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We develop the reduced phase space quantization of causal diamonds in pure (2 4 1)-dimensional
gravity with a nonpositive cosmological constant. The system is defined as the domain of dependence of a
topological disc with fixed boundary metric. By solving the initial value constraints in a constant-mean-
curvature time gauge and removing all the spatial gauge redundancy, we find that the phase space is the
cotangent bundle of Diff*(S')/PSL(2, R). To quantize this phase space we apply Isham’s group-theoretic
quantization scheme, with respect to a BMS; group, and find that the quantum theory can be realized by
wave functions on some coadjoint orbit of the Virasoro group, with labels in irreducible unitary
representations of the corresponding little group. We find that the twist of the diamond boundary loop
is quantized in integer or half-integer multiples of the ratio of the Planck length to the boundary length.
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I. INTRODUCTION

Among the many challenges to understanding nonper-
turbative quantum gravity are that standard canonical
quantization is inapplicable due to the nonlinearity of
the phase space, that local observables are not available,
and that general relativity in four or more spacetime
dimensions is (likely) not an ultraviolet-complete quantum
field theory. On top of those is the obstacle of removing the
diffeomorphism gauge redundancy (a.k.a. “coordinate free-
dom”), and the fact that spacetime diffeomorphisms include
deformations in timelike directions, making time evolution
a gauge transformation, which leads to the vexing “problem
of time” [1-3]. To make progress it is worthwhile to
consider simplified settings, and over the past several
decades much work of that nature has been done. Here
we consider a new such setting, in which all of the above-
mentioned challenges can be met, namely, causal diamonds
in (2 + 1)-dimensional general relativity with a nonpositive
cosmological constant.

By a (2 + 1)-dimensional causal diamond we mean the
domain of dependence of a spacelike topological disc with
fixed boundary metric. To quantize the system we employ
the reduced phase space approach, in which we first impose
all the initial value constraints and remove the gauge
ambiguities at the classical level, and then proceed with
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the quantization. Since there are no local degrees of freedom
in (2 + 1)-dimensional gravity, and we choose the topology
of the spatial slices to be that of a disc, the classical states
(solutions to the Einstein equation, up to gauge trans-
formations) can only correspond to all possible shapes of
causal diamonds, with boundary length # determined by the
fixed boundary metric, embedded in anti-de Sitter space
(AdS;) if A < 0 or in Minkowski space (Mink;3) if A =0
(see Fig. 1). We find that the corresponding phase space is
the cotangent bundle 7*Q of a configuration space Q =
Diff*(S')/PSL(2,R) that is the quotient of the infinite
dimensional group of orientation preserving smooth maps of
the boundary loop into itself, by the projective special linear
group in two real dimensions (which is the finite dimen-
sional subgroup of Diff(S') induced by conformal iso-
metries' of the unit flat disc). Similar (2 + 1)-dimensional
gravity systems have been considered in the literature, such
as spacetimes with closed spatial slices (where the reduced
phase space is finite-dimensional) [4—12], spacetimes with
finite timelike boundary [13—15], and asymptotically AdS;
spacetimes [16-23]. The causal diamonds provide a novel,
quasi-local system of quantum gravity in globally hyper-
bolic spacetimes that, while simple enough to be exactly
solvable classically, has an infinite-dimensional reduced
phase space of “boundary gravitons.”

In this paper we describe the classical reduction process
and explain how to quantize the resulting phase space using
Isham’s scheme [24,25] in which the quantization is

'In this paper a conformal transformation acts on tensors
as multiplication by a positive function followed with the
push-forward by a diffeomorphism. Metrics related by such a
transformation are said to be conformally equivalent; and
a transformation that leaves the metric invariant is called a
conformal isometry.
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FIG. 1. A generic classical state corresponds to a causal
diamond in AdS; (or in Mink; if A = 0) with boundary length
¢. Note that in general the Cauchy horizon is not smooth since the
null generators exit at caustics.

designed to preserve a group of symplectic (a.k.a. canoni-
cal) transformations of the phase space. This “quantization
group” in our case is the three-dimensional Bondi-Metzner-
Sachs group BMS;. We discuss the representation theory of
the algebra of quantum observables, and deduce that the
twist of the diamond boundary loop—which is proportional
to the spin of the diamond—is quantized in terms of the
ratio of the Planck length to the boundary length. This
paper is a brief summary of some aspects of our study, the
full details of which will appear in [26].

