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A B S T R A C T   

This work presents a modified phase-field model for accurate coupling of phase transformation and cracking in 
shape memory ceramics. The existing phase-field models underestimate the elastic response at the beginning of 
the mechanical response. We modified the chemical free energy to control the rate of phase transformation and 
consequently obtain a physical elastic response before initiation of phase transformation. First, the forward and 
reverse martensitic phase transformation in a superelastic single crystal 3 mol% yttria-stabilized tetragonal 
zirconia is studied. Then, the interaction between phase transformation and fracture under displacement- 
controlled loading condition is investigated. The model predicts a realistic mechanical response and the 
experimentally observed microstructure and crack deflection due to the phase transformation. In addition, the 
model captures the reverse phase transformation and the stress drop due to the crack propagation.   

1. Introduction 

Shape memory ceramics (SMCs) have various applications in the 
biomedical and aerospace industries [1]. One of the main characteristics 
of SMCs is their recoverable stress/temperature-induced solid-state 
martensitic phase transformation (MPT), which results in strain recov
ery. Based on the temperature of the material, two different behaviors 
can be observed: superelasticity (SE) (also known as pseudoelasticity) or 
the shape memory effect (SME) (also known as pseudoplasticity). If the 
temperature is higher than the equilibrium transformation temperature, 
SE is observed. In SE behavior, the strain is fully recovered when the 
load is removed, and a stress-strain hysteresis loop is obtained [2–4]. If 
the temperature is lower than the equilibrium transformation temper
ature, the SME is observed. In SME, after removing the load there is a 
large residual strain and a temperature higher than the equilibrium 
temperature is required to recover the original shape and phase of the 
material [2–6]. 

The main ingredient of SMCs is often zirconia. Zirconia-based ce
ramics have high strength, high operating temperature, and high 
corrosion resistance which make these ceramics suitable for extreme 
operating conditions. In addition, they show promising SME and SE 
behaviors due to stress or temperature induced recoverable phase 
transformation between their tetragonal (T) and monoclinic (M) phases 
(T ↔ M). However, because these phases are brittle, zirconia-based 

ceramics have a low fracture toughness. In addition, T → M phase 
transformation causes inelastic dilatation, which contributes to low SME 
and SE fatigue life in SMCs [7]. 

Since the overall mechanical properties and fracture behavior of 
materials is strongly affected by their microstructure, studying micro
structure evolution and fracture at the microscopic length scale is 
essential to obtain an accurate estimate of durability of structures. There 
are a few experimental works on zirconia ceramics to study the micro
structural evolution [8,9] and interaction between crack and phase 
transformation [10] in order to study and improve the fracture and 
overall mechanical properties of SMCs. In addition to requiring a 
considerable amount of materials, testing time and cost, experiments are 
unable to fully capture the interactions between cracking and phase 
transformation in ceramics, because both happen at a very high pace. 
Therefore, numerical studies could be suitable alternatives to study such 
interactions. 

Phase-field (PF) modeling stands out as a powerful numerical 
approach for simulating MPT [2]. In the PF approach, the product of a 
phase transformation is represented by a scalar called an order param
eter (OP). In addition, the PF approach has been widely applied as a 
powerful and robust approach for modeling fracture in brittle [11–14] 
and ductile materials [15,16] where an OP represents the crack surface. 

Based on experimental observations, when phase transformation 
occurs in shape memory materials, the strain localization produces a 
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twinned-martensite (strip-like microstructure) microstructure of alter
nating austinite-martensite or martensite-martensite variants [17,18]. 
To obtain a reliable mechanical response and experimentally observed 
microstructures, one must choose an appropriate chemical free energy 
in the total free energy functional of the PF model of MPT. The chemical 
free energy represents the energy dissipation due to MPT, and 2-3-4 and 
2-4-6 polynomials are commonly used in the literature for first order 
transformations [2]. Depending on the parameters of the polynomial, 
the shape of chemical free energy can be either double-well, concave, or 
convex. In addition to the chemical free energy, the relationship be
tween the OPs and the stress-free strain tensor (or OP-strain relation) 
plays an important role in prediction of the mechanical response. 

Mamivand et al. [19] were the first to develop a PF model for T → M 
phase transformation in single crystal zirconia under stress-controlled 
loading conditions. They used a 2-4-6 polynomial and a quadratic OP- 
strain relation. They validated their simulated microstructure against 
experimental results. In another work, Mamivand et al. [20] used a 
similar model and studied both SE and SME in a polycrystalline zirconia 
under a stress-controlled loading condition; they showed that the ob
tained twinned-martensite microstructure and mechanical response 
were consistent with experiments. Recently, Cisse and Asle Zaeem [3] 
developed a non-isothermal elastoplastic PF model considering 2-4-6 
and a quadratic OP-strain relation to study the SE and SME in both 
single crystal and polycrystalline 3 mol% yttria-stabilized tetragonal 
zirconia (3Y-STZ) under stress-controlled loading conditions. In [21], 
the authors used a 2-3-4 polynomial and a linear OP-strain relationship 
to study the ferroelastic domain switching in a zirconia crystal in the 
presence of crack propagation which was qualitatively compared to 
experimental observations. A combination of the linear OP-strain rela
tion with 2-3-4 or 2-4-6 polynomials has also been used for modeling 
MPT in other shape memory materials like NiTi [22–26]. 

