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A B S T R A C T   

The human body involves a large number of systems subjected to contact stresses and thus experiencing wear and 
degradation. The limited efficacy of existing solutions constantly puts a significant financial burden on the 
healthcare system, more importantly, patients are suffering due to the complications following a partial or total 
system failure. More effective strategies are highly dependent on the availability of advanced functional mate
rials demonstrating excellent tribological response and good biocompatibility. In this article, we review the 
recent progress in implementing two-dimensional (2D) materials into bio-applications involving tribological 
contacts. We further summarize the current challenges for future progress in the field.   

1. Introduction 

Numerous medical devices are employed to treat or alleviate various 
diseases and injuries as well as anatomy and physiological process 
support. The global medical device market is expected to grow from 
nearly $455 billion in 2021 to $658 billion in 2028 due to an increasing 
number of healthcare facilities, the elderly population, healthcare 
expenditure, and technological advances [1]. Thereby, their safety and 
effectiveness represent major concerns critical for effective clinical 
application. All medical devices inevitably contact and interact with the 
human body, which is why their surfaces and interfaces are essential. 
The design of functional contacting surfaces comes into focus to fulfil the 
desired functions adequately. As illustrated in Fig. 1, this covers the 
interfaces between dental implants and bone or tissue [2], contact lenses 
and eye/eyelid [3], as well as surgical or cardiovascular devices and 
tissue [4]. Interactions also occur between components of biomedical 
devices, including metallic bone fracture fixations [5], the articulating 
surfaces of the femoral and tibial components in total knee re
placements, or the femoral head and the acetabular cup in artificial hip 
joints [6,7]. 

Medical devices’ failures or malfunctions often relate to processes/ 
problems occurring in these interfaces, including excessive wear (pros
thetic interfaces), tribo-corrosion and fretting (dental implants), loos
ening of bone fixation devices, or tissue damage due to high friction of 
invasive surgical or cardiovascular devices [5]. Therefore, the bio
tribological behavior of such systems plays a crucial role in prolonging 
their safe and reliable operation. The current state-of-the-art has been 
summarized in several reviews from different points of view and for 
various biomedical applications [5,8–10], including artificial joints 
[6,7,11,12], cardiovascular devices [4], dentistry [2], and the role of 
lubrication [13–15]. Apart from theoretical/numerical approaches to 
come up with optimized designs mainly devoted to in-silico trials for 
prostheses [16–22], current research is directed towards the develop
ment of low-friction, low-wear, and corrosion-resistant materials or 
surface modifications [7,23]. 

In this regard, the unique physical, chemical, structural, electrical, 
and optical properties as well as the large surface-to-volume ratio, 
tunable surface chemistry, and customizable functions make two- 
dimensional (2D) materials attractive for many biomedical/bio
tribological applications [24–27]. Since the first isolation from graphite 
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using scotch tape [28], graphene is by far the most explored 2D material 
with applications in tissue engineering, biosensing, bioimaging, and 
gene and medication delivery [29–32]. Graphene and its derivatives, 
graphene oxide (GO) and reduced graphene oxide (rGO), have their own 
set of advantages and uses. Compared to graphene [16], GO is the 
oxidized form of graphene with increased hydrophilicity, water dis
persibility, non-toxicity, and biocompatibility [33]. rGO has many of the 
same features as pure graphene but its fabrication is less expensive. 
Transition metal dichalcogenides (TMDs) are a family of 2D materials 
consisting of a layer of transition metal atoms sandwiched between two 
layers of chalcogen atoms [34]. Thereby, molybdenum disulfide (MoS2) 
and tungsten disulfide (WS2) represent the most prominent TMDs [35]. 
Because of their outstanding photoluminescence and adjustable 
bandgap as well as good mechanical characteristics, TMDs have been 
used in optical, electronic, and biological applications [25]. Despite 
their exceptional electrical, optical, thermal, and mechanical features, 
transition metal oxides (TMOs) have received less attention than other 
2D materials [36]. Hexagonal boron nitride (h-BN) has structural simi
larities to graphene, with boron and nitrogen atoms forming covalent 
bonds within a hexagonal structure. Functionalized h-BN is a promising 
candidate for medication delivery as well as tissue engineering and live- 
cell imaging due to its good mechanical and chemical properties [26]. 
Black phosphorous (BP), for which each phosphorous atom is tetrahe
drally bonded to three adjacent phosphorous atoms creating the hon
eycomb structure, finds its application in electronics and optical 
applications due to its anisotropic properties and tunable bandgap [37]. 
Due to its biocompatibility, BP is explored for various biomedical ap
plications, mainly drug delivery. MXene nano-sheets cover a recently 
discovered new family of layered transition metal carbides, nitrides, or 
carbonitrides, with their most explored member being Ti3C2Tx. MXenes 
exhibit outstanding electrical conductivity, excellent mechanical prop
erties, tunable surface chemistry, and inherent antibacterial/antiviral 
properties, making them very promising to be applied in a biomedical 
context [38–41]. 

Regarding tribology, 2D materials have shown great potential to 
tailor friction and wear of various dry or lubricated systems when 

employed as lubricant additives in base oils, as reinforcement phase in 
composites, or as solid lubricant coatings [42]. Graphene and its de
rivatives [43–46], TMDs [47–50], h-BN [51,52], BP [53,54], and 
MXenes [55–60] have been investigated in this context. Thereby, the 
layered nanomaterials may act as easy-to-shear films or nano-roller 
bearings, thus reducing friction [61]. Depending on the operational 
and environmental conditions, 2D materials form beneficial tribo-films 
through tribo-chemical reactions [62,63], which feature low shear 
resistance and can be transferred to the counter-body [64,65]. The 
newly formed tribolayer/tribolayer interfaces can substantially decrease 
friction and wear thus extending service life. 

Excellent reviews focusing on various biomedical [24–27,66–70] or 
tribological [42,65,71–80] applications of 2D materials can be found in 
the literature. However, no article summarizing the tribological features 
of 2D materials in biomedical applications has been published to date. 
Therefore, the scope of this review lies in the progress and developments 
of 2D materials in biomedical tribology. In terms of biotribology, this 
article discusses the essential characteristics of 2D materials high
lighting their importance and influence of being used in biotribological 
applications (Section 2) as well as the advancement and improvement in 
targeted applications, namely load-bearing implants (Section 3.1), 
dental implants (3.2), bone fracture fixation (3.3), invasive surgical 
devices (3.4), cardiovascular devices (3.5), contact lenses (3.6), and bio- 
sensing (3.7). Finally, the key findings, current challenges, and future 
research directions are presented in Section 4. 

2. 2D materials in biotribology – how, where, and why? 

2.1. Approaches for implementation 

Depending on the application needs, the introduction of 2D materials 
can be divided into three main approaches: the deposition as protective 
coatings, the introduction as fillers in composites, or the usage as ad
ditives in fluids (Fig. 2a). All approaches are potentially applicable for 
biotribological applications and possess their advantages depending on 
the application requirements. Specifically, the use of protective coatings 

Fig. 1. Biotribological areas for application of 2D materials to tailor friction and wear: Dental implants, contact lenses, cardiovascular devices, bone fracture fix
ations, total knee and hip replacements. 
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is of high interest for the design of artificial joints, where their tribo
logical characteristics allow to suppress the wear debris generation and 
release during operation without affecting the bulk mechanical char
acteristics of the majority of metal alloy-based prosthetic devices. In this 
case, the application approach is to deposit the coatings directly on the 
prosthetic device surfaces before the joint arthroplasty surgery. Mean
while, dental or ocular systems may benefit from improvements in the 
composite materials’ mechanical characteristics implemented for their 
use. Consequently, most of the ongoing research focuses on designing 2D 
fillers into polymeric or ceramic matrices. Here, the 2D materials are 
premixed in various concentrations into the powders or melted solutions 
of the materials. The use of 2D materials as additives to improve lubri
cation is potentially viable for systems, which highly depend on bio
fluids with limited renewal capacity, such as in ocular and load-bearing 
designs when they can be introduced in the form of injectable solutions 
or drops. In contrast to coatings and composites, the efforts also should 
be dedicated to ensuring good dispersibility and colloidal stability of 
these solutions. 

