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Abstract

We study d-dimensional generalizations of three mutually related topics in graph theory:
Hamiltonian paths, (unit) interval graphs, and binomial edge ideals. We provide partial
high-dimensional generalizations of Ore and Pea’s sucient conditions for a graph to be
Hamiltonian. We introduce a hierarchy of combinatorial properties for simplicial complexes
that generalize unit-interval, interval, and co-comparability graphs. We connect these prop-
erties to the already existing notions of determinantal facet ideals and (tight and weak)
Hamiltonian paths in simplicial complexes. Some important consequences of our work are:
(1) Every unit-interval strongly-connected d-dimensional simplicial complex is traceable.

(This extends the well-known result \unit-interval connected graphs are traceable".)

(2) Every unit-interval d-complex that remains strongly connected after the deletion of d or
less vertices, is Hamiltonian.

(This extends the fact that \unit-interval 2-connected graphs are Hamiltonian".)

(3) Unit-interval complexes are characterized, among traceable complexes, by the property
that the minors dening their determinantal facet ideal form a Grebner basis for a
diagonal term order which is compatible with the traceability of the complex.

(This corrects a recent theorem by Ene et al., extends a result by Herzog and others,

and partially answers a question by Almousa{Vandebogert.)

(4) Only the d-skeleton of the simplex has a determinantal facet ideal with linear resolution.
(This extends the result by Kiani and Saeedi-Madani that \only the complete graph has
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a binomial edge ideal with linear resolution".)
(5) The determinantal facet ideals of all under-closed and semi-closed complexes have a
square-free initial ideal with respect to lex. In characteristic p, they are even F-pure.

Introduction

The rst Combinatorics paper in History is apparently Leonhard Euler’s 1735 solution of the
Kenigsberg bridge problem. In that article, Euler introduced the notion of graph, and studied
cycles (now called ‘Eulerian’) that touch all edges exactly once. Euler proved that the graphs
admitting them, are exactly those graphs with all vertices of even degree. Hamiltonian cycles
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are instead cycles that touch all vertices exactly once; they are named after sir William Rowan
Hamilton, who in 1857 invented a puzzle game which asked to nd one such cycle in the icosa-
hedron. Unlike for the Eulerian case, guring out if a graph admits a Hamiltonian cycle or notis a
hard problem, now known to be NP-complete [Kar72].

Even if simple characterizations are o the table, in the 1950s and 1960s Dirac, Ore, Pea and
others were able to obtain simple conditions on the vertex degrees (in the spirit of Euler’s work)
that are sucient for a graph to admit Hamiltonian cycles [Dir52, Ore60, Pe62]. Ore’s theorem, for
example, says, \Any graph with n vertices such that degu+ degv n for all non-adjacent vertices
u; v, admits a Hamiltonian cycle". Ore’s condition is far from being necessary: In any cycle, no
matter how large, one has degu + degv = 4 for all u;v.

In the same years, the two papers [LB62] and [GH64] initiated the study of unit-interval
graphs. This very famous class consists, as the name suggests, of all intersection graphs of a
bunch of length-one open intervals on the real line. (That is, we place a node in the middle of each
interval, and we connect two nodes with an arc if and only if the corresponding intervals overlap).
Bertossi’s theorem says that if they are connected, such graphs always admit Hamiltonian paths,
i.e. paths that touch all vertices once [Ber83]. Chen{Chang{Chang’s theorem states that 2-
connected unit-interval graphs admit Hamiltonian cycles [CCC97]. For these results, the length-
one request can be weakened to \pairwise not-nested", but it cannot be dismissed: Within the
larger world of interval graphs, one encounters connected graphs such as K1,3 that do not admit
Hamiltonian paths, and also 2-connected graphs like the Gs of Remark 45 that do not admit
Hamiltonian cycles.

In the 1970s, the work of Stanley and Reisner established a fundamental bridge between
Combinatorics and Commutative Algebra, namely, a natural bijection between labeled simplicial
complexes on n vertices and radical monomial ideals in a polynomial ring with n variables.
This correspondence lead Stanley to prove the famous Upper Bound Theorem for triangulated
spheres [Stal4]. After this success, many authors have investigated ways to encode graphs into
monomial ideals. In 2010, Herzog et al. [H&10] rst considered a natural way to encode graphsinto
binomial ideals, the so-called binomial edge ideals. The catch is that all such binomial edge
ideals are radical [H&10]. In the process, Herzog et al. re-discovered unit-interval graphs,
characterizing them as the graphs whose binomial edge ideals have quadratic Grebner bases
with respect to a diagonal term order [H&10, Theorem 1.1].

So far, we sketched three graph-theoretic topics from three dierent centuries: Hamiltonian
paths, (unit) interval graphs, binomial edge ideals. In the last years, there has been an increasing
interest in expanding these three notions to higher dimensions. Specically:

e Katona{Kierstead [KK99] and many others [HS10, K&10, RSR08] have studied \tight
Hamiltonian paths" and \loose Hamiltonian paths" in d-dimensional simplicial complexes;
both notions for d = 1 boil down to ordinary Hamiltonian paths. The good news is that
extremal combinatorics provides a non-trivial way to extend Dirac’s theorem for d-
complexes with a very large number of vertices that satisfy certain ridge-degree conditions.
The bad news is that already Ore and Psa’s theorems seem very hard to extend.

e Ene et al. [E&13] introduced \determinantal facet ideals", which directly generalize bino-
mial edge ideals, and \closed d-complexes", which generalize ‘unit-interval graphs’. The
good news is that the denitions are rather natural. The bad news is that determinantal
facet ideals are not radical in general (see Example 73), and they are hard to manipulate;
alas, the two main results of the paper [E&13] are incorrect, cf. Remark 85.

In the present paper we take a new, unied look at these approaches. In Chapter 1, we
introduce a notion of ‘weakly-Hamiltonian paths’ for d-dimensional simplicial complexes that
for d = 1 also boils down to ordinary Hamiltonian paths. This weaker notion enables us to



obtain a rst, partial extension of Dirac, Ore and Posa’s theorem to higher dimensions:

Main Theorem | (Higher-dimensional Ore and Dirac, cf. Proposition 18 and Corollary 20).
Let be any traceable d-complex on n > 2d vertices. If in some labeling that makes traceable the two
(d 1)-faces and formed by the rst d and the last d vertices, respectively, have facet degrees
summing up to at least n, then admits a weakly-Hamiltonian cycle.
In particular, if in a traceable pure d-complex with n vertices, every (d 1)-face belongs to at
least 5 facets, then the complex admits a weakly-Hamiltonian cycle.

Main Theorem || (Higher-dimensional Posa, cf. Proposition 23). Let be any traceable pure d-
complex on n vertices, n > 2d. Suppose that with any labeling in which has a weakly-
Hamiltonian path, is traceable. Let 1;5;:::;¢ be the (d 1)-faces of , ordered so thatd; d; ::: ds,
where d;j = d, is the number of<d-faces containing ;. If for every d k < “one has dx 4+1 > k, then
admits a weakly-Hamiltonian cycle. 2

As you can see these results are conditional: ‘Traceability’, i.e. the existence of a tight
Hamiltonian path, must be known a priori, in order to infer the existence of a weakly-Hamiltonian
cycle. This sounds like a bad deal, but in the one-dimensional case our results above still
immediately imply the original theorems by Ore and Posa for graphs. Moreover, since no
extremal combinatorics is used in the proof, there is an advantage: Main Theorems | and Il do
not require the number of vertices to be extremely large. On the contrary: In the two-
dimensional case, they already apply to complexes with ve vertices.

In Chapter 2, we introduce a hierarchy of four natural properties that progressively weaken
(for strongly-connected complexes) the notion of \closed d-complexes", as originally proposed in
[E&13]. We introduce \unit-interval", \under-closed", and \weakly-closed" complexes, as natu-
ral combinatorial higher-dimensional generalizations of unit-interval graphs, of interval graphs,
and of co-comparability graphs, respectively. The forth property, called \semi-closed", is inter-
mediate between \under-closed" and \weakly-closed"; it is also dened very naturally, but it
seems to be new already for graphs. We will see its algebraic consequence in Main Theorem VI
below. The main goal of Chapter 2 is to connect this hierarchy to the notions of Chapter 1:

Main Theorem |1l (Higher-dimensional Bertossi, Theorem 56). Every unit-interval strongly-
connected d-dimensional simplicial complex is traceable.

Main Theorem |V (Higher-dimensional Chen{Chan{Chang, Theorem 60). Every unit-interval
d-dimensional simplicial complex that remains strongly connected after the deletion of d or less
vertices, however chosen, is Hamiltonian.

Finally, Chapter 3 is dedicated to the connection with commutative algebra. For a homoge-
neous ideal of polynomials, having a square-free Grebner degeneration is a strong and desirable
property. In 2020, Conca and the third author proved Herzog’s conjecture that if a homoge-
neous ideal | has a square-free initial ideal in(l), then the extremal Betti numbers of | andin(l) are
the same [CV20]. This allows us to infer the depth, the Castelnuovo{Mumford regularity, and
many other invariants of the ideals | with squarefree initial-ideal, simply by computing these
invariants on the initial ideal | which is a much simpler task, because the aforementioned
Stanley{Reisner correspondence activates techniques from combinatorial topology. Building on
the very recent work of the second author [Sec21], we are able to revise one of the results claimed in
Ene et al [E&13] as follows:

Main Theorem V (Theorem 82 and 87). A strongly-connected d-dimensional simplicial com-
plex is unit-interval if and only if the complex is traceable and with respect to the same labeling, the
minors dening the determinantal facet ideal of form a Grebner basis with respect to any diagonal
term order.



We conclude our work with a result that provides a broad class of determinantal facet ideals
that are radical, and even F-pure (if the characteristic is positive):

Main Theorem VI (Theorem 77). The determinantal facet ideals of all semi-closed complexes
are radical. Indeed, they have a square-free initial ideal with respect to any diagonal term order.
Moreover, in characteristic p > 0, the quotients by these ideals are all F-pure.

The proof relies once again on the recent work by the second author [Sec21]. Since all shifted
complexes are under-closed, and in particular semi-closed, Theorem 77 immediately implies that
the determinantal facet ideals of shifted complexes admit a square-free Grebner degeneration
and, in positive characteristic, dene F-pure rings. As a consequence of Main Theorem VI, we can
extend to all dimensions the result by Kiani and Saeedi-Madani that \among all graphs, only
complete graphs have a binomial edge ideal with a linear resolution" [SK12]. Namely, we prove
that among all d-dimensional simplicial complexes with n vertices, only the d-skeleta of simplices
have a determinantal facet ideal with a linear resolution (Corollary 81).

Notation

Throughout d; n are positive integers, with d < n. We denote by ¢ the d-simplex, and by dthhe
d-skeleton of ™ 1. We write each face of ¢ by listing its vertices in increasing order. We describe
simplicial complexes by listing their facets in any order, e.g. = 123;124;235. For any d-face F =
apai aq of 4, we call gap oan the integer gap(F) = ag ao d, wHith counts the

faces of 9 that h;ra]ve gap zero. With abuse of notation, we extend the denition of H;alsotoi 2 fn

d+1;:::; ng using \congruence modulo n". Namely, by \n + 1" we mean vertex
1, by \n + 2" we mean vertex 2, and so on. So H, will be the d-face adjacent to H; and of
vertices fn; 1;2;3; ;dg, which we write down in increasing order, so H, = 123dn. Note that
gap(H;) > Owheni > n d.

Denition 1 (traceable, Hamiltonian). A complex is (tight-) traceable if it has a labeling such

arein .

Clearly, Hamiltonian implies traceable. For d = 1, Denition 1 boils down to the classical
notions of traceable and Hamiltonian graphs, that is, graphs that admits a Hamiltonian path
and a Hamiltonian cycle, respectively. In fact, nobody prevents us from relabeling the vertices in
the order in which we encounter them along such path (or cycle).

Recall that two facets of a pure simplicial d-complex are adjacent if their intersection has
cardinality d, or equivalently, dimension d 1. For example, each H; is adjacent to Hi.1. The
dual graph of a pure simplicial d-complex has nodes corresponding to the facets of ; two nodes
are connected by an arc if and only if the corresponding facets of are adjacent. A pure simplicial
d-complex is strongly-connected if its dual graph is connected. For d 1, every strongly-
connected d-complex is connected, and when d = 1 the two notions coincide. According to our
convention, all strongly-connected simplicial complexes are pure.

Remark 2. The statement \the dual graph of any Hamiltonian d-complex is Hamiltonian"
holds true only for d = 1: For example, the Hamiltonian simplicial complex

1 = 123; 234, 345; 456, 567; 678; 789, 189; 129; 147

is not even strongly connected, because the facet 147 is isolated in the dual graph. The deletion
of vertex 1 from 1 yields a simplicial complex that is not even pure.



1 Weakly-traceable/Hamiltonian complexes and ridge degrees

In this section, we introduce two weaker notions of traceability and Hamiltonicity that rst
appeared in [K&10], and we study their nontrivial relationship with the \ridge degree", i.e. how
many d-faces contain any given (d 1)-face. This relationship has a long history, beginning in
1952 with one of the most classical results in graph theory, due to Gabriel Dirac [Dir52], the son of
Nobel Prize physicist Paul Dirac:

Theorem 3 (Dirac [Dir52]). Let G be a graph with n vertices. If degv  for every vertex v,
then G is Hamiltonian.

Later ystein Ore [Ore60] improved Dirac’s result and extended it to traceable graphs:

Theorem 4 (Ore [Ore60]). Let G be a graph with n vertices.
(A) If degu+ degv n for all non-adjacent vertices u;v, the graph G is Hamiltonian.
(B) If degu+ degv n 1 for all non-adjacent vertices u;v, the graph G is traceable.

Two years later Pea extended Ore’s condition (A) much further:

that the respective degrees are weakly increasing, d; dy ::: dj.
(C) If for every k < 5 one has d¢ > k, the graph G is Hamiltonian.

These theorems have been generalized in ve main directions, over the course of more than a

hundred papers (see also Li [Lil3] for a survey with a dierent perspective than ours):

1. Bondy and Chvatal [Bon69, Bo71a, Chv84, BC71] weakened the antecedent in the implica-

tion (C) of Pea’s theorem (see [Far99] for an application to self-complementary graphs);

2. Bondy [Bo71b] strengthened the conclusion of Ore’s theorem, from Hamiltonian to pan-
cyclic (=containing cycles of length * for any 3 ‘ n); later Schmeichel{Hakimi [SH74]
showed that Psa and Chvatal’s theorems can be strengthened in the same direction;

3. Fan [Fan84] showed that for 2-connected graphs, it suces to check Ore’s condition for
vertices u and v at distance 2; and even more generally, it suces to check that for any two
vertices at distance two, at least one of them has degree 12 With these weaker
assumptions he was still able to achieve a pancyclicity conclusion. See [BCS93], [LLF07],
[CSZ14] for recent extensions of Fan’s work.