II. CLASSICAL

In the Arnowitt-Deser-Misner (ADM) formulation of
general relativity [27], the phase space before reduction is
described by Riemannian metrics h,, and conjugate
momenta 7% = /h(K® — Kh“), where K ,, is the extrin-
sic curvature on an initial value spatial surface (Cauchy
slice), here assumed to have the topology of a disc D.> We
shall restrict to metrics that induce a fixed metric on the
boundary, h|,, = y. Note however that the total length £ of
the boundary loop is the only gauge invariant attribute of
the boundary geometry that is fixed by this condition. The
maximal development of any data (h, r) that satisfy the
initial value constraints of general relativity defines a
causal diamond.

A natural choice of intrinsic time function 7 is given by
(minus) the mean extrinsic curvature on the leaves of a
foliation of the diamond by constant-mean-curvature
(CMC) Cauchy surfaces, 7 = —K“’h,,,. The nonpositive
cosmological constant A < 0 ensures that, as 7 ranges from
—00 to +00, the CMC surfaces foliate the diamond [28-31].
This gauge-fixing of time also confers great simplification
to the Lichnerowicz method [32] of solving the Einstein
constraint equations [6,33], which consist of a scalar
constraint and a vector constraint. In this method, we start

*We adopt units with ¢ = 162G = 1.

with “seed data” (h,;, 7”) on a CMC slice with a given
value of 7, satisfying the boundary condition on /,;, and the
vector constraint V,6% = 0, where ¢9” := K 4 17h is
the traceless part of K“* and V,, is the covariant derivative
determined by #4,, Then, by means of a Weyl-trans-
formation, we use this seed data to generate initial data
(hap,7?) that satisfy both the vector and the scalar
constraints. The new data, defined by h,, = e?h,,, 6" =
e 2?6’ and 7 = 7, continue to satisfy the vector constraint
(for any ¢), satisfy the boundary condition iff ¢|,, = 0,
and satisfy the scalar constraint iff ¢ satisfies the (two-
dimensional) Lichnerowicz equation

Vi — Ry + e ?6%6,, — ety = 0, (1)

where R, is the scalar curvature of the metric %, and
y = —2A +7%/2. The fact that y > 0 ensures that this
equation always has a unique solution for ¢ given a
boundary condition [26,34].

Since any element in the family of Weyl-deformed data,
(e*hyy,, e 6%, 1), leads to the same solution (h,;,, 7%?) of
the initial value problem, the constraint surface on the
phase space can be identified with the set of equivalence
classes [(hyy, 0%) ~ (€*hy;,, e *0%")]. Spatial diffeomor-
phisms that act trivially at the boundary, and only those,
correspond to gauge transformations [26], hence the
reduced phase space (i.e., the space of physically inequi-
valent solutions to the equations of motion) can be
identified as the set of equivalence classes of seed data,

[(hah’ Gab) ~ (T*eﬂhabv ‘"P*e_ydab)}v (2)

where ¥ is a boundary-trivial diffeomorphism on D (and
Y, is the push-forward) and A is a function on D vanishing
at the boundary [26]. This happens to be the cotangent
bundle 7" Q of the space Q of metrics on the disc with fixed
induced boundary metric, modulo diffeomorphisms and
Weyl transformations that are trivial on the boundary; and,
as one might expect, the symplectic structure is the natural
one on the cotangent bundle. In fact, Q is the homogeneous
space Diff*(S")/PSL(2,R),” and thus the reduced phase
space is P = T*[Diff*(S!)/PSL(2, R)]. This is the first of
our main results.

There is another approach to the phase space reduction
based on a suitable change of coordinates from ADM
variables to “conformal coordinates,” which exploits the
fact that all metrics on a disc are conformally equivalent.