Based on the aforementioned research works, linear or quadratic OP- 
strain relation has been used in PF models for simulating the MPT in 
SMCs and shape memory alloys. We will discuss and compare linear and 
quadratic OP-strain relations in Sec. 2.5.1 and explain that under some 
circumstances the quadratic OP-strain relation loses its generality and 
validity. Therefore, we use the linear OP-strain relation in this paper. It 
is also important note that PF models of MPT underestimate the elastic 
modulus in the initial part of the stress-strain response regardless of the 
choice of the OP-strain relation; we will also address this shortcoming of 
the current PF models in this work. 

Only a few studies investigated the interactions of MPT and cracking 
in SMCs. Zhao et al. [27] studied this interaction in single crystal zir
conia under a displacement controlled loading condition using the PF 
method. They considered a chemical free energy polynomial that sim
ulates SME. Although they obtained a twined-martensite microstructure 
as a result of the SME chemical free energy polynomial, they did not 
report the mechanical response in the form of a stress-strain curve, and it 
is not expected that the employed formulations generate a reasonable 
mechanical response. Zhu and Lao [28] used the same PF model in [27] 
to study phase transformation and fracture in polycrystalline zirconia. 
Their work lacked prediction of the mechanical response as well. 

Moshkelgosha et al. [29] studied fracture propagation in single 
crystal zirconia  and separately in polycrystalline zirconia [30] adopting 
a chemical free energy polynomial that simulates SME. They applied a 
stress-controlled loading condition. Although they obtained experi
mentally observed twinned-martensite microstructures, their mechani
cal response did show any drop in the stress-strain curve when a crack 
initiated and propagated. Also, they predicted a maximum strain of at 
least 5.5% for a single crystal and 12% for a polycrystal before fracture 
fully developed, which is unphysical. This is an indication that stress- 
controlled loading is not appropriate to predict strength from a frac
ture simulation. In a different study by the same authors [31], they 
studied phase transformation and fracture in a 3D single crystal zirconia 
by applying a displacement-controlled loading, however, they did not 
show any drop in the stress-strain curve after crack initiation and 

propagation. Also, their maximum reported strain under uniaxial ten
sion was 15%, while the experimental work by Lai et al. [8] reported a 
maximum bending strain of 8%. Therefore, it is expected that a spec
imen under uniaxial tension fails at a lower strain. 

Generally, since most of the experimental studies for determining the 
mechanical properties are under displacement-controlled loading con
ditions [32–40], the numerical results obtained under stress-controlled 
loading cannot be compared and validated with experiments. Espe
cially, when the goal is to study crack propagation in a continuum 
model, quasi-static stress-controlled loading cannot be used, because 
when the crack propagation starts, the stress-controlled loading causes 
unbounded displacement and the final drop in the mechanical response 
cannot be obtained by the stress-controlled loading conditions [41]. 

Based on the above literature review, we can conclude that none of 
the current PF models can properly simulate the coupled phase trans
formation and fracture in SMCs and produce acceptable microstructures 
and stress–strain curves under displacement-controlled loading condi
tions. In this paper, first, we examine the double well, concave, and 
convex chemical energies, to determine which functional form produces 
the most accurate predictions of microstructure and mechanical 
response. Then, we propose a solution to the under-prediction of the 
elastic modulus observed in PF simulations of SE. Finally, we show that, 
with the proposed modification, accurate predictions of the interaction 
between MPT and fracture can be made using the PF approach. 

2. Coupling PT and fracture in PF context 

We use OPs noted as ηp to describe the state of pth monoclinic vari
ants. The ηp varies between 0 and 1, and ηp = 1 means the pth monoclinic 
variant exists and when ηp = 0, the other monoclinic variants or the 
tetragonal phase exist. To derive the governing equations for MPT, first 
we need to construct the total free energy of the system (Ftot): 

Ftot(ui, η1, η2, ⋯, ηm) = Fel + Fch + Fgd , (1)  

where Fel is elastic strain energy density, Fch is chemical free energy, and 
Fgd is gradient energy of the tetragonal- monoclinic or monoclinic- 
monoclinic phases. In the following, each of these energies is 
explained in detail. 

2.1. Elastic strain energy (Fel) 

The elastic strain energy can be written as: 

Fel(ui) =

∫

V

1
2

Cijklεel
klεel

ij dV, (2)  

where V is the domain volume, ui is the displacement, Cijkl is the elastic 
tensor and εel

ij is the elastic strain which is defined as the difference be
tween total strain (εtot

ij ) and the transformation strain (εtr
ij ): 

εel
ij = εtot

ij − εtr
ij (3)  

where considering the linear OP-strain relation [22,24,42], εtr
ij is defined 

as: 

εtr
ij =

∑m

p=1
ε00

ij (p)ηp, (4)  

where ε00
ij is the stress-free strain tensor which represents the change in 

microstructure between parent and product phases [3]. It should be 
noted that in this paper, the small strain assumption (εtot

ij = 1
2 (ui,j + uj,i)), 

is considered. We use the linear relation, and the reason is explained in 
Sec. 2.5.1 based on comparing the linear and quadratic OP-strain 
relations. 

