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Abstract: Early intervention in kidney cancer helps to improve survival rates. Abdominal computed
tomography (CT) is often used to diagnose renal masses. In clinical practice, the manual segmentation
and quantification of organs and tumors are expensive and time-consuming. Artificial intelligence (AI)
has shown a significant advantage in assisting cancer diagnosis. To reduce the workload of manual
segmentation and avoid unnecessary biopsies or surgeries, in this paper, we propose a novel end-to-
end Al-driven automatic kidney and renal mass diagnosis framework to identify the abnormal areas
of the kidney and diagnose the histological subtypes of renal cell carcinoma (RCC). The proposed
framework first segments the kidney and renal mass regions by a 3D deep learning architecture
(Res-UNet), followed by a dual-path classification network utilizing local and global features for the
subtype prediction of the most common RCCs: clear cell, chromophobe, oncocytoma, papillary, and
other RCC subtypes. To improve the robustness of the proposed framework on the dataset collected
from various institutions, a weakly supervised learning schema is proposed to leverage the domain
gap between various vendors via very few CT slice annotations. Our proposed diagnosis system can
accurately segment the kidney and renal mass regions and predict tumor subtypes, outperforming
existing methods on the KiTs19 dataset. Furthermore, cross-dataset validation results demonstrate
the robustness of datasets collected from different institutions trained via the weakly supervised
learning schema.

Keywords: kidney and renal mass segmentation; renal mass classification; weakly supervised
learning

1. Introduction

Kidney cancer is among the ten most common cancers. Early detection often leads
to successful treatment and improves survival rates. Medical imaging, such as computer
tomography (CT), can effectively reveal the internal structure of the abdomen and is com-
monly applied for physical examination to detect and diagnose early signs and symptoms
of cancer. Finding anatomical information such as the contours, locations, and volumes of
kidney tumors plays an essential role in clinical diagnosis. Among kidney masses, renal
cell carcinoma (RCC) is the most common renal malignancy, causing many morbidities
and mortalities [1-3]. The most common RCCs are clear cell, chromophobe, oncocytoma,
papillary, and other RCC subtypes. Classifying histologic subtypes of renal cells is crucial
to avoid unnecessary biopsy or surgery.

Artificial intelligence has shown the potential to assist clinical care to detect and
diagnose abnormal regions in an efficient way [4,5]. State-of-the-art Al algorithms can
effectively differentiate benign from malignant renal masses on CT scans [6-8]. However,
the performance of Al algorithms still needs to be improved when distinguishing different
kidney cancer subtypes or making tumor assessments [9]. Additionally, the amount of
data in existing studies is limited and lacking in robustness for images collected from
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various scenarios. Weakly supervised methods have recently been studied for semantic
segmentation in natural scene images. According to the weak annotations applied for
CNN training [10], these approaches can be divided into four main categories: bounding
boxes [11], scribbles [12], points [13], and image-level labels [14]. However, for medical
imaging, weakly supervised methods still remain explored.

This paper proposes a novel end-to-end kidney renal mass diagnosis framework
consisting of a 3D segmentation network (3D Res-UNet) to automatically segment kidney
and renal mass regions and a subtype classification network to accurately identify the
subtypes of renal masses using a dual-path approach. In addition, we introduce a simple
yet effective weakly supervised training schema to improve the robustness of the proposed
framework on cases from different institutions. The main contributions of this paper are
summarized as follows:

1.  We propose a novel kidney and renal mass diagnosis framework integrating 3D
segmentation and renal mass subtype classification. It provides an easy-to-analyze
3D morphologic representation of the kidney and renal mass with the subtypes.
The segmentation method adopts the basic 3D U-Net structure with residual blocks
included for gaining the cross-layer connections. The postprocessing steps further
improved the accuracy and reduced false positives by small region detection. The
classification network applies the dual-path schema to combine the different fields of
view for the prediction of subtypes.

2. We propose a weakly supervised method to improve the robustness of the trained
model on the datasets collected by various vendors with only a few slice-level annota-
tions.

3. The experimental results on the KiTs19 dataset demonstrate the state-of-the-art per-
formance on kidney and renal mass segmentation and classification. Additionally, the
results on three NIH datasets (the TCGA-KICH [15], TCGA-KIRP [16], and TCGA-
KIRC [17] datasets) show that the proposed framework can be robust in different
institutions with few annotations.