*In brief, Diff*(S') (orientation preserving diffeomorphisms
of the boundary loop, acting together with the corresponding
Weyl transformation that preserves the boundary metric) acts
transitively on Q (since all metrics on a disc are equivalent under
conformal transformations that are allowed to act nontrivially at
the boundary). The subgroup that leaves invariant each point of
9, e.g., the (equivalence class of the) Euclidean round disc, is
PSL(2,R). Therefore Q = Diff*(S')/PSL(2, R).
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This alternate approach provides an explicit projection map
from the concrete geometrical ADM variables to abstract
variables describing P [26]. It is useful for several con-
structions, and relevant when physically interpreting the
meaning of observables in the quantum theory, but we
postpone its discussion to Sec. IV since it is not required for
the quantization procedure.

The Hamiltonian generating evolution in 7 on the
reduced phase space can be obtained by starting with
the Einstein-Hilbert action in the ADM form and then
reexpressing it in terms of variables on the reduced phase
space. The action S|C] along a curve C in the (constrained)
ADM phase space is

s[c]= A dr A Pxn® hy, = /C (é—df L d%/ﬁ), (3)

where C is the projection of C to P, and 0 is the symplectic
potential on P (which is locally equal to a sum >_. p,dq’
over a complete set of canonically conjugate coordinates).
Thus the reduced (time-dependent) Hamiltonian is identi-
fied as H(z) = [, d’xV/h, that is, the area of the CMC
surface with K = —7 [33].

III. QUANTUM

As the reduced phase space does not seem to admit a
natural global coordinate chart, the traditional Dirac
canonical quantization rule {g,p} =1+ [g.p] =1
cannot be straightforwardly implemented. Isham developed
a generalization of Dirac’s canonical quantization rule that,
rather than being based on a preferred coordinate system, is
designed to preserve the structure of a group of symplectic
(canonical) transformations acting transitively on the phase
space [24,25]. In the simple case of a particle on a line R,
the functions x and p on phase space, acting as Hamiltonian
“charges,” generate the group of phase space translations,
which is represented projectively, unitarily and irreducibly
in the quantum theory. More generally, given a group G of
symplectic symmetries acting on the phase space, we can
generate a set of observables whose Poisson algebra closes.
These observables are the Hamiltonian charges Q; associ-
ated with the algebra g of G, and their Poisson algebra is
homomorphic to g, up to possible central extensions. If there
are central extensions, we extend G to include them as
generators, so that the Poisson algebra is then homomorphic
to g. If the group action is transitive then the set {Q;} is
complete in the sense that any function on the phase space
can be locally written in terms of them. Quantization then
proceeds by replacing the Poisson algebra by a commutator
algebra, {Q,.0;} = k0, +>4[0,.0;]= k0, and find-
ing unitary irreducible representations of this algebra.

Isham quantization is particularly natural when the phase
space is the cotangent bundle of a homogeneous space,

P= T*(K/H), where H is a subgroup of a group K. The

configuration space K/H carries a natural action of K that
lifts to the cotangent bundle, and this provides “half” of the
quantization group. There is a simple way to extend this
group by “momentum translations” generated by charges
defined globally on the phase space: given any function f
on K/H, the 1-form df at every point can be subtracted
from the momentum 1-forms at that point. This defines a
symplectic map of the phase space that is generated by the
function f. To define a transitive action on the phase space
together with the K action one must choose a sufficiently
large collection of such functions; and, to minimize the
inclusion of algebra representations that fail to produce the
desired classical limit, this collection of functions should
presumably be as small as possible. Isham identified a
construction that does exactly this, provided K can be
linearly represented on a vector space V in such a way that
at least one of the K orbits in V' is homeomorphic to K/H:
linear functions on V, i.e., elements of the dual V*, induce
on the orbit, and therefore on K/H, a suitable collection of
functions. Together with K the corresponding momentum
translations define a transitive group G =V* x K of
symmetries on P.*

Inourcase, P = T*Q, where Q = Diff*(S')/PSL(2, R),
the group K = Diff*(S!) naturally acts from the left on Q,
but we have not found a representation of Diff*(S')
containing an orbit homeomorphic to Q. Fortunately, how-
ever, for the purpose of identifying a suitable set of functions
on Q we can take K to be the Virasoro group Vira, which is a
central extension of Diff ™ (S') and thus can also act on Q
(where the central element just acts trivially). The coadjoint
representation of Vira, which actson V = pira* (where bira
is the Lie algebra of Vira), does contain an orbit isomorphic
to Q [36-39], hence we can take G = (bira*)* x Vira as the
group to be quantized. This group is a central extension of
BMS; [40,41].°

In this way, the quantum theory is based on irreducible
unitary (projective) representations of (bira*)* x Vira.
Since this group has the form of a semi-direct product
with an abelian factor [namely (bira*)* with its vector
space group structure], we could hope to use Mackey’s
theory of induced representations to classify the represen-
tations [42]. (Mackey’s classification has not been rigor-
ously established for infinite dimensions, however [43].)