4. A forth line of generalizations of Ore’s theorem involved requiring certain vertex sets to
have large neighborhood unions, rather than large degrees: Compare Broersma{van den
Heuvel{Veldman [BHV93] and Chen{Schelp [CS92].

Here we are interested in the fth main direction, namely, the generalization to higher dimen-
sions. This is historically a rather dicult task: As of today, no straightforward extension of
Ore’s theorem or of Posa’s theorem is known. However, some elegant positive results were
obtained in 1999 by Katona and Kierstead [KK99], who applied extremal graph theory to gen-
eralize Dirac’s theorem to simplicial complexes with a huge number of vertices. Building on the
work by Katona and Kierstead [KK99], Redl, Szemeredi, and Ruciski [RSR08] were able in 2008
to prove the following ‘extremal’ version of Dirac’s theorem:

Theorem 6 (Redl{Szemeredi{Rucieki [RSR08]). For all integers d 2 and for every " > 0 there
exists a (very large) integer n such that every d-dimensional simplicial complex with more than
no vertices, and such that every (d  1)-face of is in at least n(+ ") facets, 2is Hamiltonian.

Now we are ready to introduce the main denition of the present section. Recall that two
facets of a pure simplicial d-complex are incident if their intersection is nonempty.



Denition 7 (weakly-traceable, weakly-Hamiltonian). A d-dimensional simplicial complex is

Remark 8. These notions are not new. For what we called \weakly-Hamiltonian", Keevash et al.
[K&10] use the term \generic Hamiltonian". Their paper [K&10] focuses however on the
stronger notion of \loose-Hamiltonian" complexes, which are weakly-Hamiltonian complexes
where all of the intersections H;; \ Hij,, consist of a single point (with possibly one excep-
tion). By denition, all Hamiltonian complexes are loose-Hamiltonian, and all loose-Hamiltonian
complexes are weakly-Hamiltonian. For d = 1 all these dierent notions converge: \Weakly-
Hamiltonian 1-complexes" are simply \graphs with a Hamiltonian cycle", and \weakly-traceable
1-complexes" are \graphs with a Hamiltonian path". In 2010 Han{Schacht [HS10] and indepen-
dently Keevash et al. [K&10] proved the following extension of Theorem 6 above:

Theorem 9 (Han-Schacht [HS10], Keevash et al. [K&10]). For all integers d 2 and for every

" > 0 there exists a (very large) integer ng such that every d-dimensional simplicial complex
with more than ng vertices, and such that every (d 1)-face of is in at least n(iz-ti ") facets, is
loose-Hamiltonian, and in particular weakly-Hamiltonian.

Remark 10. In Denition 7, note that if is weakly-traceable, necessarilyi; = 1andix = n d,
because otherwise 1 and n would not be covered. So equivalently, in Def. 7 we could demand

fig; 1150k 18 f2;:::55n d 1g:

we may assume that i; = 1. Or we may assume that ix = n d. But as the next remark shows,
we cannot assume both.

Remark 11. When d > 1, not all weakly-Hamiltonian d-complexes are weakly-traceable. For
d = 2, a simple counterexample is given by

o = 123;156; 345:

The weakly-Hamiltonian cycle is of course Hi; Hs; Hs. Any labeling that makes o weakly-
Hamiltonian is either the reverse or a cyclic shift (or both) of the labeling above. For parity
reasons, in any labeling that makes o weakly-Hamiltonian, only one of H; and Hy4 is in .

Remark 12. Weakly-traceable complexes are obviously connected. Weakly-Hamiltonian com-
plexes are even 2-connected, in the sense that the deletion of any vertex leaves them connected.
The converses are well-known to be false already for d = 1. In fact, let n 4. Let A, , be theedge-
less graph on n 2 vertices. Let x; y be two new vertices. The \suspension"

susp(An 2) d:EfAn 2 [ fx viv2A, 8 fy v:v2A, 58

is a 2-connected graph on n vertices that is not Hamiltonian for n 5, and not even traceable for
n 6. In higher dimensions, the ; ofdemma 44 is d-connected, but neither weakly-traceable nor
weakly-Hamiltonian.



We start with a few Lemmas that are easy, and possibly already known; we include nonethe-
less a proof for the sake of completeness. For the following lemma, a subword of a word is a
subsequence formed by consecutive letters of a word: So for us \word" is a subword of \subword",
whereas \sword" is not.

Lemma 13. Let d 2. If a d-complex is weakly-Hamiltonian (resp. weakly traceable), then for

Proof. Given a weakly-Hamiltonian path/cycle, replace any d-face H; with its (k + 1)-letter
subwords, ordered lexicographically. The result, up to canceling possible redundancies, will be a
weakly-Hamiltonian path/cycle for the k-skeleton. ]

For example: if d = 3 and k = 1, suppose that a 3-complex on 8 vertices admits the
Hamiltonian path
1234; 2345; 5678:

Then the 1-skeleton admits the Hamiltonian path
12; 23; 34; 23; 34,45, 56; 67; 78:

The next Lemma is an analog to the fact that Hamiltonian complexes are traceable.

contained in H;j , nor in H;j,, (where by convention o= i1).
e If m; > 0, the deletion of those m; vertices from vyields a weakly-traceable complex.
e If mj = 0, and in addition Hij , and Hij ., are disjoint, then itself is weakly-traceable.

the cycle are labeled consecutively. So up to relabeling the vertices cyclically, we can assume that
they are the vertices n mj+ 1, n mj+ 2;:::;n 1;n: Thus the facet in the cycle they
all belong to is the last one, H;j, . Now let D be the complex obtained from by deleting these m;

vertices. It is easy to see that
Hi = Hi; Hiys oo Hiy

is a weakly-Hamiltonian path for D.
The case mj = 0 is similar: Up to relabeling the vertices cyclically, ij+1 = 1 and thusj = k. By
assumption H;, , and H; are disjoint. But since my = 0, and vertex n does not belong to Hy, it

must belong to H;, ,. Therefore H;i, , = H, 4. So

is a weakly-Hamiltonian path for itself. ]

The next Lemma can be viewed as a d-dimensional extension of the fact that the cone over
the vertex set of a graph G is a Hamiltonian graph if and only if the starting graph G is traceable.

Lemma 15. Let be any d-complex on n vertices. Let 9 1 be the (d 1)-simplex. Let be the
d-complex obtained by adding to a d-face v 4 1 for every vertex v in . Then

is weakly-traceable ( ) is weakly-Hamiltonian.



Hi; :: 15 Higs Hns Hne1 shows that  is weakly-Hamiltonian.

\(": Pick alabeling that makes weakly-Hamiltonian. By how the complex is constructed, the
vertices of 9 1 must be labeled consecutively; so without loss, we may assume that they are n
+ 1;:::;n+ d. Take a weakly-Hamiltonian cycle for and delete from the list all the d-faces
containing any vertex whose label exceeds n. ]

Remark 16. The following statements are valid only for d = 1.
(i) \ is weakly-traceable ( ) [ w (d-1)-skel() is weakly-Hamiltonian."
(ii) \Deleting a single vertex from a weakly-Hamiltonian d-complex yields a weakly-traceable
complex."
(iii) \Deleting (the interior of) any of the H;’s from a weakly-Hamiltonian d-complex yields a
weakly-traceable complex."
Simple counterexamples in higher dimensions are:
(i) 1 = 126;234;456;489;678 is not weakly-traceable, yet , = ; [‘“‘(10 2-skel(1)) admits the
weakly-Hamiltonian cycle 234; 456; 678; 8910; 1210. This is a counterexample to \ (".
In contrast, the direction \ )" holds in all dimensions.
(ii) If from the , above we delete vertex 10, we get back to 1, not weakly-traceable.
(iii) 3 = 1234; 2345; 5678; 16710; 18910 is weakly-Hamiltonian, but the deletion of (the
interior) of 5678 yields a complex that is not weakly-traceable.

Our rst non-trivial result is an \Ore-type result": We shall see later that in some sense it
extends ‘most’ of the proof of Ore’s theorem 4, part (A), to all dimensions.

Denition 17. Let be a pure d-dimensional simplicial complex, and let be any (d 1)-face of .
The degree d of is the number of d-faces of containing .

Proposition 18. Let be a traceable d-dimensional simplicial complex on n vertices, n > 2d. If
in some labeling that makes traceable the two (d 1)-faces and formed by the rst dand the last d
vertices, respectively, satisfy d + d n, then is weakly-Hamiltonian.

every i in J, which has cardinality n  2d 1, consider the two d-faces of , d

def

S, & and T, ¥( 1):

Now there are two cases, both of which will result in a weakly-Hamiltonian cycle:
Case 1: For some i, both S;, T; are in . We are going to introduce a new vertex

‘5 ‘d+2, and so on. The following describes a weakly-Hamiltonian cycle:

e Start with the rst i 1 vertices in the same order: That is, set ‘1 €1, :::, 5 1 £fi 1.
HenceL; = Hyi; Ly = Hy;:::;, upuntilLj 4 1= Hi 4 1, which (since is traceable) is the rst
of the H;’s that contains the vertex i 1

by ‘i the vertex thatisin H, 4 butnotinH, 4 1, by ‘j+2 the vertexinin H, 4 1but not in
in H, 4 2, and so on. Facet-wise, we are traveling in reverse order across the last facets
of the original labeling. Stop until you get to relabel vertex i by ‘,,. (Or equivalently, if you
prefer to think about facets, stop once you reach facet H;.)
¢ The weakly-Hamiltonian cycle gets then concluded with S;, which is adjacent toL; = Hj via
The facets previously called Hi 4, Hi 4+1, :::, Hj 1 are not part of the new weakly-
Hamiltonian cycle.



Figure 1: left: The dashed triangles are Ss and Ts. Were they both in , then one could relabel the
vertices and create a weakly-Hamiltonian cycle (right).

Case 2: For alli, at most one of S;, Tjisin . Since thetwosetsfi2J : i2 gandfi2J :
(i 1) 2 gare disjoint, the sum of their cardinalities is the cardinality of their union, which is
contained in J. So

ifi2) : i2Sgj+ jfi2) (i 1) 2g jlj = n 2d + 1: (1)

Now, we claim that either n or 1 is a face of . From the claim the conclusion follows
immediately, as such face creates a weakly-Hamiltonian cycle. We prove the claim by contradic-
tion. Suppose contains neither n nor 1 . Every d-face containing is of the form v, where v is
either in J or in the set fd; n d+ I;n d+ 2;:::;n 1g (which has size d). So

djfi2d:i2g +d: (2)

Symmetrically, the d-faces containing are of the form w, with w either in J or in the size-d set
f2;3;:::;d;n d+ 1g. So

d jfi2) (i 1) 2gj + d: (3)
Putting together inequalities 1, 2 and 3, we reach a contradiction:
d+d (n 2d 1)+ d+d=n 1: L]

Corollary 19. Let be a traceable d-dimensional simplicial complex on n vertices, n > 2d. If
for any two disjoint (d 1)-faces and one has d + d n, then is weakly-Hamiltonian.

Corollary 20. Let be a traceable d-dimensional simplicial complex on n vertices, n > 2d. If
every (d 1)-face of belongs to at least , facets of , then is weakly-Hamiltonian.

Example 21. Let n > 2d. Let 4 be the simplicial complex on n vertices obtained from d by

removing the interior of the d-faces H, 4+1, Hn d+2, :::, Hn. By construction 4 is traceable, but

the given labeling (as well as any labeling obtained from it by reversing or cyclic shifting)

fails to prove that 4 is weakly-Hamiltonian. Now, in 4, the (d 1)-faces; = H; \"fl;+1, withi 2 fn
d+ L;n d+ 2;:::;n  1g, have degreen d 2. All other (d 1)-faces ; contained

inoneof H, 4+1;Hn d+2;:::;Hny have degree n d 1. Finally, all (d 1)-faces not contained

inany of H, 4+1;Hn d+2;:::; Hy have degree n  d. Therefore:



e If n 2d +4, Corollary 20 tells us that 4 is weakly-Hamiltonian, becausen d 2 2. e Ifzn
= 2d+3 orn = 2d+2, any two of the’s are incident, and any ; is incident to all of the ;’s.
Hence, for any two disjoint (d 1)-faces and, wedo haved+d 2n 2d 2 n.

So we can still conclude that 4 is weakly-Hamiltonian via Corollary 19.

e If n= 2d+1, then the assumptions of Corollaries 20 and 19 are not met, but Proposition 18 is
still applicable. In fact, for the facets resp. formed by the rst resp. the last vertices of the
given labeling, one has d + d = (n d+(n d 1)=2n (2d+ 1)= n.

So in all cases, 4 is weakly-Hamiltonian. The proof of Proposition 18 also suggests a relabeling
that works: ‘4 = 1; 5 £ 2 t0i: ‘qe1 S d+ 1 ‘ge2 =N ‘gez SN Lo 0 Sd+ 2.

To see in what sense Proposition 18 is a higher-dimensional version of Ore’s theorem 4, part
(A), the best is to give a proof of the latter using the former:

Proof of Ore’s theorem 4, part (A). By contradiction, let G be a non-Hamiltonian graph
satisfying deg u + degv n for all non-adjacent vertices u;v. Add edges to it until you reach a
maximal non-Hamiltonian graph G. Since any further edge between the existing vertices would
create a Hamiltonian cycle, G is traceable, and obviously it still satises deg u+deg v n. By
Proposition 18 G is (weakly-)Hamiltonian, a contradiction. 0

It is possible that the bound of Proposition 18 can be improved. But in any case, the possible
improvement could only be small, as the following construction shows.

Non-Example 22. Let d < m be positive integers. Take the disjoint union of two copies A%; A% of
9. Let be any facet of ¢ and let %® be its copies in A% and A%, respectively. Glue to A° [ A® a
triangulation without interior vertices of the prism [0; 1], so that the lower face f0g is identied
with 9, and the upper face flg is identied with ©. Let 5 be the resulting d-complex on n = 2m
vertices. This s is traceable: the added prism, triangulated as a path of d-faces, serves as
\bridge" to move between the two copies of 4. However, this bridge can only be traveled once,
so 5 is not weakly-Hamiltonian. For the labeling that makes it traceable, d + d'= (m d) +
(m d)=n 2d.