2.2. Tribological potential 

The discovery of 2D materials encouraged the exploration of their 
use for different applications. The major reason is the wide range of 
specific characteristics making 2D materials attractive for efficient 
implementation inside the human body. Specific to tribology-related 
applications, 2D materials have already demonstrated excellent 

mechanical strength, chemical inertness, wear resistance, and easy 
shearing (low friction) [81–83]. Wear induced by tribocorrosion of 
metals covered with passive oxide films has represented a research topic 
of considerable interest in recent years, allowing the possibility of 
obtaining knowledge on a micro- and macro-scopic scale. Recent ad
vances in nanotechnology have also boosted the understanding and 
modeling of the fundamental tribological and corrosive mechanisms of 
2D materials [84]. In general, according to the conventional tribo
corrosion theory [85], beyond oxide tribofilms having a nanometer 
thickness, the wear rate tends to increase more quickly with increasing 
contact pressure in the presence of physiological solutions than under 
dry friction. 

The idea of using 2D materials for biotribology has been explored for 
a while. Earlier studies showed that the 2D forms of carbon (graphitic 
layers) could naturally occur in the joints during sliding [86], as a 
consequence of tribocatalytically-generated films [87], thus demon
strating the great potential for using 2D materials in the bio- 
environment. Upon addressing the challenges associated with the 
biocompatibility of 2D materials, the use of layered films would create 
new opportunities for their bio-applications inside the human body and/ 
or in contact with biological systems. Below, we overview the main 
characteristics of 2D materials and discuss the approaches for their 
implementation in a biotribological context. 

2.2.1. Mechanical strength 
The unique layered structure of 2D films notably reduces the size of 

Fig. 2. (a) Implementation of 2D materials into biotribological systems. Lubrication mechanisms involving ultra-thin layered 2D materials: (b) Tribochemically- 
induced film formation, (c) lowering the surface roughness by filling concave valleys, (d) nano-rolling bearing effect, (e) fluid flow regulation. Redrawn and 
adapted from [75] with permission by CC BY 4.0 (MDPI, 2018). 
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defects and, typical for bulk brittle materials [88], significantly impacts 
the ability of 2D materials to sustain stresses and high deformation 
strains [81,89]. Consequently, 2D films were considered to protect the 
bulk functional components from external damage [42]. 

Focusing on composites, 2D materials as a filler component (rein
forcement phase) distributed in polymeric matrix increase the overall 
composite’s stiffness, improving the load transfer and load redistribu
tion through the softer matrix simultaneously [90,91]. Consequently, 
reduced damage of macromolecules exposed to stresses and an 
improvement of the overall composite’s strength can be expected. 

2.2.2. Chemical inertness 
One of the essential parameters relates to the ability of the 2D ma

terials to sustain exposure to the corrosive environment in the human 
body [23,92,93]. Inherent resistance to degradation in aggressive en
vironments also connects to the limited number of defects and dangling 
bonds in these materials. These aspects help to prevent their chemical 
bonding with surrounding compounds. Consequently, 2D materials 
were shown to provide excellent protection of the underlying surface 
from corrosion, that is a critical aspect when considering new material 
systems for biotribological applications [94,95]. Specifically, the human 
body is a complex environment that promotes corrosion and degrada
tion of materials used in implants, which can further accelerate the 
failure of the materials under loading and shearing stresses. Upon 
sliding, the release of the corrosion components and wear debris to the 
body in turn may cause an osteolytic cascade reaction of the immune 
system. Because of severe corrosion damage, promoted by contact 
stresses, the pool of the material candidates considered for the implant 
components became very limited. An alternative approach of protecting 
the surfaces from corrosion, wear, and degradation by introducing 
lubricating solutions to the contacting interfaces, in the forms of coat
ings or advanced lubricants helps to improve the performance of the 
components and increase the viability of the materials. 

2.2.3. Friction and wear characteristics 
While enhancing the resulting mechanical properties of the systems 

using 2D materials is impressive, specifically for biotribological appli
cations, their capability to improve a material’s tribological properties 
(i.e. to decrease wear and friction) is of uttermost importance. The 
lubrication mechanisms involving 2D materials are driven by low shear 
resistance of ultra-thin layered structures (interlayer sliding) [64]. In 
this regard, 2D materials can be directly adsorbed or deposited on the 
contacting surfaces thus enabling tribochemically formed tribo-films 
(Fig. 2b) [62]. Moreover, 2D materials can fill surface cavities to 
reduce wear and self-replenish surfaces (Fig. 2c). Besides shearing films, 
2D materials may act as nano-rolling bearings, thus potentially changing 
the friction mode from sliding to rolling friction while providing a 
certain load-bearing capacity (Fig. 2d) [61]. Lastly, 2D materials are 
able to regulate the fluid flow in full film lubrication regime (Fig. 2e) 
[75,96]. 

Therefore, 2D films were employed in a wide range of tribological 
systems across various scales [64] and environment conditions [50,63] 
as friction and wear-reducing materials inducing even zero-friction and 
zero-wear states (superlubricity) [74,83,87]. Similarly, polymer com
posites reinforced with 2D materials demonstrated a notably improved 
wear resistance, decreased coefficient of friction (COF), and improved 
durability in tribological experiments. At the same time, another 
research direction relates to the tribological performance of liquid lu
bricants containing 2D materials [43,97], as it addresses the challenges 
of 2D materials exposure to natural fluids even if the wear of the bulk 
composites or coatings proceeds. 

2.3. Interaction with biological matter 

Irrespective of their use as (composite) coatings or reinforcement 
phases in composites, it is inevitable that 2D materials will come into 

contact with the human body and be recognized by the human immune 
system, which may induce a reaction of the body’s first defense system 
[98–101]. The major challenge of 2D materials is the interaction with 
the immune system cells, potentially causing immunostimulation, such 
as the production of antibodies (or macrophages) attacking the invading 
material, or immunosuppression, which reduces the resistance of or
ganisms against infections and cancerous cells [98,99,102]. Therefore, it 
is of utmost importance to elucidate their biological interaction and 
response towards the human body/tissue (biocompatibility, antibacte
rial as well as antiviral activity, and toxicity towards biological matter) 
when using 2D nanomaterials for biotribological applications 
[101–105]. 

A range of advantageous properties makes the use of 2D materials 
promising for biotribological applications. Due to their layered structure 
combined with low interlayer distances, they possess high specific sur
face areas (surface-to-volume ratios), which can be used for adsorption, 
to increase adhesion, to chemically functionalize these materials, to 
deliver drugs (antibiotics) or other therapeutic molecules 
[56,99,102,106–108]. Certain 2D materials, including graphene and its 
derivatives as well as MXenes, offer the possibility to transform elec
tromagnetic radiation into heat, which makes them attractive to be used 
in photothermal therapies (cancer treatment) [99,109,110]. Their 
inherent biocompatibility coupled with antibacterial and antiviral 
properties, which holds true for numerous 2D materials including gra
phene, GO, rGO, MXenes, MoS2, among others, represents the most 
striking property regarding their usage in biotribological applications 
[98,100]. In particular, graphene’s toxicity highly depends on the su
perficial or chemical properties of the nanomaterial [111]. The main 
influencing parameters are dimension, carbon-oxygen atomic ratio, and 
a number of layers [112,113]. Comprehensive reviews about graphene 
and derivatives with their primary cytotoxicity mechanism being the 
cell damage induced by the formation of reactive oxidation species can 
be found in [114–116]. Concerning the toxicity of TMDs, the release of 
chalcogen is related to their toxicity [117–119], which can be reduced in 
the presence of selenium and vanadium [120]. Similar to graphene, BP 
generally shows good biocompatibility with low cellular cytotoxicity, 
whereas their functionalization allows for control of their biocompati
bility [121]. 

