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This work presents a modified phase-field model for accurate coupling of phase transformation and cracking in
shape memory ceramics. The existing phase-field models underestimate the elastic response at the beginning of
the mechanical response. We modified the chemical free energy to control the rate of phase transformation and
consequently obtain a physical elastic response before initiation of phase transformation. First, the forward and
reverse martensitic phase transformation in a superelastic single crystal 3 mol% yttria-stabilized tetragonal

zirconia is studied. Then, the interaction between phase transformation and fracture under displacement-
controlled loading condition is investigated. The model predicts a realistic mechanical response and the
experimentally observed microstructure and crack deflection due to the phase transformation. In addition, the
model captures the reverse phase transformation and the stress drop due to the crack propagation.

1. Introduction

Shape memory ceramics (SMCs) have various applications in the
biomedical and aerospace industries [1]. One of the main characteristics
of SMCs is their recoverable stress/temperature-induced solid-state
martensitic phase transformation (MPT), which results in strain recov-
ery. Based on the temperature of the material, two different behaviors
can be observed: superelasticity (SE) (also known as pseudoelasticity) or
the shape memory effect (SME) (also known as pseudoplasticity). If the
temperature is higher than the equilibrium transformation temperature,
SE is observed. In SE behavior, the strain is fully recovered when the
load is removed, and a stress-strain hysteresis loop is obtained [2-4]. If
the temperature is lower than the equilibrium transformation temper-
ature, the SME is observed. In SME, after removing the load there is a
large residual strain and a temperature higher than the equilibrium
temperature is required to recover the original shape and phase of the
material [2-6].

The main ingredient of SMCs is often zirconia. Zirconia-based ce-
ramics have high strength, high operating temperature, and high
corrosion resistance which make these ceramics suitable for extreme
operating conditions. In addition, they show promising SME and SE
behaviors due to stress or temperature induced recoverable phase
transformation between their tetragonal (T) and monoclinic (M) phases
(T < M). However, because these phases are brittle, zirconia-based
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ceramics have a low fracture toughness. In addition, T — M phase
transformation causes inelastic dilatation, which contributes to low SME
and SE fatigue life in SMCs [7].

Since the overall mechanical properties and fracture behavior of
materials is strongly affected by their microstructure, studying micro-
structure evolution and fracture at the microscopic length scale is
essential to obtain an accurate estimate of durability of structures. There
are a few experimental works on zirconia ceramics to study the micro-
structural evolution [8,9] and interaction between crack and phase
transformation [10] in order to study and improve the fracture and
overall mechanical properties of SMCs. In addition to requiring a
considerable amount of materials, testing time and cost, experiments are
unable to fully capture the interactions between cracking and phase
transformation in ceramics, because both happen at a very high pace.
Therefore, numerical studies could be suitable alternatives to study such
interactions.

Phase-field (PF) modeling stands out as a powerful numerical
approach for simulating MPT [2]. In the PF approach, the product of a
phase transformation is represented by a scalar called an order param-
eter (OP). In addition, the PF approach has been widely applied as a
powerful and robust approach for modeling fracture in brittle [11-14]
and ductile materials [15,16] where an OP represents the crack surface.

Based on experimental observations, when phase transformation
occurs in shape memory materials, the strain localization produces a
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twinned-martensite (strip-like microstructure) microstructure of alter-
nating austinite-martensite or martensite-martensite variants [17,18].
To obtain a reliable mechanical response and experimentally observed
microstructures, one must choose an appropriate chemical free energy
in the total free energy functional of the PF model of MPT. The chemical
free energy represents the energy dissipation due to MPT, and 2-3-4 and
2-4-6 polynomials are commonly used in the literature for first order
transformations [2]. Depending on the parameters of the polynomial,
the shape of chemical free energy can be either double-well, concave, or
convex. In addition to the chemical free energy, the relationship be-
tween the OPs and the stress-free strain tensor (or OP-strain relation)
plays an important role in prediction of the mechanical response.

Mamivand et al. [19] were the first to develop a PF model for T - M
phase transformation in single crystal zirconia under stress-controlled
loading conditions. They used a 2-4-6 polynomial and a quadratic OP-
strain relation. They validated their simulated microstructure against
experimental results. In another work, Mamivand et al. [20] used a
similar model and studied both SE and SME in a polycrystalline zirconia
under a stress-controlled loading condition; they showed that the ob-
tained twinned-martensite microstructure and mechanical response
were consistent with experiments. Recently, Cisse and Asle Zaeem [3]
developed a non-isothermal elastoplastic PF model considering 2-4-6
and a quadratic OP-strain relation to study the SE and SME in both
single crystal and polycrystalline 3 mol% yttria-stabilized tetragonal
zirconia (3Y-STZ) under stress-controlled loading conditions. In [21],
the authors used a 2-3-4 polynomial and a linear OP-strain relationship
to study the ferroelastic domain switching in a zirconia crystal in the
presence of crack propagation which was qualitatively compared to
experimental observations. A combination of the linear OP-strain rela-
tion with 2-3-4 or 2-4-6 polynomials has also been used for modeling
MPT in other shape memory materials like NiTi [22-26].

