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Abstract

We study d-dimensional generalizations of three mutually related topics in graph theory:
Hamiltonian paths, (unit) interval graphs, and binomial edge ideals. We provide partial
high-dimensional generalizations of Ore and Posa’s sucient conditions for a graph to be
Hamiltonian. We introduce a hierarchy of combinatorial properties for simplicial complexes
that generalize unit-interval, interval, and co-comparability graphs. We connect these prop-
erties to the already existing notions of determinantal facet ideals and (tight and weak)
Hamiltonian paths in simplicial complexes. Some important consequences of our work are:
(1) Every unit-interval strongly-connected d-dimensional simplicial complex is traceable.

(This extends the well-known result \unit-interval connected graphs are traceable".)
(2) Every unit-interval d-complex that remains strongly connected after the deletion of d or

less vertices, is Hamiltonian.
(This extends the fact that \unit-interval 2-connected graphs are Hamiltonian".)

(3) Unit-interval complexes are characterized, among traceable complexes, by the property
that the minors dening their determinantal facet ideal form a Gr•obner basis for a
diagonal term order which is compatible with the traceability of the complex.
(This corrects a recent theorem by Ene et al., extends a result by Herzog and others,
and partially answers a question by Almousa{Vandebogert.)

(4) Only the d-skeleton of the simplex has a determinantal facet ideal with linear resolution.
(This extends the result by Kiani and Saeedi-Madani that \only the complete graph has
a binomial edge ideal with linear resolution".)

(5) The determinantal facet ideals of all under-closed and semi-closed complexes have a
square-free initial ideal with respect to lex. In characteristic p, they are even F-pure.

Intro duct ion

The rst Combinatorics paper in History is apparently Leonhard Euler’s 1735 solution of the
Ko•nigsberg bridge problem. In that article, Euler introduced the notion of graph, and studied
cycles (now called ‘Eulerian’) that touch all edges exactly once. Euler proved that the graphs
admitting them, are exactly those graphs with all vertices of even degree. Hamiltonian cycles
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are instead cycles that touch all vertices exactly once; they are named after sir William Rowan
Hamilton, who in 1857 invented a puzzle game which asked to nd one such cycle in the icosa-
hedron. Unlike for the Eulerian case, guring out if a graph admits a Hamiltonian cycle or not is a
hard problem, now known to be NP-complete [Kar72].

Even if simple characterizations are o the table, in the 1950s and 1960s Dirac, Ore, Posa and
others were able to obtain simple conditions on the vertex degrees (in the spirit of Euler’s work)
that are sucient for a graph to admit Hamiltonian cycles [Dir52, Ore60, Pos62]. Ore’s theorem, for
example, says, \Any graph with n vertices such that deg u +  deg v  n for all non-adjacent vertices
u; v, admits a Hamiltonian cycle". Ore’s condition is far from being necessary: In any cycle, no
matter how large, one has deg u +  deg v =  4 for all u; v.

In the same years, the two papers [LB62] and [GH64] initiated the study of unit-interval
graphs. This very famous class consists, as the name suggests, of all intersection graphs of a
bunch of length-one open intervals on the real line. (That is, we place a node in the middle of each
interval, and we connect two nodes with an arc if and only if the corresponding intervals overlap).
Bertossi’s theorem says that if they are connected, such graphs always admit Hamiltonian paths,
i.e. paths that touch all vertices once [Ber83]. Chen{Chang{Chang’s theorem states that 2-
connected unit-interval graphs admit Hamiltonian cycles [CCC97]. For these results, the length-
one request can be weakened to \pairwise not-nested", but it cannot be dismissed: Within the
larger world of interval graphs, one encounters connected graphs such as K1;3  that do not admit
Hamiltonian paths, and also 2-connected graphs like the G5 of Remark 45 that do not admit
Hamiltonian cycles.

In the 1970s, the work of Stanley and Reisner established a fundamental bridge between
Combinatorics and Commutative Algebra, namely, a natural bijection between labeled simplicial
complexes on n vertices and radical monomial ideals in a polynomial ring with n variables.
This correspondence lead Stanley to prove the famous Upper Bound Theorem for triangulated
spheres [Sta14]. After this success, many authors have investigated ways to encode graphs into
monomial ideals. In 2010, Herzog et al. [H&10] rst considered a natural way to encode graphs into
binomial ideals, the so-called binomial edge ideals. The catch is that all such binomial edge
ideals are radical [H&10]. In the process, Herzog et al. re-discovered unit-interval graphs,
characterizing them as the graphs whose binomial edge ideals have quadratic Gro•bner bases
with respect to a diagonal term order [H&10, Theorem 1.1].

So far, we sketched three graph-theoretic topics from three dierent centuries: Hamiltonian
paths, (unit) interval graphs, binomial edge ideals. In the last years, there has been an increasing
interest in expanding these three notions to higher dimensions. Specically:

• Katona{Kierstead [KK99] and many others [HS10, K&10, RSR08] have studied \tight
Hamiltonian paths" and \loose Hamiltonian paths" in d-dimensional simplicial complexes;
both notions for d =  1 boil down to ordinary Hamiltonian paths. The good news is that
extremal combinatorics provides a non-trivial way to extend Dirac’s theorem for d-
complexes with a very large number of vertices that satisfy certain ridge-degree conditions.
The bad news is that already Ore and Posa’s theorems seem very hard to extend.

• Ene et al. [E&13] introduced \determinantal facet ideals", which directly generalize bino-
mial edge ideals, and \closed d-complexes", which generalize ‘unit-interval graphs’. The
good news is that the denitions are rather natural. The bad news is that determinantal
facet ideals are not radical in general (see Example 73), and they are hard to manipulate;
alas, the two main results of the paper [E&13] are incorrect, cf. Remark 85.

In the present paper we take a new, unied look at these approaches. In Chapter 1, we
introduce a notion of ‘weakly-Hamiltonian paths’ for d-dimensional simplicial complexes that
for d =  1 also boils down to ordinary Hamiltonian paths. This weaker notion enables us to
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obtain a rst, partial extension of Dirac, Ore and Posa’s theorem to higher dimensions:

Main  Theorem I  (Higher-dimensional Ore and Dirac, cf. Proposition 18 and Corollary 20).
Let  be any traceable d-complex on n >  2d vertices. If in some labeling that makes  traceable the two
(d  1)-faces  and  formed by the rst d and the last d vertices, respectively, have facet degrees
summing up to at least n, then  admits a weakly-Hamiltonian cycle.
In particular, if in a traceable pure d-complex with n vertices, every (d   1)-face belongs to at
least 2 facets, then the complex admits a weakly-Hamiltonian cycle.

Main  Theorem I I  (Higher-dimensional Posa, cf. Proposition 23). Let  be any traceable pure d-
complex on n vertices, n >  2d. Suppose that with any labeling in which  has a weakly-
Hamiltonian path,  is traceable. Let 1; 2; : : : ; s be the (d   1)-faces of , ordered so that d1  d2  : : :  ds,
where di =  di  is the number of d-faces containing i .  If for every d  k <  n  one has dk d+1  >  k, then
admits a weakly-Hamiltonian cycle.

As you can see these results are conditional: ‘Traceability’, i.e. the existence of a tight
Hamiltonian path, must be known a priori, in order to infer the existence of a weakly-Hamiltonian
cycle. This sounds like a bad deal, but in the one-dimensional case our results above still
immediately imply the original theorems by Ore and Posa for graphs. Moreover, since no
extremal combinatorics is used in the proof, there is an advantage: Main Theorems I  and I I  do
not require the number of vertices to be extremely large. On the contrary: In the two-
dimensional case, they already apply to complexes with ve vertices.

In Chapter 2, we introduce a hierarchy of four natural properties that progressively weaken
(for strongly-connected complexes) the notion of \closed d-complexes", as originally proposed in
[E&13]. We introduce \unit-interval", \under-closed", and \weakly-closed" complexes, as natu-
ral combinatorial higher-dimensional generalizations of unit-interval graphs, of interval graphs,
and of co-comparability graphs, respectively. The forth property, called \semi-closed", is inter-
mediate between \under-closed" and \weakly-closed"; it is also dened very naturally, but it
seems to be new already for graphs. We will see its algebraic consequence in Main Theorem V I
below. The main goal of Chapter 2 is to connect this hierarchy to the notions of Chapter 1:

Main  Theorem I I I  (Higher-dimensional Bertossi, Theorem 56). Every unit-interval strongly-
connected d-dimensional simplicial complex is traceable.

Main  Theorem I V  (Higher-dimensional Chen{Chan{Chang, Theorem 60). Every unit-interval
d-dimensional simplicial complex that remains strongly connected after the deletion of d or less
vertices, however chosen, is Hamiltonian.

Finally, Chapter 3 is dedicated to the connection with commutative algebra. For a homoge-
neous ideal of polynomials, having a square-free Gr•obner degeneration is a strong and desirable
property. In 2020, Conca and the third author proved Herzog’s conjecture that if a homoge-
neous ideal I  has a square-free initial ideal in(I ), then the extremal Betti numbers of I  and in(I ) are
the same [CV20]. This allows us to infer the depth, the Castelnuovo{Mumford regularity, and
many other invariants of the ideals I  with squarefree initial-ideal, simply by computing these
invariants on the initial ideal |  which is a much simpler task, because the aforementioned
Stanley{Reisner correspondence activates techniques from combinatorial topology. Building on
the very recent work of the second author [Sec21], we are able to revise one of the results claimed in
Ene et al [E&13] as follows:

Main  Theorem V  (Theorem 82 and 87). A  strongly-connected d-dimensional simplicial com-
plex  is unit-interval if and only if the complex is traceable and with respect to the same labeling, the
minors dening the determinantal facet ideal of  form a Gr•obner basis with respect to any diagonal
term order.
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We conclude our work with a result that provides a broad class of determinantal facet ideals
that are radical, and even F -pure (if the characteristic is positive):

Main  Theorem V I  (Theorem 77). The determinantal facet ideals of all semi-closed complexes
are radical. Indeed, they have a square-free initial ideal with respect to any diagonal term order.
Moreover, in characteristic p >  0, the quotients by these ideals are all F -pure.

The proof relies once again on the recent work by the second author [Sec21]. Since all shifted
complexes are under-closed, and in particular semi-closed, Theorem 77 immediately implies that
the determinantal facet ideals of shifted complexes admit a square-free Gr•obner degeneration
and, in positive characteristic, dene F -pure rings. As a consequence of Main Theorem VI,  we can
extend to all dimensions the result by Kiani and Saeedi-Madani that \among all graphs, only
complete graphs have a binomial edge ideal with a linear resolution" [SK12]. Namely, we prove
that among all d-dimensional simplicial complexes with n vertices, only the d-skeleta of simplices
have a determinantal facet ideal with a linear resolution (Corollary 81).

Notation

Throughout d; n are positive integers, with d <  n. We denote by d the d-simplex, and by d the
d-skeleton of n  1. We write each face of d by listing its vertices in increasing order. We describe
simplicial complexes by listing their facets in any order, e.g.  =  123; 124; 235. For any d-face F  =
a0a1 ad of d , we call gap of F  the integer gap(F ) =  ad  a0  d, which counts the
integers i  strictly between a0 and ad that are not present in F .  For each i  in f1; 2; : : : ; n   dg, we
call H i  the d-face of d with vertices i; i + 1; : : : ; i + d. Clearly, H1 ; H2; : : : ; Hn d are exactly those
faces of d that have gap zero. With abuse of notation, we extend the denition of H i  also to i  2  fn

d + 1; : : : ; ng using \congruence modulo n". Namely, by \n + 1" we mean vertex
1, by \n +  2" we mean vertex 2, and so on. So H n  will be the d-face adjacent to H 1  and of
vertices fn; 1; 2; 3;  ; dg, which we write down in increasing order, so H n  =  123 d n. Note that
gap(Hi ) >  0 when i  >  n d.

Denit ion 1 (traceable, Hamiltonian). A  complex  is (tight-) traceable if it has a labeling such
that H1; : : : ; Hn d are in . It is (tight-) Hamiltonian if it has a labeling such that all of H1; : : : ; Hn

are in .

Clearly, Hamiltonian implies traceable. For d =  1, Denition 1 boils down to the classical
notions of traceable and Hamiltonian graphs, that is, graphs that admits a Hamiltonian path
and a Hamiltonian cycle, respectively. In fact, nobody prevents us from relabeling the vertices in
the order in which we encounter them along such path (or cycle).

Recall that two facets of a pure simplicial d-complex are adjacent if their intersection has
cardinality d, or equivalently, dimension d   1. For example, each H i  is adjacent to H i + 1 .  The
dual graph of a pure simplicial d-complex  has nodes corresponding to the facets of ; two nodes
are connected by an arc if and only if the corresponding facets of  are adjacent. A  pure simplicial
d-complex  is strongly-connected if its dual graph is connected. For d  1, every strongly-
connected d-complex is connected, and when d =  1 the two notions coincide. According to our
convention, all strongly-connected simplicial complexes are pure.

Remark 2. The statement \the dual graph of any Hamiltonian d-complex is Hamiltonian"
holds true only for d =  1: For example, the Hamiltonian simplicial complex

1 =  123; 234; 345; 456; 567; 678; 789; 189; 129; 147

is not even strongly connected, because the facet 147 is isolated in the dual graph. The deletion
of vertex 1 from 1 yields a simplicial complex that is not even pure.
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1 Weakly-traceable/Hamiltonian complexes and ridge degrees

In this section, we introduce two weaker notions of traceability and Hamiltonicity that rst
appeared in [K&10], and we study their nontrivial relationship with the \ridge degree", i.e. how
many d-faces contain any given (d   1)-face. This relationship has a long history, beginning in
1952 with one of the most classical results in graph theory, due to Gabriel Dirac [Dir52], the son of
Nobel Prize physicist Paul Dirac:

Theorem 3 (Dirac [Dir52]). Let G  be a graph with n vertices. If deg v  n  for every vertex v,
then G  is Hamiltonian.

Later ystein Ore [Ore60] improved Dirac’s result and extended it to traceable graphs:

Theorem 4 (Ore [Ore60]). Let G  be a graph with n vertices.
(A)  If deg u +  deg v  n for all non-adjacent vertices u; v, the graph G  is Hamiltonian.
(B)  If deg u +  deg v  n      1 for all non-adjacent vertices u; v, the graph G  is traceable.

Two years later Posa extended Ore’s condition (A)  much further:

Theorem 5 (Posa [Pos62]). Let G  be a graph with n vertices. Order the vertices v1; : : : ; vn so
that the respective degrees are weakly increasing, d1  d2  : : :  dn.
(C )  If for every k <  2 one has dk >  k, the graph G  is Hamiltonian.

These theorems have been generalized in ve main directions, over the course of more than a
hundred papers (see also L i  [Li13] for a survey with a dierent perspective than ours):

1. Bondy and Chvatal [Bon69, Bo71a, Chv84, BC71] weakened the antecedent in the implica-
tion (C )  of Posa’s theorem (see [Far99] for an application to self-complementary graphs);

2. Bondy [Bo71b] strengthened the conclusion of Ore’s theorem, from Hamiltonian to pan-
cyclic (=containing cycles of length ‘  for any 3  ‘   n); later Schmeichel{Hakimi [SH74]
showed that Posa and Chvatal’s theorems can be strengthened in the same direction;

3. Fan [Fan84] showed that for 2-connected graphs, it suces to check Ore’s condition for
vertices u and v at distance 2; and even more generally, it suces to check that for any two
vertices at distance two, at least one of them has degree  n . With these weaker
assumptions he was still able to achieve a pancyclicity conclusion. See [BCS93], [LLF07],
[CSZ14] for recent extensions of Fan’s work.

4. A  forth line of generalizations of Ore’s theorem involved requiring certain vertex sets to
have large neighborhood unions, rather than large degrees: Compare Broersma{van den
Heuvel{Veldman [BHV93] and Chen{Schelp [CS92].

Here we are interested in the fth main direction, namely, the generalization to higher dimen-
sions. This is historically a rather dicult task: As of today, no straightforward extension of
Ore’s theorem or of Posa’s theorem is known. However, some elegant positive results were
obtained in 1999 by Katona and Kierstead [KK99], who applied extremal graph theory to gen-
eralize Dirac’s theorem to simplicial complexes with a huge number of vertices. Building on the
work by Katona and Kierstead [KK99], Ro•dl, Szemeredi, and Rucinski [RSR08] were able in 2008
to prove the following ‘extremal’ version of Dirac’s theorem:

Theorem 6 (Ro•dl{Szemeredi{Rucinski [RSR08]). For all integers d  2 and for every " >  0 there
exists a (very large) integer n such that every d-dimensional simplicial complex  with more than
n0 vertices, and such that every (d   1)-face of  is in at least n( 1 +  ") facets, is Hamiltonian.