While there are still some ongoing debates about the fundamental 
mechanisms of the antibacterial/antiviral properties of 2D materials, 
experimental and numerical works have determined some of the main 
influencing aspects. In this context, the direct interaction of 2D materials 
with bacteria can irreversibly damage cellular components, including 
nucleic acids, lipids, and proteins, thus causing cell death shortly after 
the interaction [100,103,122,123]. Oxidative stresses generated 
through the formation of reactive oxide species subsequently affect the 
bacteria’s enzymatic cycles [103,124,125]. Due to the existing surface 
terminations on their exterior surface, 2D materials tend to be affine to 
the cell membrane. The sharp edges of 2D materials can provoke a 
rupture of the membrane (“nano-knife-effect”), leading to the death of 
the respective organism [126,127]. The 2D nature of these materials can 
also induce a wrapping effect. In this regard, the considerably large 
lateral dimensions and high flexibility of 2D sheets are beneficial to 
wrap up bacteria and viruses, thus separating them from the remaining 
environments. Due to the impermeable nature of 2D materials, this 
separation cuts the access to essential supplements, ultimately causing 
cell death [128–130]. Certain 2D materials have been reported to induce 
anti-inflammatory responses in the human body, which can further help 
fight bacteria and viruses. For more detailed information about the 
specific biological response of different 2D materials regarding different 
bacteria and viruses, the interested reader is referred to 
[98,99,103,105,123–125,127,129,130]. 

3. Usage of 2D materials in biotribological applications 

In this section, we summarize and critically discuss the existing 
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findings regarding the application of 2D materials in load-bearing arti
ficial (Section 3.1) and dental implants (Section 3.2), bone fracture 
fixation (Section 3.3), invasive surgical (Section 3.4), and cardiovascu
lar devices (Section 3.5), contact lenses (Section 3.6) as well as bio- 
MEMS/NEMS (Section 3.7). This includes a brief overview of the 
existing challenges and how 2D materials can help to overcome them. 

3.1. Load-bearing artificial implants 

Natural synovial joints represent a unique biotribological system 
subjected to sustain variable mechanical stresses. While its damage often 
relates to trauma, overloading, or diseases, synovial cartilage, which is 
essential for proper joint function, has a minimal healing ability [131]. 
As a result, cartilage damage leads to painful motion or even motion 
disability, which holds especially true for hip or knee joints. Although 
viscosupplementation by hyaluronic acid (HA)-based solutions may 
result in short-term relief, the only existing effective treatment is a total 
hip and total knee arthroplasty (THA and TKA). The involved contact 
pairs for joint replacements can be classified as hard-on-hard (metal/ 
ceramic femoral head articulating with metal/ceramic acetabular cup) 
or hard-on-soft (metal/ceramic femoral head against polymer acetab
ular cup or metal/ceramic femoral component in articulation with 
polymer tibial insert) [132]. The main reasons for implant failure are 
frequently connected to aseptic lessening due to wear-particle-induced 
osteolysis [133,134]. Therefore, an improved tribological/wear perfor
mance of artificial joints is essential to avoid implant failure and to 
extend service life. 

Owing to its outstanding mechanical properties, biocompatibility, 
and low friction, ultra-high molecular weight polyethylene (UHMWPE) 
is widely used for hard-on-soft load-bearing implants [135,136]. How
ever, the material is known to be prone to wear. To address the wear 
issue, several potential solutions were considered. Recently, attention 
has been paid to developing highly cross-linked polyethylene (HXPE) 
used for acetabular cups/tibial inserts with the overall goal of lowering 
wear rate, thus minimizing the number of particles possibly interacting 
with surrounding tissues [137,138]. Furthermore, surface texturing of 
rubbing surfaces is considered to be one of the methods considerably 
improving the tribological performance of implant materials [139–141]. 
Another way is in coating the implants with diamond-like carbon (DLC) 
[142–146], titanium nitride [147], or silver [148]. Alternatively, the 
introduction of a nanodiamond-containing lubrication solution was 
proposed for improving the tribological properties of the implant ma
terials [149,150]. While these approaches show their potential for 
improving the polymer surface resistance to wear, an alternative solu
tion involves reinforcement of the bulk characteristics of the polymers. 
Moreover, the use of 2D materials opens new perspectives to tailor the 
tribological performance of load-bearing implants through their appli
cations in bio-scaffold for bone tissue engineering along with bone 
therapy such as bone regeneration [151–153], cell proliferation and 
osteogenesis [154], wound repair [155], antibacterial ability, and 
osseointegration [156]. 

Liu et al. reported an increased hardness, hydrophilicity, crystal
linity, and mechanical characteristics thus improving the overall wear 
resistance for graphene/UHMWPE composites (1.5 wt.-% of graphene) 
fabricated by octa-screw extrusion [157]. Martinez et al. investigated 
the effect of functionalized graphene and UHMWPE composite coatings 
on a UHMWPE substrate, verifying that they improve adhesion and 
ductility [158]. The mechanical and tribological properties depended on 
the graphene content and fabrication technique. The addition of 0.5 wt.- 
% graphene resulted in a wear reduction of 20%. Lahiri et al. manu
factured graphene-reinforced UHMWPE by hot pressing and used elec
trostatic spraying to fabricate graphene-reinforced UHMWPE coatings 
[159,160]. At 1 wt.-% graphene-reinforced UHMWPE, the wear resis
tance increased a factor of 4.5 and the COF was reduced by 68% 
compared to pure UHMWPE. Additionally, low graphene concentrations 
showed better biocompatibility as a result of a reduced graphene 

agglomeration tendency. Taromsari et al. sought to take advantage of 
hydroxyapatite’s (HAp) outstanding biocompatibility by integrating it 
with graphene in UHMWPE, using solvent mixing and ultrasonication 
[161]. They verified that using 1 wt.-% graphene and 10 wt.-% HAp 
enhanced the elastic modulus and yield strength by 114% and 24%, 
respectively. Thereby, the tribological tests showed an 84% reduction in 
wear rate and a 55% friction reduction. The increased oxidative stress, 
and thus increased cytotoxicity, caused by graphene, were balanced by 
HAp, which boosts cell adhesion. The biocompatibility of graphene with 
HAp-reinforced UHMWPE was increased by establishing nucleation sites 
for apatite mineralization and preferential cell adhesion, as well as 
improved mechanical properties [162]. Graphene used as composite 
coatings or reinforcement phase in composites has been used for/in ti
tanium (Ti) alloy [163–165], magnesium (Mg) [166], Mg alloy [167], 
alumina [168], and polyetheretherketone (PEEK) [164,169]. The ma
jority of these graphene-based investigations enhanced mechanical or 
tribological properties while taking biocompatibility into account. 

In addition to pure graphene, attention was given to GO or rGO use 
for load-bearing implants due to their simple fabrication. Several studies 
combining GO with UHMWPE have been presented [170–175]. Tai et al. 
investigated the tribological behavior of GO/UHMWPE nanocomposites 
dependent on the GO content using a reciprocating ball-on-disc trib
ometer [174]. The addition of GO to UHMWPE increased the wear 
resistance by forming a transfer film with slightly increased COF. Chen 
et al. comprehensively studied the effect of GO and sodium chloride 
(NaCl) on the surface porosity of GO/NaCl/UHMWPE composites [171]. 
The dissolution of NaCl introduced new pores, which enabled the stor
age of fresh lubricious material, thus decreasing friction and wear. Lu 
et al. examined the effect of GO addition and chemical crosslinking on 
friction and wear of GO/UHMWPE nano-composites [175]. By pin-on- 
disc testing in simulated body fluid (SBF), they demonstrated that 
doping polyethylene with GO accompanied by crosslinking decreased 
both friction and wear due to enhanced bonding and linkage between 
GO and UHMWPE. In contrast, increased friction and wear were re
ported for samples immersed for six months in SBF due to swelling. 
Recently, Sharma et al. evaluated the tribological performance of GO/ 
HDPE/UHMWPE nano-composites using pin-on-disc testing in phos
phate buffered saline (PBS) [170]. The addition of GO reduced friction 
and induced a lower wear rate, which was mainly attributed to the self- 
lubricating ability of GO. Melk and Emami investigated the mechanical 
and thermal properties of vitamin-E doped UHMWPE reinforced by 
multiwalled carbon nanotubes (MWCNTs), GO, and nanodiamonds (ND) 
[176]. The results showed that all carbon nanoparticles positively 
impacted the thermal stability of UHMWPE, thus reducing the oxidation 
degradation temperature. Suner et al. investigated the wear rate and 
biocompatibility of GO/UHMWPE nanocomposites under lubrication 
with diluted bovine serum (BS) [177]. Lower contents of GO (0.5 wt.-%) 
did not affect the resulting wear rate while 2 wt.-% were needed to 
observe a 30% wear rate reduction. Similar results were observed by 
Pang et al. [178]. Marimuthu and Rajan demonstrated improved fatigue 
and wear properties for GO-reinforced high-density polyethylene 
(HDPE) nanocomposites [179]. Recently, Çolak et al. studied the effect 
of rGO on the performance of UHMWPE in reciprocating ball-on-disk 
tests using an alumina counter-body under water lubrication [180]. 
Friction was reduced by up to 37% for composites containing 0.7 wt.-% 
of RGo. An important drawback of most of the aforementioned studies is 
that the biotribological performance of the 2D materials was studied in 
absence of a biological lubricant. To overcome this aspect, Hussain et al. 
reinforced UHMWPE by graphene (using vitamin C as an antioxidant) to 
study their tribological response in reciprocating pin-on-disk tests under 
dry and lubricated (human serum) conditions [181]. They demonstrated 
a wear rate reduction by 99% for the novel UHMWPE/Vitamin C/gra
phene nanoplatelets (GNP) nanocomposite with 2 wt.-% of graphene. 