Based on the aforementioned research works, linear or quadratic OP-
strain relation has been used in PF models for simulating the MPT in
SMCs and shape memory alloys. We will discuss and compare linear and
quadratic OP-strain relations in Sec. 2.5.1 and explain that under some
circumstances the quadratic OP-strain relation loses its generality and
validity. Therefore, we use the linear OP-strain relation in this paper. It
is also important note that PF models of MPT underestimate the elastic
modulus in the initial part of the stress-strain response regardless of the
choice of the OP-strain relation; we will also address this shortcoming of
the current PF models in this work.

Only a few studies investigated the interactions of MPT and cracking
in SMCs. Zhao et al. [27] studied this interaction in single crystal zir-
conia under a displacement controlled loading condition using the PF
method. They considered a chemical free energy polynomial that sim-
ulates SME. Although they obtained a twined-martensite microstructure
as a result of the SME chemical free energy polynomial, they did not
report the mechanical response in the form of a stress-strain curve, and it
is not expected that the employed formulations generate a reasonable
mechanical response. Zhu and Lao [28] used the same PF model in [27]
to study phase transformation and fracture in polycrystalline zirconia.
Their work lacked prediction of the mechanical response as well.

Moshkelgosha et al. [29] studied fracture propagation in single
crystal zirconia and separately in polycrystalline zirconia [30] adopting
a chemical free energy polynomial that simulates SME. They applied a
stress-controlled loading condition. Although they obtained experi-
mentally observed twinned-martensite microstructures, their mechani-
cal response did show any drop in the stress-strain curve when a crack
initiated and propagated. Also, they predicted a maximum strain of at
least 5.5% for a single crystal and 12% for a polycrystal before fracture
fully developed, which is unphysical. This is an indication that stress-
controlled loading is not appropriate to predict strength from a frac-
ture simulation. In a different study by the same authors [31], they
studied phase transformation and fracture in a 3D single crystal zirconia
by applying a displacement-controlled loading, however, they did not
show any drop in the stress-strain curve after crack initiation and
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propagation. Also, their maximum reported strain under uniaxial ten-
sion was 15%, while the experimental work by Lai et al. [8] reported a
maximum bending strain of 8%. Therefore, it is expected that a spec-
imen under uniaxial tension fails at a lower strain.

Generally, since most of the experimental studies for determining the
mechanical properties are under displacement-controlled loading con-
ditions [32-40], the numerical results obtained under stress-controlled
loading cannot be compared and validated with experiments. Espe-
cially, when the goal is to study crack propagation in a continuum
model, quasi-static stress-controlled loading cannot be used, because
when the crack propagation starts, the stress-controlled loading causes
unbounded displacement and the final drop in the mechanical response
cannot be obtained by the stress-controlled loading conditions [41].

Based on the above literature review, we can conclude that none of
the current PF models can properly simulate the coupled phase trans-
formation and fracture in SMCs and produce acceptable microstructures
and stress-strain curves under displacement-controlled loading condi-
tions. In this paper, first, we examine the double well, concave, and
convex chemical energies, to determine which functional form produces
the most accurate predictions of microstructure and mechanical
response. Then, we propose a solution to the under-prediction of the
elastic modulus observed in PF simulations of SE. Finally, we show that,
with the proposed modification, accurate predictions of the interaction
between MPT and fracture can be made using the PF approach.

2. Coupling PT and fracture in PF context

We use OPs noted as 7, to describe the state of pth monoclinic vari-
ants. The 17, varies between 0 and 1, and 77, = 1 means the p™ monoclinic
variant exists and when 7, = 0, the other monoclinic variants or the
tetragonal phase exist. To derive the governing equations for MPT, first
we need to construct the total free energy of the system (Fyo):

Fioi(Wis 11,135+ 1,) = Fer+ Fen + Fyas (@)

where F, is elastic strain energy density, F, is chemical free energy, and
Fyq is gradient energy of the tetragonal- monoclinic or monoclinic-
monoclinic phases. In the following, each of these energies is
explained in detail.

2.1. Elastic strain energy (Fe)
The elastic strain energy can be written as:

1
Fa(u) = //Ecljk,eiie?j'd% (2)
where V is the domain volume, y; is the displacement, Cy is the elastic
tensor and e%l is the elastic strain which is defined as the difference be-
tween total strain (e}j“‘) and the transformation strain (eg):

el __ tot r
& =& —& ®

where considering the linear OP-strain relation [22,24,42], eg is defined
as:

er=">"el(p)m,, @
p=1

where 83—0 is the stress-free strain tensor which represents the change in

microstructure between parent and product phases [3]. It should be
noted that in this paper, the small strain assumption (65-0‘ = % (uij + ujz)),
is considered. We use the linear relation, and the reason is explained in
Sec. 2.5.1 based on comparing the linear and quadratic OP-strain
relations.