Now we are ready to introduce the main denition of the present section. Recall that two
facets of a pure simplicial d-complex are incident if their intersection is nonempty.
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Denit ion 7 (weakly-traceable, weakly-Hamiltonian). A  d-dimensional simplicial complex  is
weakly-traceable if if it has a labeling such that  contains faces Hi1 ; : : : ; Hik  from fH1 ; : : : ; Hn dg that
altogether cover all vertices, and such that H i j  is incident to H i j + 1  for each j  2  f1; : : : ; k 1g. In this
case, we call the list Hi1 ; : : : ; Hik  a weakly-Hamiltonian path.
A  d-dimensional simplicial complex  is weakly-Hamiltonian if it has a labeling such that
contains faces Hi1 ; : : : ; Hik  from H1; : : : ; Hn that altogether cover all vertices, such that H i j  is
incident to H i j + 1  for each j  2  f1; : : : ; k 1g, and in addition H i k  is incident to Hi 1 .  In this case,
we call the list Hi1 ; : : : ; Hik  a weakly-Hamiltonian cycle.

Remark 8. These notions are not new. For what we called \weakly-Hamiltonian", Keevash et al.
[K&10] use the term \generic Hamiltonian". Their paper [K&10] focuses however on the
stronger notion of \loose-Hamiltonian" complexes, which are weakly-Hamiltonian complexes
where all of the intersections H i j  \  H i j + 1      consist of a single point (with possibly one excep-
tion). By denition, all Hamiltonian complexes are loose-Hamiltonian, and all loose-Hamiltonian
complexes are weakly-Hamiltonian. For d =  1 all these dierent notions converge: \Weakly-
Hamiltonian 1-complexes" are simply \graphs with a Hamiltonian cycle", and \weakly-traceable
1-complexes" are \graphs with a Hamiltonian path". In 2010 Han{Schacht [HS10] and indepen-
dently Keevash et al. [K&10] proved the following extension of Theorem 6 above:

Theorem 9 (Han-Schacht [HS10], Keevash et al. [K&10]). For all integers d  2 and for every
" >  0 there exists a (very large) integer n0 such that every d-dimensional simplicial complex
with more than n0 vertices, and such that every (d 1)-face of  is in at least n(  1  +  ") facets, is
loose-Hamiltonian, and in particular weakly-Hamiltonian.

Remark 10. In Denition 7, note that if  is weakly-traceable, necessarily i1 =  1 and ik  =  n d,
because otherwise 1 and n would not be covered. So equivalently, in Def. 7 we could demand

fi2 ; : : : ; ik 1g  f2; : : : ; n d 1g:

Note also that if a labeling v1; : : : ; vn makes  (weakly-) traceable, so does the \reverse labeling"
vn; : : : ; v1. As for Hamiltonian complexes: If a labeling v1; : : : ; vn makes  weakly-Hamiltonian, so
does its reverse, and also vi1 ; : : : ; vin , where (i1 ; : : : ; in) is any cyclic permutation of (1; : : : ; n). So
we may assume that i1 =  1. Or we may assume that i k  =  n   d. But as the next remark shows,
we cannot assume both.

Remark 11. When d >  1, not all weakly-Hamiltonian d-complexes are weakly-traceable. For
d =  2, a simple counterexample is given by

0 =  123; 156; 345:

The weakly-Hamiltonian cycle is of course H1 ; H3 ; H5 . Any labeling that makes 0 weakly-
Hamiltonian is either the reverse or a cyclic shift (or both) of the labeling above. For parity
reasons, in any labeling that makes 0 weakly-Hamiltonian, only one of H 1  and H 4  is in 0.

Remark 12. Weakly-traceable complexes are obviously connected. Weakly-Hamiltonian com-
plexes are even 2-connected, in the sense that the deletion of any vertex leaves them connected.
The converses are well-known to be false already for d =  1. In fact, let n  4. Let A n  2 be the edge-
less graph on n 2 vertices. Let x; y be two new vertices. The \suspension"

susp(An 2) =  A n  2 [  f x   v : v 2  A n  2g [  fy   v : v 2  A n  2g

is a 2-connected graph on n vertices that is not Hamiltonian for n  5, and not even traceable for
n  6. In higher dimensions, the 3 of Lemma 44 is d-connected, but neither weakly-traceable nor
weakly-Hamiltonian.

6



def

We start with a few Lemmas that are easy, and possibly already known; we include nonethe-
less a proof for the sake of completeness. For the following lemma, a subword of a word is a
subsequence formed by consecutive letters of a word: So for us \word" is a subword of \subword",
whereas \sword" is not.

Lemma 13. Let d  2. If a d-complex  is weakly-Hamiltonian (resp. weakly traceable), then for
any k 2  f1; : : : ; dg the k-skeleton of  is weakly-Hamiltonian (resp. weakly-traceable).

Proof. Given a weakly-Hamiltonian path/cycle, replace any d-face H 1  with its (k +  1)-letter
subwords, ordered lexicographically. The result, up to canceling possible redundancies, will be a
weakly-Hamiltonian path/cycle for the k-skeleton.

For example: if d =  3 and k =  1, suppose that a 3-complex on 8 vertices admits the
Hamiltonian path

1234; 2345; 5678:

Then the 1-skeleton admits the Hamiltonian path

12; 23; 34; 23; 34; 45; 56; 67; 78:

The next Lemma is an analog to the fact that Hamiltonian complexes are traceable.

Lemma 14. Let  be a d-dimensional complex that has a weakly-Hamiltonian cycle Hi1 ; : : : ; Hik  ,
with k  3. For any j  in f1; : : : ; kg, let mj be the number of vertices of H i j      that are neither

contained in H i j      1  nor in H i j + 1  (where by convention i k + 1  =  i1 ).
• If mj >  0, the deletion of those mj vertices from  yields a weakly-traceable complex.
• If mj =  0, and in addition H i j      1  and H i j + 1  are disjoint, then  itself is weakly-traceable.

Proof. F ix  j  in f1; : : : ; kg. If mj >  0, the mj vertices that belong to H i j  and to no other facet of
the cycle are labeled consecutively. So up to relabeling the vertices cyclically, we can assume that
they are the vertices n mj +  1; n mj +  2; : : : ; n 1; n: Thus the facet in the cycle they
all belong to is the last one, H i k  . Now let D  be the complex obtained from  by deleting these mj

vertices. It is easy to see that

H 1  =  Hi 1 ; Hi 2 ; : : : ; Hi k      1

is a weakly-Hamiltonian path for D .
The case mj =  0 is similar: Up to relabeling the vertices cyclically, i j + 1  =  1 and thus j  =  k. By
assumption H i k      1  and H 1  are disjoint. But since mk =  0, and vertex n does not belong to H1 , it
must belong to H i k      1 . Therefore H i k      1  =  H n  d. So

H 1  =  Hi 1 ; Hi 2 ; : : : ; Hi k      1

is a weakly-Hamiltonian path for  itself.

The next Lemma can be viewed as a d-dimensional extension of the fact that the cone over
the vertex set of a graph G  is a Hamiltonian graph if and only if the starting graph G  is traceable.

Lemma 15. Let  be any d-complex on n vertices. Let d 1 be the (d   1)-simplex. Let   be the
d-complex obtained by adding to  a d-face v  d 1 for every vertex v in . Then

 is weakly-traceable ( )    is weakly-Hamiltonian.

7
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Proof. \ ) " :  If Hi1 ; : : : ; Hik  is a list of facets proving that  is weakly-traceable, then the list
Hi1 ; : : : ; Hik  ; H n ; H n + 1  shows that   is weakly-Hamiltonian.
\ ( " :  Pick a labeling that makes   weakly-Hamiltonian. By how the complex   is constructed, the
vertices of d 1 must be labeled consecutively; so without loss, we may assume that they are n
+  1; : : : ; n +  d. Take a weakly-Hamiltonian cycle for   and delete from the list all the d-faces
containing any vertex whose label exceeds n.

Remark 16. The following statements are valid only for d  =  1.
(i) \  is weakly-traceable ( )   [  w  (d-1)-skel() is weakly-Hamiltonian."

(ii) \Deleting a single vertex from a weakly-Hamiltonian d-complex yields a weakly-traceable
complex."

(iii) \Deleting (the interior of ) any of the Hi ’s from a weakly-Hamiltonian d-complex yields a
weakly-traceable complex."

Simple counterexamples in higher dimensions are:
(i) 1 =  126; 234; 456; 489; 678 is not weakly-traceable, yet 2 =  1 [  (10  2-skel(1)) admits the

weakly-Hamiltonian cycle 234; 456; 678; 89 10; 12 10. This is a counterexample to \ ( " .
In contrast, the direction \ ) "  holds in all dimensions.

(ii) If from the 2 above we delete vertex 10, we get back to 1, not weakly-traceable.
(iii) 3 =  1234; 2345; 5678; 167 10; 189 10 is weakly-Hamiltonian, but the deletion of (the

interior) of 5678 yields a complex that is not weakly-traceable.

Our rst non-trivial result is an \Ore-type result": We shall see later that in some sense it
extends ‘most’ of the proof of Ore’s theorem 4, part (A), to all dimensions.

Denit ion 17. Let  be a pure d-dimensional simplicial complex, and let  be any (d      1)-face of .
The degree d of  is the number of d-faces of  containing .

Proposition 18. Let  be a traceable d-dimensional simplicial complex on n vertices, n >  2d. If
in some labeling that makes  traceable the two (d   1)-faces  and  formed by the rst d and the last d
vertices, respectively, satisfy d +  d  n, then  is weakly-Hamiltonian.

Proof. Since n >  2d, the two faces  and  are disjoint. Let J  =  fd  +  2; d +  3; : : : ; n   dg. For
every i  in J ,  which has cardinality n 2d 1, consider the two d-faces of n

S i  =    i and Ti =  ( i  1)  :

Now there are two cases, both of which will result in a weakly-Hamiltonian cycle:
Case 1: For some i,  both S i ,  Ti are in . We are going to introduce a new vertex

labeling ‘1; : : : ; ‘n. The \consecutive facets of the new labeling" will be called L 1  =  ‘1 ‘d ‘d+1 , L 2  =
‘2 ‘d+2 , and so on. The following describes a weakly-Hamiltonian cycle:

• Start with the rst i  1 vertices in the same order: That is, set ‘1 =  1, : : :, ‘ i  1 =  i  1.
Hence L 1  =  H1 ; L2  =  H2; : : : ;, up until L i  d 1 =  H i  d 1, which (since  is traceable) is the rst
of the Hi ’s that contains the vertex i  1.

• Then set L i  =  Ti. The vertices of  are to be relabeled by ‘ i ; ‘ i+1 ; : : : ; ‘ i+d : Specically, label
by ‘ i  the vertex that is in H n  d but not in H n  d 1, by ‘ i + 2  the vertex in in H n  d 1 but not in
in H n  d 2, and so on. Facet-wise, we are traveling in reverse order across the last facets
of the original labeling. Stop until you get to relabel vertex i  by ‘n . (Or equivalently, if you
prefer to think about facets, stop once you reach facet H i . )

• The weakly-Hamiltonian cycle gets then concluded with Si ,  which is adjacent to L 1  =  H 1  via
. The facets previously called H i  d, H i  d+1 , : : :, H i  1 are not part of the new weakly-
Hamiltonian cycle.
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F igure  1: l e f t :  The dashed triangles are S5 and T5. Were they both in , then one could relabel the
vertices and create a weakly-Hamiltonian cycle ( r ight ) .

Case 2: For all i ,  at most one of S i ,  Ti is in . Since the two sets f i  2  J  :   i  2  g and f i  2  J  :
( i      1)  2  g are disjoint, the sum of their cardinalities is the cardinality of their union, which is
contained in J .  So

jf i  2  J  :   i  2  Sgj +  j f i  2  J  : ( i  1)   2  gj  jJ j  =  n 2d +  1: (1)

Now, we claim that either   n or 1   is a face of . From the claim the conclusion follows
immediately, as such face creates a weakly-Hamiltonian cycle. We prove the claim by contradic-
tion. Suppose  contains neither   n nor 1  . Every d-face containing  is of the form   v, where v is
either in J  or in the set fd; n d +  1; n d +  2; : : : ; n 1g (which has size d). So

d  j f i  2  J  :   i  2  gj +  d: (2)

Symmetrically, the d-faces containing  are of the form w , with w either in J  or in the size-d set
f2; 3; : : : ; d; n d +  1g. So

d  j f i  2  J  : ( i  1)   2  gj +  d: (3)

Putting together inequalities 1, 2 and 3, we reach a contradiction:

d +  d  (n 2d 1) +  d +  d =  n 1:

Corol lary 19. Let  be a traceable d-dimensional simplicial complex on n vertices, n >  2d. If
for any two disjoint (d      1)-faces  and  one has d +  d  n, then  is weakly-Hamiltonian.

Corol lary 20. Let  be a traceable d-dimensional simplicial complex on n vertices, n >  2d. If
every (d 1)-face of  belongs to at least 2 facets of , then  is weakly-Hamiltonian.

Example 21. Let n >  2d. Let 4 be the simplicial complex on n vertices obtained from n  by
removing the interior of the d-faces H n  d+1 , H n  d+2 , : : :, Hn .  By construction 4 is traceable, but
the given labeling (as well as any labeling obtained from it by reversing or cyclic shifting)
fails to prove that 4 is weakly-Hamiltonian. Now, in 4, the (d  1)-faces i  =  H i  \ H i + 1 ,  with i  2  fn

d +  1; n d +  2; : : : ; n 1g, have degree n d 2. Al l  other (d 1)-faces j  contained
in one of H n  d + 1 ; Hn  d+2; : : : ; Hn have degree n d      1. Finally, all (d      1)-faces not contained
in any of H n  d + 1 ; Hn  d+2 ; : : : ; Hn have degree n      d. Therefore:

9
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• If n  2d + 4, Corollary 20 tells us that 4 is weakly-Hamiltonian, because n      d      2  n . • If n
=  2d+3 or n =  2d+2, any two of the i’s are incident, and any j  is incident to all of the i’s.

Hence, for any two disjoint (d  1)-faces  and , we do have d+ d  2n 2d 2  n.
So we can still conclude that 4 is weakly-Hamiltonian via Corollary 19.

• If n =  2d+1, then the assumptions of Corollaries 20 and 19 are not met, but Proposition 18 is
still applicable. In fact, for the facets  resp.  formed by the rst resp. the last vertices of the
given labeling, one has d +  d =  (n d) +  (n d 1) =  2n (2d +  1) =  n.

So in all cases, 4 is weakly-Hamiltonian. The proof of Proposition 18 also suggests a relabeling
that works: ‘1 =  1; ‘2 =  2; : : : ; ‘d + 1  =  d +  1; ‘d + 2  =  n; ‘d + 3  =  n 1; : : : ; ‘ n  =  d +  2.

To  see in what sense Proposition 18 is a higher-dimensional version of Ore’s theorem 4, part
(A), the best is to give a proof of the latter using the former:

Proof of Ore ’s theorem 4, part ( A ) .  By contradiction, let G  be a non-Hamiltonian graph
satisfying deg u +  deg v  n for all non-adjacent vertices u; v. Add edges to it until you reach a
maximal non-Hamiltonian graph G. Since any further edge between the existing vertices would
create a Hamiltonian cycle, G  is traceable, and obviously it still satises deg u + deg v  n. By
Proposition 18 G  is (weakly-)Hamiltonian, a contradiction.

It is possible that the bound of Proposition 18 can be improved. But in any case, the possible
improvement could only be small, as the following construction shows.

Non-Example 22. Let d <  m be positive integers. Take the disjoint union of two copies A0; A00 of
d . Let  be any facet of d and let 0;00 be its copies in A0 and A00, respectively. Glue to A0 [  A00 a
triangulation without interior vertices of the prism   [0; 1], so that the lower face   f0g is identied
with 0, and the upper face   f1g is identied with 00. Let 5 be the resulting d-complex on n =  2m
vertices. This 5 is traceable: the added prism, triangulated as a path of d-faces, serves as
\bridge" to move between the two copies of d . However, this bridge can only be traveled once,
so 5 is not weakly-Hamiltonian. For the labeling that makes it traceable, d +  d =  (m d) +
(m d) =  n 2d.

Our next result is a \Posa{type" result, in the sense that it extends most of Nash{Williams’
proof [Nas66] of Posa’s theorem [Pos62] to all dimensions. We focus on complexes  with the
property that any labeling that makes them weakly-traceable, makes them also traceable. Such
class is nonempty: for example, it contains all 1-dimensional complexes and all trees of d-
simplices (i.e. all triangulations of the d-ball whose dual graph is a tree).

Proposition 23. Let  be any traceable pure d-complex on n vertices, n >  2d. Suppose that
any labeling that makes  weakly-traceable makes it also traceable.

