Jowett, E.C., and Kesler, S.E., 1995, Origin of the McLaughlin Mine sheeted vein complex: Metal zoning, fluid inclusion, and isotopic evidence: Economic Geology, v. 90, p. 2156–2181, https://doi.org/10.2113/gsecongeo.90.8.2156.
- Simmons, S.F., and Browne, P.R.L., 2000, Hydrother-mal minerals and precious metals in the Broad-lands-Ohaaki geothermal system: Implications for understanding low-sulfidation epithermal environments: Economic Geology, v. 95, p. 971–999, https://doi.org/10.2113/gsecongeo.95.5.971.
- Simmons, S.F., White, N.C., and John, D.A., 2005, Geological characteristics of epithermal precious and base metal deposits, in Hedenquist, J.W., et al., eds., Economic Geology: One Hundredth Anniversary Volume, 1905–2005: Littleton, Colorado, Society of Economic Geologists, p. 485–522, https://doi.org/10.5382/AV100.16.
- Simmons, S.F., Brown, K.L., and Tutolo, B.M., 2016, Hydrothermal transport of Ag, Au, Cu, Pb, Te, Zn, and other metals and metalloids in New Zealand geothermal systems: Spatial patterns, fluidmineral equilibria, and implications for epithermal mineralization: Economic Geology, v. 111, p. 589–618, https://doi.org/10.2113/econgeo.111 3.589.
- Smith, D.K., 1998, Opal, cristobalite, and tridymite: Noncrystallinity versus crystallinity, nomenclature of the silica minerals and bibliography: Powder Diffraction, v. 13, p. 2–19, https://doi.org/10.1017/S0885715600009696.
- Taksavasu, T., Monecke, T., and Reynolds, T.J., 2018, Textural characteristics of non-crystalline silica in sinters and quartz veins: Implications for the formation of bonanza veins in low-sulfidation epithermal deposits: Minerals (Basel), v. 8, 331, https://doi.org/10.3390/min8080331.
- Tharalson, E.R., Monecke, T., Reynolds, T.J., Zeeck, L., Pfaff, K., and Kelly, N.M., 2019, The distribution of precious metals in high-grade banded quartz veins from low-sulfidation epithermal deposits: Constraints from μXRF mapping: Minerals (Basel), v. 9, 740, https://doi.org/10.3390 /min9120740.
- Tosdal, R.M., Sherlock, R.L., Nelson, G.C., Enderlin, D.A., and Lehman, N.J., 1996, Precious metal mineralization in a fold and thrust belt: The McLaughlin hot spring deposit, northern California, *in* Coyner, A.R., and Fahey, P.L., eds., Geology and Ore Deposits of the American Cordillera: April 10–13, 1995, Reno/Sparks, Nevada, Symposium Proceedings: Reno, Geological Society of Nevada, p. 839–854.
- Zeeck, L.R., Monecke, T., Reynolds, T.J., Tharalson, E.R., Pfaff, K., Kelly, N.M., and Hennigh, Q.T., 2021, Textural characteristics of barren and mineralized colloform quartz bands at the low-sulfidation epithermal deposits of the Omu camp in Hokkaido, Japan: Implications for processes resulting in bonanza-grade precious metal enrichment: Economic Geology, v. 116, p. 407–425, https://doi.org/10.5382/econgeo.4795.

Printed in USA