The elastic constant difference between tetragonal and monoclinic
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phases is represented by the following relation [3]:

Cipa (15135 +,11,,) = C§k1+ Z”p(cﬁz_C;H)v ©)
p=1
where Cfy, and C}j, are elastic constants of the tetragonal and monoclinic

phases, respectively. The elastic energy defined in Eq. (2) is based on
Hooke’s law and thus, the stress tensor is related to elastic strain tensor
through the following equation:

el

O'ij(ui) = Cifkl(”l-, Nay ooy rlm)gkh (6)

2.2. Chemical free energy (Fcn)

The F drives the MPT and the shape of this energy plays an
important role in predicting the mechanical response and microstruc-
ture. The 2-3-4 or 2-4-6 Landau polynomials defined in terms of OPs are
the most common types of F, used in the literature. Wen et al. [43]
explained that the particular order of the Landau polynomial does not
have a significant effect on the predicted microstructure. Therefore, we
use the 2-3-4 Landau polynomial:

2
Fan(Mys Moo M) —/AG<aZn,2,bZn2+ c(Znﬁ) )dV, %)
v p=1 p=1 p=1

where AG is the chemical driving force which is the difference in the
specific F., between the parent and the product phases. According to
[3,44], the following equation can be used to calculate AG for 3Y-STZ at
different temperatures:

AG(t—>m) = —6159.18 + 6.98T, ©)]

where the energy is in Jmol™!(or Jm3) and the temperature (T) is in
Kelvin (K).

In Eq. (7) a, b, and c are coefficients that should be chosen in a way
that maintains the value of the interfacial energy within the physical
reasonable range and yields Fyp, = AG(t—m) at 5, = 1. In addition, the
values of these parameters determine the shape of F,. Although a va-
riety of shapes can be obtained through tuning expansion coefficients,
the double-well, concave, convex have been used in the literature for
modeling SE behavior. In Sec.3.1, we will study the difference between
these three types of F, in terms of mechanical response and micro-
structure for modeling SE behavior in a single crystal 3Y-STZ sample.
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Foa(llys s s 1) :/EZ(WP)ZW (10
=1

2.4. Coupling MPT with fracture

We use ¢ as the OP of fracture, and when ¢ =1 the crack is fully
developed and when ¢ = 0 the material is undamaged. In order to
couple MPT with PF fracture, we modify the total free energy of the
system by adding the fracture energy (Fy) and degrading the elastic
constants based on the evolution of fracture through multiplying it by a
degradation function, g(¢). These modifications lead to:

le(uh”]*,r]b "'sﬂquﬁ) =Fa+Fa +ng +an (11)

where F;, is defined as [45]:
_ ¢ ko
Fi(g) = /V G, (ﬂ + E|Vq/)| )dV, 12)

where G, is the fracture surface energy in Griffith’s theory, and k is a
positive regularization parameter with the dimension of length to
regulate the width of the crack phase field.

In addition, to accommodate the crack phase field, F,; is redefined as:

1 .
Fel(uiﬁ(/)) = /Vig({/))cljk/(nlﬂ My eeey ’Ym)fl}eijldV’ (13)

where g(¢) is the degradation function and g(¢) = (1 — ¢)* is one of the
widely used degradation functions [46,47] that we use in this paper as
well. Also, based on Eq. (13), the stress tensor (Eq. (6)) will change to:

6i(ui, ) = (D) Cia (1, M -+ M) EGy- a4

In this paper, we use the method proposed by Miehe et al. [48] to
ensure irreversibility of crack (crack healing prevention):

Feo(u;,t) = maxFq(u;,s),s € [0,1]. (15)
2.5. Governing equations

The evolution of both MPT and PF fracture can be obtained through
Ginzburg-Landau equation [49,50]. This equation relates the rate of
each OP to the variational derivative of total free energy with respect to
the same OP. Using Ginzburg-Landau equation for MPT leads to the
following equation:

2.3. Gradient free energy on, 7L<6le) B 7L<6Fe' OFq 6Fw 6Fﬂ) 16)
or on, on, om, on, on,)’
Gradient free energy represents the interfacial energy between
tetragonal-monoclinic or monoclinic-monoclinic phases and ensures a where L is the kinetic coefficient, and:
5Fel _1 (qﬁ)ge'(C _CT )861—1 (¢)C ( )EOO(p)gel_l (¢)C ( )600([))851 (17)
a1, = 2g i\ Gk ikt | €xi 2g ki \My s Moy s M ) €y ii 2g i\ M2y s M )€ ki
non-abrupt transition between different phases. It is defined as:
-ﬁl] m
Foa(NysMys s ly) = ) Zviﬂpvjﬂpdv7 (C)] SF "
v p=1 ch 2 2
7 - AG (2% — 3bn, + 4en, ; ;7,,) , 18)
where V is the gradient operator and g is gradient energy tensor. We
assume that the gradient energy coefficient is isotropic (8; = p5y) [3].
Therefore the Eq. (9) will be: SF
i A 19

on,
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5Ffr
on,

=0. (20)

