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Abstract

The subject matter of this work is a 1D quantum spin - % chain associated with the inhomogeneous six-

vertex model possessing an additional Z; symmetry. The model is studied in a certain parametric domain,
where it is critical. Within the ODE/IQFT approach, a class of ordinary differential equations and a quan-
tization condition are proposed which describe the scaling limit of the system. Some remarkable features
of the CFT underlying the critical behaviour are observed. Among them is an infinite degeneracy of the
conformal primary states and the presence of a continuous component in the spectrum in the case of even r.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Much of the early interest in exactly solvable models in 2D classical statistical mechanics
came from the study of critical phenomena. Starting from the Ising model, exact solutions were
crucial for the development of key concepts such as the scaling hypothesis and universality. The
latter was greatly informed by the six-vertex model [1]. Within the standard parameterization, its
local Boltzmann weights depend on g, which is sometimes referred to as the anisotropy param-
eter. As long as ¢ is a unimodular number, i.e., g = el” | the statistical system is critical and it
turns out that the corresponding critical exponents depend on y € (0, 7 ]. This was in contradic-
tion with the original understanding of universality. The clarification came within the framework
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Fig. 1. A graphical representation of the transfer-matrix for the inhomogeneous six-vertex model. Twisted boundary

conditions are imposed as indicated by the presence of the factor »°0, where O‘é is the Pauli matrix acting in the two
dimensional auxiliary space.

of QFT as an example of an exactly marginal deformation of the critical point. It was realized
that the universal behaviour of the six-vertex model is governed by the massless Gaussian CFT,
where the fundamental Bose field is compactified to a circle with radius /2y /7 [2—4].

In the work [5], Baxter introduced a multiparametric statistical system, which is a generaliza-
tion of the six-vertex model, and showed that it is solvable via the Bethe Ansatz technique. The
corresponding set of algebraic equations takes the form

N M

+1 - 412
Hm__aﬂqﬂ‘nw (m=1,2,....M, SS=Y_M>0).

g1 +q_1 Cm B =1 j —C]_2 Cm 2

(1.1)

Having found a solution {¢,, }nnf:] one can compute the eigenvalues of all members of the com-
muting family of operators including the one-row transfer-matrix schematically depicted in
Fig. 1.

Among the parameters is the anisotropy ¢ = ¢! and the set of complex numbers { J}y: 1
referred to as the inhomogeneities, which are all assumed to be fixed. Together with these, the
Bethe Ansatz equations also involve the parameter w. The latter comes about as a result of impos-
ing so-called quasi-periodic boundary conditions on the lattice and for the periodic case w = 1.
With the parameters obeying certain conditions, the lattice system develops critical behaviour
which can be described by a conformal field theory. We’ll assume that the number of sites N is
divisible by r and the inhomogeneities obey the r-site periodicity condition

Ni+r =17 (J=1,2,....,N—r; N/reZ) (1.2)

in order to ensure the presence of translational invariance for the continuous theory. In the scaling
limit N — oo while r is kept fixed.

For the investigation of the scaling limit, it is useful to switch to the Hamiltonian picture,
where a central role belongs to the Hamiltonian H. The latter is a member of the commuting
family of operators and, furthermore, is expressible as a logarithmic derivative of the r-row
transfer-matrix (see, e.g., section 6.4 of ref. [6] for details). In the case of the homogeneous
model, where 1 are the same and without loss of generality may be set to one, H coincides with
the Hamiltonian for the Heisenberg XXZ spin - % chain:

N
> (a,jio,le + om0, +cos(y) (000 4 — i)) . (1.3)

m=1

1

Hpej=————
Ir=1 2sin(y)

It should be supplemented with the quasi-periodic boundary conditions [4]

X i Y — X2 x s Y Z — 5%
ONgm TiOy,, =@ (on £iom), ONm =0 - (1.4)
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For r = 2 there are two 1nh0m0gene1t1es N1, 12, but one may always restrict to the case with
m=n; ' In the parameterization n; = ¢'?, the Hamiltonian reads as [8,12]"

N 2
cos(y) sin” (a) A
H|,— = E -1

Ir=2 2sin(y — o) sin(y +a) [ sin(y) (om Oz 01 0z 0 02 = 1)