Let 1; 2; : : : ; s be an ordering of the (d   1)-faces of , such that the respective degrees di =  di

are weakly-increasing, d1  d2  : : :  ds. If for every d  k <  n  one has dk d+1  >  k, then  is weakly-
Hamiltonian.

Proof. Among all possible labelings that make  weakly-traceable (and thus traceable, by as-
sumption), choose one that maximizes d +  d , where  is the (d   1)-face of H 1  spanned by the
rst d vertices (that is, 1; 2; d) and  is the (d   1)-face of H n  d spanned by the last d vertices (that
is, n d +  1; : : : ; n). Since n >  2d, the faces  and  are disjoint. If d +  d  n, using the proof
of Proposition 18 we get that  is weakly-Hamiltonian, and we are done. If not, then one of ,  has
degree <  2 . Up to reversing the labeling, which would swap  and , we can assume that d <  n .
Now let J  =  fd  +  2; d +  3; : : : ; n   dg: For every i  in J ,  which has cardinality n 2d      1,
consider the two d-faces of d

S i  =    i and Ti =  ( i  1)  :
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We may assume that at most one of these two faces is in , otherwise a weakly-Hamiltonian cycle
arises, exactly as in the proof of Proposition 18. Now for each i  in J 1  =  f i  2  J  : i  2  g, consider the
(d 1)-face i  with vertices f i  d; i d +  1; : : : ; i 1g.

F igure  2: A  higher-dimensional \Posa ip": Since 125 is in , the vertex 5 is in J1 . Now the red triangle
5  w =  348 cannot be in , or else we would have a weakly-Hamiltonian cycle with the blue labeling. The
blue labeling makes  weakly-traceable, with 5 playing the role of the \rst" (d      1)-face; the \last" (d      1)-face
is the same as before. By how our original labeling was chosen, d5  d <  2 .

If for some i  in J 1  the d-face i   w is in , then there is a new relabeling ‘1; : : : ; ‘n of the
vertices for which we have a weakly-Hamiltonian cycle: see Figure 2 above. (The proof is

essentially identical to that of Proposition 18, up to replacing Ti with T0 =  i   w, reversing the
order, and permuting it cyclically, so that i  is the rst face.) So also in this case, we are done. It

remains to discuss the case in which for all i  2  J 1  =  f i  2  J  :   i  2  g, the d-face i   w
is not in . In this case the relabeling ‘1; : : : ; ‘n introduced above makes  weakly-traceable, and
thus traceable by assumption. For such relabeling, the (d   1)-faces spanned by the rst and the
last d vertices are i  and , respectively. So by the way our original labeling was chosen, di  +  d  d +  d ,
and in particular

di  d <  
2

:

Now, any d-face containing  is of the form   v, where v is either in the set J 1  or in the set Z  =  fd
+  1; n d +  1; : : : ; n 1g, which has cardinality d. So d  jJ1  [  Z j. Since J  and Z  are
disjoint, and J 1   J ,  the sets J 1  and Z  are also disjoint and we have

d d =  d jZ j  jJ1  [  Z j  jZ j =  jJ1 j +  jZ j jZ j =  jJ1j:

So the set f i  : i  2  J1 g contains at least d d faces of dimension d 1 and degree  d. If we
count also , we have in  at least d   d +  1 faces of dimension d   1 and degree  d. But then, setting
k =  d, we obtain

dk d+1   k <  
2

;

which contradicts the assumption.

Again, to see in what sense Proposition 23 is a higher-dimensional version of Posa’s Theo-
rem 5, perhaps the best is to see how easily the latter follows from the former:

Proof of Posa’s theorem 5. By contradiction, if G  is not Hamiltonian, we can add edges to it
until we reach a maximal non-Hamiltonian graph G, which still satises the degree conditions and is
traceable. By Proposition 23, G  is (weakly-)Hamiltonian, a contradiction.
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A  natural question is whether one can generalize to higher dimensions also part (B)  of Ore’s
theorem 4. The answer is positive, although some extra work is required. In fact, for graphs
part (B)  of Ore’s theorem can be quickly derived from part (A)  by means of a coning trick. This
trick however does not extend to higher dimensions, as we explained in Remark 16, so we’ll have to
take a long detour, which makes the proof three times as long. The bored reader may skip
directly to the next section.

Denit ion 24. A  d-dimensional complex  is quasi-traceable if there exists a vertex labeling for
which  [  H j  is weakly-traceable, and moreover, with respect to the same labeling,
(a) if j  =  1, then  contains all of H2; : : : ; Hn d (i.e.,  [  H 1  is traceable);
(b) if j  2  f2; : : : ; n   2dg, then  already contains all of H1 ; : : : ; Hj  1 and Hj +d ; : : : ; Hn d

(i.e.,  [  H j  [  : : : [  H j + d  1 is traceable);
(c) if j  2  fn 2d +  1; : : : ; n d 1g, then  contains all of H1 ; : : : ; Hj  1 and also H n  d (i.e.,  [

H j  [  : : : [  H n  d 1 is traceable);
(d) if j  =  n d, then  already contains all of H1; : : : ; Hn d 1 (i.e.,  [  H n  d is traceable).

Example 25. The complex 6 =  123; 234; 567; 678; 789 is quasi-traceable, although not weakly-
traceable. In fact, 6 becomes weakly-traceable if we add one of the facets 345 and 456, and it
becomes even traceable if we add both.

Denition 24 allows the \added faces" to be already present in . In particular, all traceable
complexes are quasi-traceable. Here comes our high-dimensional version of Theorem 4, part (B):

Proposition 26. Let  be a quasi-traceable d-dimensional simplicial complex on n vertices, n
>  2d. If in some labeling that makes  quasi-traceable the two (d   1)-faces  and  formed by the
rst d and the last d vertices satisfy d +  d  n 1, then  is weakly-traceable.

Proof. By contradiction, suppose  is not weakly-traceable; we treat the four cases of Denition 24
separately.

Case (a)  is symmetric to Case (d), so we will leave it to the reader.
Case ( b )  is the main case. Since j  2  f2; : : : ; n   2dg, by denition  contains all of

H1 ; : : : ; Hj  1 and also Hj +d ; : : : ; Hn d. Since  is not weakly-traceable, it does not contain H j .
Moreover,   (d +  j )  cannot be a facet of , otherwise the two \halfpaths" above would be
connected into a weakly-Hamiltonian path. For the same reason, since (d +  j    1) 2  H j  1, the d-
face (d +  j  1)   cannot be in . So let J 0 =  fd  +  2; d +  3; : : : ; n dg n fd +  jg. For every i
in J 0, which has cardinality n 2d 2, consider the two d-faces of d

S i  =    i and Ti =  ( i  1)  :

Now there are two subcases: Either there exists an i  such that Si ; Ti are both in , or not.
Case (b.1): For some i,  both S i  and Ti are in . There are two subsubcases, according to

whether i  is \before the gap" or \after the gap".

{  Case (b.1.1): i  <  d +  j .  A  weakly-Hamiltonian path arises from a relabeling as fol-
lows: We start at the beginning of the second halfpath, with the facets previously called
H j + d ; H j + d + 1 ;  etc., until we reach H n  d. Then we use Ti to get back to the vertex
previously labeled by i    1. Next, we use in reverse order the facets previously called
H i  d 1 ; Hi  d 2; : : : ; H2; H1. Finally use S i  to jump forward to the vertex previously called
i, and conclude the path with the facets previously called Hi ; Hi+1 ; : : : ; Hj  1.
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{  Case (b.1.2): i  >  d +  j .  A  weakly-Hamiltonian path arises from a relabeling as fol-lows:
We start at the beginning of the second halfpath, with the facets previously called
H j + d ; H j + d + 1 ;  etc., until H i  d 1. Then we use Ti to jump forward. As next faces, we use in
reverse order the facets previously called H n  d ; Hn d 1; : : : ; H2; Hi. Finally, we use S i  to
jump back to H1 , and conclude the path with the facets previously called H1 ; H2; : : : ; Hj  1.
So also in this case  is weakly-traceable, a contradiction.

Case (b.2): For all i ,  at most one of S i  and Ti is in . Since the two sets f i  2  J 0 : i  2  g and f i
2  J 0 : ( i  1)   2  g are disjoint, we obtain a numerical contradiction:

d +  d  d +  j f i  2  J 0 :   i  2  gj +  d +  j f i  2  J 0 : ( i  1)   2  gj =  =  2d +
j f i  2  J 0 :   i  2  g [  f i  2  J 0 : ( i  1)   2  gj
 2d +  jJ 0j =  2d +  n 2d 2 =  n 2:

Case ( c )  is the easiest. If j  2  fn 2d +  1; : : : ; n d 1g, then H j  1 intersects H n  d. Since
contains H1 ; : : : ; Hj  1 and also H n  d, it is weakly-traceable, a contradiction.

Case ( d )  is the last one. So, assume j  =  1 and set J00 =  fd  +  2; d +  3; : : : ; n dg. For every
i  in J00, which has cardinality n 2d 1, consider the two d-faces of d

S i  =    i and Ti =  ( i  1)  :

Now there are two subcases: Either there exists an i  such that Si ; Ti are both in , or not.

Case (d.1): For some i,  both S i  and Ti are in . Then we obtain a weakly-Hamiltonian path
as follows: Starting with ‘1 =  1, rst we use the face   i, then H2; : : : ; Hi d 1 in their order, then
we use ( i  1)  n to jump forward, and then we come back with H n  d; : : : ; Hi.

Case (d.2): For all i ,  at most one of S i  and Ti is in . We know by that   d =  H 1  is not in
because we are treating the case j  =  1, and we know that   n is not in  otherwise we would have a
weakly-Hamiltonian path. Thus any d-face containing  is of the form   v, where v is either in J00 or
in the disjoint set fn d +  1; : : : ; n 1g, which has cardinality d 1.
In contrast, any d-face containing  is of the form ( i    1)  , where i  is either in J00 or in the
set f2; : : : ; d +  1g, which has cardinality d. Since the two sets f i  2  J00 :   i  2  g and f i  2  J00 : ( i

1)   2  g are disjoint, the sum of their cardinality is equal to the cardinality of their
union, which is a subset of J00. So also in this case we obtain a contradiction

d +  d  d 1 +  j f i  2  J00 :   i  2  gj +  d +  j f i  2  J00 : ( i  1)   2  gj =  =  2d      1
+  j f i  2  J00 :   i  2  g [  f i  2  J00 : ( i  1)   2  gj
 2d 1 +  jJ00j =  2d 1 +  n 2d 1 =  n 2:

Example 27. Let 7 be the simplicial complex on 5 vertices obtained from 5 by removing the
interior of the two triangles 123 and 124. Clearly 7 is quasi-traceable with j  =  1, because 7 [  H 1  is
traceable. Since d12 +  d45 =  4 =  n   1, by Proposition 26 7 is weakly-traceable. In fact, the
reader may verify that 7 is even Hamiltonian with the relabeling ‘1 =  1, ‘2 =  2, ‘3 =  5, ‘4 =  3, ‘5
=  4.

For completeness, we conclude this section by showing how Proposition 26 implies part (B)
of Ore’s theorem 4:

Proof of Ore ’s theorem 4, part ( B ) .  By contradiction, let G  be a non-traceable graph satis-
fying deg u+deg v  n 1 for all non-adjacent vertices u; v. Add edges to it until we reach a max-imal
non-traceable graph G. This G  is quasi-traceable and still satises deg u + deg v  n 1.
By Proposition 26 G  is (weakly-)traceable, a contradiction.
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2 Interval  graphs and semiclosed complexes

In the present section,
(1) we introduce \weakly-closed d-complexes", generalizing co-comparability graphs;
(2) we create a hierarchy of properties between closed and weakly-closed complexes, among

which a d-dimensional generalization of interval graphs; and
(3) we connect such hierarchy to traceability and chordality.

2.1 A  foreword on interval graphs and related graph classes

I n t e rva l  graphs are the intersection graphs of intervals of R.  They have long been studied in
combinatorics, since the pioneering papers by Lekkerkerker{Boland [LB62] and Gilmore{
Homan [GH64], and have a tremendous amount of applications; see e.g. [Gol80, Ch. 8, Sec. 4] for a
survey. U n i t - i n t e rva l  graphs, also known as \indierence graphs" [Rob69] or \proper interval
graphs", are the intersection graphs of unit intervals, or equivalently, the intersection graphs of
sets of intervals no two of which are nested. The claw K1;3  is the classical example of a graph
that can be realized as intersection of four intervals, three of which contained in the forth; but it
cannot be realized as intersection of unit intervals.

Bertossi noticed in 1983 that connected unit-interval graphs are traceable [Ber83], whereas
connected interval graphs in general are not: The claw strikes. Al l  2-connected unit-interval
graphs are Hamiltonian [CCC97][PD03]; again, this does not extend to 2-connected interval
graphs. That said, for interval graphs (and even co-comparability graphs, see below for the
denition) the Hamiltonian Path Problem and the Longest Path Problem can be solved in
polynomial time [DS52] [MC12], whereas for arbitrary graphs both problems are well known to be
NP-complete, cf. [Kar72].

Given a nite set of intervals in the horizontal real line, we can swipe them \left-to-right", and
thus order them by increasing left endpoint. This so-called \canonical labeling" of the vertices
of an interval graph obviously satises the following property: for all a <  b <  c,

ac 2  G  = )  ab 2  G: (4)

This \under-closure" is a characterization: It is easy to prove by induction that any graph with n
vertices labeled so that (4) holds can be realized as the intersection graph of n intervals. This
result was rst discovered by Olario, cf. [LO93, Proposition 4].

There is a \geometrically dual argument" to the one above: Given a nite set of intervals
in R, we could also swipe them right-to-left, thereby ordering the intervals by decreasing right
endpoint. This yields a vertex labeling that again satises (4), for the same geometric reasons.
In general, since some of the intervals may be nested, this \dual labeling" bears no relation with
the canonical one. But if we start with a nite set of unit intervals, then the dual labeling is
simply the reverse of the canonical labeling. Thus in unit-interval graphs, not only the canonical
labeling is under-closed, but also its reverse is. Or equivalently, in unit-interval graphs, the
canonical labeling is closed ‘both below and above’: in mathematical terms, for all a <  b <  c,

ac 2  G  = )  ab; bc 2  G: (5)

Again, it is not dicult to prove by induction that any graph with n vertices, labeled so that (5)
holds, can be realized as the intersection graph of n unit intervals [LO93, Theorem 1]; see Gardi
[Gar07] for a computationally-ecient construction.

Recently Herzog et al. [H&10, E&13] rediscovered unit-interval graphs from an algebraic
perspective, which will be discussed in the next chapter. They called them closed graphs and ex-
panded the notion to higher dimensions as well (\closed d-complexes"). Later Matsuda [Mat18]
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extended this algebraic approach to the broader class of \co-comparability graphs" (or \weakly-
closed graphs"), that we shall now describe in terms of their complement.

Any graph can be given an acyclic orientation by choosing a vertex labeling and then by
directing all edges from the smaller to the larger endpoint. Every acyclic orientation can be
induced this way. (This is not a bijection: dierent labelings may induce the same orientation). The
drawings of  posets, also called comparability graphs, admit also transitive orientations,
namely, orientations such that if ab and bc are present, so is a~c. Let us rephrase this in terms of a
vertex labeling, which happens to be the same as a choice of a linear extension of the poset:
Comparability graphs are those graphs G  that admit a labeling such that, for all a <  b <  c,

ab 2  G  and bc 2  G  = )  ac 2  G:

Not all graphs admit transitive orientations: The pentagon, for example, does not.
Co-com parabi l i t y  graphs, also called weakly-c losed graphs in [Mat18], are by def-

inition the complements of comparability graphs. So they have a labeling that satises the
contrapositive of the property above: Namely, for all a <  b <  c,

ac 2  G  = )  ab 2  G  or bc 2  G: (6)

By comparing (4) and (6), it is clear that all interval graphs are co-comparability.
We should mention other two famous properties that all interval graphs enjoy. A  graph is

p e r f e c t  if its chromatic number equals the size of the maximum clique. For example, even
cycles are perfect, but odd cycles are not, because they have chromatic number 3 and maximal
cliques of size 2. Note that in poset drawings, a clique (resp. an independent set) is just a chain
(resp. an antichain) in the poset, whereas a coloring represents a partition of the poset into
antichains. Thus Dilworth’s theorem (\for every partially ordered set, the maximum size of an
antichain equals the minimum number of chains into which the poset can be partitioned" [Dil50] {
see Fulkerson [Ful56] for an easy proof) can be equivalently stated as \every co-comparability
graph is perfect". Not all perfect graphs are co-comparability, as shown by large even cycles.