“For the example K/H = SO(3)/SO(2)(= $?), the SO(3)
charges are the components of angular momentum, the momen-
tum translations are the Cartesian coordinates of the R? in which
the configuration space S? is realized as an orbit of SO(3), and
the quantizing group is R¥ x SO(3), the Euclidean group in
three dimensions [35].

SBMS; is familiar as the symmetry of asymptotically Min-
kowskian spacetime acting on the null cone at future null infinty.
Here it appears as a natural group of symplectic transformations
acting on the phase space of the diamond. Perhaps there is a
different way to view the reduction of the phase space of the
diamond and the action of this group, in terms of the null surfaces
that bound the diamond.
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Basically, for any K-orbit Oin (vira*)**, with correspond-
ing little group H, one can construct a unitary irreducible
representation (irrep) consisting of wave functions on O
taking values in unitary irreps of Hy. Note that, modulo
issues of infinite-dimensionality, (bira*)** ~ pira*, and
one of the orbits in pira* is just Diff*(S')/PSL(2, R), so
there exist representations given by wave functions on Q,
taking values in unitary irreps of the corresponding little
group PSL(2,R) x R (where R is the central element of
Vira). In particular, taking the trivial irrep of PSL(2, R) x
R gives the usual Hilbert space of C-valued wave functions
on Q, but it is worth noting that this is only one among a
plethora of possibilities. Much as the quantization of a
relativistic particle revealed the possibility of intrinsic spin,
which is in fact realized in nature, perhaps the nontrivial
representations of the little group PSL(2,R) x R have
physical significance for quantum gravity.

We can also think in terms of the representations
of the algebra of G, g = vita®& vira, where vira is the
commutative algebra of momentum translations [which
is isomorphic to (bira*)* ~dira as a vector space] and
@ denotes a semidirect sum, indicating that there is a
nontrivial commutator between the two algebras. Note
that bira is a central extension of diff(S') by R, so its
elements can be characterized by a vector field on S!
plus a real number corresponding to the central direc-
tion. A convenient basis is defined by Fourier modes of
the vector field, that is, L, = ¢"’0d,, with the central
element denoted by R. Similarly, bira¢ is spanned by
elements A, = ¢"’9, and the central element denoted
by T. The algebra reads

[L,.L,) =i(n—m)L,., —4xin35,, R,
[A,, L, =i(n—m)A,, —4xin8, 0T,
[A,,A,] =0,
[R,-]=0,
T,-1=0, (4)

where n,m € Z.° We reiterate that the L’s and R are
associated with the “configuration translations” (i.e., the K
action), and the A’s and 7 with the “momentum trans-
lations” (i.e., the V* action), but note that R and T act
trivially on the phase space. We find that this algebra can
be realized by Poisson brackets on the phase space with a
suitable choice of the charges P, and Q, corresponding to
L, and A, respectively, provided that the central charges R
and T are realized by the constant functions 0 and 1,
respectively. (This choice of charges is discussed in
Sec. IV.) The resulting Poisson algebra is

®Note that the Lie algebra bracket for the diffeomophism group
is the negative of the Lie bracket of the corresponding vector
fields on the manifold.

{anPm} = l(n - m)Pn+mv
{Qum} = l(l’l - m)Qn+m - 47[in35n+m,0,
{Qm Qm} =0. (5)

This is a centrally extended bmg; algebra [40]. Finally,
quantization amounts to associating operators P,, and Q,, to
P, and Q,,, respectively, and replacing {, } by % [,],

~

[ﬁmﬁm} = h(m - n)Pthmﬂ
[0, P,y] = A(m = 1) Qo + 47hN35,, 10 0,
[0, 0] =0 (6)

The classical charges are not real and instead satisfy
(P,)*=P_, and (Q,)*=0Q_,, so their associated
operators must satisfy analogous adjoint relations,
(P,) =P_, and (Q,)' = 0_,. Some aspects of the
representation theory of this algebra have been studied
recently [41,44-47].