. oS (a) o
—2811’1()/)( s(y) ( Om m+1 +0‘m n);—i-l) +arf1 6rf1+l - 1)

’
—isin®(@) (07, — 05 _ (om0 1 + oo y)

+ (= 1)"sina) (tan() @074y — oo 1)

x Y Yy __x 4
+ 2c0s(y) (Gm Omt2 — Umam+2) Ol

i ,
O = O Gaa = i) | 15

and is subject to the quasi-periodic boundary conditions as above. When r > 2, the explicit
formula for H becomes cumbersome and not particularly transparent. It involves a sum over
terms describing interactions of up to r + 1 adjacent spins. All such Hamiltonians commute with
the z-projection of the total spin operator

1 N
:EZU;': [S*,H]=0. (1.6)

The field theory provides a description of the excitations whose energy counted from that
of the ground state is sufficiently low. The full phase diagram for the general lattice system,
including the identification of the critical surfaces, is currently not clear. The examples of critical
models that have been studied so far, since the pioneering paper of Jacobsen and Saleur [7], all
correspond to the case when the anisotropy is unimodular or, in other words, y is real and may
be taken from the domain

g=ev: y €0, 7]. (1.7)

Likewise, the inhomogeneities are also unimodular, || = 1, and, without loss of generality, one
may always assume that

[[ns=1. (1.8)
J=1

As was already mentioned, for » = 1 the critical behaviour of the model, with quasi-periodic
boundary conditions imposed, is described by a massless compact Bose field. Already for r =2
the model exhibits different types of critical behaviour and the phase diagram in the (y, o) plane
(the parameters of the lattice Hamiltonian (1.5)) is depicted in Fig. 2.

The different phases are already manifest in the general pattern of Bethe roots for the ground
state. For the homogeneous model, all the {¢,,} are real and positive. In fact, this requires the
condition on the twist parameter:

1 The Hamiltonian presented in [8] corresponds to the case « = % , while the one from ref. [12] is related to (1.5) by a
similarity transformation.
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Fig. 2. The phase diagram for the model (1.5) with y, o being real numbers lying within the segment (0, 7r]. Phases I
and II correspond to the massless compact Bose field, while III is related to the 2D black hole sigma models [7-14]. In
the parametric domain IV the critical behaviour of the statistical system is governed by a CFT consisting of a massless
compact boson and two Majorana fermions [15,16].

w=e"k, ke(—1, 3] (1.9)

with sufficiently small |k|. In Fig. 3 depicted are the typical pattern of Bethe roots for the case
r =2 in phases III and IV in the complex plane of 8 = —% log(¢). An important difference is
that for phase III the roots accumulate exactly on the lines Im(B8) = 0, Z independently of the
value of the inhomogeneity parameter « (see, e.g., ref. [12]). For phase IV, they also accumulate
along two lines. However these depend on « as Sm(f) = :I:% o (see, e.g., ref. [16]).

The phase diagram for r > 2 is yet to be mapped out in general. In this work we will study the
universal behaviour of the model in the domain 0 < y < X It turns out to exhibit qualitatively
new features compared to the cases » = 1, 2. In particular, the pattern of Bethe roots for the
ground state do not accumulate on lines with fixed value of JIm(8), but on a certain locus in
the complex B plane that depends on the values of the inhomogeneities (for an illustration, see
Fig. 4). The exception is

ny=(—1) er @D, (1.10)

where the lattice model possesses an extra Z, invariance. Among other things, the symmetry
manifests itself in that the Bethe roots accumulate along the lines
T 2w (r—Dm

Sm(Bj)=0, —, ey, ———— (mod 7). (1.11)
roor r

The most effective technique for studying the critical behaviour of an integrable lattice system
is based on the ODE/IQFT correspondence [17-20]. This is demonstrated for the XXZ spin - %
chain in ref. [21] and for the case r = 2 in phase III from Fig. 2 in the work [14]. In ref. [16],
the ODE/IQFT correspondence was put forward for the inhomogeneous six-vertex model with
(11— %)n <y<m.

In this paper we propose a set of differential equations that describe the scaling limit of the
Z, invariant spin chain subject to quasi-periodic boundary conditions (1.4), (1.9), when the in-
homogeneities take the value (1.10) and

q:eiy: 0<y<z. (1.12)
r

The analysis turns out to be more complicated than for the Z; case and a detailed study of the
critical behaviour is left for future work.