The remainder of this manuscript is organized as follows. Section 2 introduces the
related work on kidney renal mass segmentation and classification. Section 3 describes the
proposed method. The implementation details, experimental results, and discussions are
provided in Section 4. Finally, Section 5 summarizes the remarks of this paper.

2. Related Work
2.1. 3D Semantic Segmentation

3D semantic segmentation in medical imaging refers to the voxel-wise segmentation
of abnormalities in 3D imaging (such as CT or MRI). Various applications of semantic seg-
mentation have been proposed, including targeted radiotherapy [18] and patient-specific
surgical simulation [19]. U-Net [20] is proposed for semantic segmentation based on a
neural network that only performs convolutions (a fully convolutional network (FCN) [21]).
The U-Net category is a group of encoder-decoder networks which has been widely used
for segmentation tasks with various medical imaging modules and protocols. Many re-
searchers have made various improvements to the U-Net category, residual connections[22],
dense connections [23], attention mechanisms [24], squeeze-and-excitation networks [25]
or dilated convolutions [26], and V-NET [27].

However, with a standard network architecture, nnU-Net (no new U-Net) [28] is
proposed. Extensive experiments show that the original U-Net network is often more
robust than its variants. Based on this, the network’s generalization capability can be
greatly improved by adjusting hyperparameters, such as batch size, optimizer parameters,
patches, and kernel size. nnU-Net performed best in the KiTs19 Challenge. This study
shows that in 3D biomedical imaging, dataset properties such as imaging modalities,
image sizes, (anisotropic) voxel spacing, and analogies vary widely. The process can be
cumbersome, with few transitions from successfully configuring one dataset to another.
U-Net was initially proposed in 2D and recently extended to the 3D domain, as in, for
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example, 3D U-Net [29]. Inspired by nnU-Net and 3D U-Net, we propose a simple 3D U-
Net architecture using residual blocks for 3D CT images assisted by hyperparameter tuning
during neural network training, data augmentation, and post-processing. We properly
process and sample 3D CTs, modify the network architecture, and conduct post-processing
on segmented regions.

2.2. Weakly Supervised Learning

Semantic segmentation tasks require precise per-pixel annotation, which is very ex-
pensive and time-consuming. Recently, weakly supervised methods have been proven
efficient for training with low annotation cost and have been shown to improve train-
ing efficiency [30]. Usually, weakly supervised methods take four levels of supervision:
bounding boxes [31], scribbles [32], points [13], and image-level labels [33]. Many methods
focus on weakly supervised deep learning on image-level labels. Wei et al. [34] proposed a
simple-to-complex (STC) framework using only image-level annotations to learn deep CNN
(DCNN) models for semantic segmentation. The framework first trains an initial DCNN
on the clean images (only an object and background) and then trains Enhanced-DCNN
with the segmentation masks predicted from Initial-DCNN and image-level annotations.
Finally, a Powerful-DCNN for semantic segmentation is prepared based on the Enhanced-
DCNN and image-level annotations. To further enrich the information on image-level
annotation, Hisham et al. [35] proposed an image-level supervised method to construct
an object category density map by catching both the global object count and the spatial
distribution of object instances, which has been proven effective in image-level supervised
instance segmentation. There are few weakly supervised methods explored in the medical
imaging field. Recently, Sadeghi [36] proposed a weakly supervised semantic segmenta-
tion approach based on image-level labels for kidney tumor segmentation. Image-level
annotation is referred to as the image-level label, such as “0” representing no lesion and “1”
representing a lesion. However, the image-level label only provides high-level annotations.
Without accurate annotations, it may lead to false-positive predictions. This paper requires
image-level segmentation annotation but only with very few slices.

2.3. Kidney and Renal Mass Segmentation and Classification

Deep learning-based algorithms have been applied to renal mass segmentation and
classification [37-41]. Yang et al. [42] proposed a three-dimensional (3D) fully convolutional
network (FCN) approach with a pyramid pooling module (PPM) to segment kidney and
tumor regions in CT images. The proposed network was applied to 3D volumetric images
with rich 3D spatial contextual information for accurate kidney and tumor segmentation
compared with 2D networks. Yu et al. [43] proposed crossbar patches of the tumor regions
(vertical and horizontal patches) to capture global and local appearance information. Two
sub-models were trained in a cascaded training manner. Yin et al. [44] developed two
CNNs to segment the kidneys automatically. A regression algorithm was applied to the first
CNN to predict a 3D bounding box around each kidney, and then a 3D U-Net algorithm
predicted the outline of the kidney regions based on the input of the bounding cube.