Note that (6) corresponds to a representation of (4) in
which the quantum Casimir operators 7 and R match the
classical values of 1 and O, respectively. In the Mackey
construction of induced representations of (vira*)* x Vira
we must therefore select an orbit on which 7' is represented
as the identity and the central R factor in the little group is
represented trivially. The natural Diff*(S!)/PSL(2,R)
orbit is suitable for that purpose [26], in which case
the wave functions transform under a representation of
PSL(2,R).

IV. CONFORMAL COORDINATES AND THE
CANONICAL CHARGES

In this section we briefly introduce the conformal
coordinates which allow us to carry out the reduction
process in an explicit fashion, providing the map between
the geometrical variables (e.g., spatial metric and extrinsic
curvature) and the abstract gauge-invariant variables
describing the reduced phase space. Such a map is relevant
in understanding the physical/geometrical meaning of
observables like the Q and P charges. A treatment includ-
ing all details is given in [26]. This section is somewhat
technical and can be skipped on a first read.

By virtue of the uniformization theorem, any Riemannian
metric /,;, on the disc D can be obtained from a reference
metric /1, via some conformal transformation. That is,
there exists an (orientation-preserving) diffeomorphism
¥Y:D — D and a positive scalar Q:D — R™ such that
hy, = ¥, Qh,,. Because of the boundary condition on 7,
h|yp = v, the boundary value of Q is determined from the
boundary action y = ¥|,, via Qh|,, = w7'y. We shall
choose the reference disc to be the unit Euclidean disc, so
h = dr* + r>d6? in the usual polar coordinates, and choose
6 without loss of generality so as to satisfy y = (£/2x)>d6>.
Note that, given &, ¥ is determined only up to a PSL(2, R)

024033-4
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ambiguity since the transformation can be composed from
the right with a conformal isometry of the reference disc,
ie., if ®,0h=h then (¥,Q)o (D, 0) = (¥od, ®*QO)
also maps / to h. (We are introducing additional gauge in
the description, which is fine since it will be all removed in
the end.) We define the “pull-back” of 6°® to the reference
disc by 67 == Q>¥; 6", which implies that 5% is sym-
metric, traceless and divergenceless with respect to / if and
only if 6% has the same properties with respect to 4. So far
we have a “change of coordinates” from (h,;,0%) to
(W, Q,5%). Imposing the scalar constraint leads to a
Lichnerowicz equation for €, and the boundary value of
Q is determined from y (and y); since that equation has a
unique solution for Q, given y and 5, the constraint
surface in phase space can be parametrized by (¥, &%),
where 597 is symmetric, traceless and divergenceless with
respect to 4. This space of 5°s is isomorphic to a subspace of
dual vector fields & on the boundary S'; given the form of
the symplectic structure, it is natural to realize the isomor-
phism as 6(&) = [ dOo(0)E(6) = —2fd96”bna§b, where
& = £(0)0y is a vector field on the boundary and n is the unit
outward-pointing normal vector field on the boundary. In
this realization of the isomorphism, the space of &’s is
missing the Fourier modes 1, sin#, cos@, since they
annihilate the vector fields &(6) = 1,sin@, cos6. Via this
isomorphism, the constraint surface can be parametrized by
(¥, 0). It is clear from the presymplectic form that any two
Y’s with the same boundary action y are gauge-equivalent,
so we can quotient out the bulk diffeomorphisms and obtain
a partially reduced phase space coordinatized by (v, o). By
further inspection of the symplectic form one discovers that
there remains a PSL(2, R) group of gauge transformations,
which acts on y from the right and on & via the coadjoint
action. The quotient under this group finally leads to the
reduced phase space 7*[Diff " (S')/PSL(2, R)].