G.A. Kotousov and S.L. Lukyanov Nuclear Physics B 993 (2023) 116269

Sm(B) =5
(/8) 2 oo oo Sm(ﬁ):—&-%a
1.5 ° o--9-09 °0-0--¢ °
0.5
. ® ®
-1.0 -0.5 0.5 1.0
0.5
Im(B)=-3a  -05
* o--e-ee *o-0--0 °
T-15 10 -05 05 10

Fig. 3. The typical pattern of Bethe roots for the ground state (S = 0) of the Hamiltonian (1.5) is shown in the complex
B plane with § = —% log(¢). For the left panel, the parameters were taken to be (y, o) = (%, %), so that the model is

in the critical phase III from Fig. 2. For the right panel (y, o) = (%, %), which corresponds to phase IY. The number
of sites N = 100 and the twist parameter k, which enters into the boundary conditions (1.4) via @ = e™* was set to

- L
k=15-

Sm(B) = %7’

-1.0

Fig. 4. The pattern of Bethe roots 8; = —% log(¢;) for the ground state of the spin chain Hamiltonian H with r =3 in

2ri %(176)

_27i 2ri
the sector S? = 0. The inhomogeneities are settobe n; =e~ 3 ,m=e 3 <andnz =e where € = % For the
open blue circles, the number of lattice sites is N = 240, while for the black crosses N = 324. The remaining parameters
were taken as y = %, k= 21—0

2. Output from numerical work

Described here are some results of our numerical analysis of the spin chain with Z, symmetry
in the regime (1.12).

The study of the scaling limit requires one to assign an N dependence to the low energy states,
i.e., to form the RG trajectories |Wy ). It is usually clear how to do this for the ground state or, for
that matter, the lowest energy states in the disjoint sectors of the Hilbert space, say, in the sector
with given value of S* (eigenvalue of S* from eq. (1.6)). However forming individual RG flow
trajectories for low energy stationary states is not a trivial task. In the case at hand, the procedure
is facilitated by the existence of the Bethe Ansatz equations.

One starts by diagonalizing the Hamiltonian for a small number of lattice sites N = Ni, < 20.”

Each stationary state may be chosen to be a Bethe state, which is an eigenvector of the full family

2 The explicit formula for the Hamiltonian and the other members of the commuting family may be found in sec. 6 of
ref. [6].
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of commuting operators. An important member of this family is the Q-operator. Its eigenvalues
are polynomials in ¢, whose zeroes {;,n} _, obey the Bethe Ansatz equations (1.1). For a given
low energy state | Wy, ), one can compute the eigenvalue of the Q-operator and thus determine
the corresponding set of Bethe roots. With these at hand, the state | ¥y ) where N = Nj, +2r may
be specified without an explicit diagonalization of the Hamiltonian. One finds the solution to the
Bethe Ansatz equations, whose pattern qualitatively resembles the Bethe roots for Wy, ) (for
technical details, see ref. [13]). By iterating this procedure, the RG trajectory |Wy) for increasing
N is obtained. The corresponding energy is computed from the Bethe roots labelling the Bethe
state as

r M
1 1
5=§ AN 5<‘>=2i§ < - ) 2.1
— =\ Gng™ ne 1+ Cmg/ne

while the eigenvalue of the lattice translation operator K is given by’

.
+1eq

K=T1K®, KO =elmk g=M Smtneq (2.2)
[ H e

Recall that the number of Bethe roots in the sector w1th given value S* coincides with M =
-5

It should be mentioned that for r > 1 the lattice Hamiltonian H is not Hermitian with respect
to the usual matrix conjugation and some of its eigenvalues turn out to be complex numbers. To
order the states we use the real part of their energy. This does not interfere with the notion of a
low energy state since for such states |V ) the imaginary part of the difference £ — &y, decays
faster than the real part as N — oo.