Our next result is a \Posa{type" result, in the sense that it extends most of Nash{Williams’
proof [Nas66] of Posa’s theorem [Pos62] to all dimensions. We focus on complexes with the
property that any labeling that makes them weakly-traceable, makes them also traceable. Such
class is nonempty: for example, it contains all 1-dimensional complexes and all trees of d-
simplices (i.e. all triangulations of the d-ball whose dual graph is a tree).

Proposition 23. Let be any traceable pure d-complex on n vertices, n > 2d. Suppose that
any labeling that makes weakly-traceable makes it also traceable.
Let 1;2;:::;5 be an ordering of the (d 1)-faces of , such that the respective degrees d; = d,

aré“eakly-increasing, d1 d> ::: ds. If for every d k< 2 one has di d+] > k, then is weakly-
Hamiltonian.

Proof. Among all possible labelings that make weakly-traceable (and thus traceable, by as-
sumption), choose one that maximizes d + d, where is the (d 1)-face of H1 spanned by the
rst d vertices (that is, 1; 2; d) and is the (d 1)-face of H,, 4 spanned by the last d vertices (that
is, n d+ 1;:::;n). Since n> 2d, the faces and are disjoint. If d+ d n, using the proof
of Proposition 18 we get that is weakly-Hamiltonian, and we are done. If not, then one of , has
degree < ,. Up to reversing the labeling, which would swap and, we can assume that d < ™.

Now let J = fd + 2;d+ 3;:::;n dgeFor every i in J, which has cardinality n 2d 1,
n
def

Si= i and T; = (i 1) .

10



We may assume that at most one of these two faces is in , otherwise a weakly-Hamiltonian cycle
arises, exactly as in the proof of Proposition 18. Now for eachi inJ; = fi 2 ¥ :i 2 g, consider the
(d 1)-face ; with vertices fi d;i d+ 1;:::5i0 1g.

Figure 2: A higher-dimensional \Posa ip": Since 125 is in , the vertex 5 is in J1. Now the red triangle
5 w = 348 cannot be in, or else we would have a weakly-Hamiltonian cycle with the blue labeling. The
blue labeling makes weakly-traceable, with s playing the role of the \rst" (d 1)-face; the \last" (d 1)-face
is the same as before. By how our original labeling was chosen, d; d < ,. n

vertices for which we have a weakly-Hamiltonian cycle: see Figure 2 above. (The proof is
essentially identical to that of Proposition 18, up to replacing T; with 9=, w, reversing the
order, and permuting it cyclically, so that ; is the rst face.) So also in this case, we are done. It
remains to discuss the case in which for all 2 J; = fi 2J : i2 g, the d-face; w
is not in . In this case the relabeling ‘1;:::;, introduced above makes weakly-traceable, and
thus traceable by assumption. For such relabeling, the (d 1)-faces spanned by the rst and the
last d vertices are ; and, respectively. So by the way our original labeling was chosen, d, + d d+ d,
and in particular
n
d d< 5t T
Now, any d-face containing is of the form v, where v is either in the set J; or in the setZ = fd
+ n d+ 1;:::;n 1g, which has cardinality d. So d jJ; [ Zj. Since J and Z are
disjoint, and J1 J, the sets J; and Z are also disjoint and we have

d d=d jZj jli[ Z)  jZj=jhj+jZj jZj= jhj:

So the set f; : i 2 J;g contains at least d d faces of dimensiond 1 and degree d. If we
count also , we have in atleastd d+ 1 faces of dimensiond 1 and degree d. But then, setting
k = d, we obtaiff

di d+1 k< 22
which contradicts the assumption. O]

Again, to see in what sense Proposition 23 is a higher-dimensional version of Pea’s Theo-
rem 5, perhaps the best is to see how easily the latter follows from the former:

Proof of Posa’s theorem 5. By contradiction, if G is not Hamiltonian, we can add edges to it
until we reach a maximal non-Hamiltonian graph G, which still satises the degree conditions and is
traceable. By Proposition 23, G is (weakly-)Hamiltonian, a contradiction. ]
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A natural question is whether one can generalize to higher dimensions also part (B) of Ore’s
theorem 4. The answer is positive, although some extra work is required. In fact, for graphs
part (B) of Ore’s theorem can be quickly derived from part (A) by means of a coning trick. This
trick however does not extend to higher dimensions, as we explained in Remark 16, so we’ll have to
take a long detour, which makes the proof three times as long. The bored reader may skip
directly to the next section.

Denition 24. A d-dimensional complex is quasi-traceable if there exists a vertex labeling for
which [ Hj is weakly-traceable, and moreover, with respect to the same labeling,

(a) ifj = 1, then contains all of Hy;:::;H, 4 (i.e., [ H1 is traceable);

(b) ifj 2 f2;:::;n 2dg, then already contains all of Hy;:::;H; 1 and Hjiq;:::; Hy ¢

(c) ifj2fn 2d+ 1;:::;n d 1g, then contains all of Hy;:::;H; 1 andalso Hn 4 (i.e., [
Hj [ :::[ Hy ¢ 1 is traceable);
(d) ifj = n d, then already contains all of Hy;:::;H, 4 1 (i.e., [ Hn g4 is traceable).

Example 25. The complex ¢ = 123;234;567;678; 789 is quasi-traceable, although not weakly-
traceable. In fact, ¢ becomes weakly-traceable if we add one of the facets 345 and 456, and it
becomes even traceable if we add both.

Denition 24 allows the \added faces" to be already present in . In particular, all traceable
complexes are quasi-traceable. Here comes our high-dimensional version of Theorem 4, part (B):

Proposition 26. Let be a quasi-traceable d-dimensional simplicial complex on n vertices, n
> 2d. If in some labeling that makes quasi-traceable the two (d 1)-faces and formed by the
rst d and the last d vertices satisfy d + d n 1, then is weakly-traceable.

Proof. By contradiction, suppose is not weakly-traceable; we treat the four cases of Denition 24
separately.
Case (a) is symmetric to Case (d), so we will leave it to the reader.

Case (b) is the main case. Since j 2 f2;:::;n 2dg, by denition contains all of

Moreover, (d + j) cannot be a facet of , otherwise the two \halfpaths" above would be
connected into a weakly-Hamiltonian path. For the same reason, since (d+ j 1) 2 Hj 1, thed-
face (d + j 1) cannot bein. So letJ0 = fd 2;d+ 3;:::;n dgnfd + jg. For every i
in J9, which has cardinality n 2d 2, consider the two d-faces of ¢ |

def def

Si= i and T = (i 1) .

Now there are two subcases: Either there exists an i such that S;; T; are both in, or not.

Case (b.1): For some i, both S; and T; are in . There are two subsubcases, according to
whether i is \before the gap" or \after the gap".

{ Case (b.1.1): i < d+ j. A weakly-Hamiltonian path arises from a relabeling as fol-
lows: We start at the beginning of the second halfpath, with the facets previously called
Hj+d; Hj+d+1; etc., until we reach H, 4. Then we use T; to get back to the vertex
previously labeled by i 1. Next, we use in reverse order the facets previously called
Hi 4 1;Hi 4 2;:::;H;Hy. Finally use S; to jump forward to the vertex previously called

12



{ Case (b.1.2): i > d+ j. A weakly-Hamiltonian path arises from a relabeling as fol-lows:
We start at the beginning of the second halfpath, with the facets previously called
Hj+d; Hj+d+1; etc., until Hi 4 1. Then we use T; to jump forward. As next faces, we use in

So also in this case is weakly-traceable, a contradiction.

Case (b.2): For alli, at most one of S; and T; is in . Since the twosetsfi 2 JO:i 2 gand fi
210 i 1) 2 g are disjoint, we obtain a numerical contradiction:

d+ d d+ jfi2J0: i2gj+d+ jfi2)0:(i 1) 2gj==2d+
jfi210: i2g[ fi210:4 1) 2 gj
2d+ jl% = 2d+ n 2d 2= n 2

i in J9, which has cardinality n  2d 1, consider the two d-faces of ¢ N

def def

Si= i and T; = (i 1) .
Now there are two subcases: Either there exists an i such that S;; T; are both in, or not.

Case (d.1): For some i, both S; and T; are in . Then we obtain a weakly-Hamiltonian path
as follows: Starting with ‘1 = 1, rst we use the face i, then Hy;:::;H; 4 1 in their order, then
we use (i 1) n to jump forward, and then we come back with H, 4;:::; H;.

Case (d.2): For all i, at most one of S; and T; is in . We know by that d = H; isnotin
because we are treating the case j = 1, and we know that n is not in otherwise we would have a
weakly-Hamiltonian path. Thus any d-face containing is of the form v, where v is eitherin J% or
in the disjoint set fn d+ 1;:::;n 1g, which has cardinality d 1.
In contrast, any d-face containing is of the form (i 1) , where i is either in J% or in the
set f2;:::;d + 1g, which has cardinality d. Since the two sets fi 2 J®: i 2 gandfi 2 J%: (i

1) 2 g are disjoint, the sum of their cardinality is equal to the cardinality of their
union, which is a subset of J%. So also in this case we obtain a contradiction

d+ d d 1+ jfi219: i2gj+d+ jfi2J%:(i 1) 2gj==2d 1
+ jfi219: §j2g[ fi21%9;i 1) 2gj 0
2d 1+ )% = 2d 1+n 2d 1= n 2:

Example 27. Let 7 be the simplicial complex on 5 vertices obtained from g by removing the
interior of the two triangles 123 and 124. Clearly 7 is quasi-traceable with j = 1, because; [ Hj is
traceable. Since di» + dsas = 4 = n 1, by Proposition 26 ;7 is weakly-traceable. In fact, the
reader may verify that ; is even Hamiltonian with the relabeling ‘1 = 1, ‘2 = 2,3=5,4= 3, ‘s
= 4.

For completeness, we conclude this section by showing how Proposition 26 implies part (B)
of Ore’s theorem 4:

Proof of Ore’s theorem 4, part (B). By contradiction, let G be a non-traceable graph satis-
fying degu+degv n 1 for all non-adjacent vertices u;v. Add edges to it until we reach a max-imal
non-traceable graph G. This G is quasi-traceable and still satises degu+degv n 1.
By Proposition 26 G is (weakly-)traceable, a contradiction. 0]
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2 Interval graphs and semiclosed complexes

In the present section,

(1) we introduce \weakly-closed d-complexes", generalizing co-comparability graphs;

(2) we create a hierarchy of properties between closed and weakly-closed complexes, among
which a d-dimensional generalization of interval graphs; and

(3) we connect such hierarchy to traceability and chordality.

2.1 A foreword on interval graphs and related graph classes

Interval graphs are the intersection graphs of intervals of R. They have long been studied in
combinatorics, since the pioneering papers by Lekkerkerker{Boland [LB62] and Gilmore{
Homan [GH64], and have a tremendous amount of applications; see e.g. [Gol80, Ch. 8, Sec. 4] for a
survey. Unit-interval graphs, also known as \indierence graphs" [Rob69] or \proper interval
graphs", are the intersection graphs of unit intervals, or equivalently, the intersection graphs of
sets of intervals no two of which are nested. The claw Kj;3 is the classical example of a graph
that can be realized as intersection of four intervals, three of which contained in the forth; but it
cannot be realized as intersection of unit intervals.

Bertossi noticed in 1983 that connected unit-interval graphs are traceable [Ber83], whereas
connected interval graphs in general are not: The claw strikes. All 2-connected unit-interval
graphs are Hamiltonian [CCC97][PD03]; again, this does not extend to 2-connected interval
graphs. That said, for interval graphs (and even co-comparability graphs, see below for the
denition) the Hamiltonian Path Problem and the Longest Path Problem can be solved in
polynomial time [DS52] [MC12], whereas for arbitrary graphs both problems are well known to be
NP-complete, cf. [Kar72].

Given a nite set of intervals in the horizontal real line, we can swipe them \left-to-right", and
thus order them by increasing left endpoint. This so-called \canonical labeling" of the vertices
of an interval graph obviously satises the following property: for alla< b< ¢,

ac2 G =) ab2 G: (4)

This \under-closure" is a characterization: It is easy to prove by induction that any graph with n
vertices labeled so that (4) holds can be realized as the intersection graph of n intervals. This
result was rst discovered by Olario, cf. [LO93, Proposition 4].

There is a \geometrically dual argument" to the one above: Given a nite set of intervals
in R, we could also swipe them right-to-left, thereby ordering the intervals by decreasing right
endpoint. This yields a vertex labeling that again satises (4), for the same geometric reasons.
In general, since some of the intervals may be nested, this \dual labeling" bears no relation with
the canonical one. But if we start with a nite set of unit intervals, then the dual labeling is
simply the reverse of the canonical labeling. Thus in unit-interval graphs, not only the canonical
labeling is under-closed, but also its reverse is. Or equivalently, in unit-interval graphs, the
canonical labeling is closed ‘both below and above’: in mathematical terms, for alla< b< ¢,

ac2 G =) ab;bc2 G: (5)

Again, it is not dicult to prove by induction that any graph with n vertices, labeled so that (5)
holds, can be realized as the intersection graph of n unit intervals [LO93, Theorem 1]; see Gardi
[Gar07] for a computationally-ecient construction.

Recently Herzog et al. [H&10, E&13] rediscovered unit-interval graphs from an algebraic
perspective, which will be discussed in the next chapter. They called them closed graphs and ex-
panded the notion to higher dimensions as well (\closed d-complexes"). Later Matsuda [Mat18]
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extended this algebraic approach to the broader class of \co-comparability graphs" (or \weakly-
closed graphs"), that we shall now describe in terms of their complement.

Any graph can be given an acyclic orientation by choosing a vertex labeling and then by
directing all edges from the smaller to the larger endpoint. Every acyclic orientation can be
induced this way. (This is not a bijection: dierent labelings may induce the same orientation). The
drawings of posets, also called comparability graphs, admit also transitive orientations,
namely, orientations such that if ab and b¢ are present, so is ac. Let us rephrase this in terms of a
vertex labeling, which happens to be the same as a choice of a linear extension of the poset:
Comparability graphs are those graphs G that admit a labeling such that, for alla< b< ¢,

ab2 Gandbc2 G =) ac?2 G:

Not all graphs admit transitive orientations: The pentagon, for example, does not.

Co-comparability graphs, also called weakly-closed graphs in [Matl18], are by def-
inition the complements of comparability graphs. So they have a labeling that satises the
contrapositive of the property above: Namely, for alla< b< ¢,

ac2 G=) ab2 G orbc2 G: (6)

By comparing (4) and (6), it is clear that all interval graphs are co-comparability.