The canonical charges can be explicitly expressed in
terms of the (y, o) variables. (Only the results are presented
here; the derivation can be found in [26].) As the canonical
group acts on the phase space, each element { of the Lie
algebra induces a vector field X, on the phase space; the a
corresponding Hamiltonian charge H: is a solution of
0H; = —ix,, where § denotes the exterior derivative on

phase space and iy is the insertion of X into the first slot
of the symplectic form @. The “momentum” (P) charges
are associated with the Vira part of the group, acting as
configuration space “translations,” therefore correspond-
ing to algebra elements purely in the bira factor of
g = vira® & viva. If & = (£(0)0y, &) € vira, where &, is
the central component, then

%waz/w%%mw» ()

In the earlier notation, P, := sz(einf)ag,o),

charge R := sz(o’l) = 0. The “position” (Q) charges are

and the central

associated with the (bira*)* part of the group, acting as
“vertical translations” on phase space, thus corresponding
to algebra elements purely in the pira® factor of g. If

n = (n(0)0y,ny) € vira“, where 5, is the central compo-

nent, then
%W)—/w“f%“wmm+w (®)
where S[y](0) =y (0)/y'(6) — 2 (W (0) /y/(0)) is the

Schwarzian derivative of . In the earlier notation,
O, = Qj—(eing, 0); and the central charge T == Qp—(o.1) = 1.

Itis stralghtforward to express the P charges in terms of
the physical spatial metric and extrinsic curvature. This can
be done by direct manipulation of expression (7), basically
by reversing the map from the reference disc variables
(hap, ) to the physical disc variables (h,,, %) so as to
express (y,6) in terms of (h,,,c%). Instead of going
through this formal derivation (which can be found in [26]),
we can infer the answer by noticing that the charge must
descend from a function on the unreduced phase space that
generates a corresponding diffeomorphism on the spatial
slice. We know that this charge must be related to
[ d?xm®£:h,;,, where & is now an arbitrary extension of
the boundary vector field to the disc. However this function
alone generates a pure diffeomorphism on the ADM phase
space and thus does not generally respect the boundary
conditions on the induced metric (unless ¢ is an isometry of
the boundary metric). That can be fixed by adding a
constraint term which generates a compensating Weyl
transformation. The appropriate constraint here comes
from the gauge fixing of time 7 = —K, that is, P; =
— [ @xn®£eh,y, + [ d@xVh(K + 1) for some scalar (.
When this expression is evaluated imposing the CMC
gauge condition and the vector constraint V,z% = 0, it
reduces to P; = =2 [ d*xv'ho®*V ,&,. This inferred form
can be shown to agree with the pull-back to the (con-
strained, gauge-fixed) ADM phase space of the P,’s
defined in (7). Using Stokes’ theorem we get
Py = =2 [,dsK ,n"E", where n is the unit outward-point-
ing normal vector field at the boundary of the disc, and ds is
the proper length along the boundary. Restoring the factor
of 162G that had previously been set to unity, this becomes
P: = —glc [ dsK ,,n“E". The vector field & that labels the
charge P is dy on the reference disk. In terms of the vector
field #* tangent to the boundary, with unit norm with respect
to the physical metric y, we have on the boundary
0p = £ 19, hence Py = _ﬁfa dsK ,nt’. If u is the
unit future- pointing vector field normal to the CMC slice,
then P, = 16”2 Z 1B dsV,,u netb. Integratlng by parts we

conclude that Py = £ zf [, dsu,t*V,n® = 16&, T, where
T is the twist of the boundary loop, as embedded in the
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spacetime, which is defined as the integral of the torsion
u,t’V,n with respect to proper length.

Regarding the appearance of the Schwarzian in the
expression (8) for the Qj; charges we offer here a brief
explanation. When the configuration space is embedded as
a coadjoint orbit in bira*, each point x € Q corresponds to
an element of bira®. In this context, the charge Q;
evaluated at x is the value of the dual vector x € bira*
acting on the vector 77 € vira, i.e., Q;(x) = x(7). The point
x is labeled by a diffeomorphism y, relative to a reference
point xy € Q, via the coadjoint action x = coad,,xy. (Of
course this labeling system is not one-to-one because x is
invariant under a PSL(2, R) subgroup of Diff*(S!).) This
yields the expression Q;(x) = coad,,xo(7), which for a
simple choice of x, corresponds to (8). The Schwarzian
appears in this expression because it figures in the coadjoint
action.