The elastic constant difference between tetragonal and monoclinic 
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phases is represented by the following relation [3]: 

Cijkl(η1, η2, ⋯, ηm) = CT
ijkl +

∑m

p=1
ηp

(
CM

ijkl − CT
ijkl

)
, (5)  

where CT
ijkl and CM

ijkl are elastic constants of the tetragonal and monoclinic 
phases, respectively. The elastic energy defined in Eq. (2) is based on 
Hooke’s law and thus, the stress tensor is related to elastic strain tensor 
through the following equation: 

σij(ui) = Cijkl(η1, η2, ⋯, ηm)εel
kl, (6)  

2.2. Chemical free energy (Fch) 

The Fch drives the MPT and the shape of this energy plays an 
important role in predicting the mechanical response and microstruc
ture. The 2-3-4 or 2-4-6 Landau polynomials defined in terms of OPs are 
the most common types of Fch used in the literature. Wen et al. [43] 
explained that the particular order of the Landau polynomial does not 
have a significant effect on the predicted microstructure. Therefore, we 
use the 2-3-4 Landau polynomial: 

Fch(η1, η2, …, ηm) =

∫

V
ΔG

(

a
∑m

p=1
η2

p − b
∑m

p=1
η3

p + c

(
∑m

p=1
η2

p

)2 )

dV, (7)  

where ΔG is the chemical driving force which is the difference in the 
specific Fch between the parent and the product phases. According to 
[3,44], the following equation can be used to calculate ΔG for 3Y-STZ at 
different temperatures: 

ΔG(t→m) = − 6159.18 + 6.98T, (8)  

where the energy is in Jmol−1(or Jm−3) and the temperature (T) is in 
Kelvin (K). 

In Eq. (7) a, b, and c are coefficients that should be chosen in a way 
that maintains the value of the interfacial energy within the physical 
reasonable range and yields Fch = ΔG(t→m) at ηp = 1. In addition, the 
values of these parameters determine the shape of Fch. Although a va
riety of shapes can be obtained through tuning expansion coefficients, 
the double-well, concave, convex have been used in the literature for 
modeling SE behavior. In Sec.3.1, we will study the difference between 
these three types of Fch in terms of mechanical response and micro
structure for modeling SE behavior in a single crystal 3Y-STZ sample. 

2.3. Gradient free energy 

Gradient free energy represents the interfacial energy between 
tetragonal-monoclinic or monoclinic-monoclinic phases and ensures a 

non-abrupt transition between different phases. It is defined as: 

Fgd(η1, η2, …, ηm) =

∫

V

βij

2
∑m

p=1
∇iηp∇jηpdV, (9)  

where ∇ is the gradient operator and βij is gradient energy tensor. We 
assume that the gradient energy coefficient is isotropic (βij = βδij) [3]. 
Therefore the Eq. (9) will be: 

Fgd(η1, η2, …, ηm) =

∫

V

β
2

∑m

p=1

ʀ
∇ηp

)2dV. (10)  

2.4. Coupling MPT with fracture 

We use ϕ as the OP of fracture, and when ϕ = 1 the crack is fully 
developed and when ϕ = 0 the material is undamaged. In order to 
couple MPT with PF fracture, we modify the total free energy of the 
system by adding the fracture energy (Ffr) and degrading the elastic 
constants based on the evolution of fracture through multiplying it by a 
degradation function, g(ϕ). These modifications lead to: 

Ftot(ui, η1, η2, ⋯, ηm, ϕ) = Fel + Fch + Fgd + Ffr, (11)  

where Ffr is defined as [45]: 

Ffr(ϕ) =

∫

V
Gc

(
ϕ2

2k
+

k
2
|∇ϕ|

2
)

dV, (12)  

where Gc is the fracture surface energy in Griffith’s theory, and k is a 
positive regularization parameter with the dimension of length to 
regulate the width of the crack phase field. 

In addition, to accommodate the crack phase field, Fel is redefined as: 

Fel(ui, ϕ) =

∫

V

1
2

g(ϕ)Cijkl(η1, η2, …, ηm)εel
klεel

ij dV, (13)  

where g(ϕ) is the degradation function and g(ϕ) = (1 − ϕ)
2 is one of the 

widely used degradation functions [46,47] that we use in this paper as 
well. Also, based on Eq. (13), the stress tensor (Eq. (6)) will change to: 

σij(ui, ϕ) = g(ϕ)Cijkl(η1, η2, ⋯, ηm)εel
kl. (14) 

In this paper, we use the method proposed by Miehe et al. [48] to 
ensure irreversibility of crack (crack healing prevention): 

Fel(ui, t) = maxFel(ui, s), s ∈ [0, t]. (15)  

2.5. Governing equations 

The evolution of both MPT and PF fracture can be obtained through 
Ginzburg-Landau equation [49,50]. This equation relates the rate of 
each OP to the variational derivative of total free energy with respect to 
the same OP. Using Ginzburg-Landau equation for MPT leads to the 
following equation: 

∂ηp

∂t
= − L

(
δFtot

δηp

)

= − L
(

δFel

δηp
+

δFch

δηp
+

δFgd

δηp
+

δFfr

δηp

)

, (16)  

where L is the kinetic coefficient, and:   