Recently, Xia et al. [45] proposed a two-stage framework consisting of image retrieval
and semantic segmentation. A deep convolutional neural network structure using sparse
CNN and ResNet was applied to extract image features to leverage the abdominal CT
scan image acquired under various angles. Then, a scale-invariant feature transform flow
transform adopts a Markov random field to fuse label information to smooth the prediction
of pixels. Ruan et al. [46] proposed a framework composed of a multi-scale feature extractor
(MSFE) to target the detection small nodules, a locator of the area of interest (LROI) to
reduce the time complexity, and a feature-sharing generative adversarial network (FSGAN)
for joint learning and adversarial learning. Many classification tasks were explored, such
as classification between benign and malignant masses [37-39] and RCC classes (ccRCC,
pRCC, and chRCC) [47].
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Despite the various studies on the effect of the above methods on the segmentation of
renal tumors, few efforts have been made to propose a kidney and renal mass diagnosis
framework to accurately quantify the volume of kidney and renal mass as well as predict the
subtype of renal masses. Recently, Uhm et al. [48] proposed an end-to-end framework for
kidney and renal mass segmentation. However, multi-phase abdominal CTs were applied,
which required extra images at multiple contrast-enhanced stages. Chen et al. [49] proposed
a weakly supervised method for medical image segmentation using a category-causality
chain. The proposed method works to find the boundary of organs but is unsuitable for
small-sized nodule segmentation.

3. Our Method

We propose a novel kidney and renal mass diagnosis framework, including kidney
and renal mass segmentation and subtype of kidney mass prediction. First, the proposed
framework extracts the pixel-level kidney and renal mass regions from an entire CT volume
via a three-dimensional (3D) segmentation network trained in a fully supervised manner.
Then, a dual-path CNN-based classification model predicts subtypes of renal masses.
Pathological labels of renal subtypes are used to train the classification model. Further, a
weakly supervised method is applied to use annotations of only a few CT slices to improve
the robustness of the diagnosis framework on datasets captured from different institutions.

3.1. Kidney and Renal Mass Segmentation

We employed 3D U-Net, an encoder-decoder network commonly utilized in image seg-
mentation. Similar to the U-Net [29] framework and nnU-Net framework [28], the encoder
consists of five convolutional neural network blocks, which aggregate semantic features
but lose spatial information. As spatial information is essential for image reconstruction, a
skip connection was introduced in the U-Net decoder. The high-resolution features were
obtained from the encoder and mapped to the decoder for the feature concatenation. The
residual blocks were applied to the U-Net network architecture to overcome the vanishing
and exploding gradient problem.

To enrich the spatial feature representation, we employed 3D Res-UNet to directly
predict the 3D volume of the kidney and renal mass from a whole 3D CT volume. The
model was trained from scratch and evaluated using 5-fold cross-validation on the training
set. We applied a leaked rectified linear unit (ReLU) and instance normalization to optimize
the model. The losses were combined with dice loss and cross-entropy loss for a total
of 300 training epochs. The network structure is shown in Figure 1. The width of the
first convolution block was set to 32 channels, doubling the size in the next convolution
block, and we continued downsampling the feature map until the output feature map
size reached 4 x 4 x 4. At the last layer of the decoder, we generated the kidney and
renal mass prediction masks via a convolution layer and then applied SoftMax for output
prediction. The skip connection layer enables the network to correctly make predictions at
low resolutions and avoid passing an inaccurate feature prediction to the high-resolution
layer.
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Figure 1. The proposed framework first predicts the kidney and renal mass regions via a 3D segmen-
tation network. The classification network then takes the inputs of the regions of renal mass and renal
mass with kidney, then outputs a probability distribution over subtype classes of the renal mass.

3.2. Renal Mass Classification

Unlike previous work, we designed and evaluated a deep learning framework that
classifies renal masses into the most common RCCs subtypes: clear cell, chromophobe,
oncocytoma, papillary, and other RCC subtypes, using abdominal CT scans as input data.
The proposed framework segments kidney and renal masses, detects renal mass categories
in a unified framework and diagnoses only through CT data without manual intervention,
which can effectively assist clinical medical detection.