We should mention other two famous properties that all interval graphs enjoy. A graph is
perfect if its chromatic number equals the size of the maximum clique. For example, even
cycles are perfect, but odd cycles are not, because they have chromatic number 3 and maximal
cliques of size 2. Note that in poset drawings, a clique (resp. an independent set) is just a chain
(resp. an antichain) in the poset, whereas a coloring represents a partition of the poset into
antichains. Thus Dilworth’s theorem (\for every partially ordered set, the maximum size of an
antichain equals the minimum number of chains into which the poset can be partitioned" [Dil50] {
see Fulkerson [Ful56] for an easy proof) can be equivalently stated as \every co-comparability
graph is perfect". Not all perfect graphs are co-comparability, as shown by large even cycles.

Last property: A graph is chordal if it has no induced subcycles of length 4. One can
characterize chordality in the same spirit of (4), (5) and (6): Namely, a graph is chordal if and
only if it admits a labeling such that, for alla< b< ¢,

ac;bc2 G =) ab2 G: (7)

In fact, if a graph G has a labeling that satises (7), then G is obviously chordal, because if cis the
highest-labeled vertex in any induced cycle, then its neighbors a and b in the cycle must be
connected by a chord by (7). The converse, rst noticed by Fulkerson{Gross [FG65], follows
recursively from Dirac’s Lemma that every chordal graph has a \simplicial vertex", i.e. a vertex
whose neighbors form a clique (cf. [Gol80, p. 83] for a proof). In fact, let us pick any simplicial
vertex and label it by n. Then, in the (chordal!) subgraph induced on the unlabeled vertices, let
us pick another simplicial vertex and label it by n 1; and so on. The result is a labeling that
satises (7). See [Gol80, pp. 84{87] for two algorithmic implementations.

Now, if the same labeling satises (6) & (7), then it trivially satises (4); and conversely, if
(4) holds, then also (6) & (7) trivially hold. Thus it is natural to conjecture that interval
graphs are the same as the co-comparability chordal graphs. The conjecture is true, although
the ‘obvious’ proof does not work: Some labelings on chordal graphs satisfy (6) but not (4),
like 13; 23; 24 on the three-edge path. However, Gilmore{Homan proved that any labeling that
satises (6) on a chordal graph (or more generally, on a graph that lacks induced 4-cycles) can
be modied in a way that ‘linearly orders” all maximal cliques [Gol80, Theorem 8.1] and thus
satises (4). For more characterizations, and a proof that all chordal graphs are perfect, see
Golumbic [Gol80, Chapter 4].
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2.2 Higher-dimensional analogs and a hierarchy

A d-dimensional extension of Characterization (7) of chordality was provided in 2010 by Em-
tander [Emt10], and is equivalent to the following:

Denition 28 (chordal). Let be a pure d-dimensional simplicial complex with n vertices. is called

Ordering") such that for any two facets F = agaj; ag and G = bg bg of with aq = by, the complex
contains the full d-skeleton of the simplex on the vertex set F [ G.

In 2013, Characterization (5) of unit-interval graphs was generalized as well:

Denition 29 (closed [E&13]). Let be a pure d-dimensional simplicial complex with n
vertices. is called closed if there exists a labeling 1;:::;n of its vertices such that for any two
facets F = apa;aq and G = bgbg of with a; = b; for some i, the complex contains the full d-
skeleton of the simplex on the vertex set F [ G.

Obviously, closed implies chordal. We now present four notions that in the strongly connected
case are progressive weakenings of the closed property (see Theorem 50 and Proposition 54 for
the proofs); the rst property still implies chordality, whereas the last three do not. In Section 2.3,
we connect all these notions to traceability (Theorem 63). One of these properties is \new" even
for d = 1: We will see its importance in Chapter 3.

Denition 30 (unit-interval). Let be a pure d-dimensional simplicial complex with n vertices. The

Denition 32 (semi-closed). Let be a pure d-dimensional simplicial complex with n vertices. The
complex is called semi-closed if there exists a labeling of its vertices such that for any d-face F =
apaj :::aq of , at least one of the two following conditions holds:

(i) either all faces agiqiz :::ig of , With iy ay;ip az;:::;ig ag, arein, (ii) or all

faces ipiy :::ig 1a4 of , with ip apdiy ai;:::;ig 1 aq 1 arein.

Denition 33 (weakly-closed). Let be a pure d-dimensional simplicial complex with n ver-tices.

= apaiaq 2 , for every integer g 2 F with ag < g < aq, there exists a d-face G = bgby by in such
that G contains g, G is adjacent to F, and at least one of the following two conditions hold:

(i) either by = ayg,
(ii) or bg = ag.

Remark 34. For d = 1, and assuming connectedness:
e \closed 1-complexes" and \unit-interval 1-complexes" are the same as the unit interval
graphs; compare Looges{Olario [LO93, Theorem 1] and Matsuda [Mat18, Prop. 1.3].

Several dierent d-dimensional generalizations of chordality exist in the literature, e.g. toric chordality
[ANS16] or ridge-chordality, cf. e. g. [BB21]. Emtander chose the name \d-chordal" for what here we call \chordal".
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e \under-closed 1-complexes" are the same as the interval graphs, cf. [LO93, Proposition 4].
e \weakly-closed 1-complexes" are the same as the co-comparability graphs; this is clear from
the denition we gave, but a proof is also in Matsuda [Mat18, Theorem 1.9].
We will see that \semi-closed 1-complexes" are an intermediate class between the previous two.
For example, such class contains the 4-cycle but not the complement of long even cycles, as we
will prove in Theorem 50.

Remark 35 (\unit-interval" vs. \chordal"). Suppose F and G are two faces of a complex with
min F = min G. Then any of the two conditions \ is closed", \ is unit-interval" forces to contain
the full d-skeleton of the simplex on the vertex set F [ G. (Instead, the condition \ is under-
closed" does not suce: See Remark 36 below). Symmetrically, if F and G are d-faces of with
max F = max@G, and is either closed or unit-interval, then must contains the full d-skeleton of
the simplex on the vertex set F [ G. For this reason, all unit-interval d-dimensional complexes
are chordal.

Remark 36 (\Under-closed" vs. \chordal"). Not all chordal complexes are under-closed: Al-
read for d = 1, the chordal graph G = 12;13;14;23;25;36, known as \3-sun" or \net graph",
is neither interval nor co-comparability. However, while all interval graphs are chordal (and co-
comparability), the statement \all under-closed d-complexes are chordal" is false for d > 1. In
fact, we leave it to the reader to verify that the smallest counterexample is the 2-complex

= %23; 124; 234; 235:

The other direction in Gillmore{Homan’s theorem (namely, \all chordal co-comparability
graphs are interval graphs") does not extend to d > 1 either, as the next Proposition shows.

Proposition 37. (i) Some chordal simplicial complexes are semi-closed, but not under-closed.
(ii) If a simplicial complex is chordal and semi-closed with respect to the same labeling, then
with respect to that labeling the complex is also under-closed.

Proof. (i) The example we found is the complex
= 123;124;134;135;167; 234; 246:

The labeling above is a PEO, so is chordal. A convenient relabeling (we leave it to the
reader to gure out the bijection from the vertex degrees) allows us to rewrite it as

= 123; 256; 345; 346; 347; 356; 456:

With this new labeling we see that is weakly- and semi-closed. However, with the help of
a software designed by Pavelka [Pav21], we veried that is not under-closed.

(ii) Let be a simplicial complex with a labeling that is a PEO and makes semi-closed. Let
F = apaq be a face of with gapF > 0. Let G = agbj bgq be a dierent d-face of ,, such that
Gd F (componentwise) and min G = minF. We claim that for any b; notin F, there
exists a d-face A; of , that contains b;, such that A; F (componentwise) and maxA; =
max F. In fact, by construction ag < b; bq aq. Since b; is not in F, there exists a
unique j 2 f0;:::;d 1g such that a; < bj < aj+1. Thus if we set

def
Ai = agaj 1biaj+1 ag

the claim is proven. Now, either F satises condition (i) of the semi-closed denition,
and then G 2 ; or F satises condition (ii), in which case all A;’s are in . But
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by construction, the maximum of all these A;’s is aq, the same maximum of F. So by
chordality, must contain all the d-faces of , wkth vertex set contained in

[
F [ A; = fag;ay;:::;aqg[ fby;:::;bgg = F [ G:
i s.t. bj2F

So also in this case G 2 . O

Remark 38. Part (ii) of Proposition 37 is false if one replaces the assumption \semi-closed"
with \weakly-closed": The subcomplex 0 = 123;124;134;135;234 of is weakly-closed and
chordal with respect to this labeling, but to prove it under-closed, we need to change labeling.

Remark 39 (\Under-closed" vs. \Shifted"). Recall that a simplicial complex on n vertices is
called shifted if for every face F of , and for every face G of the simplex on n vertices, ifdimF =
dim G and F G componentwise, then also G 2 . Shifted complexes are obviously under-closed.
The converse is false, as shown by the graph 12;23; 34.

Remark 40. Being shifted is maintained under taking cones, by assigning label 1 to the new
vertex. In contrast, G = 12;13; 23 is closed and chordal, but the cone over it is neither closed nor
chordal. In fact, none of the ve properties (closed, unit-interval, under-closed, semi-closed,
weakly-closed) is maintained under taking cones. A counterexample for all is the unit-interval
graph G = 12;34;56;78. The cone over G is the U42 of Lemma 43 below.

Let us start exploring the relations between all the new properties with some Lemmas.

Lemma 41. Let d k 1 be integers. If a pure d-dimensional simplicial complex is unit-interval
(resp. under-closed, resp. semi-closed, resp. weakly-closed), then its k-skeleton is also unit-
interval (resp. under-closed, resp. semi-closed, resp. weakly-closed).

Proof. It suces to prove the claim for k = d 1; the general claim follows then by iterating. We
prove only the weakly-closed case; the others are easier. Let be a pure weakly-closed d-
complex. Let = agag 1 bea(d 1)-face of. Let g 2 be an integer such thatag < g < aq 1.
Since is pure, there exists a d-face F of that contains . Let v be thevertexof F notin.Ifv= g,
i.e. if F = fgg[ , then all the d facets of dierent than are adjacent to and contain g; if we choose
one of these d facets that has either dierent minimum or dierent maximum than , we are done. So
let us assume that v = g, or equivalently, that F does not contain g. By the weakly-closed
assumption, there exists a d-face G in such that G contains g, G is adjacent to F, and G and F
do not have same minimum and maximum. If G contains the entire face , i.e. G = [ g, then
again we could conclude as above, choosing some facet of G dierent than . So we can assume that
G does not contain the whole of , or in other words, that the vertex v is present in G. Let be
the unique face of G that does not contain v. By construction, and are adjacent, and g 2 .
If and had same minimum and maximum, then also F and G would, because F and G are
obtained by adding to and , respectively, the same element v. Hence, the (d 1)-skeleton

of is weakly-closed. 0]

Lemma 42. Let d 2. Let C9*1 be the (d + 1)-dimensional simplicial complex with facets H1 and
H,. The boundary S9 of C9*1 is strongly-connected, semi-closed, but not under-closed. The d-
skeleton B9 of C9*1 is traceable, strongly-connected, unit-interval, but not closed.

In particular, the k-skeleton of a closed complex need not be closed.

Proof. Note that S9 is B9 minus a d-face, so since d 2 the 1-skeleta of B9 and of S9 coincide.
The vertices of B9 (respectively, of S9) can be partitioned with respect to the number of edges
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containing them, as follows: exactly two vertices have degree d + 1, and we shall call them
\apices"; the remaining d + 1 have degree d + 2, and we shall call them \basepoints". The
crucial remark is that in B9 (resp. S9) the two apices are not connected by any edge. We claim
that any labeling that makes B9 or S9 closed must assign labels 1 and d + 3 to the two apices. In
fact:

same position in F and G, yet B4 (or S9) does not contain the whole d-skeleton of the
simplex on F [ G, because vw is missing. So the closed condition is not satised.

maximum of both faces, and again B9 (resp. S9) does not contain the edge vw, so the
closed condition is not met.
Next, we claim that any labeling that makes S¢ under-closed must assign labels 1 and d + 3 to the
two apices. (Caveat: This claim is valid only for S9, since already B2 is under-closed with the
labeling 123; 124; 134; 234; 125; 135; 235, where the apices are 4 and 5.) In fact:
¢ If the label 1 is assigned to a basepoint, then any other vertex is contained in a facet that
contains also 1. The same is true if d + 3 is assigned to a basepoint. So either way, there is
a face H containing both 1 and d+ 3. Thus gap H = 2. But then if the labeling is under-
closed, the complex must contain all three facets 12dj, with j 2 fd + 1;d+ 2;d+ 3g.So

we found in S9 three dierent facets containing the (d 1)-face =*{2d. This is a
contradiction because S9 is topologically a sphere: Every (d 1)-face in it lies in exactly
two d-faces.

Thus the two claims are proven. So up to a rotation that does not aect the list of facets, both
for B9 and S¢ we may focus on the labeling that we introduced from the start. With respect to
that labeling, S9 is clearly semi-closed, but it is not under-closed, because the d-face with vertices

edge connecting the two apices, so H3 is not in B9, ]

2
Figure 3: (i) A 2-complex B2 = 123;124; 134; 234; 235; 245; 345 that is unit-interval, but not closed; if we
remove the triangle 234, we get a 2-complex S? that is semi-closed, not under-closed, cf. Lemma 42. (ii)
A 2-complex U? = ;124;345; 467 that is closed, but not weakly-closed, cf. Lemma 43.
(iii) A 2-complex 2 3 123;124;125 that is under-closed, but not unit-interval, cf. Lemma 44.
(iv) A 2-complex Q2 = 123;125;234; 245 that is weakly-closed, but not semi-closed, cf. Lemma 46.

19



Lemma 43. Let d and k be positive integers. Let U4 be a one-point union of k copies of d, Then
udis clpsed if and only if k d+ 1, and it is weakly-closed if and only if k 2. In particular, for
all d 2, the d-complex Uy, is closed, butdnot weakly-closed.

Proof. Let v be the vertex common to all facets. When k > d + 1, by the pigeonhole principle
there are two facets in which v appears in the same position; were de closed, its dual graph
would have to contain a clique, which is not the case. When k d + 1, we force the closed
property by giving v a label so that v appears in a dierent position in all facets. We show an

algorithm to do this in case k = d+ 1, leaving the case k < d+ 1 to the reader. We label v by fq4

d+1def | % We label the vertices of the rst facet by 123 df4: so in the rst facet, v comes last.