δFch

δηp
= ΔG

(

2aηp − 3bη2
p + 4cηp

∑m

p=1
η2

p

)

, (18)   

δFgd

δηp
= − β∇2ηp, (19) 

δFel

δηp
=

1
2

g(ϕ)εel
ij

(
CM

ijkl − CT
ijkl

)
εel

kl −
1
2

g(ϕ)Cijkl(η1, η2, ⋯, ηm)ε00
kl (p)εel

ij −
1
2

g(ϕ)Cijkl(η1, η2, ⋯, ηm)ε00
ij (p)εel

kl, (17)   
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δFfr

δηp
= 0. (20) 

Also, using the Ginzburg-Landau equation for PF fracture leads to: 

∂ϕ
∂t

= − M
(

δFtot

δϕ

)

= − M
(

δFel

δϕ
+

δFch

δϕ
+

δFgd

δϕ
+

δFfr

δϕ

)

, (21)  

where M is called the fracture mobility coefficient, and: 

δFel

δϕ
= − (1 − ϕ)Cijkl(η1, η2, ⋯, ηm)εel

klε
el
ij , (22)  

δFch

δϕ
= 0, (23)  

δFgd

δϕ
= 0, (24)  

δFfr

δϕ
= Gc

(
ϕ
k

− k∇2ϕ
)

. (25) 

Examination of Eq. (3) and Eq. (17) reveals that MPT can have a 
blunting effect on the crack initiation and propagation through reducing 
the available elastic energy. Meanwhile, based on Eq. (22), fracture halts 
the propagation of MPT by reducing elastic strain energy in the cracked 
regions (ϕ > 0). 

In addition, by neglecting the body forces, the equilibrium equations 
become: 

div σ(ui, ϕ) = 0. (26)  

2.5.1. The difference between linear and quadratic OP-strain relations 
As it was mentioned before, in this paper we use the linear OP-strain 

relation. We chose the linear relation over the quadratic relation because 
the quadratic relation can become invalid in some situations explained 
below. 

Using the linear relation, the OPs’ evolution equation (Eq. (16)) 
without considering the effect of fracture, will become: 

∂ηp

∂t
=−L

(
1
2
εel

ij

(
CM

ijkl −CT
ijkl

)
εel

kl −
1
2
Cijkl(η1,η2,⋯,ηm)ε00

kl (p)εel
ij

−
1
2

Cijkl(η1,η2,⋯,ηm)ε00
ij (p)εel

kl +ΔG

(

2aηp −3bη2
p +4cηp

∑m

p=1
η2

p

)

−β∇2ηp

)

. (27) 

The quadratic relation (εtr
ij =

∑m
p=1ε00

ij (p)η2
p) leads to the following 

equation for the OPs’ evolution: 

∂ηp

∂t
= −L

(
1
2

εel
ij

(
CM

ijkl − CT
ijkl

)
εel

kl − ηpCijkl(η1, η2, ⋯, ηm)ε00
kl (p)εel

ij

− ηpCijkl(η1, η2, ⋯, ηm)ε00
ij (p)εel

kl + ΔG

(

2aηp − 3bη2
p + 4cηp

∑m

p=1
η2

p

)

− β∇2ηp

)

.

(28) 

In Eq. (28), all terms except the first term are zero when the initial 

value of ηp = 0. Then if 
(

CM
ijkl − CT

ijkl

)
is zero (e.g. if MPT in poly

crystalline samples [22] or if ferroelastic domain switching [21] is 
studied) Eq. (28) becomes zero and consequently ηp never grows. 
Therefore, Eq. (28) loses its generality and validity and cannot accu
rately predict MPT. This problem does not occur when the linear OP- 
strain relation is considered since the second term in Eq. (27) is not 
zero and starts to increase upon the start of loading and never loses its 
generality and validity. Therefore, we use the linear OP-strain relation in 
this paper. 

2.6. Solution scheme 

The governing equations presented in the previous section are solved 
in a finite element framework using the solid mechanics and mathe
matics modulus of COMSOL multiphysics. All simulations are under 
displacement-controlled loading, and the boundary conditions and 
sample dimensions are shown in Fig. 1a. Also, Fig. 1b shows the applied 

Fig. 1. a) Dimensions and boundary conditions, and b) Applied displacement versus time for simulating forward and reverse transformation without fracture. x- axis 
represents at direction and z axis represent ct of the tetragonal phase. 

A. Lotfolahpour et al.                                                                                                                                                                                                                          



Computational Materials Science 216 (2023) 111844

5

displacement versus time. Furthermore, the plane stress condition is 
considered in all 2D simulations. 

For all models, with and without fracture, quadrilateral elements are 
generated by the mapped mesh algorithm feature in COMSOL. A mesh 
study was conducted where we found that a mesh size of 0.04 μm (or 
2500 quadrilateral elements in the domain) were sufficient to resolve 
the interface of different phases. Discretizing the sample with more el
ements did not change the microstructure and mechanical response, 
therefore we used 2500 quadrilateral elements. The displacements are 
solved using “Solid Mechanics” module with quadratic shape functions. 
The crack PF and Martensite PF are solved using the “General Form 
PDE” module of COMSOL with linear shape functions. The staggered 
[51] scheme is used to solve the governing equations where nonlinear 
sub-problems are solved with Newton’s method. The time step of 0.01 s 
is used for all simulations. 