Last property: A  graph is chorda l  if it has no induced subcycles of length  4. One can
characterize chordality in the same spirit of (4), (5) and (6): Namely, a graph is chordal if and
only if it admits a labeling such that, for all a <  b <  c,

ac; bc 2  G  = )  ab 2  G: (7)

In fact, if a graph G  has a labeling that satises (7), then G  is obviously chordal, because if c is the
highest-labeled vertex in any induced cycle, then its neighbors a and b in the cycle must be
connected by a chord by (7). The converse, rst noticed by Fulkerson{Gross [FG65], follows
recursively from Dirac’s Lemma that every chordal graph has a \simplicial vertex", i.e. a vertex
whose neighbors form a clique (cf. [Gol80, p. 83] for a proof). In fact, let us pick any simplicial
vertex and label it by n. Then, in the (chordal!) subgraph induced on the unlabeled vertices, let
us pick another simplicial vertex and label it by n   1; and so on. The result is a labeling that
satises (7). See [Gol80, pp. 84{87] for two algorithmic implementations.

Now, if the same labeling satises (6) & (7), then it trivially satises (4); and conversely, if
(4) holds, then also (6) & (7) trivially hold. Thus it is natural to conjecture that interval
graphs are the same as the co-comparability chordal graphs. The conjecture is true, although
the ‘obvious’ proof does not work: Some labelings on chordal graphs satisfy (6) but not (4),
like 13; 23; 24 on the three-edge path. However, Gilmore{Homan proved that any labeling that
satises (6) on a chordal graph (or more generally, on a graph that lacks induced 4-cycles) can
be modied in a way that ‘linearly orders’ all maximal cliques [Gol80, Theorem 8.1] and thus
satises (4). For more characterizations, and a proof that all chordal graphs are perfect, see
Golumbic [Gol80, Chapter 4].
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2.2 Higher-dimensional analogs and a hierarchy

A  d-dimensional extension of Characterization (7) of chordality was provided in 2010 by Em-
tander [Emt10], and is equivalent to the following:

Denit ion 28 (chordal). Let  be a pure d-dimensional simplicial complex with n vertices.  is called
chordal if there exists a labeling 1; : : : ; n of its vertices (called a \PEO"  or \Perfect Elimination
Ordering ") such that for any two facets F  =  a0a1 ad and G  =  b0 bd of  with ad =  bd, the complex
contains the full d-skeleton of the simplex on the vertex set F  [  G.

In 2013, Characterization (5) of unit-interval graphs was generalized as well:

Denit ion 29 (closed [E&13]). Let  be a pure d-dimensional simplicial complex with n
vertices.  is called closed if there exists a labeling 1; : : : ; n of its vertices such that for any two
facets F  =  a0a1 ad and G  =  b0 bd of  with ai =  bi for some i, the complex  contains the full d-
skeleton of the simplex on the vertex set F  [  G.

Obviously, closed implies chordal. We now present four notions that in the strongly connected
case are progressive weakenings of the closed property (see Theorem 50 and Proposition 54 for
the proofs); the rst property still implies chordality, whereas the last three do not. In Section 2.3,
we connect all these notions to traceability (Theorem 63). One of these properties is \new" even
for d =  1: We will see its importance in Chapter 3.

Denit ion 30 (unit-interval). Let  be a pure d-dimensional simplicial complex with n vertices. The
complex  is called unit-interval if there exists a labeling 1; : : : ; n of its vertices such that for any d-
face F  =  a0a1 ad of , the complex  contains the whole d-skeleton of the simplex with vertex set
fa0; a0 +  1; a0 +  2; : : : ; adg.

Denit ion 31 (under-closed). Let  be a pure d-dimensional simplicial complex with n vertices. The
complex  is called under-closed if there exists a labeling 1; : : : ; n of its vertices such that for any d-
face F  =  a0a1 ad of  the following condition holds:

• all faces a0i1i2 : : : id of n  with i1  a1; i2  a2; : : : ; id  ad, are in .

Denit ion 32 (semi-closed). Let  be a pure d-dimensional simplicial complex with n vertices. The
complex  is called semi-closed if there exists a labeling of its vertices such that for any d-face F  =
a0a1 : : : ad of , at least one of the two following conditions holds:

(i) either all faces a0i1i2 : : : id of n  with i1  a1; i2  a2; : : : ; id  ad, are in , (ii) or all
faces i0 i1 : : : id 1ad of n  with i0  a0; i1  a1; : : : ; id 1  ad 1 are in .

Denit ion 33 (weakly-closed). Let  be a pure d-dimensional simplicial complex with n ver-tices.
is called weakly-closed if there exists a labeling 1; : : : ; n of its vertices such that for each d-face F
=  a0a1 ad 2  , for every integer g 2= F  with a0 <  g <  ad, there exists a d-face G  =  b0b1 bd in  such
that G  contains g, G  is adjacent to F ,  and at least one of the following two conditions hold:

(i) either bd =  ad,
(ii) or b0 =  a0.

Remark 34. For d =  1, and assuming connectedness:
• \closed 1-complexes" and \unit-interval 1-complexes" are the same as the unit interval

graphs; compare Looges{Olario [LO93, Theorem 1] and Matsuda [Mat18, Prop. 1.3].

Several dierent d-dimensional generalizations of chordality exist in the literature, e.g.     toric chordality
[ANS16] or ridge-chordality, cf. e. g. [BB21]. Emtander chose the name \d-chordal" for what here we call \chordal".
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• \under-closed 1-complexes" are the same as the interval graphs, cf. [LO93, Proposition 4].
• \weakly-closed 1-complexes" are the same as the co-comparability graphs; this is clear from

the denition we gave, but a proof is also in Matsuda [Mat18, Theorem 1.9].
We will see that \semi-closed 1-complexes" are an intermediate class between the previous two.
For example, such class contains the 4-cycle but not the complement of long even cycles, as we
will prove in Theorem 50.

Remark 35 (\unit-interval" vs. \chordal"). Suppose F  and G  are two faces of a complex  with
min F =  min G. Then any of the two conditions \  is closed", \  is unit-interval" forces  to contain
the full d-skeleton of the simplex on the vertex set F  [  G. (Instead, the condition \  is under-
closed" does not suce: See Remark 36 below). Symmetrically, if F  and G  are d-faces of  with
max F =  max G, and  is either closed or unit-interval, then  must contains the full d-skeleton of
the simplex on the vertex set F  [  G. For this reason, all unit-interval d-dimensional complexes
are chordal.

Remark 36 (\Under-closed" vs. \chordal"). Not all chordal complexes are under-closed: Al-
read for d =  1, the chordal graph G  =  12; 13; 14; 23; 25; 36, known as \3-sun" or \net graph",
is neither interval nor co-comparability. However, while all interval graphs are chordal (and co-
comparability), the statement \all under-closed d-complexes are chordal" is false for d >  1. In
fact, we leave it to the reader to verify that the smallest counterexample is the 2-complex

 =  123; 124; 234; 235:

The other direction in Gillmore{Homan’s theorem (namely, \all chordal co-comparability
graphs are interval graphs") does not extend to d >  1 either, as the next Proposition shows.

Proposition 37. (i) Some chordal simplicial complexes are semi-closed, but not under-closed.
(ii) If a simplicial complex is chordal and semi-closed with respect to the same labeling, then

with respect to that labeling the complex is also under-closed.

Proof. (i) The example we found is the complex

 =  123; 124; 134; 135; 167; 234; 246:

The labeling above is a PEO, so  is chordal. A  convenient relabeling (we leave it to the
reader to gure out the bijection from the vertex degrees) allows us to rewrite it as

 =  123; 256; 345; 346; 347; 356; 456:

With this new labeling we see that  is weakly- and semi-closed. However, with the help of
a software designed by Pavelka [Pav21], we veried that  is not under-closed.

(ii) Let  be a simplicial complex with a labeling that is a PEO and makes  semi-closed. Let
F  =  a0 ad be a face of  with gap F >  0. Let G  =  a0b1 bd be a dierent d-face of n  such that
G   F  (componentwise) and min G =  min F . We claim that for any bi not in F ,  there
exists a d-face A i  of n  that contains bi, such that A i   F  (componentwise) and max Ai =
max F . In fact, by construction a0 <  bi  bd  ad. Since bi is not in F ,  there exists a
unique j  2  f0; : : : ; d 1g such that aj  <  bi <  aj +1 . Thus if we set

A i  =  a0 aj  1 bi aj +1 ad

the claim is proven. Now, either F  satises condition (i) of the semi-closed denition,
and then G  2  ; or F  satises condition (ii), in which case all Ai ’s are in . But
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by construction, the maximum of all these Ai ’s is ad, the same maximum of F .  So by
chordality,  must contain all the d-faces of n  with vertex set contained in

F  [
[

A i      =  fa0; a1; : : : ; adg [  fb1; : : : ; bdg =  F  [  G:
i  s.t. b i 2= F

So also in this case G  2  .

Remark 38. Part (ii) of Proposition 37 is false if one replaces the assumption \semi-closed"
with \weakly-closed": The subcomplex 0 =  123; 124; 134; 135; 234 of  is weakly-closed and
chordal with respect to this labeling, but to prove it under-closed, we need to change labeling.

Remark 39 (\Under-closed" vs. \Shifted"). Recall that a simplicial complex  on n vertices is
called shifted if for every face F  of , and for every face G  of the simplex on n vertices, if dim F =
dim G and F   G  componentwise, then also G  2  . Shifted complexes are obviously under-closed.
The converse is false, as shown by the graph 12; 23; 34.

Remark 40. Being shifted is maintained under taking cones, by assigning label 1 to the new
vertex. In contrast, G  =  12; 13; 23 is closed and chordal, but the cone over it is neither closed nor
chordal. In fact, none of the ve properties (closed, unit-interval, under-closed, semi-closed,
weakly-closed) is maintained under taking cones. A  counterexample for all is the unit-interval
graph G  =  12; 34; 56; 78. The cone over G  is the U4 of Lemma 43 below.

Let us start exploring the relations between all the new properties with some Lemmas.

Lemma 41. Let d  k  1 be integers. If a pure d-dimensional simplicial complex is unit-interval
(resp. under-closed, resp. semi-closed, resp. weakly-closed), then its k-skeleton is also unit-
interval (resp. under-closed, resp. semi-closed, resp. weakly-closed).

Proof. It suces to prove the claim for k =  d   1; the general claim follows then by iterating. We
prove only the weakly-closed case; the others are easier. Let  be a pure weakly-closed d-
complex. Let  =  a0 ad 1 be a (d   1)-face of . Let g 2=  be an integer such that a0 <  g <  ad 1.
Since  is pure, there exists a d-face F  of  that contains . Let v be the vertex of F  not in . If v =  g,
i.e. if F  =  fgg [  , then all the d facets of  dierent than  are adjacent to  and contain g; if we choose
one of these d facets that has either dierent minimum or dierent maximum than , we are done. So
let us assume that v =  g, or equivalently, that F  does not contain g. By the weakly-closed
assumption, there exists a d-face G  in  such that G  contains g, G  is adjacent to F ,  and G  and F
do not have same minimum and maximum. If G  contains the entire face , i.e. G  =   [  g, then
again we could conclude as above, choosing some facet of G  dierent than . So we can assume that
G  does not contain the whole of , or in other words, that the vertex v is present in G. Let  be
the unique face of G  that does not contain v. By construction,  and  are adjacent, and g 2  .
If  and  had same minimum and maximum, then also F  and G  would, because F  and G  are
obtained by adding to  and , respectively, the same element v. Hence, the (d 1)-skeleton
of  is weakly-closed.

Lemma 42. Let d  2. Let C d + 1  be the (d +  1)-dimensional simplicial complex with facets H 1  and
H2 . The boundary S d of C d + 1  is strongly-connected, semi-closed, but not under-closed. The d-
skeleton B d  of C d + 1  is traceable, strongly-connected, unit-interval, but not closed.
In particular, the k-skeleton of a closed complex need not be closed.

Proof. Note that S d is B d  minus a d-face, so since d  2 the 1-skeleta of B d  and of S d coincide.
The vertices of B d  (respectively, of S d ) can be partitioned with respect to the number of edges
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containing them, as follows: exactly two vertices have degree d +  1, and we shall call them
\apices"; the remaining d +  1 have degree d +  2, and we shall call them \basepoints". The
crucial remark is that in B d  (resp. S d ) the two apices are not connected by any edge. We claim
that any labeling that makes B d  or S d closed must assign labels 1 and d +  3 to the two apices. In
fact:

• If the label 1 is assigned to a basepoint, let b1; : : : ; bd be the other d basepoints and let
v; w be the apices, with v <  w. Then B d  (resp. S d ) contains a d-face F  of vertices
f1; b1; : : : ; bd 1; vg and a d-face G  of vertices f1; b1; : : : ; bd 1; wg. Note that 1 is in the
same position in F  and G, yet B d  (or S d ) does not contain the whole d-skeleton of the
simplex on F  [  G, because vw is missing. So the closed condition is not satised.

• Symmetrically, if d +  3 is assigned to a basepoint, call b1; : : : ; bd the other basepoints
and v; w the apices, with v <  w. Then B d  (resp. S d ) contains a d-face F  of vertices
fv; b1; : : : ; bd 1; d +  3g and a d-face G  of vertices fv; b1; : : : ; bd 1; d +  3g. So d +  3 is the
maximum of both faces, and again B d  (resp. S d ) does not contain the edge vw, so the
closed condition is not met.

Next, we claim that any labeling that makes S d under-closed must assign labels 1 and d +  3 to the
two apices. (Caveat: This claim is valid only for S d, since already B 2  is under-closed with the
labeling 123; 124; 134; 234; 125; 135; 235, where the apices are 4 and 5.) In fact:

• If the label 1 is assigned to a basepoint, then any other vertex is contained in a facet that
contains also 1. The same is true if d + 3 is assigned to a basepoint. So either way, there is
a face H  containing both 1 and d +  3. Thus gap H =  2. But then if the labeling is under-
closed, the complex must contain all three facets 12 d j, with j  2  fd  +  1; d +  2; d +  3g. So
we found in S d three dierent facets containing the (d 1)-face  =  12 d. This is a
contradiction because S d is topologically a sphere: Every (d   1)-face in it lies in exactly
two d-faces.

Thus the two claims are proven. So up to a rotation that does not aect the list of facets, both
for B d  and S d we may focus on the labeling that we introduced from the start. With respect to
that labeling, S d is clearly semi-closed, but it is not under-closed, because the d-face with vertices
2; 3; : : : ; d +  1; d +  2 is missing. Similarly, with respect to that labeling, B d  is traceable and
unit-interval, but it is not closed for the following reason. Let F  (resp. G)  be the face of
vertices 1; 3; 4; : : : ; d +  1; d +  2 (resp. 2; 3; 4; : : : ; d +  1; d +  3). Since F  (resp. G)  is contained in
the facet H 1  (resp. H2 )  of C d+1 , it is in B d . Yet vertex 3 appears in second
position in both F  and G. However, the face H 3  of vertices 1; 3; 4; : : : ; d +  1; d +  3 contains the
edge connecting the two apices, so H 3  is not in B d .

F igure  3: (i) A  2-complex B 2  =  123; 124; 134; 234; 235; 245; 345 that is unit-interval, but not closed; if we
remove the triangle 234, we get a 2-complex S 2 that is semi-closed, not under-closed, cf. Lemma 42. (ii)
A  2-complex U 2 =  124; 345; 467 that is closed, but not weakly-closed, cf. Lemma 43.
(iii) A  2-complex 2 =  123; 124; 125 that is under-closed, but not unit-interval, cf. Lemma 44.
(iv) A  2-complex Q2 =  123; 125; 234; 245 that is weakly-closed, but not semi-closed, cf. Lemma 46.
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Lemma 43. Let d and k be positive integers. Let U d be a one-point union of k copies of d. Then
U d is closed if and only if k  d +  1, and it is weakly-closed if and only if k  2. In particular, for
all d  2, the d-complex Ud+1 is closed, but not weakly-closed.

Proof. Let v be the vertex common to all facets. When k >  d +  1, by the pigeonhole principle
there are two facets in which v appears in the same position; were U d closed, its dual graph
would have to contain a clique, which is not the case. When k  d +  1, we force the closed
property by giving v a label so that v appears in a dierent position in all facets. We show an
algorithm to do this in case k =  d +  1, leaving the case k <  d +  1 to the reader. We label v by fd

=  d+1      +  1. We label the vertices of the rst facet by 123 d fd: so in the rst facet, v comes last.
Then for all i  =  2; 3; : : : ; k =  d +  1, we label the i-th facet by using the next
available d   i  integers below fd , then fd , then the rst i    1 available integers after fd . This way in
the i-th facet, v comes \i-th last". For example, the labeling we construct for U 3, since f3  

def       4

+  1 =  7, is U 3 =  1237; 4578; 679 10; 7 11 12 13.
Finally, suppose that U d is weakly-closed. No face of U d has an adjacent facet. Hence, the
labeling satisfying the weakly-closed condition must consist only of gap-0 faces. But labeling all
facets with consecutive vertices is possible if and only if k  2.