Note that the Q’s do not depend on & and, as can be
shown from basic properties of the Schwarzian derivative,
depend only on the right PSL(2, R) equivalence classes
[w] € Diff*(S')/PSL(2,R). A given spatial metric &
uniquely determines one such equivalence classes [y],
and one class [y] determines a spatial metric up to
boundary-trivial ~ conformal  transformations,  [h] =
[®,0h], where ® € Diff*(D) acts as the identity on the
boundary and the function ® is 1 at the boundary.
Therefore, the Q charges evidently depend only on the
conformal class of the spatial metric.

It can be shown that Q is bounded from above, attaining
a maximum value of 2z when [y| = [I] [26,41,48]. In that
configuration, Q; = f don(0) + ny, hence all Q,, with n # 0
vanish. Classically it corresponds to a spatial geometry that
is related to the round disc by a boundary-trivial conformal
transformation.

V. SPIN/TWIST

An interesting observable to discuss in more detail is P,,.
It is the “zero Fourier mode” of Diff ™ (S!) C Vira, i.e., it
generates the SO(2) subgroup of rotations, suggesting that
it corresponds to the spin of the diamond. This interpre-
tation can be further strengthened by noticing that it is
precisely (minus) the on-shell value of the ADM charge
associated with a vanishing lapse and a shift that acts as an
isometry of the boundary loop. The charge P, generates not
only a symmetry of the symplectic form (as do all of the P’s
and Q’s), but also a true dynamical symmetry. That is, it
commutes with the CMC_time evolution Hamiltonian
[defined below (3)], [Py, H] =0, as will become clear
presently. We have argued that the physical states corre-
spond (classically) to shapes of diamonds embedded in
AdS; (or Mink; if A = 0), with boundary length 7, so P,
must correspond to some aspect of the shape. As shown
in Sec. IV, it turns out that P is proportional to the twist
T of the diamond boundary loop, i.e., the loop integral
(with respect to proper length) of the torsion of the curve

(as embedded in the spacetime). The twist can also be
interpreted as the holonomy of Fermi-Walker transport of
an orthogonal frame around the loop, i.e., the (hyperbolic)
angle of the boost relating the final frame to the initial one.
The precise relation (which is obtained using the previously
mentioned “conformal coordinates” characterization of the
reduced phase space) is

4
Py=—+-T 9
" 1672G ©)

Note that the twist of the boundary is clearly independent of
the CMC slice of the diamgnd, hence it is time independent
and thus commutes with H as stated above.’

At the quantum level, note that the Poisson brackets (5)

imply [Py, P,] = n#P, and [Py, 0,] = nhQ,, so the P’s
and Q’s act as ladder operators for Py. That is, if |s) is an

eigenvector of P, with eigenvalue s#, then P, |s) and O, |s)
have eigenvalue (s+ n)h. Since the P’s and Q’s are
represented irreducibly in the Hilbert space, the spectrum
of Py is {(s+n)h, V ne€ Z}, where without loss of
generality we can take s € [0,1). Classically, z-time
reversal flips the sign of P,; if this (antisymplectic)
symmetry of the phase space is represented by an anti-
unitary transformation in the quantum theory—as one
might expect given that the classical Hamiltonian is
invariant under this symmetry—then in particular the

spectrum of IA’O will be symmetric under sign reversal. In
1

this case, only s =0 and s = 5 are allowed. From for-
mula (9) we conclude that the twist is quantized as

T _ 1677.'2{13

(s+n), nez, (10)

where (in 3d) £p = AG is the Planck length, in units with
¢ = 1. In the classical limit # > ¢p, the twist quantum is
very small, so that a continuum of twist values is recovered.

