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The human body involves a large number of systems subjected to contact stresses and thus experiencing wear and
degradation. The limited efficacy of existing solutions constantly puts a significant financial burden on the
healthcare system, more importantly, patients are suffering due to the complications following a partial or total
system failure. More effective strategies are highly dependent on the availability of advanced functional mate-
rials demonstrating excellent tribological response and good biocompatibility. In this article, we review the

recent progress in implementing two-dimensional (2D) materials into bio-applications involving tribological
contacts. We further summarize the current challenges for future progress in the field.

1. Introduction

Numerous medical devices are employed to treat or alleviate various
diseases and injuries as well as anatomy and physiological process
support. The global medical device market is expected to grow from
nearly $455 billion in 2021 to $658 billion in 2028 due to an increasing
number of healthcare facilities, the elderly population, healthcare
expenditure, and technological advances [1]. Thereby, their safety and
effectiveness represent major concerns critical for effective clinical
application. All medical devices inevitably contact and interact with the
human body, which is why their surfaces and interfaces are essential.
The design of functional contacting surfaces comes into focus to fulfil the
desired functions adequately. As illustrated in Fig. 1, this covers the
interfaces between dental implants and bone or tissue [2], contact lenses
and eye/eyelid [3], as well as surgical or cardiovascular devices and
tissue [4]. Interactions also occur between components of biomedical
devices, including metallic bone fracture fixations [5], the articulating
surfaces of the femoral and tibial components in total knee re-
placements, or the femoral head and the acetabular cup in artificial hip
joints [6,7].

* Corresponding authors.

Medical devices’ failures or malfunctions often relate to processes/
problems occurring in these interfaces, including excessive wear (pros-
thetic interfaces), tribo-corrosion and fretting (dental implants), loos-
ening of bone fixation devices, or tissue damage due to high friction of
invasive surgical or cardiovascular devices [5]. Therefore, the bio-
tribological behavior of such systems plays a crucial role in prolonging
their safe and reliable operation. The current state-of-the-art has been
summarized in several reviews from different points of view and for
various biomedical applications [5,8-10], including artificial joints
[6,7,11,12], cardiovascular devices [4], dentistry [2], and the role of
lubrication [13-15]. Apart from theoretical/numerical approaches to
come up with optimized designs mainly devoted to in-silico trials for
prostheses [16-22], current research is directed towards the develop-
ment of low-friction, low-wear, and corrosion-resistant materials or
surface modifications [7,23].

In this regard, the unique physical, chemical, structural, electrical,
and optical properties as well as the large surface-to-volume ratio,
tunable surface chemistry, and customizable functions make two-
dimensional (2D) materials attractive for many biomedical/bio-
tribological applications [24-27]. Since the first isolation from graphite
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Biotribology

Fig. 1. Biotribological areas for application of 2D materials to tailor friction and wear: Dental implants, contact lenses, cardiovascular devices, bone fracture fix-

ations, total knee and hip replacements.

using scotch tape [28], graphene is by far the most explored 2D material
with applications in tissue engineering, biosensing, bioimaging, and
gene and medication delivery [29-32]. Graphene and its derivatives,
graphene oxide (GO) and reduced graphene oxide (rGO), have their own
set of advantages and uses. Compared to graphene [16], GO is the
oxidized form of graphene with increased hydrophilicity, water dis-
persibility, non-toxicity, and biocompatibility [33]. rGO has many of the
same features as pure graphene but its fabrication is less expensive.
Transition metal dichalcogenides (TMDs) are a family of 2D materials
consisting of a layer of transition metal atoms sandwiched between two
layers of chalcogen atoms [34]. Thereby, molybdenum disulfide (MoS5)
and tungsten disulfide (WSy) represent the most prominent TMDs [35].
Because of their outstanding photoluminescence and adjustable
bandgap as well as good mechanical characteristics, TMDs have been
used in optical, electronic, and biological applications [25]. Despite
their exceptional electrical, optical, thermal, and mechanical features,
transition metal oxides (TMOs) have received less attention than other
2D materials [36]. Hexagonal boron nitride (h-BN) has structural simi-
larities to graphene, with boron and nitrogen atoms forming covalent
bonds within a hexagonal structure. Functionalized h-BN is a promising
candidate for medication delivery as well as tissue engineering and live-
cell imaging due to its good mechanical and chemical properties [26].
Black phosphorous (BP), for which each phosphorous atom is tetrahe-
drally bonded to three adjacent phosphorous atoms creating the hon-
eycomb structure, finds its application in electronics and optical
applications due to its anisotropic properties and tunable bandgap [37].
Due to its biocompatibility, BP is explored for various biomedical ap-
plications, mainly drug delivery. MXene nano-sheets cover a recently
discovered new family of layered transition metal carbides, nitrides, or
carbonitrides, with their most explored member being TizCyT,. MXenes
exhibit outstanding electrical conductivity, excellent mechanical prop-
erties, tunable surface chemistry, and inherent antibacterial/antiviral
properties, making them very promising to be applied in a biomedical
context [38-41].

Regarding tribology, 2D materials have shown great potential to
tailor friction and wear of various dry or lubricated systems when

employed as lubricant additives in base oils, as reinforcement phase in
composites, or as solid lubricant coatings [42]. Graphene and its de-
rivatives [43-46], TMDs [47-50], h-BN [51,52], BP [53,54], and
MXenes [55-60] have been investigated in this context. Thereby, the
layered nanomaterials may act as easy-to-shear films or nano-roller
bearings, thus reducing friction [61]. Depending on the operational
and environmental conditions, 2D materials form beneficial tribo-films
through tribo-chemical reactions [62,63], which feature low shear
resistance and can be transferred to the counter-body [64,65]. The
newly formed tribolayer/tribolayer interfaces can substantially decrease
friction and wear thus extending service life.

Excellent reviews focusing on various biomedical [24-27,66-70] or
tribological [42,65,71-80] applications of 2D materials can be found in
the literature. However, no article summarizing the tribological features
of 2D materials in biomedical applications has been published to date.
Therefore, the scope of this review lies in the progress and developments
of 2D materials in biomedical tribology. In terms of biotribology, this
article discusses the essential characteristics of 2D materials high-
lighting their importance and influence of being used in biotribological
applications (Section 2) as well as the advancement and improvement in
targeted applications, namely load-bearing implants (Section 3.1),
dental implants (3.2), bone fracture fixation (3.3), invasive surgical
devices (3.4), cardiovascular devices (3.5), contact lenses (3.6), and bio-
sensing (3.7). Finally, the key findings, current challenges, and future
research directions are presented in Section 4.

2. 2D materials in biotribology — how, where, and why?
2.1. Approaches for implementation

Depending on the application needs, the introduction of 2D materials
can be divided into three main approaches: the deposition as protective
coatings, the introduction as fillers in composites, or the usage as ad-
ditives in fluids (Fig. 2a). All approaches are potentially applicable for
biotribological applications and possess their advantages depending on
the application requirements. Specifically, the use of protective coatings
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Fig. 2. (a) Implementation of 2D materials into biotribological systems. Lubrication mechanisms involving ultra-thin layered 2D materials: (b) Tribochemically-
induced film formation, (c) lowering the surface roughness by filling concave valleys, (d) nano-rolling bearing effect, (e) fluid flow regulation. Redrawn and

adapted from [75] with permission by CC BY 4.0 (MDPI, 2018).

is of high interest for the design of artificial joints, where their tribo-
logical characteristics allow to suppress the wear debris generation and
release during operation without affecting the bulk mechanical char-
acteristics of the majority of metal alloy-based prosthetic devices. In this
case, the application approach is to deposit the coatings directly on the
prosthetic device surfaces before the joint arthroplasty surgery. Mean-
while, dental or ocular systems may benefit from improvements in the
composite materials’ mechanical characteristics implemented for their
use. Consequently, most of the ongoing research focuses on designing 2D
fillers into polymeric or ceramic matrices. Here, the 2D materials are
premixed in various concentrations into the powders or melted solutions
of the materials. The use of 2D materials as additives to improve lubri-
cation is potentially viable for systems, which highly depend on bio-
fluids with limited renewal capacity, such as in ocular and load-bearing
designs when they can be introduced in the form of injectable solutions
or drops. In contrast to coatings and composites, the efforts also should
be dedicated to ensuring good dispersibility and colloidal stability of
these solutions.