3. Results and discussions 

3.1. Comparison of different Fch for modeling SE in 3Y-STZ 

In this section, we compare three different forms of Fch (double-well, 
concave and convex) for modeling SE in a 2D idealization of a 3Y-STZ 
single crystal sample without considering fracture. Table 1 shows the 
values of a, b, and c for each Fch. These parameters are determined to 
ensure each Fch has a minimum at η = 0. For the double-well case, the 
energy has a local minimum at η = 1 as well. Also in all three Fch, ΔG (in 
Eq. (7)) is ~156 Jmol−1 (7.2 × 106 Jm−3) which is obtained by Eq. (8) 
considering the temperature is constant at 905K. This temperature is 
higher than the reported equilibrium temperature of 883 K for 3Y-STZ 
[3,52,53], therefore, the system will show SE behavior (i.e., strain re
covery occurs after unloading without a need for increasing the tem
perature). Fig. 2 shows the plot of these three forms of Fch. 

Eq. (29) and Eq. (30) show the stiffness tensor of tetragonal [54,55] 
and monoclinic [55], respectively. In addition, two monoclinic variants 
exist in the a −c plane, and their stress-free strain tensors are given in Eq. 
(31) and Eq. (32) [19]. 

CT
ijkl =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

361

100

62
0

0

0

100

361

62
0

0

0

62

62

264
0

0

0

0

0

0
59

0

0

0

0

0
0

59

0

0

0

0
0

0

64

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

GPa, (29)  

CM
ijkl =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

327

142

55
0

0

−21

142

408

196
0

0

31

55

196

258
0

0

−18

0

0

0
100

−23

0

0

0

0
−23

81

0

−21

31

−18
0

0

126

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

GPa, (30)  

ε00
ij (1) =

[
0.0049 −0.0761

−0.0761 0.0180

]

, (31)  

ε00
ij (2) =

[
0.0049 0.0761
0.0761 0.0180

]

. (32) 

We consider the global coordinates when θ = 0◦ , to be aligned with 
those of the tetragonal phase where x- axis represents at direction and z 
axis represents ct (see Fig. 1a) and θ = 0◦ corresponds to [001] oriented 
crystal. The stress-free strain tensor and elastic stiffness tensor are 
transferred to the global coordinate system using the following rotation 
operations: 

εG00
ij (p) = RikRjlε00

kl (p), (33)  

CG
ijkl = RimRjnRkoRlpCmnop, (34)  

where ε00
ij (p) and Cmnop are, respectively, the stress-free strain tensor and 

the elastic stiffness matrix in the local coordinate system. Rij is the 
rotation matrix for a grain with an orientation angle of θ, which in 2D is 
defined as: 

Rij =

[
cos(θ) sin(θ)

−sin(θ) cos(θ)

]

. (35) 

θ measures positive counterclockwise. Table 2 shows all other pa
rameters used for running the simulations. It is worth mentioning, the 
kinetic coefficient (L) in Eq. (16) can be arbitrary selected since there is 
not a report on the speed of PT in zirconia-based ceramics [20] and a 
wide range value from 2 × 10−9m3

Js [29–31] to 10 m3

Js [3] has been used in 
the literature. In this paper we choose this value to be 5 × 10−8m3

Js . The 
gradient energy coefficient (β) in Eq. (19) must be selected such that 
gives a reasonable interface thickness (few nanometers) [20,56], we 
chose β = 1 × 10−9 J

m and based on the our results gives a reasonable 
interface thickness between different phases. Furthermore, the initial 
values of ηp are set to 10−6 to overcome the possibility of numerical 
artifacts. In addition, considering the crack length scale parameter (k) in 
Eq. (12) to be 20nm which is one percent of the domain length, is small 
enough to obtain a stable solution, a correct crack path, and an admis
sible diffusive area with a reasonable accuracy and computing cost 

Table 1 
Coefficients of different chemical free energies.  

Coefficient Double-Well Concave Convex 

a  13.89  9.2  3.13 
b  23.75  12.89  4.01 
c  10.78  4.74  1.85  

Fig. 2. Three different Fch used for modeling SE.  

Table 2 
Simulation parameters.  

Parameter Value 

Kinetic coefficient, L 
5 × 10−8m3

Js 
Gradient energy coefficient, β 1 × 10−9 J

m 
Mobility coefficient, M [57,58] 

1
m3

Js 
Critical energy release rate, Gc [60] 24

J
m2 

Crack length scale parameter, k 20 nm  
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[57–59]. 
Fig. 3 (I), (II), and (III) show the mechanical response and micro

structure for [001] oriented sample predicted by convex, concave, and 
double-well Fch, respectively. In Fig. 3, the expression of η1 +2η2 is used 
to show the transformed regions, and if this expression is equal to 0, no 
transformation has occurred and the tetragonal phase exists, if this 
expression is 1, the first variant of the monoclinic phase exits, and if it is 
equal to 2, the second variant of the monoclinic phase exists. In addition, 
the stress and strain in stress-strain curve are calculated based on the 
reaction force and the displacement at the top edge of sample. Based on 
these figures both double-well and concave predict the experimentally 
observed twinned-martensite microstructure. However, the convex Fch is 
not able to predict such a twinned-martensite microstructure, therefore 
it is not a proper Fch for modeling microstructures of shape memory 
materials. There are several works, such the MPT model used by Simoes 
and Martínez-Pañeda [4] for simulating fracture in shape memory ma
terials, that used a convex potential energy, which are unable to prop
erly predict microstructures in shape memory materials and are 
appropriate for macroscopic length scales. The microstructures pre
dicted by the concave Fch is consistent with previously reported results, 
such as those reported by Esfahani et al. for SE in NiTi alloys [61]. 
Although, both double-well and concave Fch predict admissible micro
structures and mechanical response, we proceed with the double-well 
Fch because it grantees stability at both parent and product phases 
through having minima at both ηp = 0 and 1. 