In addition to UHMWPE, GO has been used to reinforce hydrogels for 
articular cartilage (avascular structure), which is mainly composed of 
collagen fibers. Hydrogels are well-known for retaining enormous 
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amounts of water and preserving a specific shape, but they cannot 
provide sufficient structural or mechanical support on their own. 
Therefore, GO with polyethylene glycol (PEG) wrapped in Chitosan 
(CTS)/sodium glycerophosphate (GP) hydrogels helped to improve 
lubrication efficiently while reducing wear with no cytotoxicity for low 
GO contents [182]. The hydrogels for cartilage application were char
acterized using the μ-CT technique to study the influence of GO on wear 
of the blends of gellan gum (GG) and polyethylene glycol diacrylate 
(PEGDA) doped with/without GO reinforcement [183,184]. GO was 
found to reduce the roughness modification, resulting in reduced fric
tion and improved wear resistance (Fig. 3). 

Wang et al. investigated the electrochemical and biotribological 
characteristics of laser-textured, GO-coated Ti-Al-V plates with variable 
groove widths demonstrating the superior corrosion and wear resistance 
of the coated alloy samples [185]. GO has also been studied in 
conjunction with HAp for load-bearing implants as a composite coating 
on various metal substrates. The presence of GO enhanced the me
chanical properties, corrosion resistance, and coating adhesion 
[186,187]. 

Though the major focus was directed to graphene and graphene- 
based systems, other 2D materials, such as TMDs, h-BN, or BP have 
also been investigated for load-bearing implant applications. Salem et al. 
discovered that the inclusion of MoS2 increased the wear resistance of 
HDPE composites [188]. BP affected the mechanical properties, corro
sion behavior, and biocompatibility (cell proliferation, osteogenic dif
ferentiation, antibacterial properties) of load-bearing implants 
[154,189,190]. Li et al. discovered that BP/carbon fiber (CFR)/PEEK 
coatings showed a better wear resistance and lower friction, possibly 
due to the lower propensity of BP oxidation compared to the BP/CFR/ 
PEEK coatings [191]. Sun et al. showed that PEEK/PTFE composites 
with BP reinforcement featured superior wettability and antibacterial 

properties as well as lower friction (reduction by 73%) and wear 
(reduction by 95%) compared to the pure matrix materials due to the 
good lubricous properties of the BP transfer film [192]. Thereby, 0.5 wt. 
% of BP showed the best performance. 

To summarize, 2D materials are promising for improving the me
chanical and biotribological properties that affect the longevity and 
functionality of load-bearing implants. However, there are still some 
challenges in characterizing the in-vivo biotribological performance as 
well as studying the coupled effect on the articulating and the fixation 
interfaces. The experimental studies presented, therefore, demand 
further clinical validation. 

3.2. Dental implants 

Human teeth are usually exposed to substantial wear during biting 
and chewing [193,194]. An increasing number of biotribological studies 
focus on dentistry with two main research directions, namely tooth 
restoration devices and dental implants [5]. The materials employed 
must be wear-resistant without deteriorating the counterparts (natural 
or restored teeth) during chewing. Moreover, they must resist fretting 
corrosion and provide adequate fixation stability to ensure prolonged 
lifetimes [5,195–198]. Besides that, aesthetic aspects have continuously 
become more important. Metals and their alloys are mainly used for 
orthodontic appliances and dental implants but are less frequently uti
lized for restoration purposes due to their undesirable color [5]. In 
contrast, polymeric alternatives tend to have high wear rates and poor 
gloss retention [199]. Dental ceramics based on yttria-zirconia (3Y- 
ZrO2), Leucite (KAlSi2O6), or Fluorapatite (Ca5[PO4]3F) are generally 
used as restoration materials due to their excellent wear resistance and 
overall appearance mimicking natural teeth. 

To enhance the wear- and corrosion-resistance of tooth restoration or 

Fig. 3. (a) Schematic illustration of the targeted concept. (b) Average COF at varying normal forces under PBS and SBF lubrication for PEGDA/GG and GO/PEGDA/ 
GG composites. (c) Macroscopic and brightfield images of medial and lateral condyles prior to testing as well as after 18,000, and 100,000 cycles, respectively. 
Redrawn from [183] with permission (Wiley, 2021). 
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dental implant materials, composites appear to be an interesting alter
native due to the possibility to mimic the characteristics of natural teeth 
and restore cavities as well as replace carious tooth structures, thus 
improving clinical efficiency [200,201]. In this context, resin-based 
organic matrices with inorganic filler particles, e.g. zirconia, borosili
cate glass, quartz, or alumina [202–206], as well as hybrid ceramic- 
polymer composites [207–210] have been recently studied for dental 

restoration [5]. 
Regarding dental implants, Ti, zirconium (Zr), tantalum (Ta), and 

their alloys are used for bone fixation due to their good cytocompati
bility [211–215]. Although their elastic moduli are suitable for such 
applications, their biotribological performance is rather poor. Addi
tionally, toxic elements such as aluminum (Al) or vanadium (V) can be 
released due to micro-movements and tribo-corrosion, leading to 

Fig. 4. (a) Schematic illustration of antibacterial mechanisms of the GO/CF/PEEK composite coatings. (b) COF and (c) worn surface morphologies of the Ti-Al-V, 
PEEK, CF/PEEK, and GO/CF/PEEK surfaces, respectively. Redrawn from [164] with permission (Elsevier, 2021). 
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inflammatory reactions in biological environments [5]. Therefore, ef
forts have been recently dedicated to modifying and coating implant 
surfaces [216–220] or integrating porous structures [221–224] to 
enhance their mechanical properties, wear-resistance, bone ingrowth, 
and osseointegration. In this regard, 2D materials can potentially help to 
address these challenges intensifying the efforts for exploring graphene- 
and GO-reinforced composite ceramics or composite coatings on metal 
alloys [225] for dental restoration [226,227] or implant materials 
[164,228–230]. 