Lemma 44. Let k  1 and d  2 be integers. Let d be the d-dimensional complex on d +  k
vertices obtained by joining the (d  1)-simplex d 1 to a 0-complex consisting of k points. Then

(a) d is under-closed for all k.
(b) d is closed, if and only if it is unit-interval, if and only if it is (weakly) traceable, if and

only if k  2.

Proof. Let us label the vertices of d 1 by 1; 2; : : : ; d. This labeling immediately shows that d

is under-closed. Moreover, the d-complex d is strongly-connected. It has exactly d +  k vertices
and k facets. When k  2 its dual graph is a path, so clearly the obvious, consecutive labeling
makes d a closed, unit-interval, and traceable complex. But when k  3, the \path

of k d-simplices" is not a subcomplex of d. Hence, for k  3 the complex d is not traceable, not
weakly-traceable, and not weakly-Hamiltonian. The fact that d is neither unit-interval nor

closed can be veried either directly, or using Proposition 54 and Theorem 56 below.

Remark 45. The 1-skeleton of 3 =  123; 124; 125 (cf. Figure 3) is the graph

G5 =  12; 13; 14; 15; 23; 24; 25

which is under-closed by Lemma 41. It is not dicult to see that G5 is the smallest 2-connected
interval graph that is not Hamiltonian.

Lemma 46. Let d  2 be an integer. Let Qd be the d-dimensional complex on d +  3 vertices
obtained by taking d   1 consecutive cones over the square. Then Qd is weakly-closed, but not
semi-closed.

Proof. Both Q2 =  123; 125; 234; 245 and Q3 =  1236; 1256; 2346; 2456 are weakly-closed. If we
label further coning vertices using consecutive labels after 6, we claim that the weakly-closed
property is maintained. (This is not obvious, as the weakly-closed property is not maintained
under arbitrary cones, cf. Remark 40.) In fact, since every face F  of Q3 contains 6, the gap of F
equals the gap of F  [  f7g, and the missing integers are the same, so the calculations proving
weakly-closedness end up being the same for Q3 and Q4. For the same reasons, one can show
that if some Qd is semi-closed with a labeling that assigns consecutive labels to two apices, then Qd

1 is semi-closed too. But if d  7, Qd has  10 vertices, and only 4 of them are not apices; so
necessarily two apices are assigned consecutive labels. So to complete the proof we only need to
show that Q2; Q3; Q4; Q5 and Q6 are not semi-closed, which can be veried with [Pav21].
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Lemma 47. Let  be a pure d-complex where every vertex is in at most k facets.
(1) In any labeling that makes  weakly-closed, every facet has gap  2k 2.
(2) In any labeling that makes  semi-closed, every facet has gap  k 1.

If in addition d =  1 and  is a k-regular graph, then in any labeling that makes  semi-closed,
the k edges of the type 1j , with 2  j   k +  1, are all in ; and so are all the k edges of the type
in, with n k  i   n 1.

(3) In any labeling that makes  unit-interval, every facet has gap  g, where g is the largest
integer such that g +d       k; in particular, every facet has gap  d  kd! 1.

Proof. For any vertex v of , let deg v be the number of facets of  containing it. For any facet F  of ,
let S F  be the set of integers i  2= F  such that min F <  i  <  max F . By denition, S F  has cardinality
equal to gap F . For brevity, set a =  min F and b =  max F .
(1) For every i  in S F  , there is a face G i  adjacent to F  that contains the vertex i  and exactly

d vertices of F ,  among which exactly one of a; b. Clearly as i  ranges over S F  , the Gi ’s are
all dierent. So deg a +  deg b  gap F +  2. (The summand 2 is due to the fact that we
should count also F  itself, once contributing to deg a and once to deg b). Since k  deg a
and k  deg b, we conclude that gap F  2k 2.

(2) For every i  in S F  , either  contains the na  gap F +  1 facets (including F  itself ) with
minimum a that are componentwise  F ,  or  contains the nb  gap F + 1  facets (including F
itself ) with maximum b that are componentwise  F .  Either way, there is a vertex v
(either a or b) with deg v  gap F +  1. Since deg v  k by assumption, we conclude that
gap F  k 1. So the rst claim is settled. From this applied to d =  1, it follows that

f  edges of  containing 1 g  f  1j  such that 2  j   k +  1 g:

The two sets above have size deg 1 and k, respectively. If  is k-regular, the two quantities
are equal, hence the sets coincide. The same argument applies to the edges containing n.
(3) For every i  in S F  , by denition of unit-interval,  contains the gap F +d     d-faces that contain

vertex i  and have vertices in fa; a + 1; : : : ; bg. So we must have gap F +d      k. In particular,
since g +d       (g +1) d  

for all positive integers g; d, we cannot have (gap F +1)d  
>  k.

Our next Lemma is a d-dimensional version of the well-known fact that cycles of length 5 or
more are not co-comparability, cf. Matsuda [Mat18].

Lemma 48. For n  2d+3, the d-dimensional annulus A n  =  H1 ; H2; : : : ; Hn and any k-skeleton of
it are not weakly-closed.

Proof. By Lemma 41, it suces to prove that the 1-skeleton G  of A n  is not weakly-closed. By
contradiction, let a1; : : : ; an be a re-labeling of the vertices 1; : : : ; n (respectively) that proves
G  weakly-closed. Up to rotating the labeling cyclically, we can assume that a1 is the
smallest of the ai’s.     Since n  2d +  3, in particular n   d >  d +  2, so the labels an d; an

d+1; : : : ; an; a1; a2; : : : ; ad+2 are all distinct. Were ad+2 <  an, we would have a con-tradiction
with the weakly-closed assumption: a1an is in G, but neither a1ad+2 nor ad+2an is. So an <  ad+2.
Symmetrically, were ad+1 >  an d, we would have a contradiction: a1ad+1 is in G, but neither
a1an d nor an dad+1 is. So ad+1 <  an d. Now let us compare ad+1 and an:
{  If ad+1 >  an, then an <  ad+1 <  an d by what we said above; so we get a contradiction,

because the edge anan d is in G, but neither anad+1 nor ad+1an d is.
{  If ad+1 <  an, then ad+1 <  an <  ad+2 by what we said above; so symmetrically we get another

contradiction, because ad+1 ad+2 is in G, but neither ad+1an nor anad+2 is.
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Remark 49. A6 is not weakly-closed, even if its 1-skeleton is semi-closed [Pav21]. (A5 instead
is weakly-closed.) So the bound n  2d +  3 of Lemma 48 is best possible in general, but if one

only cares about A n  and not about its skeleta, then it can be improved.

Theorem 50. For each d  1, for (pure) simplicial d-complexes, one has the hierarchy

f  unit-interval g (  f  under-closed g (  f  semi-closed g (  f  weakly-closed g (  f  all g:

Proof. Al l  inclusions are obvious except perhaps the third one. Let F  =  a0a1 : : : ad be a face
of . If F  satises condition (i) in the denition of semi-closed, and there is a g such that

ai <  g <  ai+1 , then G0 =  a0a1 ai g ai+1 ad 1 is componentwise  F  and thus belongs to ; moreover,
since max G0 <  max F , the face G0 satises condition (i) in the denition of weakly-

closed. If instead F  satises condition (ii) in the denition of semi-closed, and ai <  g <  ai + 1  for
some g, then G00 =  a1 ai g ai + 1  ad is componentwise  F ,  so G00 is in ; and since min G00 >  min F ,
this G00 satises condition (ii) in the denition of weakly-closed.

F igure  4: One-dimensional simplicial complexes that are: (i) Not unit-interval, but under-closed. (ii)
Not under-closed, but semi-closed. (iii) Not semi-closed, but weakly-closed. (iv) Not even weakly-closed.

Next, we discuss the strictness of the inclusions, which is the interesting part of the theorem.
(i) For d =  1, the claw graph 12; 13; 14 is under-closed only with this labeling, which is not

unit-interval because for example 23 is missing.
For d  2, strictness follows by Lemma 44.

(ii) For d =  1, the 4-cycle is semi-closed with the labeling 12; 13; 24; 34. By Lemma 47, part
(2), only this labeling makes the 4-cycle semi-closed. This labeling is not under-closed,
because 24 is an edge, but 23 is not. More generally, for any n  4, one can show that
the graph susp(An 2) of Remark 12 is semi-closed (with the suspension apices labeled by
1 and n), but not under-closed.
For d  2, the strictness of the inclusion follows by Lemma 42.

(iii) For d =  1: Since C2k  is a comparability graph (it is the nonempty-face poset of the
k-gon), C2k  is co-comparability. We claim that C2k  is not semi-closed for any k  3. For
notational simplicity, we give the proof for k =  3; the case of arbitrary k has a completely
analogous proof. Suppose by contradiction that C6  has a semi-closed labeling. Since C6

is 2-regular, its complement is (6 1 2)-regular, i.e. 3-regular. By Lemma 47, part (2),
all of 12; 13; 14 and 36; 46; 56 are edges. In contrast, 15, 16 and 26 are not edges, again
by Lemma 47. But then 25 must be an edge of C6 , for otherwise 15, 16, 26 and 25 would
form a 4-cycle inside the complement, which is C6 . We claim that this edge 25 cannot
satisfy the semi-closed condition. In fact, if all of 23; 24; 25 were edges, together with 12
we would have 4 edges containing vertex 2, contradicting 3-regularity; and similarly, if
all of 25; 35; 45 were edges, counting also 56 we would have 4 edges containing vertex 5.
This shows strictness of the inclusion for d =  1; the case d  2 is settled by Lemma 46.

(iv) For any d  1, this is settled by Lemma 48.
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2.3 Shortest dual paths and relation with traceability

As we saw in Lemma 43, there exist complexes like U3 =  124; 345; 467 that are closed but not
weakly-closed. So at this point we owe the reader some explanation: Why did we (and before us,
Matsuda [Mat18] and others, in the 1-dimensional case) choose to call \weakly-closed" a property
not implied by \closed"? Here is the reason. We are going to show that all strongly-connected
closed complexes are unit-interval (Proposition 54), so in particular under-closed, semi-closed,
and weakly-closed. We will then prove that all such complexes are traceable (Theorem 56),
which can be viewed as a higher-dimensional generalization of the graph-theoretical results by
Bertossi [Ber83] and Herzog et al’s [H&10, Proposition 1.4]. The key to our generalization is to
focus on shortest paths in the dual graph.

Denit ion 51. Let F  be a facet a pure d-dimensional simplicial complex . Let v be a vertex of .
A  shortest path between F  and v is a path in the dual graph of  of minimal length from F  to some
facet containing v. The distance between F  and v is the length of a shortest path, if any exists,
or + 1 ,  otherwise.

Denit ion 52. Let  be a pure d-dimensional simplicial complex, with vertices labeled from 1 to n.
A  path F0 ; F1 ; : : : ; F ‘  in the dual graph of  is called ascending, if each F i  is obtained from F i

1 by replacing the smallest vertex of F i  1, with a vertex greater than all remaining vertices of F i

1. A  path is called descending, if the reverse path is ascending.

For example, suppose that a 2-complex  contains the facets 124; 245; 456, and 356. The dual
path they form is not ascending {  or better, it is ascending, except for the last step. Such dual
path demonstrates that the vertex v =  3 is at distance  3 from 124. Now suppose that we know
in advance that  is closed: Then from 356; 456 2  , we immediately derive that  must contain the
whole 2-skeleton of the simplex 3456. Note that the same conclusion could be reached also if
we knew in advance that  is unit-interval, rather than closed. Either way:  contains the facet G  =
345 which contains 3 and is adjacent to 245. So 124; 245; 345 yields a \shortcut" to the original
path, thereby proving that v =  3 is actually at distance  2 from 124. And it gets even better:
Since 245 and 345 are in , by the closed assumption (or the unit-interval assumption) on , we
may conclude that  contains the whole 2-skeleton of the simplex 2345. So also 234 is in , which
means that v =  3 is at distance 1 from 124.

This example generalizes as follows, in what can be viewed as a higher-dimensional version
of Cox{Erskine’s narrowness property [CE15]:

Lemma 53. Let  be a pure d-dimensional simplicial complex, with a labeling that makes it either
closed or unit-interval. Let F  =  a0a1 ad be a facet of . Let v be a vertex. If the distance between
F  and v is a nite number ‘   2, then

• either there is a shortest path from F  to v that is ascending (and thus v >  ad),
• or there is a shortest path from F  to v that is descending (and thus v <  a0).

If instead a0 <  v <  ad, and some facet containing v is in the same strongly-connected component of
F ,  then the distance between F  and v is at most one, and  contains the whole d-skeleton of the
simplex on the vertex set F  [  fvg.

Proof. Let
F  =  F0; : : : ; Fi 1; F i ;  F i + 1

be a shortest path from F  to a vertex v 2  F i + 1 .  Suppose the path is ascending until F i ,  but it
stops being ascending when passing from F i  to F i + 1 .  This means that max Fi  =  max Fi+1 . By
Remark 35,  contains the whole d-skeleton of the simplex with vertex set F i  [  F i + 1 .  In
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particular, if we set  =  F i  1 \  F i ,  the complex  contains G  =   [  v. But since G  is a d-face that
contains v and is already adjacent to F i  1,

F  =  F0; : : : ; F i  1; G

is a shorter path from F  to v than the one we started with, a contradiction. The same argument
applies to descending paths. If instead a0 <  v <  ad, clearly there cannot be any ascending or
descending path from F  to v. So either v 2  F ,  in which case the distance from F  to v is 0 and
there is nothing to prove, or v 2= F ,  in which case the distance is 1. In the latter case, F  and the
adjacent face G  containing v have same maximum, so again by Remark 35 the complex  contains
the d-skeleton of the simplex on F  [  G  =  F  [  fvg.

Proposition 54. Al l strongly-connected closed simplicial complexes are unit-interval.

Proof. Let  be a strongly-connected d-dimensional simplicial complex that is closed with re-
spect to some-labeling. Let F  =  a0a1 ad 2  . We claim the following:
(*) If there exist m 2  f1; : : : ; dg and g1; : : : ; gm not in F ,  with a0 <  g1 <  g2 <  : : : <  gm <  ad,

then  contains the d-skeleton of the simplex with vertex set fa0; : : : ; ad; g1; : : : ; gmg.
If gap(F ) =  0, then the implication is trivially true, because the antecedent is never veried. So
suppose gap(F ) >  0, and let us proceed by induction on m.

For m =  1: Pick a vertex g of  not in F ,  with a0 <  g <  ad. Since  is strongly connected, by
the second part of Lemma 53 the complex  has a facet G  that contains g and is adjacent to F .
Had G  neither same minimum nor same maximum of F ,  then either G  =  a1a2 adg or G  =
ga0a1 ad 1. But both cases contradict the assumption a0 <  g <  ad. Hence, F  and G  have
either same minimum or same maximum (or both), so they share at least one vertex in the same
position. Since  is closed,  contains the d-skeleton of the simplex on F  [  G  =  F  [  fgg.

For m >  1: let H  be a subset of fa0; : : : ; ad; g1; : : : ; gmg of cardinality d +  1. If H  contains
at most m 1 elements of fg1 : : : ; gmg, then we know that H  2   by the inductive assumption. If
g1; : : : ; gm are all vertices of H ,  let us consider a new face H 0 with exactly the same vertices of
H ,  except for one replacement, to be decided as follows:

• If min H =  a0 and max H =  ad, we shall replace g1 with any vertex v of F  that is not
in H .  This way, since a0  v  ad, we have that as real intervals

(min H; max H ) =  (a0; ad) =  (min H 0; max H 0):

• If min H =  g1, or if min H =  ai for some i  >  0, we shall replace g1 with a0. This way

(min H; max H ) (  (a0; max H ) =  (min H 0; max H 0):

• If max H =  gm, or max H =  ai for some i  <  d, we shall replace gm with ad. This way

(min H; max H ) (  (min H; ad) =  (min H 0; max H 0):

In all three cases, if w is the only element that belongs to H  but not to H0, then w is either g1
or g , and we have

min H 0 <  w <  max H 0:

Moreover, H 0 contains at most m   1 elements of fg1 : : : ; gmg, so by the inductive assumption H 0

is in . But since min H 0 <  w <  max H 0, by the second part of Lemma 53 we conclude that also H  is
in . By the genericity of H ,  this proves Claim (*). From the Claim the conclusion follows
immediately, by choosing m maximal.
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Remark 55. The converse is false: The complex with k disjoint d-simplices is obviously not
strongly-connected, yet it is unit-interval with the natural labeling below:

 =  H1 ; Hd + 2 ;  H2d+3 ; : : : ; H(k  1)d+k :

For connected graphs, it is obvious that \closed" and \unit-interval" are the same: This is noticed
also in Matsuda [Mat18, Proposition 1.3] and Crupi{Rinaldo [CR14]. However, as we saw in
Lemma 42, higher-dimensional complexes that are both strongly-connected and unit-interval
might not be closed.