According to Fig. 3, although all three forms of Fch yield a hysteresis 
strain-strain curve, none of them predicts a plateau region when the 
transformation starts, while this is observed in the experimental stress- 
strain curves for shape memory materials. Also, it is worth noting that 
the stress at each strain and the ultimate stress (the stress at the highest 
strain), is different in these three cases. This can be explained based on 
the fact that the first derivative of Fch with respect to OPs determines the 
evolution rate of the OPs (Eq.(16)), and this determines the rate of the 

transformation strain tensor (Eq. (4)). On the other hand, the trans
formation strain rate directly affects the rate of subtraction of the stress- 
free strain tensor from the total strain tensor, and this consequently 
changes the elastic strain tensor rate (Eq. (3)). Also, since the stress 
tensor is calculated based on the elastic strain tensor (Eq. (14)), each Fch 

leads to a different stress at each strain. 
The elastic modulus in the beginning of the stress-strain curve should 

be close to 247 GPa which is the inverse of the second diagonal 
component of the compliance tensor of tetragonal phase (the ct axis of 
the crystal is along the z-direction). Since we use the double-well Fch, the 
elastic modulus based on Fig. 3(III) is calculated to be 160 GPa, which is 
about 35% lower than 247 GPa . This means the elastic modulus is highly 
affected by MPT. The same issue appears in most of previous works, 
regardless of the choice of the chemical free energy or OP-strain relation 
[23,42,62–64]. To address this issue, we propose a modification to the 
Fch in the following section. 

3.2. Modification of the chemical free energy (Fch) 

In Fig. 3, all three forms of Fch yield a hysteresis stress-strain curve, 
but in all three stress-strain curves a plateau region (or a region with low 
or even negative hardening) is missing, and most importantly the elastic 
modulus is underestimated in the beginning of the stress-strain curve. 
This problem is be rooted in the Eq. (16). This equation which expresses 
the evolution (the rate) of each OP, is dependent on the first derivative of 
the Fch with respect to each OP (Eq. (18)). On the other hand, the rate of 
OPs affects the rate of the elastic strain tensor (Eq. (3)), and the rate of 
the elastic strain tensor affects the stress (Eq. (26)). Therefore, by con
trolling the first derivate of Fch with respect to OPs, the rate of OPs and 
subsequently the shape of the mechanical response can be controlled. 
Based on the above explanation, we propose the following modification 
to the Fch:  

Fig. 3. Predicted stress-strain curve and microstructure for [001] orinted smaple by (I) Convex, (II) Concave, and (III) Double-well Fch.  

Fch(η1, η2, …, ηm) =

∫

V
ΔG

(

a
∑m

p=1
η2

p − b
∑m

p=1
η3

p + c

(
∑m

p=1
η2

p

)2

+ d
∑m

p=1

⃒
⃒ηp

⃒
⃒n

)

dV; 1 < n < 2, (36)   
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where d and n are new coefficients to be determined in addition to a, b, 
and c. Parameter n takes a value between 1 and 2, and in this paper, we 
consider it to be equal to 1.1. This parameter should be small enough 
(close to 1) to keep the elastic modulus unaffected by the OP at the 
beginning of loading by approximating a linear term in Fch (Eq. (36)). To 
elaborate more, the added term (d

∑m
p=1

⃒
⃒ηp

⃒
⃒n), at the beginning of the 

loading (when the OPs are small) adds a considerable amount of positive 
energy to the system (see Eq. (16), Eq. (36), and Eq. (37)) which slows 
down the evolution rate of OPs. Therefore, at the beginning of loading, 
the material behaves elastically. It should be noted that we use absolute 

Fig. 4. a) The modified double-well versus double-well form of Fch, and b) The first derivative of the modified double-well form of Fch with respect to η around η =

0. 