2.1. Low energy spectrum for odd r
We performed a study of the large N behaviour of the low energy spectrum and found that

the states organize into conformal towers as predicted from conformal field theory [22]. For the
case of odd r, the low energy-momentum spectrum is described as

2 _ -
£=New+ ¥ (P2+P2— = +L+L) +o(N Y
2mi _ -
lC:(—l)”%:xp(%(PZ—P2+L—L)). 2.3)
Here the specific bulk energy and Fermi velocity are given explicitly by
2vVp i sinh (’—t) r(n+r)
eoo=——L [ ar t p=0 (24)
b J sinh((”'”) ) cosh(t) n

and the anisotropy parameter ¢ = e'” has been swapped for n such that

b
- (n>0). (2.5)

J/:

3 The formulae for the eigenvalues of the energy and lattice shift operator are valid for any values of the inhomo-
geneities provided the r-site periodicity condition (1.2) is satisfied. Clearly, for the Z, symmetric case (1.10) they may
be simplified, but we prefer to keep them as they are.
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The P and P that enter into the 1/N corrections take the discrete set of values,

1

_ 1 z p —
P= (ST+(m+r)(k+w), P_Z\/n——l—r

z_
N (5= m+r)(k+w),

2.6)

which are characterized by the eigenvalue of S® and the so-called winding number w =
0, £1, &2, ... . Finally, the pair of non-negative integers (L, L) give the chiral levels of the state
in the conformal tower.

The Bethe states for which the asymptotic behaviour (2.3) is satisfied with L = L = 0 will
be referred to as the primary Bethe states. We observe the surprising feature that for given $°
and w, the number of primary Bethe states grows for increasing N and in all likelihood becomes
infinite in the limit N — oo. This implies the existence of an infinite number of conformal
towers labelled by the same pair of conformal dimensions. To resolve such a degeneracy, one
should consider the scaling limit of the spectrum of other operators from the commuting family.
We used the so-called quasi-shift operators,

KO (¢=1,2,...,r) : KO, H]=[K® K] =0, 2.7)

whose definition is given in sec. 6.2 of the work [6]. Note that these operators are reshuffled
under the action of the Z, symmetry:

DIKOD =KED (KO+D =KDy, (2.8)

where the notation D from ref. [6] for the generator of the symmetry is being used. Also their
product coincides with the r-site translation operator:

.
K = ]_[ K© | (2.9)
=1

The eigenvalues of K© are denoted as K© and are given in terms of the Bethe roots as in
eq. (2.2).

Keeping in mind the Z, symmetry, we studied the discrete Fourier transform of the logarithm
of K©:#

1—2al

r ZeiT”a(r-H—%) log (K©) (1<lal <[551). (2.10)
=1

a = "
2mwir

The factor N'~ 2 was introduced for the following reason; we observed that for the low energy
states b, = b,(N), defined as above, tend to finite limits as N — oo which, in general, are non-
vanishing (complex) numbers. Also, in (2.10), the symbol [-- -] stands for the integer part. It’s
placed here in view of the later discussion of even r, where this same definition of b, will be
utilized.

4 For the low energy states K® — (—=1)" as N — oo, where w € Z is the winding number. The leading term in the
asymptotics log(lC(l)) =im + ... for w odd gives no contribution to the definition of b, since it is cancelled when the
sum over £ in (2.10) is taken.
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The limiting values of b, (2.10) as N — oo are important characteristics of the RG trajecto-
ries. It turns out that they, together with P and P (2.6), are sufficient to distinguish the primary
Bethe states. Also, we found that b, appear in the corrections to the scaling of the energy in
eq. (2.3). In particular, for any low energy Bethe state

2 _ _
E=Newt+ F <P2+P2—1r—2+L+L> @2.11)
472 .
-=F Cot(l) brabis +0(N‘1‘?,N‘1‘47) (r=3,5,..).
NItF 2n 7 2

2.2. Low energy spectrum for r even

For even r special attention needs to be paid to the operator

(ST

B=[]K® (&™), (2.12)
m=1
A numerical study of its eigenvalues shows there are low energy states in the lattice model such
that

(—D2+!