We have arrived to the main result of this section, the generalization of Bertossi’s theorem:

Theorem 56 (Higher-dimensional Bertossi). Let  be a pure d-dimensional simplicial complex
that is either closed or unit-interval. Then

 is strongly-connected ( )   is traceable.

Proof.
( :  Let F  be a d-face of . We want to nd a walk from  to H 1  in the dual graph. If gap F

=  0, then F  =  H j  for some j ,  and H1 ; H2 ; : : : ; Hj is the desired path. If gap F >  0,
let i  =  min F . Since F  and H i  have same minimum, by Remark 35  contains the whole d-
skeleton of the simplex on F  [ H i .  But the d-skeleton of a higher-dimensional simplex is
strongly-connected, which means that in the dual graph of  we can walk from F  to Hi .  And
since H i  has gap 0, we can walk from it to H1 .

) :  F ix  a labeling for which  is (almost-)closed. We are going to show by induction on j  that
with the same labeling, every H j  is in . For j  =  1, since  is pure, it contains a face F  =
a0a1 ad with a0 =  1, and then it is easy to derive (either directly, or using that the labeling
satises the under-closed condition by Theorem 50) that H 1  is in . Now suppose that
contains H j  and let us show that  contains H j + 1 .  By Lemma 53,  has a d-face H 0 that
contains d +  j  +  1 and is adjacent to H j .  Such H 0 has the same vertices of H j ,  with the
exception of a single vertex i  that was replaced by d + j  + 1.  Now either i  =  j ,  in which
case H 0 =  H j + 1  and we are done; or i  >  j .  If i  >  j ,  then j  was not replaced, so it is still
present in H0. Hence H 0 and H j  are adjacent faces with the same minimum, namely, j .
By Remark 35, this implies that H j + 1  is in .

Remark 57. If the \unit-interval" assumption is weakened to \under-closed", then the direction
\ ) "  of Theorem 56 no longer holds, with K1;3  playing the usual role of the counterexample. The
direction \ ( "  instead is still valid. We claim in fact that all weakly-closed traceable complexes are
strongly-connected. To  see this, it suces to show that from any d-face F  of positive gap we can walk
in the dual graph to some gap-0 face. But the weakly-closed denition tells us how to move in the
dual graph from F  to a face F 0

 of smaller gap than F .  So if we iterate this, eventually we get from
F  to a gap-0 face. (The same type of argument is carried out in details in the proof of Theorem 63,
item (5), below.) That said, the \weakly-closed" assumption is needed for \ ( " .
In fact, for any d  2, if Gd =  f1; d +  2; 2d +  3; : : : ; (k   1)d +  k; kd +  (k +  1); : : : ; d2 +  d +  1g, then
the traceable d-complex with d2 +  d +  1 vertices  =  H1; H2; : : : ; Hd2 ; Hd 2 +1  ; Gd     is not strongly-
connected. Its dual graph is a path of length d +  1 plus an isolated vertex.

Generalizing a result by Chen, Chang, and Chang [CCC97, Theorem 2], we can push The-
orem 56 a bit further. If D  is a simplicial complex obtained from  by deleting some vertices
v1; : : : ; vk, then any labeling of  naturally induces a compressed labeling for D ,  just by ordering the
vertices of D  in the same way as they are ordered inside . For example, if  =  123; 134; 345, the
compressed labeling for D  =  del(2; ) is 123; 234. A  priori, this D  need not be pure.
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Lemma 58. Let 0 be a d-dimensional simplicial complex obtained by deleting some vertices from
a d-dimensional simplicial complex . If  is unit-interval (resp. under-closed, resp. semi-closed),
then so is 0.

Proof. If the original labeling satised the unit-interval (resp. under-closed, resp. semi-closed)
condition, so does the compressed labeling.

Lemma 59. Let  be a d-dimensional strongly-connected simplicial complex, with a labeling
that makes it unit-interval. The following are equivalent:
(a) The deletion of d or less vertices, however chosen, yields a d-complex that is strongly con-

nected.
(b) The deletion of d or less vertices, however chosen, yields a pure d-complex that with the

compressed labeling is traceable.
(c)  contains all faces of gap  d.

Proof. (a) ,  (b): By Lemma 58 the compressed labeling satises the unit-interval condition.
Via Theorem 56, we conclude.

(b) )  (c): By deleting zero vertices we notice that  is itself traceable. Let F  =  a0 ad be any
d-face of d that has gap  d. If gap(F ) =  0, then F  is one of H1; : : : ; Hn d, so F  is

in  by denition of traceable. Otherwise, set S F  =  f j  2= F  such that a0 <  j  <  adg. Let 0 be the
complex obtained from  by deleting the vertices in S F  , which are at most d. By assumption,
0 is traceable with the \compressed labeling". So 0 contains a gap-0
face of minimum a0. But by how the compressed labeling is dened, this face has exactly
the vertices that in the original labeling for  were called a0; a1; : : : ; ad. So F  is in .

(c) )  (b): Let 0 be the d-complex resulting from the deletion. With the compressed labeling, 0
is traceable, because any gap-0 d-face of 0 with the compressed labeling, is a d-face of
that had gap  d in the original labeling. It remains to see that 0 is pure. We prove
that 0 has no facets of dimension d   1, leaving the case of facets of even lower
dimensions to the reader. We claim that every (d   1)-face  of  lies in at least d +  1 distinct
d-faces of . From the claim the conclusion follows via the pigeonhole principle: If we delete
d vertices, however chosen, then at least one of the d-faces containing  will survive the
deletion, which implies that  is not a facet in 0.
So let us prove the claim. Let  =  b0 bd 1. If bd 1   b0   d +  1 =  gap()  d, then bd 1 +
1  b0 +  2d. So for each i  in the (d +  1)-element set

T =  fb0; b0 +  1; : : : ; bd 1; bd 1 +  1; : : : ; b0 +  2dg n fb0; b1; : : : ; bd 1g

the d-face  [ f i g  has gap  d, and thus is in  by assumption. If instead gap()  d + 1,
we use the unit-interval assumption: for every i  in S  =  f i  2=  such that b0 <  i  <  bd 1g,
the d-face  [  f ig  is in . So either way the claim is proven.

Theorem 60 (Higher-dimensional Chen{Chang{Chang). Let  be a pure d-dimensional sim-
plicial complex.

• If  is unit-interval and the deletion of  d vertices, however chosen, yields a strongly-
connected d-complex, then  is Hamiltonian.

• If  is weakly-closed and Hamiltonian, the deletion of  1 vertices, however chosen, yields a
strongly-connected d-complex.

Proof. For the second claim: Up to a cyclic reshuing, the vertex we wish to delete is n. The
argument of Remark 57 yields a dual path in  from each d-face F  to H1 . If F  does not contain
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n, none of the d-faces in such dual path does, so the path belongs to the dual graph of the
deletion of n from .

Now we prove the rst claim. By Lemma 59,  contains all d-faces of gap  d. In particular: • for
any odd i  such that 1  i   n      2d,  contains the gap-d face Oi formed by i  and by

the rst d consecutive odd integers after i;
• for any even j  such that 2  j   n 2d,  contains the gap-d face E j  formed by j  and by

the rst d consecutive even integers after j ;
•  contains the gap-(d 1) face F  =  1; 2; 4; : : : ; 2d formed by 1 and by the d smallest even

natural numbers;
•  contains the gap-(d   1) face G  formed by the largest even integer  n and by the d

largest odd integers  n.
Now consider the following sequence C of d-faces in : First all Oi’s in increasing order, then G,
then all E j ’s  in decreasing order, then F .  Note that any two Oi’s are adjacent, and the last of
them is adjacent to G; symmetrically, any two E j ’s  are adjacent, and F  is adjacent to E2 . We
claim that this sequence would form a weakly-Hamiltonian cycle if we relabeled the vertices of  rst
by listing the odd ones increasingly, and then the even ones decreasingly.

Formally, if n is odd, we introduce the new labeling

‘1 =  1; ‘2 =  3; ‘3 =  5; : : : ; ‘ n
2  

1  =  n; ‘ n + 1  + 1  =  n 1; ‘ n + 1  + 2  =  n 3; : : : ; ‘ n  1 =  4; ‘ n  =  2:

And if instead n is even, we introduce the new labeling

‘1 =  1; ‘2 =  3; ‘3 =  5; : : : ; ‘
2  

=  n 1; ‘
2  + 1  =  n; ‘ n + 1  + 2  =  n 2; : : : ; ‘ n  1 =  4; ‘ n  =  2:

Let us set L 1  =  ‘1 ‘2 ‘d+1 , L 2  =  ‘2 ‘3 ‘d+2 , and so on. Then the sequence C described above is
equal (whether n is even or odd) to

L1 ; L2 ; : : : ; L b n
2  

1  c (d 1); L b n + 1  c+1 ; L b n + 1  c+2 ; : : : ; Ln d ; Ln  (d 1):

This shows that with the new labeling  is weakly-Hamiltonian. It remains to show for d
2 that our weakly-Hamiltonian cycle can indeed be ‘completed’ to a Hamiltonian cycle, in the
sense that the L i ’s that were not mentioned in C are anyway contained in . First of all, note
that  with the original labeling contained all the d-faces of gap  d, so in particular it
contained all d-faces containing 1 and with vertex set contained in F  [ O1 . This shows that with
the new labeling, L n  (d 2), : : :, L n  are all in . So it remains to consider the missing L i ’s from
the ‘center’ of the sequence C. For the \n odd" case (the case for n even is analogous), we have
to see whether  contains also the d 1 facets

L n
2  

1   d+2 ; L n + 1   d+3 ; : : : ; L n + 1  :

When we translate these d-faces back into the old labeling, it is easy to see that the face with the
largest gap is the last one, which has gap d 1. So all these faces are in  by assumption.

Example 61. Let  be an unit-interval 3-complex on n =  9 vertices that contains all tetrahedra
with gap  3. With the notation of Theorem 60 the complex  contains the sequence C below:

O1 =  1357; O2 =  3579; G  =  5789; E 2  =  2468; F  =  1246:

If we relabel the vertices as in the proof of Theorem 60, the list above becomes

L1 ; L2 ;  L3 ; L6 ; L7 :

Thus  is weakly-Hamiltonian. To  prove that it is Hamiltonian, we need to check that L 4 ; L 5  and
L 8 ; L 9  are in . Translated into the original labeling, this means checking that 6789; 4689 and
1234; 1235 are in , which is clearly the case because they all have gap  2.
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Remark 62. For d =  1, Theorem 60 boils down to Chen{Chang{Chang’s result that \unit
interval graphs are Hamiltonian if and only if they are 2-connected" [CCC97, Theorem 2]. The G5

of Remark 45 is 2-connected and not Hamiltonian; hence the \unit-interval" assumption in the
rst claim of Theorem 60 is necessary. As for the second claim, the \weakly-closed" assumption
is necessary for d >  1, because we saw in Remark 2 that some Hamiltonian d-complexes are
not strongly-connected.

We may condense most of the results of this chapter in the following summary:

Theorem 63. Let  be a d-dimensional simplicial complex.
(1) If  is closed (or unit-interval) and strongly connected, then  is traceable.
(2) If  is closed (or unit-interval), and the deletion of d or less vertices, however chosen,

yields a strongly connected complex, then  is Hamiltonian.
(3) If  is under-closed, it contains H1 . If in addition  has a face of minimum i  for each i  2

f2; : : : ; n dg, then  is traceable.
(4) If  is semi-closed, then for every face F  =  a0 ad of  either Ha 0  or Ha   d is in . (5) If
is weakly-closed, then  contains at least one of the Hi ’s.

If in addition  contains H1 ,  plus a face with minimum i  and of gap smaller than d for
each i  in f2; : : : ; n dg, then  is weakly-traceable.

Proof. (1) This is given by Proposition 54 and Theorem 56 above.
(2) This is given by Proposition 54 and Theorem 60 above.
(3) By denition of under-closed, if  has a face of minimum i, then  contains H i .  The fact that

has a face of minimum 1 follows from the assumption that  is pure.
(4) This is straightforward from the denition of semi-closed.
(5) Let F  =  a0a1 ad be any facet of  with gap(F ) >  0. Let g 2= F  such that a0 <  g <  ad. By

denition of \weakly-closed", some face G  =  b0b1 bd of  contains g, is adjacent to F ,  and has
either b0 =  a0 or bd =  ad. Thus gap G <  gap F . Iterating the process, eventually we nd in
a gap-0 face, which has to be one of

Ha0 ; Ha0 +1 ; : : : ; Had  d:

As for the second claim: By assumption,  contains H1 . Also,  contains H n  d, because no
other face has minimum n d. Now let H 0 =  2a1 ad be a face of  with minimum 2 and
gap  d 1. By the argument above, we know that  must contain at least one of

H2; H3; : : : ; Had  d:

Let us call this face Hi 2 .  By how H 0 was chosen,

2  i2  ad d =  gap(H 0) +  2  d +  1:

But since H 1  contains all vertices from 1 to d +  1, in particular it contains i2. So H i      is
incident with H1 . Now let H00 =  a0a1 ad be a face of  with gap smaller than d, and
minimum a0 =  i2 +  1. Repeating the argument above,  contains one of

Hi 2 +1 ; Hi 2 +2 ; : : : ; Had  d:

Call this facet Hi 3 ;  as above, it must intersect Hi 2 .  And so on. Eventually, we obtain a list
H 1  =  H i 1 ; H i 2  : : : ; Hik      1 ; H i k  =  H n  d of facets of  that makes it weakly-traceable.

Remark 64. In the previous theorem, a relabeling was necessary only to prove item (2). For all
other items, the original labeling was already suitable for the desired conclusion. So for item (1)
we proved a slightly stronger statement: \If  is strongly-connected, then any labeling that makes
unit-interval automatically makes  traceable". Same for items (3), (4), (5).
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3 Algebraic  motivation

In this section, we review Ene et al’s denition of determinantal facet ideals [E&13]. We nd
out a large class of them that are radical. In fact, we prove the following:

• If a simplicial complex is semi-closed, then its determinantal facet ideal has a square-free
Gr•obner degeneration (and in particular is radical), and the quotient by such ideal in
positive characteristic is F -pure (Theorem 77).

• If the simplicial complex is unit-interval, then the natural generators of its determinantal
facet ideal form a Gr•obner basis with respect to a diagonal term order (Theorem 82).
Moreover, the converse is true if with respect to the same labeling, the simplicial complex is
traceable (Theorem 87).

3.1 A  foreword on F -pure rings, F -split rings, and Knutson ideals

Let p be a prime number. Let R  be a ring of characteristic p. Recall that the Frobenius map is the
ring homomorphism from R  to itself that maps an element r  2  R  to rp. We denote by F R  the R-
module dened as follows: F R  =  R  as additive group, and r   x  =  r p x for all r  2  R  and x  2  F R .  This
allows us to view the Frobenius map as a map of R-modules,

F  :     R   !  F R
r  !  rp:

The ring R  is reduced if and only if F  is injective. So the following denitions are natural:

Denit ion 65. R  is F -pure if F
 1M : M !  F R
R  M is injective for any R-module M.

Denit ion 66. R  is F -split if there exists a homomorphism  : F R  !  R  of R-modules such
that   F  =  1R . Such a  is called an F -splitting of R .

If a ring is F -split, it is clearly F -pure. The converse does not hold in general. However, the
two concepts are equivalent in a number of cases, for example:

Lemma 67. Let R  =  
L

R i  be a Noetherian graded ring of characteristic p having a unique
homogeneous ideal m that is maximal with respect to inclusion. Furthermore, assume that the
Noetherian local ring R 0  is complete. Then the following are equivalent:
(a) R  is F -split.
(b) R  is F -pure.
(c) F
 1 E  : E   !  F R
R  E  is injective, where E  is the injective hull of R=m.

Proof. (a) = )  (b) = )  (c) are obvious implications. To  see (c) = )  (a): the map

F
 1 E  : E   !  F R
R  E

is injective if and only if the corresponding map

HomR (FR; HomR (E ; E ))  =  HomR (FR
R  E ; E )   !  HomR (E ; E )

is surjective. Hence, by [BH93, Corollary 3.6.7, Proposition 3.6.16, Theorem 3.6.17], the corre-
sponding map  : HomR (FR; R)  !  R  is surjective. So there exists  2  HomR (FR; R)  such that
() =  1. On the other hand, by construction () =  (F (1)), so   F  =  1R .