Zhang et al. fabricated GO-reinforced 3Y-ZrO2 ceramics with 
different concentrations using hot-press sintering and good mechanical 
properties due to a homogeneous GO distribution [226]. Moderate GO 
contents (0.1 or 0.15 wt.-%) improved the flexural strength and fracture 
toughness by 200% and 41%, respectively, which was related to crack 
deflection and bridging as well as GO put-out. Lower (0.05 wt.-%) or 
higher (0.20 wt.-%) contents of GO downgraded the overall structural 
and mechanical properties. Linear-reciprocating ball-on-disk bio
tribological studies demonstrated that moderate GO contents induced 
the best performance with a wear rate reduction by 33% (0.10 wt.-%) 
and 63% (0.15 wt.-%), respectively. Lower and higher GO concentra
tions did not show any significant effect or even induced a downgraded 
performance with an increased gravimetric wear rate. The beneficial 
effects were connected with changes in the predominant wear modes, 
which changed from severe micro-ploughing and plastic deformation for 
the pure ceramic to very mild wear for the GO-reinforced composites 
(wear-resistant tribo-film). Subsequently, Zhang et al. verified lower 
contact angles on GO-coated surfaces compared to pure 3Y-ZrO2 indi
cating enhanced wetting properties, which was attributed to the existing 
hydroxyl groups [227]. No signs of cytotoxicity were observed, and the 
GO-reinforced ceramics promoted proliferation, growth, and adhesion 
of fully elongated cells. The authors demonstrated that the composite 
ceramic can be fabricated by stereolithography from GO/3Y-ZrO2 sus
pensions, which is an important step towards the formation of complex 
and custom-designed dental implants [231]. 

Sun et al. prepared bright white color fluorinated graphene (FG) for 
fabricating glass ionomer cement (GIC) composites reinforced with 
various FG concentrations [232]. The analysis demonstrated that the 
Vickers microhardness and compressive stress of such composites 
reduced, and the COF in zirconia ball-on-disk tribometer tests under 
artificial saliva lubrication decreased. The composites also showed the 
antibacterial effect against S. aureus and S. mutants correlated with the 
FG content. 

Regarding metallic implants, Kalisz et al. compared the mechanical 
and corrosion properties of graphene deposited on a Ti alloy with a 210 
nm thick, magnetron-sputtered niobium pentoxide (Nb2O5) layer as a 
reference [228]. While Nb2O5 could withstand a steel wool scratch-test 
without substantial scratches, the graphene coating was easily removed 
from the Ti-Al-V surface. However, graphene featured much better 
inferior corrosion resistance than Nb2O5. In a 0.5 M/l NaCl, 2 g/l KF, pH 
2 electrolyte, which is a more aggressive environment than SBF or 
artificial saliva, the corrosion current density was 24 times lower (0.01 
μA/cm2) for the graphene-coated Ti-Al-V surface compared to Nb2O5- 
(0.24 μA/cm2). The authors concluded that hybrid coatings containing 
graphene or its derivatives can improve the mechanical and corrosion 
resistance properties of metallic implants [228]. 

Mahmoodi et al. investigated the in-vitro corrosion, and bio
tribological behavior of 2 μm thick GO-reinforced HAp composite 
coatings electrophoretically deposited on Ta substrate [229]. The sur
face roughness increased from about 35 nm (uncoated) to 120 nm 
(composite coating). The stiffness was 8-fold higher, the nano
indentation hardness (HIT) increased by a factor of 18, while the elastic 
modulus (EIT) was 14 times higher. Consequently, the fracture toughness 
(HIT/EIT) and the resistance to plastic deformation (HIT

3 /EIT
2 ) were 

enhanced. The COF of the coated samples was 30% lower (0.30) than 
that of uncoated reference (0.43). Moreover, the hybrid coatings 
featured a substantially lower corrosion current density (5.0 versus 18.6 

μA/cm2) in Hanks’ solution and 3.5 times higher corrosion resistance. 
This indicated that GO-reinforced HAp composite coatings bear 
tremendous potential for dental implants’ surface protection. Even more 
beneficial, they verified a high antibacterial activity against S. aureus 
and E. coli and hindered the adhesion of bacteria for the composite 
coatings. The increased hydrophilicity and roughness of the coated 
surfaces further improved MG-63 cell proliferation, indicating good 
biocompatibility. 

Salehi et al. employed plasma-spraying to fabricate GO/fluorapatite 
(FA)/zinc oxide (ZnO) nanocomposite coatings on Ti-Al-V alloys [230]. 
After optimizing the deposition parameters to obtain homogeneous, 
uniform coatings with decreased crystallites, it was demonstrated that 
the addition of GO increased the micro-hardness from 450 to 760 HV 
while roughness and contact angle decreased from 6.4 μm to 4.1 μm and 
from 81◦ to 58◦, respectively. Moreover, the GO/FA/ZnO coatings 
induced a bone-like apatite formation after 14 days of immersion in SBF 
solution and promoted MG63 cell viability and spreading. Zirconia ball- 
on-disk tribo-testing under SBF lubrication showed a reduced COF from 
0.6 to 0.4 and a decreased wear rate (by 60%,) while the wear mecha
nisms remained unchanged. 

Qin et al. studied GO/CF/PEEK composite coatings with 0.02 wt.-% 
GO and 25 wt.-% CF powder sprayed on Ti-Al-V alloys [164]. In anti
bacterial tests, the GO/CF/PEEK composites exhibited good suppression 
towards E. coli and S. mutans as well as an excellent activity against 
S. aureus due to a nano-blade effect, the extraction of membrane lipids 
and oxidative stresses induced by the randomly distributed and oriented 
GO nanosheets (Fig. 4a). Moreover, a reduced COF (Fig. 4b), as well as 
an improved wear-resistance of GO/CF/PEEK, compared to Ti-Al-V, 
PEEK, and CF/PEEK without GO (Fig. 4c) were demonstrated in recip
rocating sliding against Si3N4 under SBF lubrication. 

To summarize, the clinical outcomes of dental restoration and im
plants can be considerably improved due to the enhanced bio
tribological performance boosted by graphene or GO used as material 
reinforcement or composite coatings. Although being highly promising, 
there are still many challenges and drawbacks to be overcome. Most 
studies focused on studying the cytocompatibility, anti-bacterial prop
erties, and wear behavior in-vitro. The long-term wear behavior and 
mechanisms are yet to be elucidated. The lack of research on in-vivo cell 
attachment, bone ingrowth, and osseointegration and the missing 
knowledge about the involved wear mechanisms when exposed to the 
oral microbial environments represent the main obstacles in the 
employment of 2D materials for dental materials, which urgently ask to 
be addressed. 

3.3. Bone fracture fixation 

Many orthopedic devices, including plates, nails, wires, and screws, 
are used to re-set and fix the fracture in place when a bone is broken. 
Stainless steel, Ti, cobalt-chromium (CoCr), nickel-titanium (Ni-Ti), or 
Mg alloys are employed for permanent or temporary/degradable pros
theses [233–235]. Thereby, fatigue processes of bone plates at screw 
holes due to cyclic-loading [236], as well as crack acceleration/propa
gation, abrasion, and fretting corrosion induced by micro-movements 
are major causes for destabilization and premature failure [5,237]. 
Since these elements are in direct contact with cortical bones, their 
biotribological performance in terms of wear particle and ion release, 
which can result in inflammation and carcinogenic effects [238,239], is 
essential. Therefore, efforts have been recently dedicated towards 
optimizing the fixation mechanisms designs [238,240] via tailoring 
microstructures by processing routes [241], ion nitriding [242], or the 
application of coatings [243–247]. With respect to 2D materials, h-BN- 
reinforced composite coatings on Ti alloy [248,249] as well as GO 
coatings [250] and graphene as reinforcement phases [167,251] for Mg 
alloys have been studied. 

Tozar and Karahan electrophoretically deposited h-BN- and 
collagen- (COL) reinforced HA/CTS composite coatings on Ti-Al-V 
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[248]. The combination of both reinforcement phases (h-BN/COL/HA/ 
CTS) provided superior corrosion protection in SBF compared to single 
COL- or h-BN-reinforced and pure HA/CTS composite coatings. While 
the addition of just COL decreased the elastic modulus and increased 
friction compared to HA/CTS, the reinforcement with h-BN enhanced 
the mechanical properties (higher elastic modulus and hardness) and 
decreased the surface roughness as well as friction. Subsequently, Tozar 
and Karahan demonstrated that the corrosion protection performance, 
the mechanical properties, and the frictional behavior improved with 
increasing the h-BN concentration up to 5 g/L [249]. For higher con
centrations, downgraded effects were verified. Moreover, no cytotoxic 
effects were observed after 12 weeks of sample immersion into the SBF. 
Shahin et al. reported that the addition of graphene to zirconium alloyed 
Mg led to a microstructure refinement, thus increasing the hardness and 
stiffness of materials [167]. The addition of graphene was superior to 
solely alloying with Zr, thus reducing friction by as much as 71% and 
improving the wear resistance by up to 94% compared to pure Mg. 