Also, using the Ginzburg-Landau equation for PF fracture leads to:

d¢ OF o OFq  6F4  OFy  OFy
L=-M =-M 21
ot (5(/’> (54’+5¢+5¢+5f/)>7 @

where M is called the fracture mobility coefficient, and:

5Feli

55 =~ (= O)Culn s, )ee 22)
5;“ =0, (23)
51; (;d =0, @24
‘5;;“ =G. <% - kv2¢) . (25)

Examination of Eq. (3) and Eq. (17) reveals that MPT can have a
blunting effect on the crack initiation and propagation through reducing
the available elastic energy. Meanwhile, based on Eq. (22), fracture halts
the propagation of MPT by reducing elastic strain energy in the cracked
regions (¢ > 0).

In addition, by neglecting the body forces, the equilibrium equations
become:

dive(u;,$) = 0. (26)

2.5.1. The difference between linear and quadratic OP-strain relations

As it was mentioned before, in this paper we use the linear OP-strain
relation. We chose the linear relation over the quadratic relation because
the quadratic relation can become invalid in some situations explained
below.

Using the linear relation, the OPs’ evolution equation (Eq. (16))
without considering the effect of fracture, will become:

U, =0;u, =u"

Computational Materials Science 216 (2023) 111844

an, 1 b 1
=L (ﬁ‘ (=€) et =3 Cona s 1, )€ e

1 \ .
) g/k/(ﬂ]-,’?z,"'-,'lm)ego )EZHAG(z“’?p3”’7,2)+4C’7PZ’7§>

p=1
/”Vzﬂp> : (27

The quadratic relation (ef = Y°7',e}°(p)72) leads to the following
equation for the OPs’ evolution:

on 1 ; .
a_tp =-L (58171 (C% - Cgkl) Ek; = 1,Cia (11,115, -+, '7»1)52? (p)gijl

= 1,Cipa (1115, 51, )€Y (P)EG] + AG (2% =3 +4en, Y | nﬁ)

p=1

- pV°n, ) :

(28)

In Eq. (28), all terms except the first term are zero when the initial
value of 5, = 0. Then if (Cg{l - C;,d> is zero (e.g. if MPT in poly-
crystalline samples [22] or if ferroelastic domain switching [21] is
studied) Eq. (28) becomes zero and consequently 7, never grows.
Therefore, Eq. (28) loses its generality and validity and cannot accu-
rately predict MPT. This problem does not occur when the linear OP-
strain relation is considered since the second term in Eq. (27) is not
zero and starts to increase upon the start of loading and never loses its

generality and validity. Therefore, we use the linear OP-strain relation in
this paper.

2.6. Solution scheme

The governing equations presented in the previous section are solved
in a finite element framework using the solid mechanics and mathe-
matics modulus of COMSOL multiphysics. All simulations are under
displacement-controlled loading, and the boundary conditions and
sample dimensions are shown in Fig. 1a. Also, Fig. 1b shows the applied

(b)

prettaetaes o
A :
(a) 0.08 =
(WY
= VA \/on '€ 0.06 |
- <0 3
o - —0.04 |
X S
0.02
P 2 pm
e 7 7 0
U, =u, =0 0

17.5 35 52.5 70
t [s]

Fig. 1. a) Dimensions and boundary conditions, and b) Applied displacement versus time for simulating forward and reverse transformation without fracture. x- axis

represents a; direction and z axis represent c; of the tetragonal phase.
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Table 1
Coefficients of different chemical free energies.
Coefficient Double-Well Concave Convex
a 13.89 9.2 3.13
b 23.75 12.89 4.01
c 10.78 4.74 1.85

displacement versus time. Furthermore, the plane stress condition is
considered in all 2D simulations.

For all models, with and without fracture, quadrilateral elements are
generated by the mapped mesh algorithm feature in COMSOL. A mesh
study was conducted where we found that a mesh size of 0.04 pm (or
2500 quadrilateral elements in the domain) were sufficient to resolve
the interface of different phases. Discretizing the sample with more el-
ements did not change the microstructure and mechanical response,
therefore we used 2500 quadrilateral elements. The displacements are
solved using “Solid Mechanics” module with quadratic shape functions.
The crack PF and Martensite PF are solved using the “General Form
PDE” module of COMSOL with linear shape functions. The staggered
[51] scheme is used to solve the governing equations where nonlinear
sub-problems are solved with Newton’s method. The time step of 0.01 s
is used for all simulations.