Since we want to study homogeneous quotients of a polynomial ring over a eld, by Lemma 67



we may as well regard the F -split notion and the F -pure notion as equivalent.
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In the following the concept of Knutson ideal will be fundamental. The name arises from the
work of Knutson [Knu09], later systematically investigated by the second author [Sec20], who
extended several properties from Z=pZ to any eld. The result from [Sec20] that we shall need is
the following:

Theorem 68 (Seccia [Sec20]). Let K  be a eld. Let g 2  S  =  K [x1 ; : : : ; xn ] be a polynomial with
in< (g ) square-free for some term order on S .  Let Cg be the smallest set of ideals of S  containing (g)
and such that:

1. I  2  Cg = )  I  : h 2  Cg whenever h 2  S ,
2. I ; J  2  Cg = )  I  +  J  2  Cg; I  \  J  2  Cg.

If I  2  Cg , then in < ( I ) ,  and therefore I ,  is radical. Furthermore, if I ; J  2  Cg, then in < ( I  +  J )  =
i n < ( I ) + i n < ( J )  and in < ( I  \ J )  =  i n < ( I ) \ i n < ( J ) .  Finally, if K  has positive characteristic, S = I  is
F -pure whenever I  2  Cg.

Example 69. It can be shown that, if g =  x1 x2 xn , then Cg is the set of squarefree monomial
ideals.

3.2 Determinantal facet ideals: basic properties

Let d; n be positive integers with d +  1  n. Let S  =  K [ x i j  : i  =  1; : : : ; n; j =  0; : : : ; d] be a
polynomial ring in (d +  1)n variables over some eld K .  Set

2
x01      x02      : : :

x0 n 3
 
6x11      x12      : : :

x1 n 7 4 .         .       : : :
. 5 xd1      xd2      : : :     xdn

Given 1  r   d, and integers 0  a0 <  a1 <  : : : <  ar  d and 1  b0 <  : : : <  br  n, an (r  +  1)-
minor of X  is any element of the form

2
xa0 b 0 xa0 b1 : : :     xa0br 3

[a0a1 : : : arjb0b1 : : : br] =  det 6
xa1 b 0 xa1 b1 : : :     xa1 br  

7 :

xar b0 xar b1 : : :     xar b r

If r  =  d, the row indices are forced to be a0 =  0; a1 =  1; : : : ; ad =  d. For this reason we denote
[01 : : : djb0b1 : : : bd] simply by [b0b1 : : : bd]. The ideal of S  generated by the r  +  1-minors of X  is
denoted by I r + 1 ( X ) .  This ideal denes the variety of (d +  1)n matrices with entries in K  and with
rank at most r. The set  of all the minors of X  can be partially ordered by the relation

[a0a1 : : : arjb0b1 : : : br]  [c0c1 : : : csjd0d1 : : : ds] ( )  r   s; ai  ci and bi  di 8 i  =  0; : : : ; s:

In particular, for maximal minors the previous denition restricts to

[a0a1 : : : ad]  [b0b1 : : : bd] ( )  a0  b0; a1  b1; : : : ; ad  bd:

It is not our intent to review the theory of Algebras with Straightening Law here, as the interested
reader can learn it directly from the standard source [BV88]. However, we wish to introduce a few
concepts for the sake of clarity. The starting observation is that the polynomial ring S  is
generated by  as a K-algebra. In fact, a basis of S  as K-vector space is given by

f1  m : m 2  N; i  2  ; 1  2  : : :  mg:
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X =
6
6

7
7 ;

The elements of this K -basis are called standard monomials. It may happen that the product of
two standard monomials is not a standard monomial. However, such product will be uniquely
writable as K -linear combination of standard monomials, which is in some sense compatible
with the poset structure on . This is what is known as ‘Straightening Law’; compare [BV88,
Theorem 4.11]. What we wish to outline is that the ideals of S  generated by poset ideals of  (i.e.
subsets
   such that for all !  2
,  2  ,   !  = )   2
) are particularly nice.

Example 70. For any r   d, the ideal I r + 1 ( X )  is generated by the poset ideal
r + 1  of all t-minors of X  with t  r  + 1.  This

r + 1  has a unique maximal element, [d      r  : : : djn      r  : : : n].

Some new notation: if 1  i  <  j   n, by X[ i ; j ]  we mean the matrix
2

x0 i x0; i+1 : : :     x 0 j
3

6x1 i x1; i+1 : : :     x 1 j 7
[i;j ]

4 . . : : : . 5
xdi       xd; i+1 : : :     xdj

so I r + 1 (X [ i ; j ] )  is the ideal of S  generated by the r + 1-minors of X[ i ; j ] ,  whenever r   minfd; j  ig.
Eventually, we say that a term order <  on S  is a diagonal term order if, for all 1  r   d and
integers 0  a0 <  a1 <  : : : <  ar  d and 1  b0 <  : : : <  br  n, in<([a0a1 : : : arjb0b1 : : : br]) =

xa0 b0 xa1 b1 xar b r  . For example, the lexicographic term order on S  extending the linear order of
the variables given by x i j  >  xhk if and only if i  <  h or i  =  h and j  <  k is a diagonal term

order. We will use the following result from [Stu90]:

Theorem 71 (Sturmfels [Stu90]). If <  is a diagonal term order, 1  i  <  j   n and r   minfd; j
ig, then f[a0a1 : : : arjb0b1 : : : br] : 0  a0 <  a1 <  : : : <  ar  d and i   b0 <  : : : <  br  j g is a

Gr•obner basis of the I r + 1 (X [ i ; j ] ) .

So far, by a \simplicial complex on n vertices" we have always implicitly assumed that each
vertex i  =  1; : : : ; n appears in the complex. From now on, we will drop this convention, i.e.
henceforth a simplicial complex on a set A  is also a simplicial complex on any nite set B   A.

Denit ion 72. Let  be a d-dimensional simplicial complex on n vertices. Let K  be any eld. Let
S  =  K [ x i j  : i  =  1; : : : ; n; j =  0; : : : ; d]. The determinantal facet ideal of  is the ideal

J  : =  ([a0a1 : : : ad] : a0a1 : : : ad 2  )   S:

When d =  1, then  is a graph, and J  is the binomial edge ideal of . Binomial edge ideals have
been intensively studied in the recent literature: Among the many papers on this topic, see for
example [H&10], [Oht11], [MM13], [Mat18]. Unlike binomial edge ideals, determinantal facet
ideals are not always radical {  not even if the complex is weakly-closed:

Example 73. Consider the weakly-closed 2-dimensional simplicial complex on ve vertices

 =  124; 145; 234; 345:

Thus in the polynomial ring with 15 variables xi ; j ,  for i  2  f0; 1; 2g and j  2  f1; : : : ; 5g, the ideal
J  is generated by the four degree-3 polynomials

 x0;4x1;2x2;1 +  x0;2x1;4x2;1 +  x0;4x1;1x2;2 x0;1x1;4x2;2 x0;2x1;1x2;4 +  x0;1x1;2x2;4 ;

 x0;5x1;4x2;1 +  x0;4x1;5x2;1 +  x0;5x1;1x2;4 x0;1x1;5x2;4 x0;4x1;1x2;5 +  x0;1x1;4x2;5 ;

 x0;4x1;3x2;2 +  x0;3x1;4x2;2 +  x0;4x1;2x2;3 x0;2x1;4x2;3 x0;3x1;2x2;4 +  x0;2x1;3x2;4 ;

 x0;5x1;4x2;3 +  x0;4x1;5x2;3 +  x0;5x1;3x2;4 x0;3x1;5x2;4 x0;4x1;3x2;5 +  x0;3x1;4x2;5 :

It can be checked using the software Macaulay 2 [GSm2] that J  is not radical.
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Determinantal facet ideals are multi-graded. To  see this, we endow S  with the multi-grading
dened by deg(xij ) =  ej 2  Nn for all i  =  0; : : : ; d; j  =  1; : : : ; n. Here ej is the vector with a one in
position j ,  and zeroes everywhere else. With such grading J  is homogeneous, and S = J  admits a
multi-graded minimal free resolution

0 !  
M  

S (  v ) p ; v  !  : : : !  
M

S (  v ) 1 ; v  !  S  !  S = J  !  0;
v 2 N n v 2 N

where p is the projective dimension of S=J.  We set jvj =  v1 + : : : + vn for each v  =  (v1; : : : ; vn) 2
Nn; this way the graded Betti numbers with respect to the standard grading are

i ; j  =  
X  

i;v : n

j v j = j

In particular, reg(S=J) =  maxfjvj   i  : i ;v  =  0g. In the next result, inspired by [MM13, Lemma
2.1] supp(v) =  f i  : vi =  0g  [n] for each v  =  (v1; : : : ; vn) 2  Nn. For each subset W  f1; : : : ; ng,
by W we denote the subcomplex of  induced on W .

Proposition 74. Let  be a d-dimensional simplicial complex on n vertices and W  [n].
Whenever v  2  Nn is such that supp(v)  W ,

i ; v (S=J)  =  i ; v (S=J W  ) 8 i  2  N:

In particular, reg(S=J)  reg(S=JW  ).

Proof. Let F  be the multi-graded minimal free resolution of S=J:

F  : 0 !  
M  

S (  v ) p ; v  !  : : : !  
M  

S (  v ) 1 ; v  !  S  !  0:
v 2 N n v 2 N n

Consider the complex of multi-graded S-modules

F0 : 0 !
M

S (  v ) p ; v  !  : : : !
M

S (  v ) 1 ; v   !  S  !  0:
n

supp(v)W
n

supp(v)W

The cokernel of  is S = J W  , hence all we need to show is that F0 is acyclic. But since the minimal
generators of the free S-modules in F  involve only the variables x i j  with j  2  W , to show that F0

is acyclic is enough to show that F0     is acyclic for any u  2  Nn with supp(u)  W . On the other hand,
for any v  2  Nn, S (  v ) u  is nonzero if and only if u  v  2  Nn: in particular
S (  v ) u  =  0 implies supp(v)  supp(u)  W , hence F0     =  F u  whenever supp(u)  W . We conclude
since F u  is acyclic for any u  2  Nn.

3.3 Many radical and many F-pure determinantal facet ideals

Let us warm up by studying the algebraic counterpart of the traceability of :

Proposition 75. Let  be a traceable d-dimensional simplicial complex on n vertices. Then
height(J) =  n   d. Furthermore, if J  is radical and unmixed, then it admits a square-free initial
ideal. If in addition K  has positive characteristic, then S = J  is even F -pure.
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Proof. Let us x a labeling for which  is traceable. Set

C  =  ([1 : : : d +  1]; [2 : : : d +  2]; : : : ; [n d : : : n])  J :  Let

us x a diagonal term order <  on S . Note that

in< ([i : : : i +  d]) =  x0 i x1 (1 + i )  xd ( d + i ) and in< ([ j  : : : j +  d]) =  x0 j x1 ( 1 + j )  xd ( d + j )

are coprime if i  =  j .  So f[1 : : : d +  1]; [2 : : : d +  2]; : : : ; [n d : : : n]g is a Gro•bner basis of C  and

in < (C )  =  (x01x12 xd(d+1) ; x02x13 xd(d+2) ; : : : ; x0(n d) x1(1+n d) xdn )

is a complete intersection of height n   d. Hence C  is a complete intersection of height n   d
inside J ,  which implies height(J)  n   d. On the other hand height(J)  n   d because J  is
contained in I d + 1 (X ) ,  which has height equal to n   d. As for the nal claim, set g =  [1 : : : d +
1] [n   d : : : n]. Notice that in< (g ) is square-free. Obviously, we also have C  2  Cg. But if J  is
radical and unmixed, since height(J) =  height(C ) by the previous part, then J  must be of the
form C  : h for some h 2  S . Thus J  2  Cg and we conclude via Theorem 68.

The next lemma will help us identify a large class of complexes whose determinantal facet
ideal is indeed radical.

Lemma 76. Let 1  a0 <  a1 <  : : : <  ad  n, and  a  the simplicial complex generated by the
facets a0i1 : : : id with i j   aj  for all j  =  1; : : : ; d. Then

J  a  =  Id+1 (X[a0 ;ad ] ) \  Id (X[a0 ;ad      1 ] ) \  Id  1 (X[a0 ;ad     2 ] ) \  : : : \  I1 (X[a0 ;a0 ] ):

Analogously, if  a  is the simplicial complex generated by the facets i0 i1 : : : ad with i j   aj  for all j
=  0; : : : ; d 1, then

J  a  =  Id+1 (X[a0 ;ad ] ) \  Id (X[a1 ;ad ] ) \  Id  1 (X[a2 ;ad ] ) \  : : : \  I1 (X[ a d      1 ;ad ]):

Proof. Since the two identities are symmetric, we will only prove the rst one. The containment ‘’
is obvious; so let us show ‘’. To  make the notation lighter, we make the harmless assumption that a0

=  1. Note that J  a  is generated by a poset ideal, namely by

 =  f  2   :   [a0 : : : ad]g:

Similarly, for all j  =  0; : : : ; d, the ideal I j + 1 (X[ 1 ;a j ] )  is generated by the poset ideal

j  =  f  2   :   [d j  : : : djaj j  : : : aj ]g:

Since it is easy to check that
 =  \ j = 0

j , via [BV88, Proposition (5.2)] we obtain J  a  =  Id+1 (X[1;ad ] ) \

Id (X[1;ad      1 ] ) \  Id  1 (X[1;ad     2 ] ) \  : : : \  I1 (X[1;1] ):

Now, let  2  S  be the product of the minors whose main diagonals are illustrated in the 7
13 matrix below.
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More precisely,

 =[dj1][d 1; dj1; 2] [1; 2; : : : ; d 1; dj1; 2; : : : ; d 1; d]
[1; 2; : : : ; d; d +  1] [n d; n      d +  1; : : : ; n 1; n]
[n d +  1; n d +  2; : : : ; n 1; nj0; 1; : : : ; d 2; d 1] [n 1; nj0; 1][nj0]:

The reason we dened  this way is that if <  is a diagonal term order, we have

in< ()  =  
Y  Y  

x i j :
i = 0  j = 1

Using this , we are now ready to prove the rst main result of this Chapter.

Theorem 77. Let  be a d-dimensional semi-closed simplicial complex on n vertices. Then J  is a
radical ideal. Moreover:
(1) For any diagonal term order (compatible with the labeling which makes  semi-closed),

in(J)  is a squarefree term ideal.
(2) If the eld K  has positive characteristic, S = J  is F -pure.

Proof. We will prove that if  is semi-closed with respect to the given labeling then J ( )  2  C, whence
both claims follow by Theorem 68. Let 1  a0 <  a1 <  : : : <  ad  n. Using the notation of Lemma 76,
since  is semi-closed, either  a  or  a  is contained in  whenever a0a1 ad 2  . For any a0a1 ad 2  , set
a  =   a  if  a   , and a  =   a  otherwise. Then

 =
[

a:
a0 a1 ad 2

In particular,
J ( )  =

X
J (a ) :

a0 a1 ad 2

Since C is closed under sums, in order to show that J ( )  2  C we only need to check that each
J ( a )  2  C. To  verify this, we use a result in [Sec21]: The ideal I r + 1 (X [ i j ] )  2  C whenever 1  i  <  j
n and 0  r   minfd; j   ig. Since C is closed under intersections, Lemma 76 guarantees that J ( a )  2
C, as desired.

Remark 78. The assumption \semi-closed" is best possible: if we replace it with \weakly-
closed", the theorem no longer holds, cf. Example 73. That said, the converse of Theorem 77
is false. To  see this, consider the non-weakly-closed complex U3 =  124; 345; 467 of Figure 3. If g =
[124][345][467] then for a diagonal term order in(g) =  x01x12x24x03x14x25x04x16x27, which is
squarefree. Obviously [124]; [345]; [467] 2  Cg, hence J  2  Cg. So in(J)  is squarefree, and, in the
positive characteristic case, S = J  is F -pure by Theorem 68. On the other hand, when d =  1
Theorem 77 is true for all weakly closed graphs, via the main result of Matsuda [Mat18]. This
shows that the techniques used in [Mat18] do not generalize to higher dimensions.

Remark 79. Suppose that K  has positive characteristic. Theorem 77 implies that, whenever
 is a poset ideal of  consisting only of maximal minors, then the corresponding A S L  is F -pure. On
the other hand, some ASLs  are not F -pure, as explained in [KV21, Remark 5.2]. We do not know
whether all the ASLs  on a poset ideal of  are F -pure.
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Remark 80. In positive characteristic, having a square-free initial ideal or an F -pure quotient
are unrelated properties. Many ideals, like I  =  (x2 +  xy +  y2)  S  =  Z=pZ[x; y], for p prime, have
the property that S= I  is F -pure even if in(I )  is not square-free for any term order. On the other
hand, the binomial edge ideal of a 5-cycle is not F -pure in characteristic 2 [Mat18, Example 2.7],
even if it admits a squarefree initial ideal. See [KV21] for a discussion on the relationship
between the two properties of being F -pure and having a squarefree initial ideal.