2.2. Tribological potential

The discovery of 2D materials encouraged the exploration of their
use for different applications. The major reason is the wide range of
specific characteristics making 2D materials attractive for efficient
implementation inside the human body. Specific to tribology-related
applications, 2D materials have already demonstrated excellent

mechanical strength, chemical inertness, wear resistance, and easy
shearing (low friction) [81-83]. Wear induced by tribocorrosion of
metals covered with passive oxide films has represented a research topic
of considerable interest in recent years, allowing the possibility of
obtaining knowledge on a micro- and macro-scopic scale. Recent ad-
vances in nanotechnology have also boosted the understanding and
modeling of the fundamental tribological and corrosive mechanisms of
2D materials [84]. In general, according to the conventional tribo-
corrosion theory [85], beyond oxide tribofilms having a nanometer
thickness, the wear rate tends to increase more quickly with increasing
contact pressure in the presence of physiological solutions than under
dry friction.

The idea of using 2D materials for biotribology has been explored for
a while. Earlier studies showed that the 2D forms of carbon (graphitic
layers) could naturally occur in the joints during sliding [86], as a
consequence of tribocatalytically-generated films [87], thus demon-
strating the great potential for using 2D materials in the bio-
environment. Upon addressing the challenges associated with the
biocompatibility of 2D materials, the use of layered films would create
new opportunities for their bio-applications inside the human body and/
or in contact with biological systems. Below, we overview the main
characteristics of 2D materials and discuss the approaches for their
implementation in a biotribological context.

2.2.1. Mechanical strength
The unique layered structure of 2D films notably reduces the size of
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defects and, typical for bulk brittle materials [88], significantly impacts
the ability of 2D materials to sustain stresses and high deformation
strains [81,89]. Consequently, 2D films were considered to protect the
bulk functional components from external damage [42].

Focusing on composites, 2D materials as a filler component (rein-
forcement phase) distributed in polymeric matrix increase the overall
composite’s stiffness, improving the load transfer and load redistribu-
tion through the softer matrix simultaneously [90,91]. Consequently,
reduced damage of macromolecules exposed to stresses and an
improvement of the overall composite’s strength can be expected.

2.2.2. Chemical inertness

One of the essential parameters relates to the ability of the 2D ma-
terials to sustain exposure to the corrosive environment in the human
body [23,92,93]. Inherent resistance to degradation in aggressive en-
vironments also connects to the limited number of defects and dangling
bonds in these materials. These aspects help to prevent their chemical
bonding with surrounding compounds. Consequently, 2D materials
were shown to provide excellent protection of the underlying surface
from corrosion, that is a critical aspect when considering new material
systems for biotribological applications [94,95]. Specifically, the human
body is a complex environment that promotes corrosion and degrada-
tion of materials used in implants, which can further accelerate the
failure of the materials under loading and shearing stresses. Upon
sliding, the release of the corrosion components and wear debris to the
body in turn may cause an osteolytic cascade reaction of the immune
system. Because of severe corrosion damage, promoted by contact
stresses, the pool of the material candidates considered for the implant
components became very limited. An alternative approach of protecting
the surfaces from corrosion, wear, and degradation by introducing
lubricating solutions to the contacting interfaces, in the forms of coat-
ings or advanced lubricants helps to improve the performance of the
components and increase the viability of the materials.

2.2.3. Friction and wear characteristics

While enhancing the resulting mechanical properties of the systems
using 2D materials is impressive, specifically for biotribological appli-
cations, their capability to improve a material’s tribological properties
(i.e. to decrease wear and friction) is of uttermost importance. The
lubrication mechanisms involving 2D materials are driven by low shear
resistance of ultra-thin layered structures (interlayer sliding) [64]. In
this regard, 2D materials can be directly adsorbed or deposited on the
contacting surfaces thus enabling tribochemically formed tribo-films
(Fig. 2b) [62]. Moreover, 2D materials can fill surface cavities to
reduce wear and self-replenish surfaces (Fig. 2¢). Besides shearing films,
2D materials may act as nano-rolling bearings, thus potentially changing
the friction mode from sliding to rolling friction while providing a
certain load-bearing capacity (Fig. 2d) [61]. Lastly, 2D materials are
able to regulate the fluid flow in full film lubrication regime (Fig. 2e)
[75,96].

Therefore, 2D films were employed in a wide range of tribological
systems across various scales [64] and environment conditions [50,63]
as friction and wear-reducing materials inducing even zero-friction and
zero-wear states (superlubricity) [74,83,87]. Similarly, polymer com-
posites reinforced with 2D materials demonstrated a notably improved
wear resistance, decreased coefficient of friction (COF), and improved
durability in tribological experiments. At the same time, another
research direction relates to the tribological performance of liquid lu-
bricants containing 2D materials [43,97], as it addresses the challenges
of 2D materials exposure to natural fluids even if the wear of the bulk
composites or coatings proceeds.

2.3. Interaction with biological matter

Irrespective of their use as (composite) coatings or reinforcement
phases in composites, it is inevitable that 2D materials will come into
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contact with the human body and be recognized by the human immune
system, which may induce a reaction of the body’s first defense system
[98-101]. The major challenge of 2D materials is the interaction with
the immune system cells, potentially causing immunostimulation, such
as the production of antibodies (or macrophages) attacking the invading
material, or immunosuppression, which reduces the resistance of or-
ganisms against infections and cancerous cells [98,99,102]. Therefore, it
is of utmost importance to elucidate their biological interaction and
response towards the human body/tissue (biocompatibility, antibacte-
rial as well as antiviral activity, and toxicity towards biological matter)
when wusing 2D nanomaterials for biotribological applications
[101-105].

A range of advantageous properties makes the use of 2D materials
promising for biotribological applications. Due to their layered structure
combined with low interlayer distances, they possess high specific sur-
face areas (surface-to-volume ratios), which can be used for adsorption,
to increase adhesion, to chemically functionalize these materials, to
deliver drugs (antibiotics) or other therapeutic molecules
[56,99,102,106-108]. Certain 2D materials, including graphene and its
derivatives as well as MXenes, offer the possibility to transform elec-
tromagnetic radiation into heat, which makes them attractive to be used
in photothermal therapies (cancer treatment) [99,109,110]. Their
inherent biocompatibility coupled with antibacterial and antiviral
properties, which holds true for numerous 2D materials including gra-
phene, GO, rGO, MXenes, MoS,, among others, represents the most
striking property regarding their usage in biotribological applications
[98,100]. In particular, graphene’s toxicity highly depends on the su-
perficial or chemical properties of the nanomaterial [111]. The main
influencing parameters are dimension, carbon-oxygen atomic ratio, and
a number of layers [112,113]. Comprehensive reviews about graphene
and derivatives with their primary cytotoxicity mechanism being the
cell damage induced by the formation of reactive oxidation species can
be found in [114-116]. Concerning the toxicity of TMDs, the release of
chalcogen is related to their toxicity [117-119], which can be reduced in
the presence of selenium and vanadium [120]. Similar to graphene, BP
generally shows good biocompatibility with low cellular cytotoxicity,
whereas their functionalization allows for control of their biocompati-
bility [121].