— N e ©
br = - 1og(B)_2m ;( D2 log (K@) (2.13)

r
2

either tends to a non-zero value or decays to zero as
1
br ~

2 log(N)
Such a phenomenon was already observed and extensively studied in the context of the Z; in-
variant spin chain (r = 2) [8,9,11-14]. The scaling limit should be taken such that the value of b%
is kept fixed as N — oo. This leads to the presence of a continuous component in the spectrum
of the underlying conformal field theory. In the case r =4, 6, ... and for the low energy states,
b, defined through (2.10) remain finite and (generically) non-vanishing as N — oo. This way,
for both  odd and r even, the RG trajectories are labelled by the limiting values of b,. For even

r we observed that the large N asymptotic behaviour of the energy follows a similar formula to
(2.11):

for N — o0. (2.14)

2wrv _ -
E=New+ VF<P2~|—P2+2n(b%)2—lr—2 +L+L) (2.15)
8JT2er T 18 o _dn
—ﬁcot(—>b1_1b1_c+0<N PN ) (r=4,6,..).
N1+; n 2 2
The following comments are in order here. In our numerical work we constructed a variety
of RG trajectories for r =2,3,...,7. In all the cases our data was in full agreement with the
asymptotic formula
2wrv _ _
E=New + rF|:P2+P2+2n(b%)2—lr—2 FL4L (2.16)

=

) bab- ,
B 2]-[ (r_za) COt(%) a2 4: O(N_27 N_4'_) i|7
= N

a=1
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Fig. 5. Presented is numerical data for an RG trajectory of the Z3 invariant spin chain in the sector $¢ = % whose scaled

energy & = % (8 - Neoo) grows logarithmically as N — oo. The typical pattern of Bethe roots (N = 123) is

depicted in the complex § plane on the left panel. On the right panel, the crosses correspond to the numerical values of
|8&| obtained via the solution of the Bethe Ansatz equations. The dashed line is a plot of the absolute value of the fit
8~ —0.03 —1.11i+ (0.521 + 0.0991) log(N). The parameters are n = 3 and k = 2—10

where br = 0 for odd r and n is assumed to be generic. Also, it is worth mentioning that the
summands £® in (2.1) coincide with the eigenvalues of the mutually commuting operators

.
Ho . [H®, HE] =0, H=)Y H®Y. (2.17)
=1

Similar to H these are given by a sum of terms describing interactions of up to r + 1 adjacent
spins. However, they are not Z, invariant, but rather

DIHOD = HE+D HC+D = HD) . (2.18)

For the leading large N behaviour of their eigenvalues we found that for r > 2

,
i 2|a

3 e T2 O drupsgn(a) (r — 2lal) N7 (b +o(D) (1 <lal <[5)).

(=1

(2.19)
where sgn(a) denotes the sign of the integer a. Finally, Bethe states were observed for which
8 = 2:'[Ar/v1: (€ — Ness) grows logarithmically as N — oo, see Fig. 5. We do not count these

states as being part of the low energy spectrum. A similar phenomenon was discussed in the case
of the Z, invariant spin chain in the original works [7,8].

3. ODE:s for the scaling limit of the Z, invariant spin chain

As was mentioned in the Introduction, the most effective way of studying the universal be-
haviour of integrable lattice systems is based on the ODE/IQFT correspondence. In this section,
we propose the set of Ordinary Differential Equations which describe the scaling limit of the Z,

invariant spin chain where the anisotropy parameter is taken to be ¢ = e»+ with n > 0. Also,
some numerical verifications of the proposal are discussed.



G.A. Kotousov and S.L. Lukyanov Nuclear Physics B 993 (2023) 116269

3.1. Differential equations for the primary Bethe states

The limiting values of b, (2.10), (2.13) as N — oo are important characteristics of an indi-
vidual RG trajectory. For our purposes, it will be convenient to switch from these to

sq =Cq slim b, Sq =—C, slim b_,, 1<a< [%] 3.1
N—o0 N—oo

with the proportionality coefficients being given by
r—2a
VATA+59 [ TG+4) |7
(s +52) | Vald+4;
The symbol “slim” is used as a reminder that the limit (3.1) exists only for the class of low

energy states and for even r should be taken such that b% is kept fixed as N — oo. Note that, by
definition b_; = —b: and therefore

C,=(—1)* Doy (3.2)

55 =sr. 3.3)
The s, and s, will be combined into the two sets
(sl,..., ) §=(§1,...,§[%]). (3.4)
Also we’ll use the notations
n+r §? _ n+r $§?
= k R = —k— . 3.5
p 2 <n+r+ —i—w) P 2 (n—i—r W) 3-5)