Then for all i = 2;3;:::;k = d+ 1, we label the i-th facet by using the next

available d i integers below fq, then fgq, then the rsti 1 available integers after fq. This way in
the i-th facet, v comes \i-th last". For example, the labeling we construct for U3, sincef3 e 4
+ k= Z, is U3 = 123Z; 4578; 67910; 7111213.

Finally, suppose that US is weakly-closed. No face of U‘Ij has an adjacent facet. Hence, the
labeling satisfying the weakly-closed condition must consist only of gap-0 faces. But labeling all
facets with consecutive vertices is possible if and only if k 2. ]

Lemma 44. Let k 1 and d 2 be integers. Let If' be the d-dimensional complex on d + k
vertices obtained by joining the (d 1)-simplex ¢ 1 to a 0-complex consisting of k points. Then
(a) d s under-closed for all k.
(b) d is closed, if and only if it is unit-interval, if and only if it is (weakly) traceable, if and
only if k 2.

is kunder—closed. Moreover, the d-complex ¢ is strlgngly—connected. It has exactly d + k vertices
and k facets. When k 2 its dual graph is a path, so clearly the obvious, consecutive labeling
makes 9 a closed, unit-interval, and traceable complex. But when k 3, the \path
of k d-simplices" is not a subcomplex of 4. Hence, for k 3 the complex ¢ isknot traceable, not
weakly-traceable, and not weakly-Hamiltonian. The fact thatl‘(j is neither unit-interval nor

closed can be veried either directly, or using Proposition 54 and Theorem 56 below. ]
Remark 45. The 1-skeleton of 3 2 123;124; 125 (cf. Figure 3) is the graph
Gs = 12;13;14;15; 23; 24,25

which is under-closed by Lemma 41. It is not dicult to see that Gs is the smallest 2-connected
interval graph that is not Hamiltonian.

Lemma 46. Let d 2 be an integer. Let QY be the d-dimensional complex on d + 3 vertices
obtained by taking d 1 consecutive cones over the square. Then QY is weakly-closed, but not
semi-closed.

Proof. Both Q2 = 123;125;234;245 and Q3 = 1236;1256;2346; 2456 are weakly-closed. If we
label further coning vertices using consecutive labels after 6, we claim that the weakly-closed
property is maintained. (This is not obvious, as the weakly-closed property is not maintained
under arbitrary cones, cf. Remark 40.) In fact, since every face F of Q3 contains 6, the gap of F
equals the gap of F [ f7g, and the missing integers are the same, so the calculations proving
weakly-closedness end up being the same for Q3 and Q*. For the same reasons, one can show
that if some Q9 is semi-closed with a labeling that assigns consecutive labels to two apices, then Q¢
1 ijs semi-closed too. But if d 7, QY has 10 vertices, and only 4 of them are not apices; so
necessarily two apices are assigned consecutive labels. So to complete the proof we only need to
show that Q2; Q3; Q%; Q° and Q°f are not semi-closed, which can be veried with [Pav21]. 0
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Lemma 47. Let be a pure d-complex where every vertex is in at most k facets.

(1) In any labeling that makes weakly-closed, every facet has gap 2k 2.

(2) In any labeling that makes semi-closed, every facet has gap k 1.
If in addition d = 1 and is a k-regular graph, then in any labeling that makes semi-closed,
the k edges of the type 1j , with 2 j k+ 1, are all in ; and so are all the k edges of the type

in, with n kin 1.
(3) In any labeling that makes unit-interval, every facet has gap g, where g is the largest
integer such that g;d k; in particular, every facet has gap “kdl ~— 1.

Proof. For any vertex v of , let deg v be the number of facets of containing it. For any facet F of ,
let SE be the set of integersi 2 F such that minF < i < maxF. By denition, S¢ has cardinality
equal to gap F. For brevity, set a= minF and'b= maxF.

(1) For every i in S¢, there is a face G; adjacent to F that contains the vertex i and exactly
d vertices of F, among which exactly one of a;b. Clearly as i ranges over S¢, the G;’s are
all dierent. So dega + degb gapF + 2. (The summand 2 is due to the fact that we
should count also F itself, once contributing to dega and once to degh). Since k dega
and k degb, we conclude that gap F 2k 2.

(2) For every i in S¢, either contains the n; gapF + 1 facets (including F itself) with
minimum a that are componentwise F, or contains the n, gap F + 1 facets (including F
itself) with maximum b that are componentwise F. Either way, there is a vertex v
(either a or b) with degv gapF + 1. Since degv k by assumption, we conclude that
gapF k 1. So the rst claim is settled. From this applied to d = 1, it follows that

f edges of containinglg f 1j suchthat2 j k+ 1g:

The two sets above have size deg 1 and k, respectively. If is k-regular, the two quantities

are equal, hence the sets coincide. The same argument applies to the edges containing n.

(3) For everyi in Sg, by denition of unit-interval, contains the gade+d d-faces that contain
vertex i and have vertices in fa;a+1;:::;bg. So we must have &3P F+d k. In particular,

d d
since %Y (8l _for all positive integers g; d, we cannot have (82RFXL 5 | O

Our next Lemma is a d-dimensional version of the well-known fact that cycles of length 5 or
more are not co-comparability, cf. Matsuda [Mat18].

it are not weakly-closed.

Proof. By Lemma 41, it suces to prove that the 1-skeleton G of A, i§ not weakly-closed. By

G weakly-closed. Up to rotating the labeling cyclically, we can assume that a; is the
smallest of the aj’s. Since n 2d + 3, in particular n d > d+ 2, so the labelsa, 4;an

with the weakly-closed assumption: aian is in G, but neither aj;aq+2 nor ag+2an is. So a, < ag+2.

Symmetrically, were aq+1 > an 4, we would have a contradiction: aiag+1 is in G, but neither

aian ¢ hor a, dads+1 iS. SO ag+1 < an 4. Now let us compare ag+1 and ay:

{ If ag+1 > an, then a, < ag+1 < an 4 by what we said above; so we get a contradiction,
because the edge anan 4 is in G, but neither ajag+1 nor ag+1an 4 is.

{ If ag+1 < an, then ag+1 < ap < ag+2 by what we said above; so symmetrically we get another
contradiction, because ag+1a4+2 is in G, but neither ag+1an hor anag+2 is. I
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Remark 49. Az is not weakly-closed, even if its 1-skeleton is semi-closed [Pav21]. (A2 instead
is weakly-closed.) So the bound n 2d + 3 of Lemma 48 is best possible in general, but if one

only cares about A¢ and not about its skeleta, then it can be improved.

Theorem 50. For each d 1, for (pure) simplicial d-complexes, one has the hierarchy
f unit-interval g ( f under-closed g ( f semi-closed g ( f weakly-closed g ( f all g:

Proof. All inclusions are obvious except perhaps the third one. Let F = agai:::aq be a face

of . If F satises condition (i) in the denition of semi-closed, and there is a g such that

ai < g< ajs+1, then GO £ 3031 aig a1 aq 1 is componentwise F and thus belongs to ; moreover,

since maxG® < maxF, the face GO satises condition (i) in the denition of weakly-

closed. If instead F satises condition (ii) in the denition of semi-closed, and aj < g < aj+q for

some g, then G® = a%; g aj+1 aq is componentwise F, so G® is in ; and since minG% > minF,
this G satises condition (ii) in the denition of weakly-closed.

AL & O

Figure 4: One-dimensional simplicial complexes that are: (i) Not unit-interval, but under-closed. (ii)
Not under-closed, but semi-closed. (iii) Not semi-closed, but weakly-closed. (iv) Not even weakly-closed.

Next, we discuss the strictness of the inclusions, which is the interesting part of the theorem.
(i) For d = 1, the claw graph 12;13; 14 is under-closed only with this labeling, which is not
unit-interval because for example 23 is missing.
For d 2, strictness follows by Lemma 44.

(ii) For d = 1, the 4-cycle is semi-closed with the labeling 12;13; 24;34. By Lemma 47, part
(2), only this labeling makes the 4-cycle semi-closed. This labeling is not under-closed,
because 24 is an edge, but 23 is not. More generally, for any n 4, one can show that
the graph susp(A,, 2) of Remark 12 is semi-closed (with the suspension apices labeled by
1 and n), but not under-closed.

For d 2, the strictness of the inclusion follows by Lemma 42.

(iii) For d = 1: Since Cy¢ is a comparability graph (it is the nonempty-face poset of the
k-gon), Ck is co-comparability. We claim that Cy is not semi-closed for any k 3. For
notational simplicity, we give the proof for k = 3; the case of arbitrary k has a completely
analogous proof. Suppose by contradiction that Cg has a semi-closed labeling. Since Cg
is 2-regular, its complementis (6 1 2)-regular, i.e. 3-regular. By Lemma 47, part (2),
all of 12;13; 14 and 36;46; 56 are edges. In contrast, 15, 16 and 26 are not edges, again
by Lemma 47. But then 25 must be an edge of Cg, for otherwise 15, 16, 26 and 25 would
form a 4-cycle inside the complement, which is Cg. We claim that this edge 25 cannot
satisfy the semi-closed condition. In fact, if all of 23;24; 25 were edges, together with 12
we would have 4 edges containing vertex 2, contradicting 3-regularity; and similarly, if
all of 25; 35; 45 were edges, counting also 56 we would have 4 edges containing vertex 5.
This shows strictness of the inclusion for d = 1; the case d 2 is settled by Lemma 46.

(iv) For any d 1, this is settled by Lemma 48. ]
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2.3 Shortest dual paths and relation with traceability

As we saw in Lemma 43, there exist complexes like U3 = 124;345;467 that are closed but not
weakly-closed. So at this point we owe the reader some explanation: Why did we (and before us,
Matsuda [Mat18] and others, in the 1-dimensional case) choose to call \weakly-closed" a property
not implied by \closed"? Here is the reason. We are going to show that all strongly-connected
closed complexes are unit-interval (Proposition 54), so in particular under-closed, semi-closed,
and weakly-closed. We will then prove that all such complexes are traceable (Theorem 56),
which can be viewed as a higher-dimensional generalization of the graph-theoretical results by
Bertossi [Ber83] and Herzog et al’s [H&10, Proposition 1.4]. The key to our generalization is to
focus on shortest paths in the dual graph.

Denition 51. Let F be a facet a pure d-dimensional simplicial complex . Let v be a vertex of .
A shortest path between F and v is a path in the dual graph of of minimal length from F to some
facet containing v. The distance between F and v is the length of a shortest path, if any exists,
or + 1, otherwise.

Denition 52. Let be a pure d-dimensional simplicial complex, with vertices labeled from 1 to n.
A path Fg; F1; :::; F< in the dual graph of is called ascending, if each F; is obtained from F;
1 by replacing the smallest vertex of F; ;, with a vertex greater than all remaining vertices of F;
1. A path is called descending, if the reverse path is ascending.

For example, suppose that a 2-complex contains the facets 124; 245; 456, and 356. The dual
path they form is not ascending { or better, it is ascending, except for the last step. Such dual
path demonstrates that the vertex v = 3 is at distance 3 from 124. Now suppose that we know
in advance that is closed: Then from 356;456 2 , we immediately derive that must contain the
whole 2-skeleton of the simplex 3456. Note that the same conclusion could be reached also if
we knew in advance that is unit-interval, rather than closed. Either way: contains the facet G =
345 which contains 3 and is adjacent to 245. So 124;245; 345 yields a \shortcut" to the original
path, thereby proving that v = 3 is actually at distance 2 from 124. And it gets even better:
Since 245 and 345 are in , by the closed assumption (or the unit-interval assumption) on , we
may conclude that contains the whole 2-skeleton of the simplex 2345. So also 234 is in , which
means that v = 3 is at distance 1 from 124.

This example generalizes as follows, in what can be viewed as a higher-dimensional version
of Cox{Erskine’s narrowness property [CE15]:

Lemma 53. Let be a pure d-dimensional simplicial complex, with a labeling that makes it either
closed or unit-interval. Let F = agajaq be a facet of . Let v be a vertex. If the distance between
F and v is a nite number * 2, then

e either there is a shortest path from F to v that is ascending (and thus v > agq),

e or there is a shortest path from F to v that is descending (and thus v < ap).
If instead ag < v < aqg, and some facet containing v is in the same strongly-connected component of
F, then the distance between F and v is at most one, and contains the whole d-skeleton of the
simplex on the vertex set F [ fvg.

Proof. Let

be a shortest path from F to a vertex v 2 Fi+1. Suppose the path is ascending until F;, butit
stops being ascending when passing from F; to Fi4+1. This means that maxF; = maxFj.1. By
Remark 35, contains the whole d-skeleton of the simplex with vertex set Fi [ Fi+1. In
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particular, if we set =“F, 1\ Fi, the complex contains G = [’Efv. But since G is a d-face that
contains v and is already adjacent to F; 1,

F = Fg;:::; Ff 15 G

is a shorter path from F to v than the one we started with, a contradiction. The same argument
applies to descending paths. If instead ag < v < aq, clearly there cannot be any ascending or
descending path from F to v. So either v 2 F, in which case the distance from F to v is 0 and
there is nothing to prove, or v 2 F, in which case the distance is 1. In the latter case, F and the
adjacent face G containing v have same maximum, so again by Remark 35 the complex contains
the d-skeleton of the simplexon F [ G = F [ fvg. ]

Proposition 54. All strongly-connected closed simplicial complexes are unit-interval.

Proof. Let be a strongly-connected d-dimensional simplicial complex that is closed with re-
spect to some-labeling. Let F = apgai;aqg 2 . We claim the following:
(*) If there exist m2 f1;:::;dg and gy;:::;8n notin F, withap< g1 < g2< :::< gn < agq,

If gap(F) = 0, then the implication is trivially true, because the antecedent is never veried. So
suppose gap(F) > 0, and let us proceed by induction on m.

For m = 1: Pick a vertex g of not in F, with ag < g < aq. Since is strongly connected, by
the second part of Lemma 53 the complex has a facet G that contains g and is adjacentto F.
Had G neither same minimum nor same maximum of F, then either G = ajayaqg orG =
gapaiaq 1. But both cases contradict the assumption ag < g < a4. Hence, F and G have
either same minimum or same maximum (or both), so they share at least one vertex in the same
position. Since is closed, contains the d-skeleton of the simplexon F [ G = F [ fgg.