While there are still some ongoing debates about the fundamental
mechanisms of the antibacterial/antiviral properties of 2D materials,
experimental and numerical works have determined some of the main
influencing aspects. In this context, the direct interaction of 2D materials
with bacteria can irreversibly damage cellular components, including
nucleic acids, lipids, and proteins, thus causing cell death shortly after
the interaction [100,103,122,123]. Oxidative stresses generated
through the formation of reactive oxide species subsequently affect the
bacteria’s enzymatic cycles [103,124,125]. Due to the existing surface
terminations on their exterior surface, 2D materials tend to be affine to
the cell membrane. The sharp edges of 2D materials can provoke a
rupture of the membrane (“nano-knife-effect”), leading to the death of
the respective organism [126,127]. The 2D nature of these materials can
also induce a wrapping effect. In this regard, the considerably large
lateral dimensions and high flexibility of 2D sheets are beneficial to
wrap up bacteria and viruses, thus separating them from the remaining
environments. Due to the impermeable nature of 2D materials, this
separation cuts the access to essential supplements, ultimately causing
cell death [128-130]. Certain 2D materials have been reported to induce
anti-inflammatory responses in the human body, which can further help
fight bacteria and viruses. For more detailed information about the
specific biological response of different 2D materials regarding different
bacteria and viruses, the interested reader is referred to
[98,99,103,105,123-125,127,129,130].

3. Usage of 2D materials in biotribological applications

In this section, we summarize and critically discuss the existing
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findings regarding the application of 2D materials in load-bearing arti-
ficial (Section 3.1) and dental implants (Section 3.2), bone fracture
fixation (Section 3.3), invasive surgical (Section 3.4), and cardiovascu-
lar devices (Section 3.5), contact lenses (Section 3.6) as well as bio-
MEMS/NEMS (Section 3.7). This includes a brief overview of the
existing challenges and how 2D materials can help to overcome them.

3.1. Load-bearing artificial implants

Natural synovial joints represent a unique biotribological system
subjected to sustain variable mechanical stresses. While its damage often
relates to trauma, overloading, or diseases, synovial cartilage, which is
essential for proper joint function, has a minimal healing ability [131].
As a result, cartilage damage leads to painful motion or even motion
disability, which holds especially true for hip or knee joints. Although
viscosupplementation by hyaluronic acid (HA)-based solutions may
result in short-term relief, the only existing effective treatment is a total
hip and total knee arthroplasty (THA and TKA). The involved contact
pairs for joint replacements can be classified as hard-on-hard (metal/
ceramic femoral head articulating with metal/ceramic acetabular cup)
or hard-on-soft (metal/ceramic femoral head against polymer acetab-
ular cup or metal/ceramic femoral component in articulation with
polymer tibial insert) [132]. The main reasons for implant failure are
frequently connected to aseptic lessening due to wear-particle-induced
osteolysis [133,134]. Therefore, an improved tribological/wear perfor-
mance of artificial joints is essential to avoid implant failure and to
extend service life.

Owing to its outstanding mechanical properties, biocompatibility,
and low friction, ultra-high molecular weight polyethylene (UHMWPE)
is widely used for hard-on-soft load-bearing implants [135,136]. How-
ever, the material is known to be prone to wear. To address the wear
issue, several potential solutions were considered. Recently, attention
has been paid to developing highly cross-linked polyethylene (HXPE)
used for acetabular cups/tibial inserts with the overall goal of lowering
wear rate, thus minimizing the number of particles possibly interacting
with surrounding tissues [137,138]. Furthermore, surface texturing of
rubbing surfaces is considered to be one of the methods considerably
improving the tribological performance of implant materials [139-141].
Another way is in coating the implants with diamond-like carbon (DLC)
[142-146], titanium nitride [147], or silver [148]. Alternatively, the
introduction of a nanodiamond-containing lubrication solution was
proposed for improving the tribological properties of the implant ma-
terials [149,150]. While these approaches show their potential for
improving the polymer surface resistance to wear, an alternative solu-
tion involves reinforcement of the bulk characteristics of the polymers.
Moreover, the use of 2D materials opens new perspectives to tailor the
tribological performance of load-bearing implants through their appli-
cations in bio-scaffold for bone tissue engineering along with bone
therapy such as bone regeneration [151-153], cell proliferation and
osteogenesis [154], wound repair [155], antibacterial ability, and
osseointegration [156].

Liu et al. reported an increased hardness, hydrophilicity, crystal-
linity, and mechanical characteristics thus improving the overall wear
resistance for graphene/UHMWPE composites (1.5 wt.-% of graphene)
fabricated by octa-screw extrusion [157]. Martinez et al. investigated
the effect of functionalized graphene and UHMWPE composite coatings
on a UHMWPE substrate, verifying that they improve adhesion and
ductility [158]. The mechanical and tribological properties depended on
the graphene content and fabrication technique. The addition of 0.5 wt.-
% graphene resulted in a wear reduction of 20%. Lahiri et al. manu-
factured graphene-reinforced UHMWPE by hot pressing and used elec-
trostatic spraying to fabricate graphene-reinforced UHMWPE coatings
[159,160]. At 1 wt.-% graphene-reinforced UHMWPE, the wear resis-
tance increased a factor of 4.5 and the COF was reduced by 68%
compared to pure UHMWPE. Additionally, low graphene concentrations
showed better biocompatibility as a result of a reduced graphene
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agglomeration tendency. Taromsari et al. sought to take advantage of
hydroxyapatite’s (HAp) outstanding biocompatibility by integrating it
with graphene in UHMWPE, using solvent mixing and ultrasonication
[161]. They verified that using 1 wt.-% graphene and 10 wt.-% HAp
enhanced the elastic modulus and yield strength by 114% and 24%,
respectively. Thereby, the tribological tests showed an 84% reduction in
wear rate and a 55% friction reduction. The increased oxidative stress,
and thus increased cytotoxicity, caused by graphene, were balanced by
HAp, which boosts cell adhesion. The biocompatibility of graphene with
HAp-reinforced UHMWPE was increased by establishing nucleation sites
for apatite mineralization and preferential cell adhesion, as well as
improved mechanical properties [162]. Graphene used as composite
coatings or reinforcement phase in composites has been used for/in ti-
tanium (Ti) alloy [163-165], magnesium (Mg) [166], Mg alloy [167],
alumina [168], and polyetheretherketone (PEEK) [164,169]. The ma-
jority of these graphene-based investigations enhanced mechanical or
tribological properties while taking biocompatibility into account.