3. Results and discussions
3.1. Comparison of different F o, for modeling SE in 3Y-STZ

In this section, we compare three different forms of F;, (double-well,
concave and convex) for modeling SE in a 2D idealization of a 3Y-STZ
single crystal sample without considering fracture. Table 1 shows the
values of a, b, and ¢ for each F,,. These parameters are determined to
ensure each F, has a minimum at 7 = 0. For the double-well case, the
energy has a local minimum at 7 = 1 as well. Also in all three F,;,, AG (in
Eq. (7)) is ~156 Jmol™! (7.2 x 10® Jm~3) which is obtained by Eq. (8)
considering the temperature is constant at 905K. This temperature is
higher than the reported equilibrium temperature of 883 K for 3Y-STZ
[3,52,53], therefore, the system will show SE behavior (i.e., strain re-
covery occurs after unloading without a need for increasing the tem-
perature). Fig. 2 shows the plot of these three forms of F,.

Eq. (29) and Eq. (30) show the stiffness tensor of tetragonal [54,55]
and monoclinic [55], respectively. In addition, two monoclinic variants
exist in the a —c plane, and their stress-free strain tensors are given in Eq.
(31) and Eq. (32) [19].

361 100 62 0 0 0]
100 361 62 0 0 0
i 62 62 264 0 0 0
c = GPa, (29)
v 0 0 0500
0 0 0 0590
| 0 0 0 0064
(327 142 55 0 0 —21]
142 408 196 0 0 31
» 55 196 258 0 0 —18
= GPa, (30)
v 0 0 0 100 -23 0
0 0 0 -2381 0
|—21 31 —18 0 0 126 |

(3D

—0.0761

w0, | 0.0049
(1)_[ 0.0180

0.0761}
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g. 2. Three different F;, used for modeling SE.

(2 — {0.0049 0.0761 } _ 32

&)= 10,0761 0.0180

We consider the global coordinates when § = 0, to be aligned with
those of the tetragonal phase where x- axis represents a, direction and z
axis represents ¢, (see Fig. 1a) and # = 0" corresponds to [001] oriented
crystal. The stress-free strain tensor and elastic stiffness tensor are
transferred to the global coordinate system using the following rotation
operations:

5 (p) = RuRely (p), (33)
Cﬁd = RiijanoRlpCmm)p, (34)

where 330 ) and Cpingp are, respectively, the stress-free strain tensor and
the elastic stiffness matrix in the local coordinate system. R; is the
rotation matrix for a grain with an orientation angle of 9, which in 2D is

defined as:

R — |: cos(0)

sin(6)
—sin(0) :| ’ (35)

cos(6)

6 measures positive counterclockwise. Table 2 shows all other pa-
rameters used for running the simulations. It is worth mentioning, the
kinetic coefficient (L) in Eq. (16) can be arbitrary selected since there is
not a report on the speed of PT in zirconia-based ceramics [20] and a
wide range value from 2 x 10*9“;—53 [29-31] to 10% [3] has been used in

the literature. In this paper we choose this value to be 5 x 10*8%. The
gradient energy coefficient (f) in Eq. (19) must be selected such that
gives a reasonable interface thickness (few nanometers) [20,56], we
chose =1 x10"° L and based on the our results gives a reasonable
interface thickness between different phases. Furthermore, the initial
values of 7, are set to 107 to overcome the possibility of numerical
artifacts. In addition, considering the crack length scale parameter (k) in
Eq. (12) to be 20nm which is one percent of the domain length, is small
enough to obtain a stable solution, a correct crack path, and an admis-
sible diffusive area with a reasonable accuracy and computing cost

Table 2
Simulation parameters.
Parameter Value
Kinetic coefficient, L 3
5x 10*8'%
s
. . ]
Gradient energy coefficient, 1x1 0,9E
Mobility coefficient, M [57,58] m3
Js
Critical energy release rate, G, [60] 2% J
m2
m
Crack length scale parameter, k 20 nm
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Fig. 3. Predicted stress-strain curve and microstructure for [001] orinted smaple by (I) Convex, (II) Concave, and (III) Double-well F,.

[57-59].