VI. DISCUSSION

We studied quantization of causal diamonds of fixed
boundary length in pure (2 + 1)-dimensional general rel-
ativity gravity with a nonpositive cosmological constant,
via the reduced phase space approach. The low dimension-
ality allowed us to solve the constraints exactly and remove

"This relationship between twist and spin seems to be related
to a result in [49]. Working in an extended phase space including
edge modes in 3 + 1 spacetime dimensions, they find that the
generator of volume-preserving diffeomorphisms of the “corner,”
S2,is essentially the curvature of the natural connection on the
normal bundle of S? (as embedded in the ambient spacetime). In
our case the corner is the boundary loop, S'; volume-preserving
diffeomorphisms are just the isometries of the boundary metric;
and, although the curvature of the normal bundle connection
vanishes (because S! is 1-dimensional), there is a nontrivial
holonomy (around the loop) which is equal to the twist.
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all the gauge ambiguities, resulting in the phase space 7" Q
with @ = Diff*(S')/PSL(2, R). Further, this phase space
could be quantized exactly, at the kinematical level, with all
the rigor and generality of Isham’s group quantization
scheme. We ended up with a classification of all possible
quantizations based on irreducible unitary representations
of the bm3; algebra. This differs from the canonical
quantization of pure asymptotically AdS; (with trivial
topology) based on the group Vira x Vira [20], whose
algebra is bira @ bira. Note that although the quantization
groups differ the phase spaces are the same, since 7%Q ~
9 x Q [21,50].

The quantization was strictly kinematical because only
the canonical charges Q, and P, (“coordinates” on phase
space) have been quantized. This was sufficient to reveal
that the spin of the diamond, or equivalently the twist of the
diamond boundary loop, is quantized in integer or half-
integer multiples of 16x°¢p/#. To fully characterize the
quantum theory one must also represent the Hamiltonian H
that generates evolution in CMC time. This Hamiltonian is,
however, a very complicated function on the reduced
phase space, for which we have not found any preferred
operator ordering or even any explicit expression in terms
of the canonical charges. It may be that progress could be
made using a perturbative approach. There are certain
regimes where the Hamiltonian simplifies, even as much as
becoming “free” (quadratic in P,,) in the limit # > |A|~!/?
when the maximal slice is nearly a hyperbolic disc.
This includes the case where the boundary loop
approaches the boundary of AdS, in which the diamond
approaches a “Wheeler-DeWitt patch” of AdS. It would be
interesting to explore such regimes, and in particular the
possible connection to quantization of the diamond from
the perspective of AdS/CFT duality (and its TTbar
deformations).

Another important open question is the geometrical
meaning of the charges Q,. Unlike the P,, which have a
simple interpretation as Fourier components of the torsion
of the boundary curve, the Q,, are related to the shape of the
diamond in a complicated, implicit fashion. As explained in
Sec. IV we know that the Q charges depend only on the
configuration space variables [y] € Diff*(S')/PSL(2, R),
which implies that they depend only on the conformal class
of the spacial metric, [h,,,], where two metrics are identified
if they can be related by a conformal transformation that is

trivial on the boundary. But, despite some effort, we have
not yet been able to express Q, directly in terms of the
spatial conformal metric. In the asymptotically flat case,
whose group of symmetries at null infinity is also BMS;,
—Qy plays the role of energy (i.e., the generator of
u-coordinate translations, up to a scaling factor), so by
analogy this suggests that —Q, should be some sort of
quasilocal mass. In fact, it is noteworthy that for many
representations of (pira*)* x Vira, including the one
associated with the orbit Diff*(S')/PSL(2,R) with
T =1, —Q, is bounded from below and unbounded from
above [41,48]. In the case of the Diff*(S')/PSL(2, R) orbit
the minimum value of —Q, is equal to —2z, and it is
attained by a (non-normalizable) state corresponding to a
wave function localized at [y] = [I], i.e., at the spatial
geometry conformal to a flat round disc.

One would also like to understand what is the nature of
a “quantum causal diamond,” given that the classical
“spacetime shape” interpretation, which requires that Q,,
and P, are all simultaneously specified, fails to make
sense in the quantum theory. (We note that there are
certain observables that do commute among themselves,
such as the set including P, Qy and any operators of the
form Q, Q,,--- such that n; +n, +--- = 0; some of
these operators are actually self-adjoint, like Q_,Q, for
all n.) A perhaps related question is whether the quantized
theory depends upon the CMC time gauge choice used for
the phase space reduction. Finally, it might be interesting
to analyse the system using the formulation of this gravity
theory as a pair of SL(2, R) Chern-Simons theories [4,51].
The fixed metric boundary condition that we have
imposed would be a complicated condition that couples
those two theories.
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