H, except for one replacement, to be decided as follows:
e If minH = ag and maxH = ag, we shall replace g; with any vertex v of F that is not
in H. This way, since ag v ag, we have that as real intervals

(minH; maxH) = (ag;aq) = (MinH®; maxHO):
e If minH = g1, or if minH = a; for some i > 0, we shall replace g1 with ag. This way
(minH; maxH) ( (ag; maxH) = (minH% maxH°):
e If maxH = gn, or maxH = a; for some i < d, we shall replace gm with aq. This way
(minH; maxH) ( (minH;aq) = (MinH®% maxH°):

In all three cases, if w is the only element that belongs to H but not to H?, then w is either g1
or g, and we have
minH® < w < maxH?:

Moreover, H? contains at most m 1 elements of fg1 :::;gmg, so by the inductive assumption H®
isin . But since minH? < w< maxH?, by the second part of Lemma 53 we conclude thatalso H is
in . By the genericity of H, this proves Claim (*). From the Claim the conclusion follows
immediately, by choosing m maximal. O

24



Remark 55. The converse is false: The complex with k disjoint d-simplices is obviously not
strongly-connected, yet it is unit-interval with the natural labeling below:

For connected graphs, it is obvious that \closed" and \unit-interval" are the same: This is noticed
also in Matsuda [Mat18, Proposition 1.3] and Crupi{Rinaldo [CR14]. However, as we saw in
Lemma 42, higher-dimensional complexes that are both strongly-connected and unit-interval
might not be closed.

We have arrived to the main result of this section, the generalization of Bertossi’s theorem:

Theorem 56 (Higher-dimensional Bertossi). Let be a pure d-dimensional simplicial complex
that is either closed or unit-interval. Then

is strongly-connected () is traceable.

Proof.

(: Let F be a d-face of . We want to nd a walk from to Hi in the dual graph. If gapF
let i £ minF. Since F and H; have same minimum, by Remark 35 contains the whole d-
skeleton of the simplex on F [ Hj. But the d-skeleton of a higher-dimensional simplex is
strongly-connected, which means that in the dual graph of we can walk from F to H;. And
since H; has gap 0, we can walk from it to Hj.

) : Fix a labeling for which is (almost-)closed. We are going to show by induction on j that
with the same labeling, every Hj is in . For j = 1, since is pure, it contains a faceF =
apa; ag with ag = 1, and then it is easy to derive (either directly, or using that the labeling
satises the under-closed condition by Theorem 50) that H; is in . Now suppose that
contains H; and let us show that contains Hj+1. By Lemma 53, has a d-face HO that
contains d + j + 1 and is adjacent to Hj. Such H® has the same vertices of H;, with the
exception of a single vertex i that was replaced by d +j + 1. Now either i = j, in which
case H® = H;.1 and we are done; ori > j. If i > j, then j was not replaced, so it is still
present in H®. Hence H? and H; are adjacent faces with the same minimum, namely, j.
By Remark 35, this implies that Hj4+1 is in . 0

Remark 57. If the \unit-interval" assumption is weakened to \under-closed", then the direction
\ )" of Theorem 56 no longer holds, with K1.3 playing the usual role of the counterexample. The
direction \ (" instead is still valid. We claim in fact that all weakly-closed traceable complexes are
strongly-connected. To see this, it suces to show that from any d-face F of positive gap we can walk
in the dual graph to some gap-0 face. But the weakly-closed denition tells us how to move in the
dual graph from F to a face F, of smaller gap than F. So if we iterate this, eventually we get from

F to a gap-0 face. (The same type of argument is carried out in details in the proof of Theorem 63,
item (5), below.) That said, the \weakly-closed" assumption is needed for \ (".

connected. Its dual graph is a path of length d + 1 plug an isolated vertex.

Generalizing a result by Chen, Chang, and Chang [CCC97, Theorem 2], we can push The-
orem 56 a bit further. If D is a simplicial complex obtained from by deleting some vertices

vertices of D in the same way as they are ordered inside . For example, if = 123;134;345, the
compressed labeling for D = del(2;) is 123;234. A priori, this D need not be pure.
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Lemma 58. Let %be a d-dimensional simplicial complex obtained by deleting some vertices from
a d-dimensional simplicial complex . If is unit-interval (resp. under-closed, resp. semi-closed),
then so is O.

Proof. If the original labeling satised the unit-interval (resp. under-closed, resp. semi-closed)
condition, so does the compressed labeling. ]

Lemma 59. Let be a d-dimensional strongly-connected simplicial complex, with a labeling

that makes it unit-interval. The following are equivalent:

(a) The deletion of d or less vertices, however chosen, yields a d-complex that is strongly con-
nected.

(b) The deletion of d or less vertices, however chosen, yields a pure d-complex that with the
compressed labeling is traceable.

(c) contains all faces of gap d.

Proof. (a), (b): By Lemma 58 the compressed labeling satises the unit-interval condition.

Via Theorem 56, we conclude.
(b) ) (c): By deleting zero vertices we notice that is itself traceable. Let F = agaq be any

in by denition of traceable. Otherwise, set Sg = fj #'F such that ag < j < agg. Let Obe the
complex obtained from by deleting the vertices in S¢, which are at most d. By assumption,
0js traceable with the \compressed labeling". So © contains a gap-0

face of minimum ag. But by how the compressed labeling is dened, this face has exactly

(c)) (b): Let °be the d-complex resulting from the deletion. With the compressed labeling, ©
is traceable, because any gap-0 d-face of 2 with the compressed labeling, is a d-face of
that had gap d in the original labeling. It remains to see that ©is pure. We prove
that 9 has no facets of dimension d 1, leaving the case of facets of even lower
dimensions to the reader. We claim that every (d 1)-face of lies in at least d + 1distinct
d-faces of . From the claim the conclusion follows via the pigeonhole principle: If we delete
d vertices, however chosen, then at least one of the d-faces containing will survive the
deletion, which implies that is not a facet in ©.

So let us prove the claim. Let = bgbyg 1. If by 1 by d+ 1= gdf() d, thenby 1+
1 bp+ 2d. So for each i in the (d + 1)-element set

the d-face [ fig has gap d, and thus is in by assumption. If instead gap() d+1,
we use the unit-interval assumption: for every i in S =“fi 2 such that bg < i < byq 18,
the d-face [ fig is in . So either way the claim is proven. ]

Theorem 60 (Higher-dimensional Chen{Chang{Chang). Let be a pure d-dimensional sim-
plicial complex.
e If is unit-interval and the deletion of d vertices, however chosen, yields a strongly-
connected d-complex, then is Hamiltonian.
e If is weakly-closed and Hamiltonian, the deletion of 1 vertices, however chosen, yields a
strongly-connected d-complex.

Proof. For the second claim: Up to a cyclic reshuing, the vertex we wish to delete is n. The
argument of Remark 57 yields a dual path in from each d-face F to H;. If F does not contain
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n, none of the d-faces in such dual path does, so the path belongs to the dual graph of the
deletion of n from .
Now we prove the rst claim. By Lemma 59, contains all d-faces of gap d. In particular: ¢ for
any odd i such that 1 i n 2d, contains the gap-d face O; formed by i and by
the rst d consecutive odd integers after i;
e forany evenj suchthat2 j n 2d, contains the gap-d face E; formed by j and by
the rst d consecutive even integers after j;
e contains the gap-(d 1) face F = 1;2;4;:::;2d formed by 1 and by the d smallest even
natural numbers;
e contains the gap-(d 1) face G formed by the largest even integer n and by the d
largest odd integers n.
Now consider the following sequence C of d-faces in : First all Oi’s in increasing order, then G,
then all Ej’s in decreasing order, then F. Note that any two O;’s are adjacent, and the last of
them is adjacent to G; symmetrically, any two E;’s are adjacent, and F is adjacent to E;. We
claim that this sequence would form a weakly-Hamiltonian cycle if we relabeled the vertices of rst
by listing the odd ones increasingly, and then the even ones decreasingly.
Formally, if n is odd, we introduce the new labeling

( def def

L def ef ¢ def . def
1=1,%=

3;3= 5115 ‘1= M aer ;=0 L ha 5, =0
2 2 2
And if instead n is even, we introduce the new labeling

o def def def

1=1,%=3;3=5:15;v=n 1, 'ny1 =0 ‘e, = 0 2500 1= 4 0= 2

def d . .
Let usset Ly £ 1% ‘4+1, Ly = ‘573 ‘442, and so on. Then the sequence C described above is

equal (whether n is even or odd) to

This shows that with the new labeling is weakly-Hamiltonian. It remains to show ford
2 that our weakly-Hamiltonian cycle can indeed be ‘completed’ to a Hamiltonian cycle, in the
sense that the L;’s that were not mentioned in C are anyway contained in . First of all, note
that with the original labeling contained all the d-faces of gap d, so in particular it
contained all d-faces containing 1 and with vertex set contained in F [ O1. This shows that with
the new labeling, L, (4 2), ::: Ln areallin . So it remains to consider the missing L;’s from
the ‘center’ of the sequence C. For the \n odd" case (the case for n even is analogous), we have
to see whether contains also the d 1 facets

Ln+a ; Lo+ ;oiii; Lnes:
= d+2v 5 d+3 ’ 5

When we translate these d-faces back into the old labeling, it is easy to see that the face with the
largest gap is the last one, which has gap d 1. So all these faces are in by assumption. ]

Example 61. Let be an unit-interval 3-complex on n = 9 vertices that contains all tetrahedra
with gap 3. With the notation of Theorem 60 the complex contains the sequence C below:

O = 1357; O, = 3579; G = 5789; E, = 2468; F = 1246:
If we relabel the vertices as in the proof of Theorem 60, the list above becomes
Li; L2; L3; Le; L7:

Thus is weakly-Hamiltonian. To prove that it is Hamiltonian, we need to check that Ls; Ls and
Lg; Lg are in . Translated into the original labeling, this means checking that 6789; 4689 and
1234; 1235 are in , which is clearly the case because they all have gap 2.
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Remark 62. For d = 1, Theorem 60 boils down to Chen{Chang{Chang’s result that \unit
interval graphs are Hamiltonian if and only if they are 2-connected" [CCC97, Theorem 2]. The Gs
of Remark 45 is 2-connected and not Hamiltonian; hence the \unit-interval" assumptionin the
rst claim of Theorem 60 is necessary. As for the second claim, the \weakly-closed" assumption
is necessary for d > 1, because we saw in Remark 2 that some Hamiltonian d-complexes are
not strongly-connected.

We may condense most of the results of this chapter in the following summary:

Theorem 63. Let be a d-dimensional simplicial complex.

(1)
(2)

(3)
(4)

If is closed (or unit-interval) and strongly connected, then is traceable.

If is closed (or unit-interval), and the deletion of d or less vertices, however chosen,
yields a strongly connected complex, then is Hamiltonian.

If is under-closed, it contains H1. If in addition has a face of minimum i for eachi 2
f2;:::;n dg, then is traceable.

If is semi-closed, then for every face F = agaqg of either Hy, or Hy 4 is ig\ .(5) If

is weakly-closed, then contains at least one of the H;’s.

If in addition contains Hy, plus a face with minimum i and of gap smaller than d for
eachi in f2;:::;n dg, then is weakly-traceable.

Proof. (1) This is given by Proposition 54 and Theorem 56 above.

(2)
(3)

(4)
(5)

This is given by Proposition 54 and Theorem 60 above.

By denition of under-closed, if has a face of minimum i, then contains H;. The fact that
has a face of minimum 1 follows from the assumption that is pure.

This is straightforward from the denition of semi-closed.

Let F = apajaq be any facet of with gap(F) > 0. Let g 2 F such that ag < g < aq.By
denition of \weakly-closed", some face G = bghy by of contains g, is adjacent to F, and has
either bg = ag or by = a4q. Thus gap G < gapF. lterating the process, eventually we nd in
a gap-0 face, which has to be one of

As for the second claim: By assumption, contains H;. Also, contains H, 4, because no
other face has minimum n d. Now let H? = 2a; aq be a face of with minimum 2 and
gap d 1. By the argument above, we know that must contain at least one of

Let us call this face H;,. By how HO was chosen,
2 iy a4 d= gap(H°)+ 2 d+ 1:

But since H; contains all vertices from 1 to d + 1, in particular it contains i;. So H; , is
incident with Hy. Now let H® = aga; aq be a face of with gap smaller than d, and
minimum ag = i, + 1. Repeating the argument above, contains one of

Call this facet Hj,; as above, it must intersect Hi,. And so on. Eventually, we obtain a list
Hi = Hi,; Hi, :::5Hy, 5 Hi, = Hy g of facets of that makes it weakly-traceable. O

Remark 64. In the previous theorem, a relabeling was necessary only to prove item (2). For all
other items, the original labeling was already suitable for the desired conclusion. So for item (1)
we proved a slightly stronger statement: \If is strongly-connected, then any labeling that makes
unit-interval automatically makes traceable". Same for items (3), (4), (5).
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3 Algebraic motivation

In this section, we review Ene et al’s denition of determinantal facet ideals [E&13]. We nd
out a large class of them that are radical. In fact, we prove the following:
¢ If a simplicial complex is semi-closed, then its determinantal facet ideal has a square-free
Grebner degeneration (and in particular is radical), and the quotient by such ideal in
positive characteristic is F-pure (Theorem 77).
¢ If the simplicial complex is unit-interval, then the natural generators of its determinantal
facet ideal form a Grebner basis with respect to a diagonal term order (Theorem 82).
Moreover, the converse is true if with respect to the same labeling, the simplicial complex is
traceable (Theorem 87).

3.1 A foreword on F-pure rings, F-split rings, and Knutson ideals

Let p be a prime number. Let R be a ring of characteristic p. Recall that the Frobenius map is the
ring homomorphism from R to itself that maps an elementr 2 R to rP. We denote by FR the R-
module dened as follows: FR = R as ad#itive group, andr x = rPx for all’¥ 2 R andx 2 FR. This
allows us to view the Frobenius map as a map of R-modules,

F: R ! FR
rl rP:

The ring R is reduced if and only if F is injective. So the following denitions are natural:

Denition 65. R is F-pure if F
Im:M 1! FR
R M is injective for any R-module M.

Denition 66. R is F-split if there exists a homomorphism : FR ! R of R-modules such
that F = 1g. Such a is called an F-splitting of R.

If a ring is F-split, it is clearly F-pure. The converse does not hold in general. However, the
two concepts are equivalent in a number of cases, for example:

Lemma 67. Let R = . i,z Ri be a Noetherian graded ring of characteristic p having a unique
homogeneous ideal m that is maximal with respect to inclusion. Furthermore, assume that the
Noetherian local ring Rg is complete. Then the following are equivalent:
(a) R is F-split.
(b) R is F-pure.
(c) F
lg : E I FR
R E is injective, where E is the injective hull of R=m.