Among other things, the ODE/IQFT correspondence implies a relation between the scaling
limit of the eigenvalues of the Q-operator for the low energy Bethe states and the spectral deter-
minants of a certain set of ODEs. In the case at hand, the primary Bethe states of the Z, invariant
spin chain are fully characterized by p, p as well as s, s and the corresponding pair of differential
equations are proposed to be

(5]

U s 1
|:_822+Z_2( " anJr _Zr+P2_Z+ZSa(_Z)a)]qJ:O (3.6)
a=1
. | (51
[— 92+ = (E‘”" T4+ p - s > 5 (—z)“)] U=0. (3.7)
a=1

The cases r = 1 and r = 2 have been extensively explored in the work [14] (see also Ap-
pendix A). In order to not overburden the text with technical details, the similar analysis for
general r will not be repeated here. Instead we give a brief reminder of the construction of the
spectral determinant, which is numerically efficient, focusing on eq. (3.6).

It is convenient to re-write the ODE using the variables
1=Ee, W=ely. (3.8)
The differential equation (3.6) then becomes

151
[—8y2+p2+e(”+r)y —E"eV+ ) s, (—Eey)“]lﬁ=0- (3.9)

a=1

10
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Assuming that fe(p) > 0, there exists a solution which is uniquely defined by the asymptotic
condition

Yp(y) —> el as y— —o0. (3.10)

Introduce another solution, x = x(y), by means of the WKB asymptotic:
n+r 2 y 1 1 ro1 r
=exp| — — e R (- s = 5 - . ‘E’ —">‘> 3.11

X CXP[ I U A R A T P I G-I

as y — +00.
Here 5 Fy is the conventional hypergeometric function and it is assumed that + # 1,3, ... . The
spectral determinant is given in terms of the Wronskian of the two solutions:

JT _1_2p
D,(E) = (n+r) 27 (xy¥p — Ypdyx) (3.12)

ra+;22)
with the factor out the front being chosen so that D,(0) = 1 for generic values of p.

The spectral determinant is an entire function of E and hence the series

o0
log Dp(E)=—Y_J; EI (3.13)
j=1

has a finite radius of convergence. The expansion coefficients depend on p and s = (s1, ..., s[%])
(also, of course, on n > 0),
Ji=Ji(p,s), (3.14)

which are parameters of the differential equation. By applying perturbation theory in E to the
ODE (3.9) it is possible to obtain explicit analytic formulae for the first two of them. The result
for the cases r = 1, 2 is quoted in ref. [ 14]. It possesses a straightforward generalization for r > 3:

h=s1 (GE +5) C (3.15)
2 1
J= (Sl Pl ) =92 2% i il ) ) €
G =)
with
(n+r)icr
n -+ r)ntr
“EC (3.16)
n-—+r

(for r = 3, one should set s; identically to zero). The explicit form of the functions f; and f, are
presented in Appendix B.

The eigenvalues of the lattice Q-operator are polynomials in the spectral parameter ¢, whose
roots satisfy the Bethe Ansatz equations. In the notations of ref. [6],

5 As explained in that work, the Baxter T Q-relation possesses two solutions Q-+ . The operator A ¢ coincides with Q 4
up to a simple factor involving fractional powers of ¢ and has the advantage that its eigenvalues A (¢) are polynomials
in ¢ of order M < N /2.

11
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M
o= (1-5) (M <N/2). 3.17)

m=1 m

The coefficients of the polynomial are simply expressed in terms of the sums

M
m=1

for instance,

2
logAy(0)=—h e —nP 2+ . (3.19)
For the low energy Bethe states, the scaling behaviour of h%) is described by J; from the expan-
sion (3.13) of the spectral determinant. In particular,

li N\ B =g (3.20)
N-vo \rNo N = '
4n
N \ @
slim (—) =1,
N—oo \ rNyp
where
_ Yyl 321
= (3.2
rF(§+ﬂ

Having at hand a low energy Bethe state at fixed N > 1, the Lh.s. of egs. (3.20) may be computed
from the corresponding Bethe roots by means of (3.18). Also, from the eigenvalues of the quasi-
shift operators K©) (2.2) one extracts the complex numbers b, via the definitions (2.10) and
(2.13). These determine the parameters s, appearing on the ODE side through formula (3.1).
For the primary Bethe states, the r.h.s. may be calculated using the explicit analytic expressions
(3.15) for the coefficients Ji, J> as functions of s, and p.