Fig. 3 (1), (ID), and (III) show the mechanical response and micro-
structure for [001] oriented sample predicted by convex, concave, and
double-well Fy,, respectively. In Fig. 3, the expression of #; +2#, is used
to show the transformed regions, and if this expression is equal to 0, no
transformation has occurred and the tetragonal phase exists, if this
expression is 1, the first variant of the monoclinic phase exits, and if it is
equal to 2, the second variant of the monoclinic phase exists. In addition,
the stress and strain in stress-strain curve are calculated based on the
reaction force and the displacement at the top edge of sample. Based on
these figures both double-well and concave predict the experimentally
observed twinned-martensite microstructure. However, the convex F, is
not able to predict such a twinned-martensite microstructure, therefore
it is not a proper F,, for modeling microstructures of shape memory
materials. There are several works, such the MPT model used by Simoes
and Martinez-Paneda [4] for simulating fracture in shape memory ma-
terials, that used a convex potential energy, which are unable to prop-
erly predict microstructures in shape memory materials and are
appropriate for macroscopic length scales. The microstructures pre-
dicted by the concave F, is consistent with previously reported results,
such as those reported by Esfahani et al. for SE in NiTi alloys [61].
Although, both double-well and concave F,, predict admissible micro-
structures and mechanical response, we proceed with the double-well
F., because it grantees stability at both parent and product phases
through having minima at both 7, = 0 and 1.

According to Fig. 3, although all three forms of F,;, yield a hysteresis
strain-strain curve, none of them predicts a plateau region when the
transformation starts, while this is observed in the experimental stress-
strain curves for shape memory materials. Also, it is worth noting that
the stress at each strain and the ultimate stress (the stress at the highest
strain), is different in these three cases. This can be explained based on
the fact that the first derivative of F;, with respect to OPs determines the
evolution rate of the OPs (Eq.(16)), and this determines the rate of the

2
Fan(mys Moy ooy 1) —/VAG<aZnﬁban,+ c(Enﬁ) +d2|np|">dv;l <n<2,
p=1 p=1 p=1 p=1

transformation strain tensor (Eq. (4)). On the other hand, the trans-
formation strain rate directly affects the rate of subtraction of the stress-
free strain tensor from the total strain tensor, and this consequently
changes the elastic strain tensor rate (Eq. (3)). Also, since the stress
tensor is calculated based on the elastic strain tensor (Eq. (14)), each F,
leads to a different stress at each strain.

The elastic modulus in the beginning of the stress-strain curve should
be close to 247 GPa which is the inverse of the second diagonal
component of the compliance tensor of tetragonal phase (the c, axis of
the crystal is along the z-direction). Since we use the double-well F;,, the
elastic modulus based on Fig. 3(IIl) is calculated to be 160 GPa, which is
about 35% lower than 247 GPa. This means the elastic modulus is highly
affected by MPT. The same issue appears in most of previous works,
regardless of the choice of the chemical free energy or OP-strain relation
[23,42,62-64]. To address this issue, we propose a modification to the
F¢, in the following section.

3.2. Modification of the chemical free energy (Fe,)

In Fig. 3, all three forms of F, yield a hysteresis stress-strain curve,
but in all three stress-strain curves a plateau region (or a region with low
or even negative hardening) is missing, and most importantly the elastic
modulus is underestimated in the beginning of the stress-strain curve.
This problem is be rooted in the Eq. (16). This equation which expresses
the evolution (the rate) of each OP, is dependent on the first derivative of
the F,;, with respect to each OP (Eq. (18)). On the other hand, the rate of
OPs affects the rate of the elastic strain tensor (Eq. (3)), and the rate of
the elastic strain tensor affects the stress (Eq. (26)). Therefore, by con-
trolling the first derivate of F,;, with respect to OPs, the rate of OPs and
subsequently the shape of the mechanical response can be controlled.
Based on the above explanation, we propose the following modification
to the F,:

(36)
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Table 3

Coefficients of the modified chemical
free energy (Eq. (36)).
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where d and n are new coefficients to be determined in addition to a, b,
and c. Parameter n takes a value between 1 and 2, and in this paper, we
consider it to be equal to 1.1. This parameter should be small enough
(close to 1) to keep the elastic modulus unaffected by the OP at the
beginning of loading by approximating a linear term in F, (Eq. (36)). To
elaborate more, the added term (dZ;,":1 |np|"), at the beginning of the
loading (when the OPs are small) adds a considerable amount of positive
energy to the system (see Eq. (16), Eq. (36), and Eq. (37)) which slows
down the evolution rate of OPs. Therefore, at the beginning of loading,
the material behaves elastically. It should be noted that we use absolute

|

i

Strain (%)

Fig. 5. Predicted stress-strain curve and microstructure for [001] orinted smaple by modified F.
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Fig. 6. Stress-strain curve, MPT, crack path, and stress map for [001] oriented sample under uniaxial tension in the z direction.

value of 1, to ensure that the modified double-well F, and its first de-
rivative (shown in Fig. 4b) are well defined around 7, = 0. Considering
this modification, the Eq. (18) will change to:

OF - -l .
6nh =AG <2a71p = 3bi? +4en, > 2+ ndln,| 151gn(11p)> 37)

P p=1

Since the proposed modification is for controlling the rate of OPs by
adding an extra term of dZ;Ll \r]p |", it can be easily applied to 2-4-6 form
of F, as well.