In addition to pure graphene, attention was given to GO or rGO use
for load-bearing implants due to their simple fabrication. Several studies
combining GO with UHMWPE have been presented [170-175]. Tai et al.
investigated the tribological behavior of GO/UHMWPE nanocomposites
dependent on the GO content using a reciprocating ball-on-disc trib-
ometer [174]. The addition of GO to UHMWPE increased the wear
resistance by forming a transfer film with slightly increased COF. Chen
et al. comprehensively studied the effect of GO and sodium chloride
(NaCl) on the surface porosity of GO/NaCl/UHMWPE composites [171].
The dissolution of NaCl introduced new pores, which enabled the stor-
age of fresh lubricious material, thus decreasing friction and wear. Lu
et al. examined the effect of GO addition and chemical crosslinking on
friction and wear of GO/UHMWPE nano-composites [175]. By pin-on-
disc testing in simulated body fluid (SBF), they demonstrated that
doping polyethylene with GO accompanied by crosslinking decreased
both friction and wear due to enhanced bonding and linkage between
GO and UHMWRPE. In contrast, increased friction and wear were re-
ported for samples immersed for six months in SBF due to swelling.
Recently, Sharma et al. evaluated the tribological performance of GO/
HDPE/UHMWPE nano-composites using pin-on-disc testing in phos-
phate buffered saline (PBS) [170]. The addition of GO reduced friction
and induced a lower wear rate, which was mainly attributed to the self-
lubricating ability of GO. Melk and Emami investigated the mechanical
and thermal properties of vitamin-E doped UHMWPE reinforced by
multiwalled carbon nanotubes (MWCNTSs), GO, and nanodiamonds (ND)
[176]. The results showed that all carbon nanoparticles positively
impacted the thermal stability of UHMWPE, thus reducing the oxidation
degradation temperature. Suner et al. investigated the wear rate and
biocompatibility of GO/UHMWPE nanocomposites under lubrication
with diluted bovine serum (BS) [177]. Lower contents of GO (0.5 wt.-%)
did not affect the resulting wear rate while 2 wt.-% were needed to
observe a 30% wear rate reduction. Similar results were observed by
Pang et al. [178]. Marimuthu and Rajan demonstrated improved fatigue
and wear properties for GO-reinforced high-density polyethylene
(HDPE) nanocomposites [179]. Recently, Colak et al. studied the effect
of rGO on the performance of UHMWPE in reciprocating ball-on-disk
tests using an alumina counter-body under water lubrication [180].
Friction was reduced by up to 37% for composites containing 0.7 wt.-%
of RGo. An important drawback of most of the aforementioned studies is
that the biotribological performance of the 2D materials was studied in
absence of a biological lubricant. To overcome this aspect, Hussain et al.
reinforced UHMWPE by graphene (using vitamin C as an antioxidant) to
study their tribological response in reciprocating pin-on-disk tests under
dry and lubricated (human serum) conditions [181]. They demonstrated
a wear rate reduction by 99% for the novel UHMWPE/Vitamin C/gra-
phene nanoplatelets (GNP) nanocomposite with 2 wt.-% of graphene.

In addition to UHMWPE, GO has been used to reinforce hydrogels for
articular cartilage (avascular structure), which is mainly composed of
collagen fibers. Hydrogels are well-known for retaining enormous
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Redrawn from [183] with permission (Wiley, 2021).

amounts of water and preserving a specific shape, but they cannot
provide sufficient structural or mechanical support on their own.
Therefore, GO with polyethylene glycol (PEG) wrapped in Chitosan
(CTS)/sodium glycerophosphate (GP) hydrogels helped to improve
lubrication efficiently while reducing wear with no cytotoxicity for low
GO contents [182]. The hydrogels for cartilage application were char-
acterized using the p-CT technique to study the influence of GO on wear
of the blends of gellan gum (GG) and polyethylene glycol diacrylate
(PEGDA) doped with/without GO reinforcement [183,184]. GO was
found to reduce the roughness modification, resulting in reduced fric-
tion and improved wear resistance (Fig. 3).

Wang et al. investigated the electrochemical and biotribological
characteristics of laser-textured, GO-coated Ti-Al-V plates with variable
groove widths demonstrating the superior corrosion and wear resistance
of the coated alloy samples [185]. GO has also been studied in
conjunction with HAp for load-bearing implants as a composite coating
on various metal substrates. The presence of GO enhanced the me-
chanical properties, corrosion resistance, and coating adhesion
[186,187].

Though the major focus was directed to graphene and graphene-
based systems, other 2D materials, such as TMDs, h-BN, or BP have
also been investigated for load-bearing implant applications. Salem et al.
discovered that the inclusion of MoS, increased the wear resistance of
HDPE composites [188]. BP affected the mechanical properties, corro-
sion behavior, and biocompatibility (cell proliferation, osteogenic dif-
ferentiation, antibacterial properties) of load-bearing implants
[154,189,190]. Li et al. discovered that BP/carbon fiber (CFR)/PEEK
coatings showed a better wear resistance and lower friction, possibly
due to the lower propensity of BP oxidation compared to the BP/CFR/
PEEK coatings [191]. Sun et al. showed that PEEK/PTFE composites
with BP reinforcement featured superior wettability and antibacterial

properties as well as lower friction (reduction by 73%) and wear
(reduction by 95%) compared to the pure matrix materials due to the
good lubricous properties of the BP transfer film [192]. Thereby, 0.5 wt.
% of BP showed the best performance.

To summarize, 2D materials are promising for improving the me-
chanical and biotribological properties that affect the longevity and
functionality of load-bearing implants. However, there are still some
challenges in characterizing the in-vivo biotribological performance as
well as studying the coupled effect on the articulating and the fixation
interfaces. The experimental studies presented, therefore, demand
further clinical validation.

3.2. Dental implants

Human teeth are usually exposed to substantial wear during biting
and chewing [193,194]. An increasing number of biotribological studies
focus on dentistry with two main research directions, namely tooth
restoration devices and dental implants [5]. The materials employed
must be wear-resistant without deteriorating the counterparts (natural
or restored teeth) during chewing. Moreover, they must resist fretting
corrosion and provide adequate fixation stability to ensure prolonged
lifetimes [5,195-198]. Besides that, aesthetic aspects have continuously
become more important. Metals and their alloys are mainly used for
orthodontic appliances and dental implants but are less frequently uti-
lized for restoration purposes due to their undesirable color [5]. In
contrast, polymeric alternatives tend to have high wear rates and poor
gloss retention [199]. Dental ceramics based on yttria-zirconia (3Y-
Zr03), Leucite (KAISi»Og), or Fluorapatite (Cas[PO4]3F) are generally
used as restoration materials due to their excellent wear resistance and
overall appearance mimicking natural teeth.

To enhance the wear- and corrosion-resistance of tooth restoration or
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dental implant materials, composites appear to be an interesting alter-
native due to the possibility to mimic the characteristics of natural teeth
and restore cavities as well as replace carious tooth structures, thus
improving clinical efficiency [200,201]. In this context, resin-based
organic matrices with inorganic filler particles, e.g. zirconia, borosili-
cate glass, quartz, or alumina [202-206], as well as hybrid ceramic-
polymer composites [207-210] have been recently studied for dental

restoration [5].

Regarding dental implants, Ti, zirconium (Zr), tantalum (Ta), and
their alloys are used for bone fixation due to their good cytocompati-
bility [211-215]. Although their elastic moduli are suitable for such
applications, their biotribological performance is rather poor. Addi-
tionally, toxic elements such as aluminum (Al) or vanadium (V) can be
released due to micro-movements and tribo-corrosion, leading to
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inflammatory reactions in biological environments [5]. Therefore, ef-
forts have been recently dedicated to modifying and coating implant
surfaces [216-220] or integrating porous structures [221-224] to
enhance their mechanical properties, wear-resistance, bone ingrowth,
and osseointegration. In this regard, 2D materials can potentially help to
address these challenges intensifying the efforts for exploring graphene-
and GO-reinforced composite ceramics or composite coatings on metal
alloys [225] for dental restoration [226,227] or implant materials
[164,228-230].