We first automatically segmented the regions of kidney and renal masses at the pixel
level via the 3D segmentation network. Once the kidney and renal mass regions were
detected, both the regions of the renal mass with the kidney and only the renal mass
were cropped from the CT images. The cropped region helped focus on only the relevant
information for subtype classification. The cropped kidney and renal mass CT images were
further employed as the input to the renal mass subtype classification network.

A dual-path learning schema was applied to enrich feature learning, which can help
the network simultaneously learn the correlation between the local and global feature
representations. It is essential to preserve the global structures around the renal mass
region and texture details in the renal mass region. The global path took the input of the
region with both kidney and renal mass, and the local path took the input of only the renal
mass region. We applied ResNet-50 [22] as the backbone network for the classification
training. The global and local networks applied the same network structure, comprised
of five convolution layers, each with a skip connection, ReLU activation, and a stride of 2.
The five layers were comprised of (64,128, 256,256,512) channels of three-by-three filters.
The output of the fifth layer was flattened and transformed into a vector of size 64 through
a fully connected layer. The global and local network features were concatenated and
followed by a six-class soft-max classifier for subtype prediction. A dropout of 50% was
implemented in the fully connected layer. For the fourth and fifth layers, we applied the
dense convolutional layer that obtains additional inputs from all preceding layers and
passes on its feature maps to all subsequent layers by concatenation. Each layer received
features that collect the information from all preceding layers.
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3.3. Weakly Supervised Learning

To improve the robustness of the segmentation network, we applied a weakly super-
vised method that only requires a small number of pixel-level annotated CT slices based on
a trained network. Annotations of only three slices from each volume were needed. The
three slices were chosen based on empirical experiments. For qualitative assessment, we
trained the network on three annotation samples: (1) the first slice, (2) the slice with the
largest diameter of the renal mass, and (3) the last slice of the renal mass. The network can
predict the complete 3D segmentation from only a few labeled slices, saving the cost of full
annotation.

To assess quantitative performance in semi-automated settings, we cross-validated
all annotation slices in all different samples from the training data with five-fold cross-
validation with and without batch normalization. The intersection of IoU is used as a
precision measure to compare the predicted 3D volumes.

4. Experimental Results and Discussions
4.1. Datasets

The public dataset KiTs19 [50] was applied to train the segmentation model. The
KiTs19 dataset collects arterial CT images of patients undergoing nephrectomy for a renal
mass in a medical center. A total of 210 3D CTs from 210 patients were selected from
the publicly published 2019 MICCAI Renal Tumor Segmentation Challenge training set
for model training and testing. Among all the scans, 203 (67.7%) of clear cell RCC, 28
(9.3%) were of papillary RCC, 27 (9%) were of chromophobe RCC, 16 (5.3%) were of
oncocytoma, and 26 (8.7%) were of other types. For testing, we employed three additional
publicly available NIH datasets for performance evaluation across different institutes:
TCGA-KICH [15] (15 cases), TCGA-KIRP [16] (20 cases), and TCGA-KIRC [17] datasets (40
cases). These NIH datasets contain cases with various tumor shapes and tumor sizes (on
average 23% larger) compared with the KiTs19 dataset.

4.2. Experimental Settings
4.2.1. Pre-Processing

CT images were converted from the Neuroimaging Information Technology Program
(Nifti) format to DICOM. Following nnU-Net, CT scans were resampled by the standard
spacing of 3.22 x 1.62 x 1.62 mm to resize the CT images to 128 x 248 x 248 voxels. A
Hounsfield unit (HU) represents the linear transformation of the measured attenuation
coefficient from —1000 (air) to 2000 (bone). To better analyze the kidney areas, the window
width and level were set to 400 and 30, respectively. Then, the pixel values were normalized
in the range of 0 to 1. Image augmentation was implemented during the training, including
random rotations ((—45,55) degrees with a probability of 0.2), random scaling (scaling fac-
tor of 0.9 and 1.1 with a probability of 0.2), random elastic deformations (with a probability
of 0.05), gamma correction augmentation (with a nonlinear intensity transformation of 0.7
and 1.5 per pixel with a probability of 0.15), and mirroring (with a probability of 0.5).

4.2.2. 3D Semantic Segmentation

Training. The patch size was set to 128 x 128 x 128, and the batch size was set to 2 with
one NVIDIA GTX 1080ti. The Adam stochastic optimizer was implemented with a beta of
0.99. The initial learning rate was set to 5 x 1073 to learn the network weights and decayed
based on the “poly” learning rate policy, (1 — epoch/ epochmax)o'g. Grid search was applied
to choose the best learning rate from (1 x 1073,3x 1073,5 x 1073,1 x 107%,5 x 10_4).
The sum of cross-entropy and dice losses was applied to train and evaluate the model to
improve the accuracy and training stability. The model was trained with 300 epochs.