To examine the modified Fy in terms of microstructure and me-
chanical response prediction, by choosing n = 1.1 and considering the
same AG, we determine a, b, ¢, and d such that modified F,, produces a
double-well function close to the double-well F,, seen in Fig. 2. The
values of these parameters are presented in Table 3. Also, the same

domain and boundary conditions shown in Fig. 1 are considered. Fig. 4a
shows the modified and unmodified double-well F,. In both cases, F.,
has two minima, one at 7, = 0 and one at 77, = 1.

In Fig. 5, the modified F, predicts a plateau region in the stress-
strain curve which is more realistic compared to the unmodified
double-well. Additionally, it predicts the experimentally observed twin-
martensite microstructures for zirconia-based ceramics [17].

Furthermore, the elastic modulus in the beginning of the stress-strain
curve based on Fig. 5, is about 235 GPa, which is 5% less than the
247GPa. This shows that the modified PF model, has a low effect on the
elastic modulus in the beginning of the stress-strain curve and yields a
realistic stress-strain curve. In addition, this low error shows thatn=1.1
is an acceptable choice. In the following section we use the modified PF
model to study the interaction of fracture and MPT.
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3.3. Interaction of MPT and fracture

The modified F, is used to study the interaction between MPT and
fracture in a pre-cracked 3Y-STZ single crystal. Three different crystal
orientations of 6 =0" ([001]), +15 ([1 04]), and 90" ([100]) are
considered. The domain of Fig. 1 is considered with an initial center
crack of 0.2pm (10% of the domain width) which is modeled with a
Dirichlet boundary condition of ¢ =1 imposed on the initial crack
length. A monotonically increasing displacement rate of i’ =2 x 1073E%
is imposed on the top surface. Linear quadrilateral elements with a
maximum size of 0.008um, which is equal to 0.4k, is used in the sample.
This element size is chosen based on the element size suggested by
Miehe et al. [65]. In their work they suggested that the maximum size of
the quadrilateral elements must be less than 50 percent of the k to ensure
accuracy and convergence. Additionally, to reduce the computational
demand of the model, only the elements within +0.2 pm of the hori-
zontal centerline are given degree of freedom for the crack phase field.

Fig. 6 shows the obtained stress-strain curve, MPT, crack path, and
stress map (S33 is shown which is the z component of stress tensor and is
in the direction of applied displacement) for four different points on the
stress-strain curve. As it is expected, since the stress concentration is
high around the crack tips, the transformation starts from the crack tips
and then spreads to the other regions of the sample, similar to experi-
mental observations [66]. Also, according to Fig. 6, as the crack prop-
agates, the reverse MPT (from monoclinic to tetragonal) occurs behind
the crack tips (in the wake of the crack tips). This reverse MPT is in a
good agreement with the experimental observation for crack propaga-
tion in the SE shape memory materials [67]. This reverse MPT occurs
because in the SE regime, the reverse MPT occurs in the regions which
experience unloading. This unloading is due to diminished load bearing
capability resulting from separation of crack faces in the wake of the
crack tips. This unloading process is clearly shown in the stress map in
the third row of Fig. 6. The white triangles in the stress map indicate the
regions behind the crack tips that unloading occurs at point C in Fig. 6.

Computational Materials Science 216 (2023) 111844

In Fig. 6, before the start of the plateau region in the stress-strain
curve (before point A), the sample is mostly in tetragonal phase. After
this point, the phase transformation starts from the crack tips and then
propagates to the rest of the sample. Based on Fig. 6, the ultimate strain
is 4%. In the experimental study by Lai et al. [8], a maximum bending
strain of 8% was reported for a coarse-grained micropillar specimen.
Therefore, a model prediction of the maximum strain for a cracked
single crystal experiencing uniaxial tension is expected to be less than
the reported maximum bending strain. Furthermore, our model predicts
the stress drop observed in the displacement-controlled loading exper-
iments due to the crack propagation (between point B and D) which was
not captured in [29,30] due to using the stress-controlled loading
conditions.

Fig. 7 depicts both the average volume fraction of the monoclinic
variants and half crack length versus applied displacement. This figure
shows that MPT starts as soon as the load is applied, and the crack starts
to propagate after the applied displacement reaches to 0.008pm (point
a). In addition, after the crack length reaches to about 0.45um (point c),
the average volume fraction of the monoclinic variants starts to decrease
and will become zero after the crack is fully developed. The average
volume fraction of the monoclinic variants decreases due to the reverse
MPT happening beyond the crack tips.

In Fig. 7, the crack advances at a low rate until its half-length grows
to about 0.12 pm (point b). The crack then grows at a very high rate until
it propagates through the whole domain. This behavior is indicative of
the rising R-curve behavior due to transformation toughening in yttria-
stabilized zirconia ceramics [68-70] which is captured by our phase-
field simulations.