Zhang et al. fabricated GO-reinforced 3Y-ZrO, ceramics with
different concentrations using hot-press sintering and good mechanical
properties due to a homogeneous GO distribution [226]. Moderate GO
contents (0.1 or 0.15 wt.-%) improved the flexural strength and fracture
toughness by 200% and 41%, respectively, which was related to crack
deflection and bridging as well as GO put-out. Lower (0.05 wt.-%) or
higher (0.20 wt.-%) contents of GO downgraded the overall structural
and mechanical properties. Linear-reciprocating ball-on-disk bio-
tribological studies demonstrated that moderate GO contents induced
the best performance with a wear rate reduction by 33% (0.10 wt.-%)
and 63% (0.15 wt.-%), respectively. Lower and higher GO concentra-
tions did not show any significant effect or even induced a downgraded
performance with an increased gravimetric wear rate. The beneficial
effects were connected with changes in the predominant wear modes,
which changed from severe micro-ploughing and plastic deformation for
the pure ceramic to very mild wear for the GO-reinforced composites
(wear-resistant tribo-film). Subsequently, Zhang et al. verified lower
contact angles on GO-coated surfaces compared to pure 3Y-ZrO, indi-
cating enhanced wetting properties, which was attributed to the existing
hydroxyl groups [227]. No signs of cytotoxicity were observed, and the
GO-reinforced ceramics promoted proliferation, growth, and adhesion
of fully elongated cells. The authors demonstrated that the composite
ceramic can be fabricated by stereolithography from GO/3Y-ZrO sus-
pensions, which is an important step towards the formation of complex
and custom-designed dental implants [231].

Sun et al. prepared bright white color fluorinated graphene (FG) for
fabricating glass ionomer cement (GIC) composites reinforced with
various FG concentrations [232]. The analysis demonstrated that the
Vickers microhardness and compressive stress of such composites
reduced, and the COF in zirconia ball-on-disk tribometer tests under
artificial saliva lubrication decreased. The composites also showed the
antibacterial effect against S. aureus and S. mutants correlated with the
FG content.

Regarding metallic implants, Kalisz et al. compared the mechanical
and corrosion properties of graphene deposited on a Ti alloy with a 210
nm thick, magnetron-sputtered niobium pentoxide (Nb,Os) layer as a
reference [228]. While Nb,Os could withstand a steel wool scratch-test
without substantial scratches, the graphene coating was easily removed
from the Ti-Al-V surface. However, graphene featured much better
inferior corrosion resistance than Nb,Os. In a 0.5 M/1 NaCl, 2 g/1 KF, pH
2 electrolyte, which is a more aggressive environment than SBF or
artificial saliva, the corrosion current density was 24 times lower (0.01
pA/cm?) for the graphene-coated Ti-Al-V surface compared to NbyOs-
(0.24 pA/cm?). The authors concluded that hybrid coatings containing
graphene or its derivatives can improve the mechanical and corrosion
resistance properties of metallic implants [228].

Mahmoodi et al. investigated the in-vitro corrosion, and bio-
tribological behavior of 2 pm thick GO-reinforced HAp composite
coatings electrophoretically deposited on Ta substrate [229]. The sur-
face roughness increased from about 35 nm (uncoated) to 120 nm
(composite coating). The stiffness was 8-fold higher, the nano-
indentation hardness (Hjr) increased by a factor of 18, while the elastic
modulus (Err) was 14 times higher. Consequently, the fracture toughness
(Hit/Err) and the resistance to plastic deformation (HP/Ef) were
enhanced. The COF of the coated samples was 30% lower (0.30) than
that of uncoated reference (0.43). Moreover, the hybrid coatings
featured a substantially lower corrosion current density (5.0 versus 18.6
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pA/cm?) in Hanks’ solution and 3.5 times higher corrosion resistance.
This indicated that GO-reinforced HAp composite coatings bear
tremendous potential for dental implants’ surface protection. Even more
beneficial, they verified a high antibacterial activity against S. aureus
and E. coli and hindered the adhesion of bacteria for the composite
coatings. The increased hydrophilicity and roughness of the coated
surfaces further improved MG-63 cell proliferation, indicating good
biocompatibility.

Salehi et al. employed plasma-spraying to fabricate GO/fluorapatite
(FA)/zinc oxide (ZnO) nanocomposite coatings on Ti-Al-V alloys [230].
After optimizing the deposition parameters to obtain homogeneous,
uniform coatings with decreased crystallites, it was demonstrated that
the addition of GO increased the micro-hardness from 450 to 760 HV
while roughness and contact angle decreased from 6.4 pm to 4.1 pm and
from 81° to 58°, respectively. Moreover, the GO/FA/ZnO coatings
induced a bone-like apatite formation after 14 days of immersion in SBF
solution and promoted MG63 cell viability and spreading. Zirconia ball-
on-disk tribo-testing under SBF lubrication showed a reduced COF from
0.6 to 0.4 and a decreased wear rate (by 60%,) while the wear mecha-
nisms remained unchanged.

Qin et al. studied GO/CF/PEEK composite coatings with 0.02 wt.-%
GO and 25 wt.-% CF powder sprayed on Ti-Al-V alloys [164]. In anti-
bacterial tests, the GO/CF/PEEK composites exhibited good suppression
towards E. coli and S. mutans as well as an excellent activity against
S. aureus due to a nano-blade effect, the extraction of membrane lipids
and oxidative stresses induced by the randomly distributed and oriented
GO nanosheets (Fig. 4a). Moreover, a reduced COF (Fig. 4b), as well as
an improved wear-resistance of GO/CF/PEEK, compared to Ti-Al-V,
PEEK, and CF/PEEK without GO (Fig. 4c) were demonstrated in recip-
rocating sliding against SisN4 under SBF lubrication.

To summarize, the clinical outcomes of dental restoration and im-
plants can be considerably improved due to the enhanced bio-
tribological performance boosted by graphene or GO used as material
reinforcement or composite coatings. Although being highly promising,
there are still many challenges and drawbacks to be overcome. Most
studies focused on studying the cytocompatibility, anti-bacterial prop-
erties, and wear behavior in-vitro. The long-term wear behavior and
mechanisms are yet to be elucidated. The lack of research on in-vivo cell
attachment, bone ingrowth, and osseointegration and the missing
knowledge about the involved wear mechanisms when exposed to the
oral microbial environments represent the main obstacles in the
employment of 2D materials for dental materials, which urgently ask to
be addressed.

3.3. Bone fracture fixation

Many orthopedic devices, including plates, nails, wires, and screws,
are used to re-set and fix the fracture in place when a bone is broken.
Stainless steel, Ti, cobalt-chromium (CoCr), nickel-titanium (Ni-Ti), or
Mg alloys are employed for permanent or temporary/degradable pros-
theses [233-235]. Thereby, fatigue processes of bone plates at screw
holes due to cyclic-loading [236], as well as crack acceleration/propa-
gation, abrasion, and fretting corrosion induced by micro-movements
are major causes for destabilization and premature failure [5,237].
Since these elements are in direct contact with cortical bones, their
biotribological performance in terms of wear particle and ion release,
which can result in inflammation and carcinogenic effects [238,239], is
essential. Therefore, efforts have been recently dedicated towards
optimizing the fixation mechanisms designs [238,240] via tailoring
microstructures by processing routes [241], ion nitriding [242], or the
application of coatings [243-247]. With respect to 2D materials, h-BN-
reinforced composite coatings on Ti alloy [248,249] as well as GO
coatings [250] and graphene as reinforcement phases [167,251] for Mg
alloys have been studied.

Tozar and Karahan electrophoretically deposited h-BN- and
collagen- (COL) reinforced HA/CTS composite coatings on Ti-Al-V
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Fig. 5. (a) Scanning electron and (b) transmission electron microscopy images of IF-MoS, nano-particles, reprinted from [258] with permission (2014, Springer). (c)
Traction forces to move the lead through the urethra model ring using differently formulated gels normalized to dry conditions [259]. (d) Schematic illustration of
the lubrication gel mixture between the lead and urethra model ring, reprinted from [258] with permission (2014, Springer).