To summarize, the usage of 2D materials as reinforcement phase in 
composite coating is promising to address the biomechanical and bio
tribological challenges that affect the lifetime and functionality of 
fracture fixation devices. However, research in this area is still in its 
infancy. Therefore, the mechanisms leading to improvement, the effect 
of different 2D materials, as well as the influence of wear on the per
formance and osseointegration of fracture fixation components, are yet 
to be investigated. 

3.4. Invasive surgical devices 

Minimally invasive surgical devices such as needles, graspers, en
doscopes, or catheters are used in various medical operations. Thereby, 
friction greatly influences device-tissue interactions, device positioning, 
the accuracy of force control, and tissue damage, which may lead to 
long-lasting trauma. Consequently, these aspects drive the development 
of innovative minimally invasive needles or grasping forceps [5], for 
which current trends are mostly directed towards the optimization of 
motion [252,253] and geometry [254–257] rather than materials uti
lized. The insertion and operation of different medical devices, such as 
endoscopes, catheters, laparoscopes, and colonoscopies, represent 
another relevant biotribological application. Thereby, the cylindrical 
polymeric or metallic instruments need to pass through the mouth, 
esophagus, or anus, among others, to reach the target position. During 
this procedure, the much softer human body tissue coming in contact 
with these instruments can be easily damaged due to compression, 
stretching, and friction [5]. Therefore, water-soluble and sterile gels are 

typically employed for lubrication and local anesthesia [258]. 
Goldbart et al. added fullerene-like MoS2 (IF-MoS2) and rhenium- 

doped MoS2 (Re:IF-MoS2) nano-particles (Fig. 5a, b) in different con
centrations to a commercial 2% lidocaine-hydrochloride (Esracain) gel 
[259]. The resulting gel mixture was applied on a metallic lead and 
tested against a soft polydimethylsiloxane (PDMS) ring to simulate 
metal-urethra interaction under linear motion. It was shown that friction 
could be substantially reduced for Re:IF-MoS2 (Fig. 5c). Since the 
nanoparticles did not show any signs of peeling-off or transferred layers, 
the friction reduction was attributed to fullerenes’ ability to roll, thus 
separating contacting surfaces, which changed the mechanism from 
sliding to rolling friction (Fig. 5d). While the traction force decreased 
with increasing concentration from 0.5 to 1 wt.-%, a higher concentra
tion (2 wt.-%) led to a degradation of the gel and particle agglomeration, 
resulting in higher viscosity and, thus, in increased friction (Fig. 5c). 

Adini et al. deposited a cobalt coating with impregnated fullerene- 
like WS2 nano-particles on Ni-Ti endodontic files used for root canal 
treatment [260]. Torque measurements of endodontic files clamped 
between two stainless steel plates at defined loads indicated a substan
tial improvement in the fatigue resistance and time to breakage of the 
coated files due to reduced friction between the file and the surrounding 
tissue. 

To summarize, the application of 2D materials as additives in 
lubricating gels or as coatings appears to be promising to reduce friction 
and/or wear thus enhancing the overall performance and reliability of 
invasive surgical devices such as endoscopy or root canal treatment. 
However, the entire topic is greatly underexplored, with many di
rections for future systematic investigations. So far, only the application 
of TMDs (MoS2 and WS2) has been investigated, which implies that the 
usage of other 2D materials is highly prospective. Moreover, more 
research has to be dedicated towards in-vitro model setups and materials 
that adequately reflect the complex in-vivo conditions. Particular 
emphasis should also be paid to the biocompatibility of the used mate
rials and the dynamic interaction of the device surfaces with human 
skin, tissue, and blood cells. 

3.5. Cardiovascular devices 

Various devices are employed for the treatment of cardiovascular 
diseases. In these procedures, biotribological issues can induce serious 
complications leading to hemolysis, thrombus formation, or device 
failure [5]. For instance, stents and catheters used inevitably interact 
with vessel walls and potentially damage the endothelium and tissue by 
frictional motion [261,262]. Moreover, fretting wear can occur between 

Fig. 5. (a) Scanning electron and (b) transmission electron microscopy images of IF-MoS2 nano-particles, reprinted from [258] with permission (2014, Springer). (c) 
Traction forces to move the lead through the urethra model ring using differently formulated gels normalized to dry conditions [259]. (d) Schematic illustration of 
the lubrication gel mixture between the lead and urethra model ring, reprinted from [258] with permission (2014, Springer). 

M. Marian et al.                                                                                                                                                                                                                                



Advances in Colloid and Interface Science 307 (2022) 102747

10

overlapping stents [263] and blood friction can be related to the 
migration of the stent from the intended position [264] and corrosion of 
the stent materials [265]. In this context, 2D materials such as GO 
coatings on biodegradable vascular stents made of Mg alloys may 
enhance corrosion resistance, blood compatibility, and antibacterial 
activity [266,267]. Furthermore, friction and wear of the moving com
ponents in mechanical heart valves or ventricular assist devices such as 
pulsatile or rotary pumps represent a major concern as they lead to 
blood clots and tissue damage due to excessive shear stresses and wear 
particle wash-out and contamination [268–270]. 

The cardiovascular devices include a number of components such as 
rolling, journal, or thrust bearings [271–273], which either are in direct 
contact with blood, lubricated by a saline-blood mixture, or have an 
indirect influence through friction-induced heating even when they are 
sealed [5]. 2D materials can be applied as coatings or reinforcement 
phases for mechanical components, thus effectively reducing friction, 
wear, and preventing local heating [42]. Regarding biomedical appli
cations, Arokiaraj et al. transferred monolayer graphene from a CVD- 
coated copper (Cu) foil to bi-leaflet mechanical mitral valve surfaces 
using polymethylmethacrylate (PMMA) as a sacrificial layer [274]. 
Accelerated wear tests under saline lubrication were performed, and the 
presence of a protecting graphene layer on the valves was verified after 
40 million cycles (corresponds to an operation of 1 year). The authors 
rated the risk of toxicity as negligible due to the low amount of graphene 
and the reduced probability of accumulation in non-desired body parts. 
Moreover, they hypothesized that conjugating the graphene coating 
with glucose oxidase may be useful as an auto-thrombolytic method in 
mechanical heart valve therapy and reduce the need for anticoagulation. 

Even with the existing success of using 2D materials in highly- 
stressed machine elements such as bearings, pumps, or sealings, which 
can be also found in cardiovascular devices [42], the application of 2D 
materials in these devices is greatly under-explored. Reasons for this can 
certainly be traced back to the uncertain operating conditions under in- 
vivo conditions as well as the complex and individually varying mech
anisms of blood lubrication or, for instance, reactions of the component 

materials with anticoagulants. 

3.6. Contact lenses 

Contact lenses are ocular prosthetic devices employed for vision 
correction, therapeutics, and cosmetics [275]. Recent research has been 
directed towards the optimization of chemical and physical material 
properties, the development of tailored manufacturing processes, and 
the avoidance of microbial contamination and other ocular complica
tions to minimize adverse effects associated with contact lens wearing, 
maintain a regular corneal metabolism, and preserve tear film stability 
[275]. Contact lenses can be grouped into soft, rigid, and hybrid com
positions, whereby polymethylmethacrylate (PMMA), (fluoro-) silicone 
acrylate, and water-containing polymer hydrogels are commonly used 
[275]. Comfort, visual performance, and durability are determined by 
their mechanical properties, wettability, and soaking characteristics 
[275]. Friction between the eyelid and contact lens is another important 
aspect. Although too low or too high friction can be irritating, no stan
dardized reference values are available yet [276]. The utilization of 2D 
materials such as graphene is currently more concentrated on thera
nostic applications, thus extending the therapeutic function of the con
tact lens by sensing platforms [277,278], e.g. for full-corneal 
electroretinogram recording [279] or electromagnetic interference 
shielding [280] and dehydration protection [281]. 