Post-processing. Connected component-based post-processing has effectively elim-
inated falsely detected regions on medical image segmentation [28,51]. The algorithm
suppresses false predictions by removing a small discontinuous predicted region and
keeping the most relevant reference component. We followed this algorithm to remove all
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but the top 2 largest components and automatically suppress the small and discontinuous
components, which were found to be beneficial for the combined kidney and renal mass
region [28]. For inference, the post-processing step was performed for all testing samples.
During the training, if removing a region could improve the loss of the dice coefficient,
it was considered a false positive and removed from the component. This step helps the
network focus on punishing the hard false-positive samples.

4.2.3. Renal Mass Classification

We first cropped kidney and renal mass regions from the detected CT slices. The
cropped images were resized to 64 x 64 as the input of the classification network. The
classification model was trained with 100 epochs and optimized by the Adam optimizer
with a beta set to 0.99. We applied the weighted cross-entropy loss function. The batch size
was set to 32 with an initial learning rate of 0.001. The learning rate was reduced by 0.1 for
every 25 epochs.

4.3. Evaluation Metrics

Segmentation. The kidney and renal mass were evaluated by the following metrics.
The Dice similarity coefficient was applied as an evaluation metric to calculate the spatial
overlap index between the predicted 3D volume heatmap and the radiologist’s estimation.
It estimates the accuracy of the structure’s volume and is sensitive to heatmaps with
different shapes but similar volumes. The Dice value ranges from zero for no spatial
overlap to 1 for complete overlap. In addition, we applied pixel accuracy, sensitivity, and
specificity to evaluate the model performance. Pixel accuracy was calculated via the ratio
of correctly classified pixels to the total number of pixels. The specificity refers to the ratios
of pixels that were correctly classified to the number of pixels to all masks. The sensitivity
represents the ratios of negative pixels correctly classified as negative to all negative ones.

Classification. The area under the curve (AUC) was applied to evaluate the classifi-
cation performance.The AUC is calculated by multiclass classification via the one-vs.-rest
scheme with 95 confidence intervals. For each step, a class is considered a positive class,
and others are negative classes to calculate the ROC to obtain the AUC scores. A per-
mutation test compared the model’s performance (sensitivity and specificity). Five-fold
cross-validation was conducted for the results of each dataset.

4.4. Experimental Results and Analysis
4.4.1. Comparison with the State-of-the-art Methods

Our model predicts remarkably accurate kidney segmentation on the KiTs19 testing
set, with an average Dice metric of 96.7% and 86.6% for kidney and renal mass regions,
respectively. The proposed framework takes advantage of the rich spatial information
provided by 3D Res-UNet and reaches state-of-the-art performance on kidney and renal
mass segmentation. Our method has the best segmentation performance compared to the
state-of-art deep learning methods for segmenting renal lesions on the KiTs19 dataset, as
shown in Table 1. The pixel accuracy is 95.3%, the Dice coefficient is 86.6%, the sensitivity
is 91.2%, and the specificity is 88.1%. Compared to the existing work [43-46], our method
takes advantage of applying the residual blocks and extensive hyperparameter tuning with
the appropriate pre-processing and post-processing steps. Better segmentation results are
thus obtained.
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Table 1. Quantification results of our proposed method and the state-of-art renal mass segmentation
methods on the KiTs19 dataset.

Methods Pixel Accuracy  Dice Coefficient  Specificity  Sensitivity
Xia et al. [45] 92.1% 79.6% 86.7% 83.4%
Yin et al. [44] 89.4% 83.8% 81.1% 85.4%
Yu et al. [43] 87.7% 80.4% 83.4% 82.2%
Ruan et al. [46] 95.7% 85.9% 89.4% 86.2%
Ours 95.9% 86.6% 91.2% 88.1%

4.4.2. Model Robustness

Additionally, we conducted experiments to assess the robustness of the proposed
method on the TCGA-KICH, TCGA-KIRP, and TCGA-KIRC datasets. These three testing
datasets have various tumor shapes and different tumor sizes (on average 23% larger)
compared to the training samples, especially the TCGA-KIRC dataset. As deep learning
methods are data-driven, the Dice coefficient scores of cross-validations are slightly de-
creased. We observe that the inaccurately predicted regions are on the edges of very large
tumors, barely seen in the training samples. The weakly supervised learning method on
these datasets further improves the model performance by carrying out fine-tuning with
few slices. With the testing dataset being distinct from the training samples, the Dice result
is still comparable, demonstrating the robustness of the proposed deep learning method.