[248]. The combination of both reinforcement phases (h-BN/COL/HA/
CTS) provided superior corrosion protection in SBF compared to single
COL- or h-BN-reinforced and pure HA/CTS composite coatings. While
the addition of just COL decreased the elastic modulus and increased
friction compared to HA/CTS, the reinforcement with h-BN enhanced
the mechanical properties (higher elastic modulus and hardness) and
decreased the surface roughness as well as friction. Subsequently, Tozar
and Karahan demonstrated that the corrosion protection performance,
the mechanical properties, and the frictional behavior improved with
increasing the h-BN concentration up to 5 g/L [249]. For higher con-
centrations, downgraded effects were verified. Moreover, no cytotoxic
effects were observed after 12 weeks of sample immersion into the SBF.
Shahin et al. reported that the addition of graphene to zirconium alloyed
Mg led to a microstructure refinement, thus increasing the hardness and
stiffness of materials [167]. The addition of graphene was superior to
solely alloying with Zr, thus reducing friction by as much as 71% and
improving the wear resistance by up to 94% compared to pure Mg.

To summarize, the usage of 2D materials as reinforcement phase in
composite coating is promising to address the biomechanical and bio-
tribological challenges that affect the lifetime and functionality of
fracture fixation devices. However, research in this area is still in its
infancy. Therefore, the mechanisms leading to improvement, the effect
of different 2D materials, as well as the influence of wear on the per-
formance and osseointegration of fracture fixation components, are yet
to be investigated.

3.4. Invasive surgical devices

Minimally invasive surgical devices such as needles, graspers, en-
doscopes, or catheters are used in various medical operations. Thereby,
friction greatly influences device-tissue interactions, device positioning,
the accuracy of force control, and tissue damage, which may lead to
long-lasting trauma. Consequently, these aspects drive the development
of innovative minimally invasive needles or grasping forceps [5], for
which current trends are mostly directed towards the optimization of
motion [252,253] and geometry [254-257] rather than materials uti-
lized. The insertion and operation of different medical devices, such as
endoscopes, catheters, laparoscopes, and colonoscopies, represent
another relevant biotribological application. Thereby, the cylindrical
polymeric or metallic instruments need to pass through the mouth,
esophagus, or anus, among others, to reach the target position. During
this procedure, the much softer human body tissue coming in contact
with these instruments can be easily damaged due to compression,
stretching, and friction [5]. Therefore, water-soluble and sterile gels are

typically employed for lubrication and local anesthesia [258].

Goldbart et al. added fullerene-like MoS, (IF-MoS,) and rhenium-
doped MoS; (Re:IF-MoS;) nano-particles (Fig. 5a, b) in different con-
centrations to a commercial 2% lidocaine-hydrochloride (Esracain) gel
[259]. The resulting gel mixture was applied on a metallic lead and
tested against a soft polydimethylsiloxane (PDMS) ring to simulate
metal-urethra interaction under linear motion. It was shown that friction
could be substantially reduced for Re:IF-MoSy (Fig. 5c¢). Since the
nanoparticles did not show any signs of peeling-off or transferred layers,
the friction reduction was attributed to fullerenes’ ability to roll, thus
separating contacting surfaces, which changed the mechanism from
sliding to rolling friction (Fig. 5d). While the traction force decreased
with increasing concentration from 0.5 to 1 wt.-%, a higher concentra-
tion (2 wt.-%) led to a degradation of the gel and particle agglomeration,
resulting in higher viscosity and, thus, in increased friction (Fig. 5¢).

Adini et al. deposited a cobalt coating with impregnated fullerene-
like WSy nano-particles on Ni-Ti endodontic files used for root canal
treatment [260]. Torque measurements of endodontic files clamped
between two stainless steel plates at defined loads indicated a substan-
tial improvement in the fatigue resistance and time to breakage of the
coated files due to reduced friction between the file and the surrounding
tissue.

To summarize, the application of 2D materials as additives in
lubricating gels or as coatings appears to be promising to reduce friction
and/or wear thus enhancing the overall performance and reliability of
invasive surgical devices such as endoscopy or root canal treatment.
However, the entire topic is greatly underexplored, with many di-
rections for future systematic investigations. So far, only the application
of TMDs (MoS; and WS5) has been investigated, which implies that the
usage of other 2D materials is highly prospective. Moreover, more
research has to be dedicated towards in-vitro model setups and materials
that adequately reflect the complex in-vivo conditions. Particular
emphasis should also be paid to the biocompatibility of the used mate-
rials and the dynamic interaction of the device surfaces with human
skin, tissue, and blood cells.

3.5. Cardiovascular devices

Various devices are employed for the treatment of cardiovascular
diseases. In these procedures, biotribological issues can induce serious
complications leading to hemolysis, thrombus formation, or device
failure [5]. For instance, stents and catheters used inevitably interact
with vessel walls and potentially damage the endothelium and tissue by
frictional motion [261,262]. Moreover, fretting wear can occur between
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overlapping stents [263] and blood friction can be related to the
migration of the stent from the intended position [264] and corrosion of
the stent materials [265]. In this context, 2D materials such as GO
coatings on biodegradable vascular stents made of Mg alloys may
enhance corrosion resistance, blood compatibility, and antibacterial
activity [266,267]. Furthermore, friction and wear of the moving com-
ponents in mechanical heart valves or ventricular assist devices such as
pulsatile or rotary pumps represent a major concern as they lead to
blood clots and tissue damage due to excessive shear stresses and wear
particle wash-out and contamination [268-270].

The cardiovascular devices include a number of components such as
rolling, journal, or thrust bearings [271-273], which either are in direct
contact with blood, lubricated by a saline-blood mixture, or have an
indirect influence through friction-induced heating even when they are
sealed [5]. 2D materials can be applied as coatings or reinforcement
phases for mechanical components, thus effectively reducing friction,
wear, and preventing local heating [42]. Regarding biomedical appli-
cations, Arokiaraj et al. transferred monolayer graphene from a CVD-
coated copper (Cu) foil to bi-leaflet mechanical mitral valve surfaces
using polymethylmethacrylate (PMMA) as a sacrificial layer [274].
Accelerated wear tests under saline lubrication were performed, and the
presence of a protecting graphene layer on the valves was verified after
40 million cycles (corresponds to an operation of 1 year). The authors
rated the risk of toxicity as negligible due to the low amount of graphene
and the reduced probability of accumulation in non-desired body parts.
Moreover, they hypothesized that conjugating the graphene coating
with glucose oxidase may be useful as an auto-thrombolytic method in
mechanical heart valve therapy and reduce the need for anticoagulation.

Even with the existing success of using 2D materials in highly-
stressed machine elements such as bearings, pumps, or sealings, which
can be also found in cardiovascular devices [42], the application of 2D
materials in these devices is greatly under-explored. Reasons for this can
certainly be traced back to the uncertain operating conditions under in-
vivo conditions as well as the complex and individually varying mech-
anisms of blood lubrication or, for instance, reactions of the component
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materials with anticoagulants.

3.6. Contact lenses

Contact lenses are ocular prosthetic devices employed for vision
correction, therapeutics, and cosmetics [275]. Recent research has been
directed towards the optimization of chemical and physical material
properties, the development of tailored manufacturing processes, and
the avoidance of microbial contamination and other ocular complica-
tions to minimize adverse effects associated with contact lens wearing,
maintain a regular corneal metabolism, and preserve tear film stability
[275]. Contact lenses can be grouped into soft, rigid, and hybrid com-
positions, whereby polymethylmethacrylate (PMMA), (fluoro-) silicone
acrylate, and water-containing polymer hydrogels are commonly used
[275]. Comfort, visual performance, and durability are determined by
their mechanical properties, wettability, and soaking characteristics
[275]. Friction between the eyelid and contact lens is another important
aspect. Although too low or too high friction can be irritating, no stan-
dardized reference values are available yet [276]. The utilization of 2D
materials such as graphene is currently more concentrated on thera-
nostic applications, thus extending the therapeutic function of the con-
tact lens by sensing platforms [277,278], e.g. for full-corneal
electroretinogram recording [279] or electromagnetic interference
shielding [280] and dehydration protection [281].