Regarding lubrication purposes, Huang et al. [282] directly loaded 
silicon contact lenses with HA and rGO. Moderate amounts of rGO 
featured permissible swelling and transmittance properties as well as a 
low burst with release times up to 96 h compared to 24 h for conven
tionally soaked lenses. HA/rGO-loaded lenses showed a high HA-tear 
fluid concentration and an improved tear fluid volume. Therefore, the 
usage of HA and rGO bears the potential to lubricate the contact lens 
without protein adherence and the necessity for eye drop solutions when 
treating corneal diseases like keratoconus or dry eye syndrome. Also, 
considering previous efforts in various lubrication systems [65,75,76], 
we hypothesize that 2D materials, specifically graphene with its 

Fig. 6. Friction force of Ti, APTES, GO/APTES, and rGO/APTES at (a) different relative humidities and (b) normal loads. (c) COF versus time for Ti, APTES, GO/ 
APTES, and rGO/APTES. Schematic illustration of the interaction between the AFM tip and the (d) APTES or (e) rGO/APTES films as well as (f) force bearing area 
enlargement due to the rGO/APTES coating. Reprinted from [291,292] with permission (Elsevier, 2018). 
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derivatives, can be considered as an additive to eye drops solutions for 
ocular applications [283]. 

3.7. Bio-MEMS/NEMS 

Electrokinetic- or microfluidic-based biomedical micro- or nano- 
electromechanical systems (bio-MEMS/NEMS) [284] are increasingly 
employed as miniaturized biosensors [285,286], microarrays for 
genomic, proteomic, and point-of-care diagnostics [287,288], medical 
implants for drug delivery, microtools for surgery or cell and tissue 
engineering [287]. Besides silicon, glass, or polymers, Ti, Al, Cu, or gold 
(Au) are used due to their electrical and mechanical properties as well as 
good biocompatibility [289]. Due to their unique electrical, physical, 
and optical properties, 2D materials are used to modify the involved 
surfaces for biosensing purposes. The high specific surface area to vol
ume ratio of 2D materials enables a strong response to the surface ac
tivities suitable for biosensing. 

The stable operation of bio-MEMS/NEMS devices also depends on 
the surface properties and the control of adhesion, friction, and wear 
level of surfaces coming into contact during their operation [290]. For 
instance, Ti alloys possess disadvantages regarding their biotribological 
behavior, thus focusing on their surface modifications [289]. 

However, only a few biotribological studies including 2D materials 
for biosensors have been presented to date. Li et al. chemisorbed rGO 
(thickness of 1.3 nm) on β-type Ti-Nb-Ta-Zr (TNTZ) alloys using 3-ami
nopropyltriethoxysilane (APTES) [291,292]. Thereby, the silanol moi
ety of APTES chemically bonded to TNTZ, while the amino group was 

covalently anchored to the oxygen groups of GO. A thermal reduction 
process generated self-assembled rGO/APTES layers with a thickness of 
roughly 3.3 nm. In AFM experiments using a square pyramid Si3N4 tip, 
the rGO/APTES film reduced adhesion and friction and showed less 
sensitivity to humidity and load (Fig. 6a, b). A superior wear-protection 
with an increased time until failure was observed in linear-reciprocating 
ball-on-disk experiments using a sodium chloride aqueous solution, 
(Fig. 6c). This observation was traced back to the self-lubricating 
properties of rGO and a “hard cover on molecular springs” mecha
nisms (Fig. 6d, e). Thereby, the chemically bonded rGO sheets distrib
uted the load over a larger area, thus increasing the force bearing area 
compared to the nominal contact size of pure APTES or Ti (Fig. 6f). 
Wang et. al proposed a GO coating (coupling agent APTES) and a protein 
dopamine (DA) adhesion layer on Ti alloys [293]. The anticorrosion 
behavior under dry conditions and SBF lubrication was enhanced 
compared to the uncoated Ti-Al-V. Improved wear properties and a 
friction reduction were demonstrated for the GO-coated samples. 
Thereby, the tribological results of the GO coated samples were superior 
under dry compared to SBF lubrication conditions. Moreover, the DA 
adhesion layer enhanced the properties compared to the pure GO/ 
APTES coating. 

Laun et al. experimentally studied the wettability of MoS2 surface 
with water and used molecular dynamic simulations to predict the slip- 
length of water on MoS2 nano-sheets [294]. It was shown that low 
friction is related to the hydrophobic nature of the surface (large slip 
length ~1.8nm) suggesting that MoS2 suppresses permanent biomole
cule adsorption on the surface. They anticipated that the developed 

Table 1 
Summary of 2D materials as well as their main effects when employed for load-bearing implants.  

2D material and form of 
application 

Substrate or 
matrix 

Biotribological evaluation Main findings Ref. 

GO reinforced composite 
polymer 

UHMWPE Dry rotational pin-on-disk testing Enhanced wear resistance, increased hardness, 
hydrophilicity, crystallinity, and yield strength 

[157] 

GO/UHMWPE composite 
coating 

UHMWPE DI water-lubricated rotational alumina ball-on-disk 
testing 

Wear and friction reduction, improved adhesion and 
ductility 

[158] 

GNP/UHMWPE 
composite coating 

UHMWPE Dry nano-scratch testing Wear and friction reduction, improved biocompatibility, 
fracture toughness, and tensile strength 

[159,160] 

GNP/HAp composite 
polymer 

UHMWPE Dry rotational steel pin-on-disk testing Wear and friction reduction, enhanced elastic modulus and 
yield strength, increased oxidative stress 

[161] 

GO/CS composite coating Ti-6Al-4V Dry rotational steel ball-on-disk testing Enhanced wear resistance and cytocompatibility [163] 
Al2O3/GO/HAp Ti-6Al-4V Dry rotational pin-on-stainless steel disk testing Wear and friction reduction, decreased microhardness [165] 
GO reinforced composite 

polymer 
UHMWPE Dry reciprocating zirconia ball-on-disk testing Wear reduction, slight friction increase, increased hardness [174] 

GO reinforced composite 
polymer 

UHMWPE BCS lubricated reciprocating Si3N4 ball-on-disk testing Wear and friction reduction [172] 

GO reinforced composite 
polymer 

UHMWPE SBF lubricated rotational pin-on-CoCrMo disk testing Wear and friction reduction [175] 

GO reinforced composite 
polymer 

HDPE/ 
UHMWPE 

PBS lubricated rotational stainless steel pin-on-disk 
testing 

Wear and friction reduction [170] 

GO/NaCl/UHMWPE 
composite polymer 

UHMWPE Water lubricated reciprocating steel ball-on-plate 
testing 

Wear and friction reduction [171] 

GO reinforced composite 
polymer 

UHMWPE BS lubricated reciprocating pin-on-CoCr plate testing Enhanced wear resistance [177] 

GO reinforced composite 
polymer 

UHMWPE Dry, (sea) water lubricated rotational block-on steel 
ring testing 

Enhanced wear resistance [178] 

GO reinforced composite 
polymer 

HDPE Dry rotational pin-on-abrasive wheel testing Enhanced wear resistance and fatigue properties [179] 

rGO reinforced composite 
polymer 

UHMWPE Water lubricated reciprocating alumina ball-on-disk 
testing 

Friction reduction, slight wear reduction, increased 
hardness 

[180] 

GNP reinforced 
composite polymer 

UHMWPE Dry, human serum lubricated reciprocating pin-on- 
Ti6Al4V disk testing 

Wear reduction [181] 

GO/PEG reinforced 
composite polymer 

CS/GP 
hydrogel 

Water lubricated reciprocating ball-on-CoCrMo disk 
testing 

Enhanced lubrication properties [182] 

GO reinforced composite 
polymer 

PEGDA/GG 
hydrogel 

PBS, FBS lubricated rotational pin-on-disk and CoCr 
swinging femoral-on-tibia insert testing 

Wear and friction reduction [183,184] 

GO coating Ti-Al-V Dry and BSF lubricated reciprocating Si3N4 ball-on- 
plate testing 

Superior wear and corrosion resistance, friction reduction [185] 

MoS2 reinforced 
composite polymer 

HDPE Dry reciprocating stainless steel ball-on-plate testing Wear reduction, slight friction reduction [188] 

BP reinforced composite 
polymer 

PEEK/PTFE Dry reciprocating GCr15 steel ball-on-plate testing Wear and friction reduction [192]  
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force fields for MoS2 will help to understand the bio-molecule and MoS2 
interaction in MoS2-based biosensors. 