TCGA-KICH (cases with chromophobe subtypes). With the weakly supervised
method, the Dice accuracy of the kidney region is 91.2%, and the Dice accuracy renal
mass region is 83.4%, which represents improvements of 5.3% and 4.2% compared to
without the weakly supervised method. The subtype prediction is 84.5%, representing a
2% improvement with the weakly supervised method.

TCGA-KIRP (cases with papillary subtypes). With the weakly supervised method, the
Dice accuracy of the kidney region is 92.8%, and the Dice accuracy of the renal mass region
is 81.8%, which represents improvements of 3.3% and 5.4% compared to without the weakly
supervised method. The subtype prediction is 79.5%, representing a 2% improvement with
the weakly supervised method.

TCGA-KIRC (cases with clear cell subtypes). With the weakly supervised method, the
Dice accuracy of the kidney region is 93.2%, and the Dice accuracy of the renal mass region
is 80.1%, which represents improvements of 2.5% and 1.8% compared to without the weakly
supervised method. The subtype prediction is 86.1%, representing a 2.5% improvement
with the weakly supervised method.

The visualization of the kidney region (red) and renal mass region (blue) overlaps with
the original CT images shown in Figure 2. The visualization demonstrates the effectiveness
of the proposed method in accurately segmenting the kidney and renal mass regions.



Bioengineering 2023, 10, 116

9o0f12

(a) Input CT  (b) Ground Truth (c) Prediction

Figure 2. Visualization of the predicted kidney (red) and renal mass (blue) segmentation.

4.4.3. Renal Mass Subtype Classification

Table 2 shows the areas under the curves (AUCs) of the model with a 95% confidence
interval (CI) for the ROC curves. The model achieved an average AUC of 85% for all
subtype classes. We observe that the model correctly classifies the clear cell, papillary,
and chromophobe subtypes with AUCs of 87.1%, 86.2%, and 85.9%, respectively. The
model achieves an accuracy of 79.9% for oncocytoma, as this subtype is often difficult to
differentiate from RCC because of their similarities in morphologic, histologic, and imaging
characteristics. The proposed model successfully classified fine-grained renal masses into
five major pathological subtypes.

Table 2. Quantification results of renal mass subtype classification on KiTs19 datasets.

Subtype AUC Specificity Sensitivity
Clear Cell 87.1% 84.3 % 84.1%
Papillary 86.2% 83.7% 82.4 %
Chromophobe 85.9% 82.1% 83.7 %
Oncocytoma 79.9% 77.7% 76.9 %
Others 85.8% 81.6% 80.4 %

4.5. Ablation Study

We investigated the effectiveness of the proposed semantic segmentation framework
with an ablation study, in which 3D U-Net was applied as a baseline model. Here, 3D
Res-UNet uses the 3D U-Net network structure and involves residual connections to all con-
volutional blocks. 3D Res-UNet with preprocessing and post-processing are implemented
individually, as shown in Table 3. Our emerging modifications of 3D U-Net effectively
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improve the accuracy of the network compared to the baseline 3D U-Net segmentation
network.

Table 3. Ablation study of the effectiveness of the proposed method by comparing the performance
on the KiTs19 dataset: Dice coefficients and sensitivity.

3D U-Net ResNet Preprocessing Post-Processing Pixel Accuracy Dice Coefficient Specificity = Sensitivity

- - 86.2% 80.9% 84.1% 78.8%
- 89.1% 82.4% 86.8% 83.2%
- 91.7% 83.1% 89.2% 86.4%
Vv 91.4% 82.7% 87.3% 83.7%
v 95.9% 86.6% 91.2% 88.1%

L
SRS S
L

5. Conclusions

This paper has proposed an end-to-end kidney and renal mass diagnosis framework
that can quantify renal mass morphology details to monitor disease progression. The
proposed weakly supervised method improves the generalization ability of the network.
The strategy of dual-path training of subtype classification not only improves the prediction
accuracy but also prevents the false-positive prediction of renal masses. The experimental
results demonstrate the effectiveness of the diagnosis framework and its potential to be a
clinical tool.
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