Theorem 77 allows us to characterize the determinantal facet ideals having a linear resolution:
It turns out that there is only one. This extends to all dimensions the result for graphs by Saeedi-
Madani and Kiani [SK12].

Corol lary 81. Let  be a pure d-dimensional simplicial complex on n vertices.

J  has a linear resolution ( )   =  n:

Proof. \ ( " :  If  is the d-skeleton of the (n 1)-simplex, J  is the ideal of maximal minors of
the matrix X .  This ideal is resolved by the Eagon-Northcott complex [EN67], which is linear.
\ ) " :  By contradiction, suppose there is a subset W  [n] of cardinality d +  2 such that W
is not the d-skeleton of the (d +  1)-simplex on W . We can re-label the vertices so that W =
f1; 2; : : : ; d +  2g and

W =  12 : : : (d +  1); 12 : : : d(d +  2); : : : ; 1 : : : i(i +  2)(i +  3) : : : (d +  2)

where 2  i   d. With respect to such a labeling W is semi-closed. So by Theorem 77, in(J W

) is a squarefree monomial ideal for any diagonal term order. Hence, by the work of
Conca{Varbaro [CV20], reg(S=JW  )  =  reg(S=in(JW  )). But by Lemma 76

J W  =  I i (X[1 ; i ] )  \  Id+1 (X[1;d+2] );

so by Theorem 68 in(J W  )  =  in(I i (X[1; i ] ))  \  in(Id+1 (X[1;d+2] )). Via Theorem 71, it is easy to
check that the monomial (xd i+1;1 xd i+2;2 xd;i )(x0;2x1;3 xd;d+2 ) is a minimal generator of
in(I i (X[1; i ] )) \  in(Id + 1 (X )) .  Hence in(J W  )  has a minimal generator of degree i  +  d +  1. In
particular,

reg(S=J)  reg(S=JW  )  =  reg(in(S=JW  ))   i  +  d >  d:

So by Proposition 74, reg(S=J)  reg(S=JW  )  >  d. So J  cannot have a linear resolution.

3.4 Determinantal facet ideals dened by a Gr•obner basis

If  is a closed simplicial complex, it is easy to see that the minors generating J  form a Gr•obner
basis with respect to a diagonal monomial order, corresponding to the labeling that makes
closed: See [E&13]. In [E&13] it has been incorrectly claimed that the converse of the above
statement holds true. The following result, which is a consequence of [Sec21, Corollary 2.4],
shows that there are many other complexes  for which the minors generating J  form a Gr•obner
basis:

Theorem 82. Let  be a d-dimensional simplicial complex, with a labeling that makes it unit-
interval. The set f[a0 : : : ad] : a0 : : : ad]g is a Gr•obner basis of J  with respect to any diagonal term
order. If in addition the eld K  has positive characteristic, then S = J  is F -pure.

Proof. By denition,  is the union of d-skeleta of simplices on consecutive vertices. We can
choose these d-skeleta to be maximal with respect to inclusion. This yields a decomposition

 =  [i1 ;j1 ] [  [i2 ;j2 ] [  : : : [  [i l ;j l ] ;
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where [i k ; j k ]  denotes the d-skeleton of the simplex on vertices ik ; ik  + 1; ik  + 2; : : : ; jk . Therefore

J  =  Id + 1 (X[ i 1 ; j 1 ] )  +  Id + 1 (X[ i 2 ; j 2 ] )  +  : : : +  Id + 1 (X[ i l ; j l ] ) :

So by [Sec21, Corollary 2.4]

in < ( J )  =  in< (Id + 1 (X[ i 1 ; j 1 ] ) )  +  in< (Id + 1 (X[ i 2 ; j 2 ] ) )  +  : : : +  in< ( Id + 1 (X[ i l ; j l ] ) ) :

By Theorem 71, f[a0; : : : ; ad] j a0 : : : ad 2  g is a Gr•obner basis for J .  Finally, the F -purity
claim in the case of positive characteristic follows again from [Sec21, Corollary 2.4].

Remark 83. That the set f[a0 : : : ad] : a0 : : : ad 2  ]g is a Gro•bner basis when  is unit-interval has
been independently proved, using a completely dierent method, in Almousa{Vandebogert [AV21,
Theorem 2.16]. They also obtained the analogous result for r-determinantal facet ideals (a more
general concept than determinantal facet ideals) of unit-interval simplicial complexes. We were
not aware of the paper [AV21] of Almousa and Vandebogert before posting the rst version of the
present work on the arXiv. (We coordinated eorts to adopt the same name \unit-interval
complexes" in the two papers.) For the sake of completeness, we point out that [Sec21, Corollary
2.4] implies that also r-determinantal facet ideals of unit-interval simplicial complexes dene F -
pure quotients in positive characteristic. We do not know, however, whether the (r-)determinantal
facet ideals of \lcm-closed" complexes, as dened in [AV21], or whether those of \closed
complexes", as dened here, are all F -pure.

Remark 84. The converse of Theorem 82 is false: as explained above, any closed but not
unit-interval complex is a counterexample. For a more interesting example, consider

W =  123; 124; 134; 234; 235; 245; 345; 568; 789; 8 10 11

corresponding to a one-point union of the B 2  and the U 2 of Figure 3. This complex W is not
unit-interval, not closed, and not even weakly-closed [Pav21]. However, one can verify with
Macaulay2 [GSm2] or via [AV21, Theorem 2.15] that f[a0; a1; a2] : a0 : : : ad 2  ]g form a Gro•bner
basis of J W  for any diagonal term order.

Remark 85. Two of the results of [E&13] are incorrect because of the following counterex-
amples. As we already mentioned, the complex B d  of Lemma 42 (cf. Figure 3) is not closed,
but the set of all the minors [abc], where abc ranges over all facets of B d , is a Gro•bner basis of
J B d  for any diagonal term order by Theorem 82. Thus one direction of [E&13, Theorem 1.1] is
incorrect for all d >  1. Moreover, the graph G0 =  12; 13; 23; 24; 34 is closed, but one can verify
that S = J G 0  is not Cohen-Macaulay. Thus [E&13, Corollary 1.3] is incorrect already for d =  1.

The nal part of our work is dedicated to the delicate quest for some partial converse for
Theorem 82. To  increase the chances of success, we restrict ourselves to traceable complexes.
The traceable assumption is rather natural in this case, as we have anyway seen in Theorem 56
that all strongly-connected unit-interval complexes are traceable. We start o with a Lemma:

Lemma 86. Let  be a simplicial complex such that GB =  f[a0; : : : ; ad] j a0 : : : ad 2  g is a Gr•obner
basis of J  for some diagonal term order. Let F  =  a0 : : : ad and G  =  b0 : : : bd be two facets of .
If for some integer l 2  f0; : : : d 1g

(i) ai =  bi for all i  2  f0; : : : ; lg,
(ii) al+1 >  al +  1,

(iii) b l + k  =  bl +  k for all k  1,
then the facet a0 : : : al 1(al + 1 )  al+1 : : : ad is also in . Symmetrically, if for some l 2  f1; : : : dg
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(iv) ai =  bi for all i  2  fl; : : : ; dg,
(v) al 1 <  al 1,

(vi) bl k  =  bl k for all k 2  f1; : : : ; lg,
then the facet a0 : : : al 1(al 1) al+1 : : : ad is also in .

Proof. It is harmless to assume that the term order <  is the lexicographic term order dened
before, cf. Theorem 71. Let F  and G  be two facets of  satisfying (i), (ii) and (iii). Let us
compute the initial term of the polynomial

f  =  [l +  1 : : : d j al +1 : : : ad][b0 : : : bd] [l +  1 : : : d j bl+1 : : : bd][a0 : : : ad]:

If we set

p =  [a0 : : : ad];

q =  [b0 : : : bd];

p0 =  [l +  1 : : : d j al+1 : : : ad]

q0 =  [l +  1 : : : d j bl+1 : : : bd]

then f  =  p0q pq0, and by Laplace expansion we have

p0q =  (x0b0 x l  1bl     1 xlbl p
0q0) +g1;

h

pq0 =  (x0a0 x l  1al     1 xlal p
0q0) +g2;

h

Furthermore

1 <   8 1 2  supp(g1); 8  2  supp(h);

2 <   8 2 2  supp(g2); 8  2  supp(h):

in< (g1 ) =  (x l + 1 a l + 1  xdad )(x0b0 x l  1bl     1 x l b l + 1 x l + 1 b l x l + 2 b l + 2  : : : xdbd );
in< (g2 ) =  (x l + 1 b l + 1  xdbd )(x0a0 x l  1al     1 x l a l + 1 x l + 1 a l x l + 2 a l + 2  : : : xdad ):

Since in< (g2 ) is smaller than in< (g1), we conclude that

in < ( f )  =  in< (g1 g2) =  (x l + 1 a l + 1  xdad )(x0b0 x l  1bl     1 x l b l + 1 x l + 1 b l x l + 2 b l + 2  : : : xdbd ):

In addition f  2  J  because F ; G  2  . Thus, there must be a minor g =  [c0 : : : cd] in GB such
that in< (g ) divides in< (f ) .  Note that for c0; : : : ; cl we only have one option, namely,

>  
c0 =  b0 =  a0

.
cl 1 =  bl 1 =  al 1
cl =  bl+1 =  bl +  1 =  al +  1:

For cl+1 we have a priori two possibilities: either cl+1 =  bl or cl+1 =  al+1 . But bl <  bl+1 =  cl, so it
must be cl+1 =  al+1 . Similarly, for cl+2 we have a priori two options: Either cl+2 =  bl+2 , or cl+2 =
al+2 . But by the assumptions, we have that bl+2  al+1 =  cl+1 , so since cl+2 >  cl+1 it must be cl+2 =
al+2 . In general, for any k  2 we have b l + k   a l + k  1 =  c l + k  1. Since ci >  ci 1, arguing recursively
we obtain that the only possible option is c l + k  =  a l + k  for all k  2. Hence we have proved that

g =  [c0; : : : ; cd] =  [a0 : : : al 1(al +  1)al+1 : : : ad]:

Since g is an element of GB, we conclude that a0 : : : al 1(al +  1)al+1 : : : ad 2  .
The proof of the second part of the lemma is symmetric; namely, one considers the polynomial

f 0 =  [0 : : : l 1 j a0 : : : al 1][b0 : : : bd] [0 : : : l 1 j b0 : : : bl 1][a0 : : : ad] 2  J
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whose leading term is

in< (f 0 ) =  (x0a0 x l  1al     1 )(x0b0 x l  2bl     2 x l  1bl xlbl      1 x l + 1 b l + 1  : : : xdbd );

and one proceeds analogously to the argument above.

Theorem 87. Let  be a d-dimensional simplicial complex. If with respect to the same labeling  is
traceable and the set f[a0 : : : ad] : a0 : : : ad]g is a Gr•obner basis of J  with respect to some diagonal
term order, then such labeling makes  unit-interval.

Proof. Let F  =  a0 : : : ad be a facet of  with gap(F ) =  k. We proceed by induction on k. For k
=  0 there is nothing to prove, so we assume k >  0. Let g1; : : : ; gk be the vertices not in F ,  and
such that a0 <  g1 <  : : : <  gk <  ad. We want to show that  contains the d-skeleton of
fa0; : : : ; ad; g1; : : : ; gkg. The strategy is to rst show that d ; d   by inductive
assumption, and then to prove that  contains also the facets of the form a0c1 : : : cd 1ad. So let us
proceed. Let l be the greatest integer such that al <  g1, so that g1 =  al +  1. Consider the two
facets F  and Ha 0  of . They satisfy the assumptions of Lemma 86, so

F 0 =  a0 : : : al 1 g1 al+1 : : : ad 2  :

If l =  0, then gap(F 0) =  k   1, so by the inductive assumption [g ;a ] =  [a + 1;a ]  .
Otherwise, since gap(F ) =  k, we cannot apply the inductive assumption yet. However, we have
\shifted" the rst gap to the left and now the rst missing vertex is al =  al 1 + 1.  We can apply
again Lemma 86 to the facets F 0

 and Ha 0  and we get

F00 =  a0 : : : al 2 al g1 al+1 : : : ad 2  :

If l =  1, then gap(F 00) =  k   1, so by the inductive assumption [a ;a ] =  [a + 1;a ]  . Otherwise,
once again gap(F ) =  k and the rst missing vertex al 1 =  al 2 + 1  has been shifted by one to the
left. Iterating this procedure, we eventually get that

(a0 +  1) : : : al g1 al+1 : : : ad 2  :

This face has gap equal to k 1 and we can nally apply induction: We get [a + 1;a ]
  .

To  prove that d   we use a similar argument. Let l be the smaller integer such
that gk <  al, so that gk =  al 1, and consider the two facets of

F  = a0 : : : al 1 al : : : ad

H a
d
 =  Ha d  d =  (ad d)(ad d +  1) : : : gk al : : : ad:

Iteratively applying the second part of Lemma 86, we can shift the last missing vertex to the
right until we reach the facet

a0 : : : al 1gkal : : : ad 1 2  ;

which has gap k 1. So by induction d  .
It remains to prove that all the facets of the form G  =  a0c1 : : : cd 1ad are in . To  do so,

we start from F  =  a0a1 : : : ad and we replace one by one each ai with the corresponding ci. In
detail: For i  =  1, we have three possibilities:

• c1 =  a1, or
• a0 <  c1 <  a1, or
• c1 >  a1.
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If c1 =  a1 there is nothing to do. If a0 <  c1 <  a1, consider the two facets

F  = a0 a1 : : : ad

F  =  (a1 1) a1 : : : ad:

Since a0 <  c1 <  a1, we have that a1   1 >  a0. Hence F  2  [a + 1;a ]  . So by Lemma 86 a0(a1

1)a2 : : : ad 2  . If c1 =  a1   1 we stop, otherwise we repeat the same argument. At each iteration
of Lemma 86, the second vertex in the facet decreases by one unit; eventually, we obtain that
a0c1a2 : : : ad 2  .

As for the third possibility (c1 >  a1), we claim that we can simply dismiss it without loss of
generality. In fact, for every i  2  f1; : : : ; dg, we can always \atten all the vertices after ai 1 to the
right": that is, we can always replace F  with another face in  of the form

F i  =  a0a1 : : : ai 1(ad d i) : : : (ad 1)ad:

To  see it, let 0  l  d 1 be the largest index for which al +1 <  al+1 (such an l must exist because gap(F )
>  0). Applying Lemma 86 to the facets F  and F  =  a0 : : : al(al + 1)(al  + 2) : : : al + ( d l)
in d  , we get that the facet a0 : : : al 1(al + 1)al + 1  : : : ad is in . Proceeding this way we end
up with the face

F l  =  a0 : : : al 1 (al+1 1)al+1 : : : ad 2  :

Replacing F  with Fl ,  and arguing the same way, we infer that F i  2   for all i  =  0; : : : ; d 1. In
particular, for i  =  1, we could replace F  with a face with same minimum and maximum

F1  =  a0 (ad d +  1) (ad d +  2) : : : ad 2  :

Note that c1  ad   d +  1. So our claim is proven: Up to replacing F  with F1 , we can assume
that c1  a1.

So the case i  =  1 is settled. Consider now i  =  2. If c2 =  a2, there is nothing to do. Otherwise,
attening the vertices after c1 of a0c1a2 : : : ad to the right, we may assume that c2 <  a2. Consider the
two facets

F  = a0 c1 a2 : : : ad 2

F  =  (a2 2) (a2 1) a2 : : : ad 2  :

Since c2 <  a2, we have that c1 <  a2 1, so applying Lemma 86 we obtain that

a0 c1 (a2 1) a3 : : : ad 2  :

If c2 =  a2      1 we stop, otherwise we repeat the same argument. At every iteration of Lemma 86,
the third vertex in the facet decreases by one unit; eventually, we obtain that a0c1c2a3 : : : ad 2  :

Iterating this procedure for all i’s, we conclude that

G  =  a0c1c2 : : : cd 1ad 2  :

Remark 88. Very recently Almousa and Vandebogert [AV21] introduced a technical property of
simplicial complexes, called \lcm-closed", that simultaneously generalizes the two properties of
being \closed" and being \unit-interval". They asked [AV21, Question 2.19] whether such
property for simplicial complexes would characterize the fact that the minors of the determi-
nantal facet ideal form a Gr•obner basis with respect to any diagonal term order. With a little
ingenuity, one can see that for traceable complexes, \lcm-closed" is simply equivalent to \unit-
interval". Thus Theorem 87 answers Almousa{Vandebogert’s question positively, for complexes
that with respect to the same labeling are traceable.
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