Proof. (a) =) (b) =) (c) are obvious implications. To see (c) =) (a): the map

is injective if and only if the corresponding map

Homg(FR; Homg(E; E)) = Homg(FR
R E;E) ! Homg(E;E)

is surjective. Hence, by [BH93, Corollary 3.6.7, Proposition 3.6.16, Theorem 3.6.17], the corre-
sponding map : Homg(FR; R) ! R is surjective. So there exists 2 Homg(FR; R) such that
() = 1. On the other hand, by construction () = (F(1)), so F = 1jg. O

Since we want to study homogeneous quotients of a polynomial ring over a eld, by Lemma 67



we may as well regard the F-split notion and the F-pure notion as equivalent.
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In the following the concept of Knutson ideal will be fundamental. The name arises from the
work of Knutson [KnuQ9], later systematically investigated by the second author [Sec20], who
extended several properties from Z=pZ to any eld. The result from [Sec20] that we shall need is
the following:

in<(g) square-free for some term order on S. Let Cg be the smallest set of ideals of S containing (g)
and such that:

1.12C; =) | :h2 Cg whenever h2'S,

2.1;02C =) 1+12Cg 1\J2C,.
If I 2 Cg, then inc(l), and therefore I, is radical. Furthermore, if 1;J 2 Cg, then in<(l + J) =
inc(l)+inc(J)andin<(1\J) = inc(1)\inc(J). Finally, if K has positive characteristic, S=1I is
F-pure whenever | 2 Cg.

Example 69. It can be shown that, if g = x1X2 X, then Cg is the set of squarefree monomial
ideals.

3.2 Determinantal facet ideals: basic properties

Let d; n be positive integers with d+ 1 n. Let S = df{[xij i=1;:::;n;j= 0;:::;d] be a
polynomial ring in (d + 1)n variables over some eld K. Set
2
Xpo1 Xp2 i
6(0,—\3 6X11 X12 2175
X =6 7:
X1in7 4 . N
. 5Xg1 Xd2 i Xdn
Given 1 r d, and integers 0 agp < a1 < :::< ar dand1 bg< :::< b n,an(r+ 1)-
minor of X is any element of the form
2
Xaoby Xagb; ::: XaOp,3
Xa:bo Xaibs, iii X br%
[@agat:::arjboby:::b,] & det g arbo Tand ahrg.
4 5
Xarbo Xarby *ii Xah,

[01:::djbgby :::bgq] simply by [bgby :::bgq]. The ideal of S generated by the r + 1-minors of X is
denoted by I+1(X). This ideal denes the variety of (d + 1)n matrices with entries in K and with
rank at most r. The set of all the minors of X can be partially ordered by the relation

[apaz :::arjboby :::by] [cocy:::csjdody :::ds] ( )defr s; aj ciandb; d;8i=0;:::;s:
In particular, for maximal minors the previous denition restricts to

[apas:::aq] [bobi:::bg]l () ap bpjai bij:::;aq bg:

It is not our intent to review the theory of Algebras with Straightening Law here, as the interested
reader can learn it directly from the standard source [BV88]. However, we wish to introduce a few
concepts for the sake of clarity. The starting observation is that the polynomial ring S is
generated by as a K-algebra. In fact, a basis of S as K-vector space is given by

fim m2N; i2; 12 ::: mE:
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The elements of this K-basis are called standard monomials. It may happen that the product of
two standard monomials is not a standard monomial. However, such product will be uniquely
writable as K-linear combination of standard monomials, which is in some sense compatible
with the poset structure on . This is what is known as ‘Straightening Law’; compare [BV88,
Theorem 4.11]. What we wish to outline is that the ideals of S generated by poset ideals of (i.e.
subsets

such that for all ! 2
, 2 , ! =) 2
) are particularly nice.

Example 70. For any r d, the ideal I,,1(X) is generated by the poset ideal
r+1 of all t-minors of X witht r+ 1. This
r+1 has a unique maximal element, [d r:::djn r:::n].

Some new notation: if 1 i < j n, by X{;;;; we mean the matrix

3
Xoi Xp;i+1 i1 XQj
_ gxli X1;i+1 i leé
Xfi;j) = 8 L
Xdi  Xd;i+1 i Xdj

so lr+1(X[i;j1) is the ideal of S generated by the r+1-minors of X[;;;;, whenever r minfd;j ig.
Eventually, we say that a term order < on S is a diagonal term order if, forall 1 r d and
integers 0 ag< a1 < :::< ar dand1 bg< :::< by n, inc([apay:::arjbgby:::b]) =
XagboXaiby Xa, b, - FOr example, the lexicographic term order on S extending the linear order of
the variables given by xi; > xnk if and only if i < hori = handj < k is a diagonal term
order. We will use the following result from [Stu90]:

Theorem 71 (Sturmfels [Stu90]). If < is a diagonal term order, 1 i < j n and r minfd;j
ig, then flagay :::arjbgb1:::b]:0 ag< a1< :::< ar dandi bg< :::< b, jgisa
Grebner basis of the Ir41(X{;j7).

So far, by a \simplicial complex on n vertices" we have always implicitly assumed that each

henceforth a simplicial complex on a set A is also a simplicial complex on any nite set B A.

Denition 72. Let be a d-dimensional simplicial complex on n vertices. Let K be any eld. Let
S = K[xjj:i=1;:::;n;j= 0;:::;d]. The determinantal facet ideal of is the ideal

J :=([agayr:::aq] :apar:::a92 ) S:

When d = 1, then is a graph, and J is the binomial edge ideal of . Binomial edge ideals have
been intensively studied in the recent literature: Among the many papers on this topic, see for
example [H&10], [Ohtl1l], [MM13], [Mat18]. Unlike binomial edge ideals, determinantal facet
ideals are not always radical { not even if the complex is weakly-closed:

Example 73. Consider the weakly-closed 2-dimensional simplicial complex on ve vertices

= 124, 145; 234; 345:

J is generated by the four degree-3 polynomials
X0;4X1;2X2;1 + X0;2X1;4X2;1 + X0;4X1;1X2;2  X0;1X1;4X2;2  X0;2X1;1X2;4 + X0;1X1;2X2;4 ;
X0;5X1;4X2;1 + X0;4X1;5X2;1 + X0;5X1;1X2;4  X0;1X1;5X2;4  X0;4X1;1X2;5 + X0;1X1;4X2;5 ;
X0;4X1;3X2;2 + X0;3X1;4X2;2 + X0;4X1;2X2;3  X0;2X1;4X2;3  X0;3X1;2X2;4 + X0;2X1;3X2;4 ;
X0;5X1;4X2;3 + X0;4X1;5X2;3 + X0;5X1;3X2;4 X0;3X1;5X2;4 X0;4X1;3X2;5 + X0;3X1;4X2;5 :

It can be checked using the software Macaulay 2 [GSm2] that J is not radical.

31



Determinantal facet ideals are multi-graded. To see this, we endow S with the multi-grading
dened by deg(xij) = ;2 N" foralli= 0;:::;d; j = 1;:::;n. Here e; is the vector with aonein
position j, and zeroes everywhere else. With such grading J is homogeneous, and S=J admits a
multi-graded minimal free resolution

M M
0! S( v)rv ool S( v)sv!l S s=J1 0
V2Nn v2N

N"; this way the graded Betti numbers with respect to the standard grading are

X
i;i = i;ven
VOIN ]
In particular, reg(S=J) = maxfjvj i :i,y = 0g. In the next result, inspired by [MM13, Lemma

2.1] supp(v) = fi :vi = 0g [n] foreachv = (v1;:::;vy) 2 N". For each subsetW f1;:::;ng,
by w we denote the subcomplex of induced on W.

Proposition 74. Let be a d-dimensional simplicial complex on n vertices and W [n].
Whenever v 2 N" is such that supp(v) W,

iv(S=J) = i;v(S=J,) 8i2N:
In particular, reg(S=J) reg(S=J, ).

Proof. Let F be the multi-graded minimal free resolution of S=J:

M M
F:0! S( v)riv b ool S( v)rxv1 s o
V2Nn" V2N"

Consider the complex of multi-graded S-modules

M M
FO:0! S( v)rv L il S( v)xv I S 0
v2N" v2N"
supp(v)W supp(v)W
The cokernel of is S=J,, hence all we need to show is that FO is acyclic. But since the minimal
generators of the free S-modules in F involve ofly the variables x;; with j 2 W, to show that F°
is acyclic is enough to show that FO is acyclic for gny u 2 N" with supp(u) W. On the other hand,

forany v 2 N", S( v)y is nonzero if and only if u v 2 N": in particular
S( v)y = 0 implies supp(v) supp(u) W, hence F0 = Fy whenever supp(u) W. We conclude
since Fy is acyclic for any u 2 N". ]

3.3 Many radical and many F-pure determinantal facet ideals

Let us warm up by studying the algebraic counterpart of the traceability of :

Proposition 75. Let be a traceable d-dimensional simplicial complex on n vertices. Then
height(J) = n d. Furthermore, if J is radical and unmixed, then it admits a square-free initial
ideal. If in addition K has positive characteristic, then S=J is even F-pure.
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Proof. Let us x a labeling for which is traceable. Set
C d=Ef([1:::d+ 1;[2:::d+ 2];:::;[n d:::n]) J: Let
us x a diagonal term order < on S. Note that
inc([i:::i+ d]) = XoiX1(1+i) Xd(d+i) and inc([j:::j+ d]) = XojX1(1+j) Xd(d+j)
are coprime if i = j. Sof[l:::d+ 1];[2:::d+ 2];:::;[n d:::n]gis a Grebner basis of C and
in<(C) = (Xo1X12 Xd(d+1); X02X13 Xd(d+2); i1 ; Xo(n d)X1(1+n d)Xdn)

is a complete intersection of height n d. Hence C is a complete intersection of height n d
inside J, which implies height(J) n d. On the other hand height(J) n d because] is
contained in l4+1(X), which has height equal to n d. As for the nal claim, set g = [1:::d +
1][n  d:::n]. Notice that in<(g) is square-free. Obviously, we also have C 2 Cg. But if J is
radical and unmixed, since height(J) = height(C) by the previous part, then J must be of the
form C : h for some h2 S. Thus J 2 Cg and we conclude via Theorem 68. 0

The next lemma will help us identify a large class of complexes whose determinantal facet
ideal is indeed radical.

Lemma 76. Let 1 ag < a1 < :::< aq n, and , the simplicial complex generated by the

J .= Id+1(x[ao;ad])\ Id(x[ao;ad 1])\ lg 1(X[ao;ad 2])\ A\ Il(x[ao;aol):
Analogously, if 2 is the simplicial complex generated by the facets igi1 :::aq with ij aj for allj
=0;:::;d 1, then

b e = 1a+1(Xjagsaq) \ 1a(Xa;ag) \ 1 1(Xaga) \ 200\ TXpay ja)):

Proof. Since the two identities are symmetric, we will only prove the rst one. The containment “
is obvious; so let us show ”. To make the notation lighter, we make the harmless assumption that ag
= 1. Note that J , is generated by a poset ideal, namely by

a

=f2 : [ag:::a4]g:

j=f2: [d jiridjay  joriiagle:
Since it is easy to check that d
= \j=0 O
j, via [BV88, Proposition (5.2)] we obtain]) , = lg+1(X[1;a,]) \
la(Xi1:ay 41) \ ld 1(Xp1zay 1)\ 2o\ 12(Xpa1):

Now, let 2 S be the product of the minors whose main diagonals are illustrated in the 7
13 matrix below.

n=43
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More precisely,

=fjafjl][d 1;dj1;2]1[1;2;:::;d 1;dj1;2;:::;d  1;d]
[1;2;:::;d;d+ 1][n dn d+ 1;:::;n 1;n]
[m d+ 1;,n d+ 2;:::;n 1;nj0;1;:::;d 2;d 1][n 1; njO; 1][nj0]:

The reason we dened this way is that if < is a diagonal term order, we have

Y oy
in<() = Xij:
i=0j=1

Using this , we are now ready to prove the rst main result of this Chapter.

Theorem 77. Let be a d-dimensional semi-closed simplicial complex on n vertices. Then J is a

radical ideal. Moreover:

(1) For any diagonal term order (compatible with the labeling which makes semi-closed),
in(J) is a squarefree term ideal.

(2) If the eld K has positive characteristic, S=J is F-pure.

Proof. We will prove that if is semi-closed with respect to the given labeling then J () 2 C, whence
both claims follow by Theorem 68. Let 1 ag< a3 < :::< ag n. Using the notation of Lemma 76,

since is semi-closed, either , or 2 is contained in whenever aga;aq 2 . For any apgaiz aq 2 , set
a= aif 5 ,and ;= 2 otherwise. Then

[

agaiag2

In particular, X

()

J(a):
agaiaq2
Since C is closed under sums, in order to show that J() 2 C we only need to check that each
J(a) 2 C. To verify this, we use a result in [Sec21]: The ideal I;+1(X[jjj) 2 C whenever1 i < j
nand 0 r minfd;j ig. Since Cis closed under intersections, Lemma 76 guarantees thatJ (;) 2
C, as desired. ]

Remark 78. The assumption \semi-closed" is best possible: if we replace it with \weakly-
closed", the theorem no longer holds, cf. Example 73. That said, the converse of Theorem 77
is false. To see this, consider the non-weakly-closed complex U; = 124;345; 467 of Figure 3. If g =

[124][345][467] then for a diagonal term order in(g) = Xo1X12X24X03X14X25X04aX16X27, Which is
squarefree. Obviously [124];[345];[467] 2 Cg, hence J 2 Cg. So in(J) is squarefree, and, in the
positive characteristic case, S=J is F-pure by Theorem 68. On the other hand, when d = 1
Theorem 77 is true for all weakly closed graphs, via the main result of Matsuda [Mat18]. This

shows that the techniques used in [Mat18] do not generalize to higher dimensions.

Remark 79. Suppose that K has positive characteristic. Theorem 77 implies that, whenever
is a poset ideal of consisting only of maximal minors, then the corresponding ASL is F-pure. On
the other hand, some ASLs are not F-pure, as explained in [KV21, Remark 5.2]. We do not know
whether all the ASLs on a poset ideal of are F-pure.
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Remark 80. In positive characteristic, having a square-free initial ideal or an F-pure quotient
are unrelated properties. Many ideals, like | = (x2+ xy + y2) S = Z:deﬁZ[x;y], for p prime, have
the property that S=1 is F-pure even if in(l) is not square-free for any term order. On the other
hand, the binomial edge ideal of a 5-cycle is not F-pure in characteristic 2 [Mat18, Example 2.7],
even if it admits a squarefree initial ideal. See [KV21] for a discussion on the relationship
between the two properties of being F-pure and having a squarefree initial ideal.