Regarding lubrication purposes, Huang et al. [282] directly loaded
silicon contact lenses with HA and rGO. Moderate amounts of rGO
featured permissible swelling and transmittance properties as well as a
low burst with release times up to 96 h compared to 24 h for conven-
tionally soaked lenses. HA/rGO-loaded lenses showed a high HA-tear
fluid concentration and an improved tear fluid volume. Therefore, the
usage of HA and rGO bears the potential to lubricate the contact lens
without protein adherence and the necessity for eye drop solutions when
treating corneal diseases like keratoconus or dry eye syndrome. Also,
considering previous efforts in various lubrication systems [65,75,76],
we hypothesize that 2D materials, specifically graphene with its
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Table 1
Summary of 2D materials as well as their main effects when employed for load-bearing implants.

2D material and form of Substrate or Biotribological evaluation Main findings Ref.

application matrix

GO reinforced composite UHMWPE Dry rotational pin-on-disk testing Enhanced wear resistance, increased hardness, [157]
polymer hydrophilicity, crystallinity, and yield strength

GO/UHMWPE composite UHMWPE DI water-lubricated rotational alumina ball-on-disk Wear and friction reduction, improved adhesion and [158]
coating testing ductility

GNP/UHMWPE UHMWPE Dry nano-scratch testing Wear and friction reduction, improved biocompatibility, [159,160]
composite coating fracture toughness, and tensile strength

GNP/HAp composite UHMWPE Dry rotational steel pin-on-disk testing Wear and friction reduction, enhanced elastic modulus and ~ [161]
polymer yield strength, increased oxidative stress

GO/CS composite coating  Ti-6Al-4V Dry rotational steel ball-on-disk testing Enhanced wear resistance and cytocompatibility [163]

Al,03/GO/HAp Ti-6A1-4V Dry rotational pin-on-stainless steel disk testing Wear and friction reduction, decreased microhardness [165]

GO reinforced composite UHMWPE Dry reciprocating zirconia ball-on-disk testing Wear reduction, slight friction increase, increased hardness ~ [174]
polymer

GO reinforced composite UHMWPE BCS lubricated reciprocating SizN, ball-on-disk testing ~ Wear and friction reduction [172]
polymer

GO reinforced composite UHMWPE SBF lubricated rotational pin-on-CoCrMo disk testing Wear and friction reduction [175]
polymer

GO reinforced composite HDPE/ PBS lubricated rotational stainless steel pin-on-disk Wear and friction reduction [170]
polymer UHMWPE testing

GO/NaCl/UHMWPE UHMWPE Water lubricated reciprocating steel ball-on-plate Wear and friction reduction [171]
composite polymer testing

GO reinforced composite UHMWPE BS lubricated reciprocating pin-on-CoCr plate testing Enhanced wear resistance [177]
polymer

GO reinforced composite UHMWPE Dry, (sea) water lubricated rotational block-on steel Enhanced wear resistance [178]
polymer ring testing

GO reinforced composite HDPE Dry rotational pin-on-abrasive wheel testing Enhanced wear resistance and fatigue properties [179]
polymer

rGO reinforced composite =~ UHMWPE Water lubricated reciprocating alumina ball-on-disk Friction reduction, slight wear reduction, increased [180]
polymer testing hardness

GNP reinforced UHMWPE Dry, human serum lubricated reciprocating pin-on- Wear reduction [181]
composite polymer Ti6Al4V disk testing

GO/PEG reinforced CS/GP Water lubricated reciprocating ball-on-CoCrMo disk Enhanced lubrication properties [182]
composite polymer hydrogel testing

GO reinforced composite PEGDA/GG PBS, FBS lubricated rotational pin-on-disk and CoCr Wear and friction reduction [183,184]
polymer hydrogel swinging femoral-on-tibia insert testing

GO coating Ti-Al-V Dry and BSF lubricated reciprocating SizN4 ball-on- Superior wear and corrosion resistance, friction reduction [185]

plate testing

MoS; reinforced HDPE Dry reciprocating stainless steel ball-on-plate testing Wear reduction, slight friction reduction [188]
composite polymer

BP reinforced composite PEEK/PTFE Dry reciprocating GCr15 steel ball-on-plate testing Wear and friction reduction [192]

polymer

derivatives, can be considered as an additive to eye drops solutions for
ocular applications [283].

3.7. Bio-MEMS/NEMS

Electrokinetic- or microfluidic-based biomedical micro- or nano-
electromechanical systems (bio-MEMS/NEMS) [284] are increasingly
employed as miniaturized biosensors [285,286], microarrays for
genomic, proteomic, and point-of-care diagnostics [287,288], medical
implants for drug delivery, microtools for surgery or cell and tissue
engineering [287]. Besides silicon, glass, or polymers, Ti, Al, Cu, or gold
(Au) are used due to their electrical and mechanical properties as well as
good biocompatibility [289]. Due to their unique electrical, physical,
and optical properties, 2D materials are used to modify the involved
surfaces for biosensing purposes. The high specific surface area to vol-
ume ratio of 2D materials enables a strong response to the surface ac-
tivities suitable for biosensing.

The stable operation of bio-MEMS/NEMS devices also depends on
the surface properties and the control of adhesion, friction, and wear
level of surfaces coming into contact during their operation [290]. For
instance, Ti alloys possess disadvantages regarding their biotribological
behavior, thus focusing on their surface modifications [289].

However, only a few biotribological studies including 2D materials
for biosensors have been presented to date. Li et al. chemisorbed rGO
(thickness of 1.3 nm) on f-type Ti-Nb-Ta-Zr (TNTZ) alloys using 3-ami-
nopropyltriethoxysilane (APTES) [291,292]. Thereby, the silanol moi-
ety of APTES chemically bonded to TNTZ, while the amino group was
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covalently anchored to the oxygen groups of GO. A thermal reduction
process generated self-assembled rGO/APTES layers with a thickness of
roughly 3.3 nm. In AFM experiments using a square pyramid SigNy4 tip,
the rGO/APTES film reduced adhesion and friction and showed less
sensitivity to humidity and load (Fig. 6a, b). A superior wear-protection
with an increased time until failure was observed in linear-reciprocating
ball-on-disk experiments using a sodium chloride aqueous solution,
(Fig. 6¢). This observation was traced back to the self-lubricating
properties of rGO and a “hard cover on molecular springs” mecha-
nisms (Fig. 6d, e). Thereby, the chemically bonded rGO sheets distrib-
uted the load over a larger area, thus increasing the force bearing area
compared to the nominal contact size of pure APTES or Ti (Fig. 6f).
Wang et. al proposed a GO coating (coupling agent APTES) and a protein
dopamine (DA) adhesion layer on Ti alloys [293]. The anticorrosion
behavior under dry conditions and SBF lubrication was enhanced
compared to the uncoated Ti-Al-V. Improved wear properties and a
friction reduction were demonstrated for the GO-coated samples.
Thereby, the tribological results of the GO coated samples were superior
under dry compared to SBF lubrication conditions. Moreover, the DA
adhesion layer enhanced the properties compared to the pure GO/
APTES coating.