Table 3 
Coefficients of the modified chemical 
free energy (Eq. (36)).  

a 2.64 
b 10.04 
c 5.37 
d 3.05 
n 0.1  

Fig. 5. Predicted stress-strain curve and microstructure for [001] orinted smaple by modified Fch.  
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value of ηp to ensure that the modified double-well Fch and its first de
rivative (shown in Fig. 4b) are well defined around ηp = 0. Considering 
this modification, the Eq. (18) will change to: 

δFch

δηp
= ΔG

(

2aηp − 3bη2
p + 4cηp

∑m

p=1
η2

p + nd
⃒
⃒ηp

⃒
⃒n−1sign

ʀ
ηp

)
)

(37) 

Since the proposed modification is for controlling the rate of OPs by 
adding an extra term of d

∑m
p=1

⃒
⃒ηp

⃒
⃒n, it can be easily applied to 2-4-6 form 

of Fch as well. 
To examine the modified Fch in terms of microstructure and me

chanical response prediction, by choosing n = 1.1 and considering the 
same ΔG, we determine a, b, c, and d such that modified Fch produces a 
double-well function close to the double-well Fch seen in Fig. 2. The 
values of these parameters are presented in Table 3. Also, the same 

domain and boundary conditions shown in Fig. 1 are considered. Fig. 4a 
shows the modified and unmodified double-well Fch. In both cases, Fch 

has two minima, one at ηp = 0 and one at ηp = 1. 
In Fig. 5, the modified Fch predicts a plateau region in the stress- 

strain curve which is more realistic compared to the unmodified 
double-well. Additionally, it predicts the experimentally observed twin- 
martensite microstructures for zirconia-based ceramics [17]. 

Furthermore, the elastic modulus in the beginning of the stress-strain 
curve based on Fig. 5, is about 235 GPa, which is 5% less than the 
247GPa. This shows that the modified PF model, has a low effect on the 
elastic modulus in the beginning of the stress-strain curve and yields a 
realistic stress-strain curve. In addition, this low error shows that n = 1.1 
is an acceptable choice. In the following section we use the modified PF 
model to study the interaction of fracture and MPT. 

Fig. 6. Stress-strain curve, MPT, crack path, and stress map for [001] oriented sample under uniaxial tension in the z direction.  
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3.3. Interaction of MPT and fracture 

The modified Fch is used to study the interaction between MPT and 
fracture in a pre-cracked 3Y-STZ single crystal. Three different crystal 
orientations of θ = 0◦ ([001]), +15◦ ([1̄ 04]), and 90◦ ([100]) are 
considered. The domain of Fig. 1 is considered with an initial center 
crack of 0.2μm (10% of the domain width) which is modeled with a 
Dirichlet boundary condition of ϕ = 1 imposed on the initial crack 
length. A monotonically increasing displacement rate of u̇*

= 2 × 10−3μm
s 

is imposed on the top surface. Linear quadrilateral elements with a 
maximum size of 0.008μm, which is equal to 0.4k, is used in the sample. 
This element size is chosen based on the element size suggested by 
Miehe et al. [65]. In their work they suggested that the maximum size of 
the quadrilateral elements must be less than 50 percent of the k to ensure 
accuracy and convergence. Additionally, to reduce the computational 
demand of the model, only the elements within ±0.2 μm of the hori
zontal centerline are given degree of freedom for the crack phase field. 

Fig. 6 shows the obtained stress-strain curve, MPT, crack path, and 
stress map (S33 is shown which is the z component of stress tensor and is 
in the direction of applied displacement) for four different points on the 
stress-strain curve. As it is expected, since the stress concentration is 
high around the crack tips, the transformation starts from the crack tips 
and then spreads to the other regions of the sample, similar to experi
mental observations [66]. Also, according to Fig. 6, as the crack prop
agates, the reverse MPT (from monoclinic to tetragonal) occurs behind 
the crack tips (in the wake of the crack tips). This reverse MPT is in a 
good agreement with the experimental observation for crack propaga
tion in the SE shape memory materials [67]. This reverse MPT occurs 
because in the SE regime, the reverse MPT occurs in the regions which 
experience unloading. This unloading is due to diminished load bearing 
capability resulting from separation of crack faces in the wake of the 
crack tips. This unloading process is clearly shown in the stress map in 
the third row of Fig. 6. The white triangles in the stress map indicate the 
regions behind the crack tips that unloading occurs at point C in Fig. 6. 

In Fig. 6, before the start of the plateau region in the stress-strain 
curve (before point A), the sample is mostly in tetragonal phase. After 
this point, the phase transformation starts from the crack tips and then 
propagates to the rest of the sample. Based on Fig. 6, the ultimate strain 
is 4%. In the experimental study by Lai et al. [8], a maximum bending 
strain of 8% was reported for a coarse-grained micropillar specimen. 
Therefore, a model prediction of the maximum strain for a cracked 
single crystal experiencing uniaxial tension is expected to be less than 
the reported maximum bending strain. Furthermore, our model predicts 
the stress drop observed in the displacement-controlled loading exper
iments due to the crack propagation (between point B and D) which was 
not captured in [29,30] due to using the stress-controlled loading 
conditions. 

Fig. 7 depicts both the average volume fraction of the monoclinic 
variants and half crack length versus applied displacement. This figure 
shows that MPT starts as soon as the load is applied, and the crack starts 
to propagate after the applied displacement reaches to 0.008μm (point 
a). In addition, after the crack length reaches to about 0.45μm (point c), 
the average volume fraction of the monoclinic variants starts to decrease 
and will become zero after the crack is fully developed. The average 
volume fraction of the monoclinic variants decreases due to the reverse 
MPT happening beyond the crack tips. 

In Fig. 7, the crack advances at a low rate until its half-length grows 
to about 0.12 μm (point b). The crack then grows at a very high rate until 
it propagates through the whole domain. This behavior is indicative of 
the rising R-curve behavior due to transformation toughening in yttria- 
stabilized zirconia ceramics [68–70] which is captured by our phase- 
field simulations. 