To conclude, the addition of 2D materials generally improves the 
anti-wear properties and reduces friction along with the excellent anti- 
corrosion behavior thus enhancing the performance of bio-MEMS/ 
biosensors. Apart from GO, rGO, and MoS2, there are more 2D mate
rials including BP [295] or graphitic carbon nitride (g-C3N4) [296] used 
for bio-MEMS/biosensors but their biotribological studies are yet to be 
explored. Additionally, the studies published to date address the bio
tribological behavior from a rather fundamental/general perspective 
and there is a lack of investigations on the influence of 2D materials on 
the component lifetime of bio-MEMS/NEMS. 

4. Concluding remarks 

Although notable progress has been made in the design of biomedical 
devices, issues related to the interaction of the contacting surfaces and 
the human body still exist thus asking for further development. As 
outlined in Sections 1 and 2, 2D materials have demonstrated great 
potential in biotribological/biomedical applications due to their unique 
physical, chemical, and structural properties combined with large 
surface-to-volume ratio, tunable surface chemistry, inherent biocom
patibility, antibacterial/antiviral activity, as well as non-toxicity. In 
Section 3, we demonstrated that 2D materials can be employed as pro
tective coatings, fillers in composites, or as additives in fluid mixtures to 
effectively tailor and manipulate the biotribological behavior. Regard
less the application approach, the major role of 2D materials is to 
enhance the mechanical strength and wear resistance of the systems 
subjected to stresses, though there are certain advantages and disad
vantages of each approach. The incorporation of 2D materials as com
posite fillers enables control of material release during operation but 
creates challenges of material uniformity, interface connections and 

design modifications. The usage of coatings minimizes the requirements 
for the changes in the existing implant designs. However, the library of 
the applicable coatings is limited by the adhesion challenges and 
compatibility of the deposition techniques with complex designs. 
Moreover, eventual wear and degradation with no means of replenish
ment of the coatings significantly reduce their lifetime. Additives in the 
fluid mixtures enable easier replenishment of the lubrication solution. 
However, the localized delivery of such solutions is rarely feasible. At 
the same time, the diffusion of toxic elements to the human body and 
human organs raises concerns about inflammation and the chronic 
response of the body. 

The applications of 2D materials in combination with the substrate or 
matrix materials, the biotribological test setup, as well as the main 
beneficial effects are summarized in Tables 1 and 2. It becomes evident 
that most investigations (~75%) have been focused on load-bearing and 
dental implants, while mainly using graphene, GO, or rGO. Considerably 
fewer studies (~25%) have been dedicated to elucidating the potential 
of other 2D materials, including MoS2 or WS2, in biotribological appli
cations. Similarly, only a limited effort has been focused on other ap
plications, such as bone fracture fixation, endoscopy, root canal 
treatment, heart valves, contact lenses, or bio-MEMS/NEMS. 

Although 2D materials help to enhance the overall biotribological 
behavior in a wide range of different applications, there are still many 
challenges. While most studies focused on cytocompatibility, anti- 
bacterial properties, and in-vitro friction, wear, or corrosion, the long- 
term in-vivo mechanisms have not yet been satisfactorily elucidated in 
clinical studies. The lack of research on the in-vivo cell attachment, bone 
ingrowth, osseointegration, or interaction with human tissue and blood 
cells as well as the lack of understanding of the friction, wear, and 
corrosion mechanisms when exposed to the dynamic human body 
environment and in-vivo operation conditions are currently the main 
obstacles for the advanced employment of 2D materials. In this regard, 

Table 2 
Summary of biomedical applications beyond load-bearing implants and the applied 2D materials as well as their main effects.  

Biomedical 
application 

2D material and form of 
application 

Substrate or matrix Tribological evaluation Main findings Ref. 

Dental 
implants 

GO reinforced composite 
ceramic 

3Y–ZrO2 Artificial saliva lubricated 
reciprocating steel ball-on- 
disk testing 

Improved flexural strength and fracture toughness, 
wear reduction and shift into the mild-wear regime, 
transfer-film formation, good cytocompatibility 

[226,227] 

Fluorinated GO reinforced 
composite ceramic 

Glass ionomer 
cement 

Artificial saliva lubricated 
reciprocating zirconia ball- 
on-disk testing 

Enhanced hardness and compressive stresses, 
friction reduction 

[232] 

Graphene monolayer coating Ti-Al-V alloy Dry steel wool scratch 
testing 

Low adhesion, but enhanced corrosion resistance [228] 

GO/carbon fiber/PEEK 
composite coating 

Ti-Al-V alloy SBF lubricated rotational 
zirconia ball-on-disk testing 

Enhanced friction and wear behavior, good 
cytocompatibility 

[164] 

GO/FA-ZnO composite coating Ti-Al-V alloy SBF lubricated 
reciprocating Si3N4 ball-on- 
disk testing 

Friction and wear reduction, good antibacterial 
activity, and cytocompatibility 

[230] 

GO/hydroxyapatite composite 
coating 

Ta alloy Dry nano-scratch testing Enhanced wear and corrosion resistance, good 
antibacterial activity, and cytocompatibility 

[229] 

Bone fracture 
fixation 

h-BN reinforced COL/HA/CTS 
composite coating 

Ti-Al-V Dry nano-scratch testing Enhanced corrosion resistance and friction [248,249] 

GNP reinforcement Mg-Zr,  
Mg-Zr-Zn 

Dry nano-scratch testing Enhanced friction, wear and corrosion resistance [167,251] 

Endoscopy Fullerene-like structured 
undoped and rhenium-doped 
MoS2 nanoparticles 

Esracain gel Linear urethra model medal 
lead-in-PDMS ring testing 

Friction reduction due to change from sliding to 
rolling friction 

[258,259] 

Root canal 
treatment 

Fullerene-like WS2 

nanoparticle impregnated 
cobalt coating 

Ni-Ti-alloy Endodontic file-against- 
clamped stainless steel 
plates testing 

Friction reduction, increase of fatigue resistance and 
time to breakage 

[260] 

Heart valves Graphene monolayer bi-leaflet 
mechanical mitral 
valve surface 

Accelerated valve wear 
testing 

Preservation of the coating [274] 

Bio-MEMS/ 
NEMS 

Self-assembled rGO/APTES 
nano-coating 

TNTZ AFM and reciprocating 
Si3N4 ball-on-disk testing 

Adhesion, friction, and wear reduction due to a hard 
cover on molecular springs mechanism 

[289,291,292] 

GO/APTES/DA coating Ti-Al-V Dry and SBF lubricated 
reciprocating Si3N4 ball-on- 
disk testing 

Enhanced corrosion resistance, friction and wear [293]  
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the usage of appropriately designed biotribological test rigs mimicking 
the real body conditions together with the proper selection of testing 
conditions and lubricants is of utmost importance. Moreover, more 
emphasis needs to put the comparability of the findings to allow for a 
fair comparison of results obtained from different research groups and 
the transferability to in-vivo conditons. 

A striking feature of many 2D materials, which has been barely 
explored in the field of biotribological applications, is their rich surface 
chemistry, which enables a tailor-made chemical functionalization. We 
anticipate that this approach is highly suitable to induce specific matter- 
tissue interactions thus improving adhesion and bone ingrowth, among 
others. Furthermore, to date, there are hardly any theoretical/numerical 
approaches to facilitate investigations and simulations of the in-vitro and 
in-vivo behavior of 2D materials in biotribological/biomedical applica
tions. Finally, more attention should also be paid to other 2D materials, 
such as BP, MXenes or MBenes, that have already been partially studied 
for tribological purposes but not yet in the context of biotribology. 
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