Laun et al. experimentally studied the wettability of MoS, surface
with water and used molecular dynamic simulations to predict the slip-
length of water on MoS; nano-sheets [294]. It was shown that low
friction is related to the hydrophobic nature of the surface (large slip
length ~1.8nm) suggesting that MoS, suppresses permanent biomole-
cule adsorption on the surface. They anticipated that the developed
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Table 2
Summary of biomedical applications beyond load-bearing implants and the applied 2D materials as well as their main effects.
Biomedical 2D material and form of Substrate or matrix Tribological evaluation Main findings Ref.
application application
Dental GO reinforced composite 3Y-ZrO, Artificial saliva lubricated Improved flexural strength and fracture toughness, [226,227]
implants ceramic reciprocating steel ball-on- wear reduction and shift into the mild-wear regime,
disk testing transfer-film formation, good cytocompatibility
Fluorinated GO reinforced Glass ionomer Artificial saliva lubricated Enhanced hardness and compressive stresses, [232]
composite ceramic cement reciprocating zirconia ball- friction reduction
on-disk testing
Graphene monolayer coating Ti-Al-V alloy Dry steel wool scratch Low adhesion, but enhanced corrosion resistance [228]
testing
GO/carbon fiber/PEEK Ti-Al-V alloy SBF lubricated rotational Enhanced friction and wear behavior, good [164]
composite coating zirconia ball-on-disk testing  cytocompatibility
GO/FA-ZnO composite coating  Ti-Al-V alloy SBF lubricated Friction and wear reduction, good antibacterial [230]
reciprocating SisN4 ball-on-  activity, and cytocompatibility
disk testing
GO/hydroxyapatite composite Ta alloy Dry nano-scratch testing Enhanced wear and corrosion resistance, good [229]
coating antibacterial activity, and cytocompatibility
Bone fracture h-BN reinforced COL/HA/CTS Ti-Al-V Dry nano-scratch testing Enhanced corrosion resistance and friction [248,249]
fixation composite coating
GNP reinforcement Mg-Zr, Dry nano-scratch testing Enhanced friction, wear and corrosion resistance [167,251]
Mg-Zr-Zn
Endoscopy Fullerene-like structured Esracain gel Linear urethra model medal  Friction reduction due to change from sliding to [258,259]
undoped and rhenium-doped lead-in-PDMS ring testing rolling friction
MoS, nanoparticles
Root canal Fullerene-like WS, Ni-Ti-alloy Endodontic file-against- Friction reduction, increase of fatigue resistance and  [260]
treatment nanoparticle impregnated clamped stainless steel time to breakage
cobalt coating plates testing
Heart valves Graphene monolayer bi-leaflet Accelerated valve wear Preservation of the coating [274]

Bio-MEMS/
NEMS

Self-assembled rGO/APTES
nano-coating
GO/APTES/DA coating

mechanical mitral
valve surface
TNTZ

Ti-Al-V

testing

AFM and reciprocating
Si3zN4 ball-on-disk testing
Dry and SBF lubricated
reciprocating SizN4 ball-on-
disk testing

Adhesion, friction, and wear reduction due to a hard
cover on molecular springs mechanism
Enhanced corrosion resistance, friction and wear

[289,291,292]

[293]

force fields for MoS; will help to understand the bio-molecule and MoS;
interaction in MoS,-based biosensors.

To conclude, the addition of 2D materials generally improves the
anti-wear properties and reduces friction along with the excellent anti-
corrosion behavior thus enhancing the performance of bio-MEMS/
biosensors. Apart from GO, rGO, and MoS,, there are more 2D mate-
rials including BP [295] or graphitic carbon nitride (g-C3N4) [296] used
for bio-MEMS/biosensors but their biotribological studies are yet to be
explored. Additionally, the studies published to date address the bio-
tribological behavior from a rather fundamental/general perspective
and there is a lack of investigations on the influence of 2D materials on
the component lifetime of bio-MEMS/NEMS.

4. Concluding remarks

Although notable progress has been made in the design of biomedical
devices, issues related to the interaction of the contacting surfaces and
the human body still exist thus asking for further development. As
outlined in Sections 1 and 2, 2D materials have demonstrated great
potential in biotribological/biomedical applications due to their unique
physical, chemical, and structural properties combined with large
surface-to-volume ratio, tunable surface chemistry, inherent biocom-
patibility, antibacterial/antiviral activity, as well as non-toxicity. In
Section 3, we demonstrated that 2D materials can be employed as pro-
tective coatings, fillers in composites, or as additives in fluid mixtures to
effectively tailor and manipulate the biotribological behavior. Regard-
less the application approach, the major role of 2D materials is to
enhance the mechanical strength and wear resistance of the systems
subjected to stresses, though there are certain advantages and disad-
vantages of each approach. The incorporation of 2D materials as com-
posite fillers enables control of material release during operation but
creates challenges of material uniformity, interface connections and

12

design modifications. The usage of coatings minimizes the requirements
for the changes in the existing implant designs. However, the library of
the applicable coatings is limited by the adhesion challenges and
compatibility of the deposition techniques with complex designs.
Moreover, eventual wear and degradation with no means of replenish-
ment of the coatings significantly reduce their lifetime. Additives in the
fluid mixtures enable easier replenishment of the lubrication solution.
However, the localized delivery of such solutions is rarely feasible. At
the same time, the diffusion of toxic elements to the human body and
human organs raises concerns about inflammation and the chronic
response of the body.

The applications of 2D materials in combination with the substrate or
matrix materials, the biotribological test setup, as well as the main
beneficial effects are summarized in Tables 1 and 2. It becomes evident
that most investigations (~75%) have been focused on load-bearing and
dental implants, while mainly using graphene, GO, or rGO. Considerably
fewer studies (~25%) have been dedicated to elucidating the potential
of other 2D materials, including MoS, or WS, in biotribological appli-
cations. Similarly, only a limited effort has been focused on other ap-
plications, such as bone fracture fixation, endoscopy, root canal
treatment, heart valves, contact lenses, or bio-MEMS/NEMS.

Although 2D materials help to enhance the overall biotribological
behavior in a wide range of different applications, there are still many
challenges. While most studies focused on cytocompatibility, anti-
bacterial properties, and in-vitro friction, wear, or corrosion, the long-
term in-vivo mechanisms have not yet been satisfactorily elucidated in
clinical studies. The lack of research on the in-vivo cell attachment, bone
ingrowth, osseointegration, or interaction with human tissue and blood
cells as well as the lack of understanding of the friction, wear, and
corrosion mechanisms when exposed to the dynamic human body
environment and in-vivo operation conditions are currently the main
obstacles for the advanced employment of 2D materials. In this regard,



M. Marian et al.

the usage of appropriately designed biotribological test rigs mimicking
the real body conditions together with the proper selection of testing
conditions and lubricants is of utmost importance. Moreover, more
emphasis needs to put the comparability of the findings to allow for a
fair comparison of results obtained from different research groups and
the transferability to in-vivo conditons.

A striking feature of many 2D materials, which has been barely
explored in the field of biotribological applications, is their rich surface
chemistry, which enables a tailor-made chemical functionalization. We
anticipate that this approach is highly suitable to induce specific matter-
tissue interactions thus improving adhesion and bone ingrowth, among
others. Furthermore, to date, there are hardly any theoretical/numerical
approaches to facilitate investigations and simulations of the in-vitro and
in-vivo behavior of 2D materials in biotribological/biomedical applica-
tions. Finally, more attention should also be paid to other 2D materials,
such as BP, MXenes or MBenes, that have already been partially studied
for tribological purposes but not yet in the context of biotribology.
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