In order to test the validity of microstructure prediction and crack
path by the proposed phase-field model, we repeated the uniaxial ten-
sion simulation for [104] oriented sample. Fig. 8 shows the obtained
microstructure, crack path, and stress map (S33 component). The
deformed shape of the domain is also provided in the fourth row. Fig. 8b
depicts the experimental microstructure and crack path for a zirconia

1 : - 1
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: i i
S 075 | | | | 075
S 77 |—Half Crack Length (um). —— 7 T\ B
- i i/ i 3
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Fig. 7. The average volume fraction of the monoclinic variants vs. half crack length versus applied displacement for [001] oriented sample.
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Fig. 8. Uniaxial tension of [104] oriented sample in z direction: a) Stress-strain curve from PF simulation, b) Experimentally observed MPT and crack deflection due
to PT in a zirconia-based ceramic [9], and ¢) MPT (first row), crack path (second row: undeformed, and third row: deformed), and stress map (fourth row) from

PF simulation.

based ceramic [9] with a similar crystal orientation with respect to crack
direction. In this experiment, the material was in SE regime, and the
reverse PT behind the crack tip and crack deflection due to PT were
observed when crack propagated. As it can be seen in Fig. 8 our model
accurately captures the reverse PT and crack deflection due to MPT
similar to the experimental results. By comparing Fig. 6 and. Fig. 8a, it is
evident that the crystal orientation affects the mechanical response,

10

direction (distribution pattern) of transformed regions, and crack path.
The rotation of the stiffness tensor and the stress-free strain tensor lead
to a different transformation stress (point A) and different fracture stress
(or) (point B) for different crystal orientations. The predicted trans-
formation and fracture stresses are 1000 MPa and 1800 MPa for [001]
and 600 MPa and 1400 MPa for [104] oriented sample. According to the
zirconia-based coarse-grained micropillar bending test [8], a
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transformation stress of about 1200 MPa and a fracture stress of about
2200 MPa were reported, therefore, we can conclude that our proposed
modified model is able to quantitatively predict the mechanical
behavior of SE zirconia and effectively captures the effect of grain
orientation on predicting the mechanical response and microstructure.

Finally, the case of § = 90" ([100]) was considered. The results are
not presented here as neither phase transformation nor crack deflection
occurred in this case. For this crystal orientation under the applied
displacement boundary condition, a very small elongation occurs in the
[001] direction, MPT is not considerable, and only a straight fracture
path is observed. The mechanical response and crack path are an indi-
cation of a purely brittle material behavior. These predictions are
consistent with the previously reported results by PFM [3] and MD [71]
simulations, showing the importance of crystal orientation on the
overall behavior of SMCs.

4. Conclusion

We presented a modified phase-field model for studying interactions
of MPT and cracking in a superelastic 3 mol% yttria-stabilized tetragonal
zirconia crystal. We identified the following shortcomings in previous PF
studies coupling MPT and cracking:

I. The interaction between SE behavior due to MPT and crack
propagation at the microscale were not studied previously.
Therefore, the reverse MPT due to crack propagation was not
simulated previously.

II. In many MPT models the elastic modulus is not recovered in the

initial stages of the loading, and this is due to the high evolution

rate of the order parameter(s) at the beginning of loading.

In previously reported stress-strain curves, stress drop due to

crack propagation was not captured, therefore, a conclusion

about the strength of the material could not be made. This
shortcoming is typically due to the use of stress-controlled
boundary conditions, which were used in most previous models.

III.

In this paper, we addressed these shortcomings, by modifying the
chemical free energy and enabling displacement-controlled boundary
conditions. The modification included adding an extra term to the 2-3-4
chemical free energy to accurately predict the mechanical response and
reversible tetragonal to monoclinic transformation. This added term
gives more control on the phase transformation rate (evolution of order
parameters) and solves the problem of underestimating the elastic
modulus observed in other phase-field models. The obtained results for
transformation assisted deformation showed that the modified model is
capable of predicting a realistic mechanical response, the experimen-
tally observed microstructure, and the forward and reverse phase
transformation in shape memory ceramics.

In addition, we applied the modified phase-field to study
transformation-fracture interactions under displacement-controlled
loading condition. We also studied the effect of different crystal orien-
tation with respect to loading direction. The model can predict a realistic
mechanical response and fracture strain, the experimentally observed
microstructure and crack path due to phase transformation, the effect of
grain orientation on both microstructure and mechanical response, and
the reverse phase transformation due to crack propagation in supere-
lastic shape memory ceramics. In addition, since we applied a
displacement-controlled boundary condition, we were able to observe a
final drop in the stress-strain curve due to crack propagation and
establish a strength close to experimentally reported one for zirconia-
based ceramics. Comparisons with experiments showed that the pro-
posed modified model effectively captures accurate microstructures and
crack deflection due to phase transformation and provides an admissible
stress-strain curve. Such interactions between MPT and cracking are
difficult to investigate by experiments which show advantage of phase-
field modeling in the study of interactions of phase transformation and
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cracking.
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