In order to test the validity of microstructure prediction and crack 
path by the proposed phase-field model, we repeated the uniaxial ten
sion simulation for [1̄04] oriented sample. Fig. 8 shows the obtained 
microstructure, crack path, and stress map (S33 component). The 
deformed shape of the domain is also provided in the fourth row. Fig. 8b 
depicts the experimental microstructure and crack path for a zirconia 

Fig. 7. The average volume fraction of the monoclinic variants vs. half crack length versus applied displacement for [001] oriented sample.  
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based ceramic [9] with a similar crystal orientation with respect to crack 
direction. In this experiment, the material was in SE regime, and the 
reverse PT behind the crack tip and crack deflection due to PT were 
observed when crack propagated. As it can be seen in Fig. 8 our model 
accurately captures the reverse PT and crack deflection due to MPT 
similar to the experimental results. By comparing Fig. 6 and. Fig. 8a, it is 
evident that the crystal orientation affects the mechanical response, 

direction (distribution pattern) of transformed regions, and crack path. 
The rotation of the stiffness tensor and the stress-free strain tensor lead 
to a different transformation stress (point A) and different fracture stress 
(σF) (point B) for different crystal orientations. The predicted trans
formation and fracture stresses are 1000 MPa and 1800 MPa for [001] 
and 600 MPa and 1400 MPa for [1̄04] oriented sample. According to the 
zirconia-based coarse-grained micropillar bending test [8], a 

Fig. 8. Uniaxial tension of [1̄04] oriented sample in z direction: a) Stress-strain curve from PF simulation, b) Experimentally observed MPT and crack deflection due 
to PT in a zirconia-based ceramic [9], and c) MPT (first row), crack path (second row: undeformed, and third row: deformed), and stress map (fourth row) from 
PF simulation. 

A. Lotfolahpour et al.                                                                                                                                                                                                                          



Computational Materials Science 216 (2023) 111844

11

transformation stress of about 1200 MPa and a fracture stress of about 
2200 MPa were reported, therefore, we can conclude that our proposed 
modified model is able to quantitatively predict the mechanical 
behavior of SE zirconia and effectively captures the effect of grain 
orientation on predicting the mechanical response and microstructure. 

Finally, the case of θ = 90◦ ([100]) was considered. The results are 
not presented here as neither phase transformation nor crack deflection 
occurred in this case. For this crystal orientation under the applied 
displacement boundary condition, a very small elongation occurs in the 
[001] direction, MPT is not considerable, and only a straight fracture 
path is observed. The mechanical response and crack path are an indi
cation of a purely brittle material behavior. These predictions are 
consistent with the previously reported results by PFM [3] and MD [71] 
simulations, showing the importance of crystal orientation on the 
overall behavior of SMCs. 

4. Conclusion 

We presented a modified phase-field model for studying interactions 
of MPT and cracking in a superelastic 3 mol% yttria-stabilized tetragonal 
zirconia crystal. We identified the following shortcomings in previous PF 
studies coupling MPT and cracking:  

I. The interaction between SE behavior due to MPT and crack 
propagation at the microscale were not studied previously. 
Therefore, the reverse MPT due to crack propagation was not 
simulated previously.  

II. In many MPT models the elastic modulus is not recovered in the 
initial stages of the loading, and this is due to the high evolution 
rate of the order parameter(s) at the beginning of loading.  

III. In previously reported stress-strain curves, stress drop due to 
crack propagation was not captured, therefore, a conclusion 
about the strength of the material could not be made. This 
shortcoming is typically due to the use of stress-controlled 
boundary conditions, which were used in most previous models. 

In this paper, we addressed these shortcomings, by modifying the 
chemical free energy and enabling displacement-controlled boundary 
conditions. The modification included adding an extra term to the 2-3-4 
chemical free energy to accurately predict the mechanical response and 
reversible tetragonal to monoclinic transformation. This added term 
gives more control on the phase transformation rate (evolution of order 
parameters) and solves the problem of underestimating the elastic 
modulus observed in other phase-field models. The obtained results for 
transformation assisted deformation showed that the modified model is 
capable of predicting a realistic mechanical response, the experimen
tally observed microstructure, and the forward and reverse phase 
transformation in shape memory ceramics. 

In addition, we applied the modified phase-field to study 
transformation-fracture interactions under displacement-controlled 
loading condition. We also studied the effect of different crystal orien
tation with respect to loading direction. The model can predict a realistic 
mechanical response and fracture strain, the experimentally observed 
microstructure and crack path due to phase transformation, the effect of 
grain orientation on both microstructure and mechanical response, and 
the reverse phase transformation due to crack propagation in supere
lastic shape memory ceramics. In addition, since we applied a 
displacement-controlled boundary condition, we were able to observe a 
final drop in the stress-strain curve due to crack propagation and 
establish a strength close to experimentally reported one for zirconia- 
based ceramics. Comparisons with experiments showed that the pro
posed modified model effectively captures accurate microstructures and 
crack deflection due to phase transformation and provides an admissible 
stress-strain curve. Such interactions between MPT and cracking are 
difficult to investigate by experiments which show advantage of phase- 
field modeling in the study of interactions of phase transformation and 

cracking. 
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