Theorem 77 allows us to characterize the determinantal facet ideals having a linear resolution:
It turns out that there is only one. This extends to all dimensions the result for graphs by Saeedi-
Madani and Kiani [SK12].

Corollary 81. Let be a pure d-dimensional simplicial complex on n vertices.

J has a linear resolution () = ,: ¢

Proof. \(": If is the d-skeleton of the (n 1)-simplex, J is the ideal of maximal minors of
the matrix X. This ideal is resolved by the Eagon-Northcott complex [EN67], which is linear.
\)": By contradiction, suppose there is a subset W [n] of cardinality d + 2 such thatw
is not the d-skeleton of the (d + 1)-simplex on W. We can re-label the vertices so that W =
f1;2;:::;d+ 2g and

w=12:::(d+ 1); 12:::d(d + 2); s Loai(i+ 2)(i+ 3):ii(d+ 2)

where 2 i d. With respect to such a labeling \ is semi-closed. So by Theorem 77,in(J,

) is a squarefree monomial ideal for any diagonal term order. Hence, by the work of
Conca{Varbaro [CV20], reg(S=J,) = reg(S=in(J,,)). But by Lemma 76

o = LX)\ las1(X(1,d427);

so by Theorem 68 in(J,, ) = in(li(X;1;i1)) \ in(lg+1(X{1;4+2])). Via Theorem 71, it is easy to
check that the monomial (Xq i+1:1Xd i+2;2 Xd;i){X0;2X1;3 Xd;d+2) is @ minimal generator of
in(li(X[1;i7)) \ in(lg+1(X)). Hence in(J,, ) has a minimal generator of degree i + d + 1. In
particular,

reg(S=J) reg(S=J,) = reg(in(S=J,)) i+ d> d:

So by Proposition 74, reg(S=J) reg(S=J,,) > d. SoJ cannot have a linear resolution. O

3.4 Determinantal facet ideals dened by a Grebner basis

If is a closed simplicial complex, it is easy to see that the minors generating J form a Grebner
basis with respect to a diagonal monomial order, corresponding to the labeling that makes
closed: See [E&13]. In [E&13] it has been incorrectly claimed that the converse of the above
statement holds true. The following result, which is a consequence of [Sec21, Corollary 2.4],
shows that there are many other complexes for which the minors generating J form a Grebner
basis:

Theorem 82. Let be a d-dimensional simplicial complex, with a labeling that makes it unit-
interval. The set flag:::aq] : @g:::aq4]g is a Grebner basis of J with respect to any diagonal term
order. If in addition the eld K has positive characteristic, then S=J is F-pure.

Proof. By denition, is the union of d-skeleta of simplices on consecutive vertices. We can
choose these d-skeleta to be maximal with respect to inclusion. This yields a decomposition

d . d
li1;j1] [ [iz;J'z]d[ R AL
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b= daea(Xqigggay) + laea(Xqigjo1) + 00+ Taea (Xpigp0):
So by [Sec21, Corollary 2.4]

inc(J) = inc(lge2(X[ig;j01)) + inc(lae1(Xpiys5o0)) + cir 4 inc(laea (Xi550)):

claim in the case of positive characteristic follows again from [Sec21, Corollary 2.4]. O

Remark 83. That the set flag:::aq] : ap:::aq4 2 ]gis a Grebner basis when is unit-interval has
been independently proved, using a completely dierent method, in Almousa{Vandebogert [AV21,
Theorem 2.16]. They also obtained the analogous result for r-determinantal facet ideals (a more
general concept than determinantal facet ideals) of unit-interval simplicial complexes. We were
not aware of the paper [AV21] of Almousa and Vandebogert before posting the rst version of the
present work on the arXiv. (We coordinated eorts to adopt the same name \unit-interval
complexes" in the two papers.) For the sake of completeness, we point out that [Sec21, Corollary
2.4] implies that also r-determinantal facet ideals of unit-interval simplicial complexes dene F-
pure quotients in positive characteristic. We do not know, however, whether the (r-)determinantal
facet ideals of \lcm-closed" complexes, as dened in [AV21], or whether those of \closed
complexes", as dened here, are all F-pure.

Remark 84. The converse of Theorem 82 is false: as explained above, any closed but not
unit-interval complex is a counterexample. For a more interesting example, consider

W = 123; 124; 134; 234; 235; 245; 345; 568; 789; 81011

corresponding to a one-point union of the B2 and the U? of Figure 3. This complex W is not
unit-interval, not closed, and not even weakly-closed [Pav21]. However, one can verify with
Macaulay2 [GSm2] or via [AV21, Theorem 2.15] that f[ag; a1;a2] : ap:::aq 2 ]g form a Grebner
basis of Jyw for any diagonal term order.

Remark 85. Two of the results of [E&13] are incorrect because of the following counterex-
amples. As we already mentioned, the complex By of Lemma 42 (cf. Figure 3) is not closed,
but the set of all the minors [abc], where abc ranges over all facets of B9, is a Grebner basis of
Jga for any diagonal term order by Theorem 82. Thus one direction of [E&13, Theorem 1.1] is
incorrect for all d > 1. Moreover, the graph Go = 12;13;23;24; 34 is closed, but one can verify
that S=Jg, is not Cohen-Macaulay. Thus [E&13, Corollary 1.3] is incorrect already for d = 1.

The nal part of our work is dedicated to the delicate quest for some partial converse for
Theorem 82. To increase the chances of success, we restrict ourselves to traceable complexes.
The traceable assumption is rather natural in this case, as we have anyway seen in Theorem 56
that all strongly-connected unit-interval complexes are traceable. We start o with a Lemma:

Lemma 86. Let be a simplicial complex such that GB = f[aG:::;aq]jao:::a42 g is a Grebner

basis of J for some diagonal term order. Let F = ap:::aq and G = bg:::byq be two facets of .
If for some integer | 2 f0;:::d 1g

(ii) aj41 > a+ 1,

(iii) bysx = by + k for all k 1,
then the facet ag:::a; 1(aj+ 1) aj+1 :::aq is also in . Symmetrically, if for some | 2 f1;:::dg
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(v) a1<a 1,
(vi) by k= b kforallk2f1;:::;lg,
then the facet ag:::a; 1(a; 1) aj+1:::aq is also in .

Proof. It is harmless to assume that the term order < is the lexicographic term order dened
before, cf. Theorem 71. Let F and G be two facets of satisfying (i), (ii) and (iii). Let us
compute the initial term of the polynomial

f d=ef[I+ 1:::djajsr:::ag]lbo:::bg] [+ 1:::djbyeq:::bgllag:::aql:

If we set
p<lap::iragl; PP [I+ 1:::djaj iradl
def 0 def

q= [bo:::bgl; g = [1+ 1:::djbjer:::bgl

then f = p% pq° and by Laplace expansion we have

p’q = ﬁXObo X| 1b.{%X|b.p°q°)+§1; 1< 812 supp(gi); 8 2 supp(h);
h

pg® = ﬁXanXI 1a|{zlx|a.p°q°)+§z; 2< 822 supp(gz); 8 2 supp(h):
h

Furthermore

in<(g81) = (Xi+1a,,; Xdag)(X0bo X1 1b; 1 XIbyyq XI1+1b, X1+2b,, : &5 Xdby);

in<(g82) = (Xi+1b,,, Xdby)(X0oag X1 1a; 1 Xla;,; XI+1a XI1+2a;,, - © i Xdag):
Since in<(g>) is smaller than in<(g1), we conclude that
inc(f) = inc(81  82) = (Xi+1a,,; Xdag)(Xobo X 1b; 1 Xibyyq XI+1b, X1+2b,, : &5 Xdby):

In addition f 2 J because F; G 2 . Thus, there must be a minor g = [cp:::¢cq] in GB such

8

S Co =bo= dao

<

s C 1 =b1=a

o = by = b+ 1= a+ 1:

For cj+1 we have a priori two possibilities: either cj+1 = by or ¢j+1 = aj+1. But by < bjs1 = ¢, s0it
must be cj+1 = aj+1. Similarly, for cj+2 we have a priori two options: Either cj+2 = bj42, 0rciyn =
aj+2. But by the assumptions, we have that bj,» aj+1 = cj+1, sosince ¢j+2 > cj+1 it must be cj4o =
aj+2. In general, for any k 2 we have bj+x aj+k 1= Ci+k 1. Since ¢; > ¢; 1, arguing recursively
we obtain that the only possible option is cj+x = aj+¢ for all k 2. Hence we have proved that

Since g is an element of GB, we conclude that ag:::a; 1(aj+ 1)ajs1:::a4 2 .
The proof of the second part of the lemma is symmetric; namely, one considers the polynomial

f0d=ef[0:::| ljag:::a) 1]lbo:::bg] [0:::1 1jbg:::b 1][ap:::aq]2 )
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whose leading term is

; 0y _ .
in<(f”) = (Xoao X1 1a, 1)(X0bo X1 26, , X1 1b,XIb, { XI+1bj,q =5 : Xdby);
and one proceeds analogously to the argument above. ]

Theorem 87. Let be a d-dimensional simplicial complex. If with respect to the same labeling is
traceable and the set fl[ag:::aq] : @p:::aqlg is a Grebner basis of J with respect to some diagonal
term order, then such labeling makes unit-interval.

Proof. Let F = ag:::aq be a facet of with gap(F) = k. We proceed by induction on k. For k
= 0 there is nothing to prove, so we assume k > 0. Let g3;:::; gk be the vertices not in F, and
such that ag < g1 < ::: < g¢ < a4. We want to show that contains the d-skeleton of
fag;:::;aq4;81;:::;8k8. The strategy is to rst show that ¢ . d by inductive
assumption, and then to prove that contains also the facets o‘f %hed%orrﬁoéocl :Cq 1a4. So let us
proceed. Let | be the greatest integer such that a; < gi, so that g1 = a; + 1. Consider the two
facets F and H,, of . They satisfy the assumptions of Lemma 86, so

0 .
F*"= ap:::a) 181 Q+1:::a4 2 :

If | = 0, then gap(F%) = k 1, so by the inductive assumpﬂon g a ] ‘*0 @+ 1a]
d ’ d~’
Otherwise, since gap(F¢) = k, we cannot apply the inductive assumption yet. However, we have

\shifted" the rst gap to the left and now the rst missing vertex is aj = a; 1+1. We can apply
again Lemma 86 to the facets F, and Ha, and we get

FO = ap:::a 2Q1 81 A+1:::a4 2 :
If | = 1, then gap(F®) = 1, so by the inductive assumption |, .. 4= =t 1a ‘]io OtherW|se

once again gap(F ) = k and the rst missing vertex a; 1 = a; 2+ 1 has been shifted by one to the
left. Iterating this procedure, we eventually get that

(ag+ 1):::aj g1 aj41:::a9 2 :

This face has gap equal to k 1 and we can nally apply induction: We get +dlu'a 1

To prove that ¢ (0;a, 1) We usea similar argument. Let | be the smaller integer such
that gx < a|, so that gx = a; 1, and consider the two facets of

F = Qp::: Q) 1Qa:::34
H®,="Ha, 4= (ag d)(ag d+ 1):::gca::: ag:
Iteratively applying the second part of Lemma 86, we can shift the last missing vertex to the

right until we reach the facet
Ap:::a] 18kaj:::ag 12 ;

which has gap k 1. So by induction ¢ (a0

It remains to prove that all the facets o% the form G = agC1:::Cqg 184 are in . To do so,
we start from F = agaj:::aq and we replace one by one each a; with the corresponding c;. In
detail: For i = 1, we have three possibilities:

® C1 = a1, Oor

® ag< c1 < ai, or

e c1> aj.
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If c1 = aj; there is nothing to do. If ag < ¢; < aj, consider the two facets
F = ap ai:::ag

F=(a; 1)a;:::aq:

Since ag < ¢1 < ai, we have that a; 1 > ag. Hence Fe2 [a Qol;a T So by Lemma 86 ag(a;
1l)az:::ag 2 . If c; = a3 1 we stop, otherwise we repeat the same argument. At each iteration
of Lemma 86, the second vertex in the facet decreases by one unit; eventually, we obtain that
apCiaz:::aq 2 .

As for the third possibility (c; > ai), we claim that we can simply dismiss it without loss of

right": that is, we can always replace F with another face in of the form
Fi = agai:::a; 1(ag d i):::(aq 1)ag:

Toseeit,let0 | d 1bethelargestindexforwhicha;+1 < aj+1 (such an| mustexist because gap(F)
> 0). Applying Lemma 86 to the facets F and F = ag:e:aj(aj+1)(a;+2):::a;+(d 1)

ind g we get that the facet ag:::a; 1(aj+1)aj+1 :::aqisin. Proceeding this way we end
up witihd face

Fi = ap:::a; 1(aj+1  1)ajsr1:::ag 2 :

Replacing F with F|, and arguing the same way, we infer that F; 2 foralli= 0;:::;d 1. In
particular, for i = 1, we could replace F with a face with same minimum and maximum

Fir=ag(ag d+ 1)(ag d+ 2):::aq2:

Note that c; ag d+ 1. So our claim is proven: Up to replacing F with F;, we can assume
that ¢; a;.

So the case i = 1is settled. Consider now i = 2. If c; = aj, there is nothing to do. Otherwise,
attening the vertices after c; of agcias : : : agq to the right, we may assume that c; < a,. Consider the
two facets

F = ao C1 az:::aq?2
F=1(a, 2)(ap 1)az:::aq?2:
Since ¢c; < a, we have that c; < a, 1, so applying Lemma 86 we obtain that
apci(a; 1)asz:::aq2:

If c; = a 1 we stop, otherwise we repeat the same argument. At every iteration of Lemma 86,
the third vertex in the facet decreases by one unit; eventually, we obtain that agcicraz:::aq 2 :
Iterating this procedure for all i’s, we conclude that

G = agC1Cy:::Cq 184 2 : O

Remark 88. Very recently Almousa and Vandebogert [AV21] introduced a technical property of
simplicial complexes, called \lcm-closed", that simultaneously generalizes the two properties of
being \closed" and being \unit-interval". They asked [AV21, Question 2.19] whether such
property for simplicial complexes would characterize the fact that the minors of the determi-
nantal facet ideal form a Grebner basis with respect to any diagonal term order. With a little
ingenuity, one can see that for traceable complexes, \lcm-closed" is simply equivalent to \unit-
interval". Thus Theorem 87 answers Almousa{Vandebogert’s question positively, for complexes
that with respect to the same labeling are traceable.
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