Similar relations hold true for the sums
—_ . M .
Ry =i Y @) (3:22)
m=1

They take the same form as (3.20) with h%) — fz%), while J;(p, s) are replaced by J;(p, s). The
latter occur in the Taylor series of the logarithm of the spectral determinant for the second ODE
(3.7). Note that i_zg\J,) are the expansion coefficients of —log ( ]_[,A,:lzl( 1 —¢m/ ;“)) in the variable

¢l

M 00
Avo=]] (1 - %’") = exp ( - ZE%’;‘/’) : (3.23)
m=1 Jj=1

The polynomials A (¢) are eigenvalues of
_ . 1
Av@) =¢S5 a0 (AP) T, (3.24)

where the operator Afo) belongs to the commuting family and its eigenvalue for a Bethe state
with corresponding Bethe roots {¢;,} is given by the product:

12
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Fig. 6. Depicted is numerical data for hg\}) (left panel) and 553) (right panel), scaled by the appropriate N dependent
factor, as a function of log(N) for the Z, symmetric model with r = 4. The Bethe state was chosen to be a primary
one, and the black crosses were obtained from the corresponding Bethe roots via the definitions (3.18) and (3.22).
The blue dots depict the values of Ji(p, s1,s2) and Jo(p, 51, 52) for the left and right panels, respectively, which are
given by formula (3.15). Here s1 (51) was substituted by C1 b1 (N) (—C1 b_1(N)), see eq. (3.1), where b1 (N) were
obtained by means of (2.10) from the eigenvalues of the quasi-shift operators. Similarly, sy = §p +> Co by (N) with by (N)

being computed via (2.13). The parameters were set to be n = %, k= %, while §* = w = 0. Note that, for computing

Jo(p, 51, 52) in the case when p = —(n +r) % = —% < 0, one needs to evaluate the function f> entering into (3.15)

when the first argument is negative. Formulae (B.2)-(B.4) remain applicable provided the integration contour over the
real line is locally deformed such that it goes below the pole at x = ih.

M
AL =TT am ™. (3.25)
m=1

We performed extensive numerical checks of the scaling relation (3.20) and its barred coun-
terpart. Some of the data is presented in Fig. 6.

3.2. Eigenvalues of the Q-operator in the scaling limit

For the excited states, the ODEs are obtained from (3.6) and (3.7) following the well known
procedure [20]. It was discussed in refs. [13,14] for the case of the Z, invariant spin chain. With
the same line of arguments, we propose that the generalization of the ODE (3.6) that describes
the scaling limit of any low energy Bethe state of the Z, invariant model has the form

(—2+ 0@ +0@+E7 ) w=0, (3.26)
where
1 R
() = ( — 7 +p’ - i ;sa (—z)“) (3.272)
L 2 n
= « ) 27
1) ;<(z—wa)2+z(z—wa)) (3.27b)

The position of the poles w, and the residues n, must be taken in such a way that any solution

of the ODE is single valued in the vicinity of z = w,, for any « =1, ..., L. This condition leads
to the system of algebraic equations on wgy and ny:
na (L2 —w2il®) +wde® =0 (3.28)
Ng=n+r—2 (x=1,2,...,L).

13
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Here

S o (A a)

(wg —wp)?  we(we —wp)

4 ng Qwg — wg)
() / Ny 2 : B o B
! 0(wa) w3 ( )

o By (wg — wﬁ)3 wg (we — wﬂ)z

and the prime stands for the derivative w.r.t. the argument. The ODE that would generalize (3.7)
takes an analogous form. It involves the additional term

L -
i@ = X_; ((Z _2%)2 +o ), (3.30)

2(z — wy)

where the set 71, and {u")o,}g:1 satisfy the system obtained from eqgs. (3.28) and (3.29) by the
formal substitutions (p, sq, g, W, L) = (P, 4, g, We, L).

We expect that any low energy Bethe state |Wy) flows to the state in the conformal tower
labelled by, together with the parameters p, p, s, §, also two sets of “apparent” singularities:

w={wy)_,. W= {wa}=_, . (3.31)

The scaling behaviour of the eigenvalue A4 (¢) (3.17) of the Q-operator for the state |Wy) is
then described in terms of the spectral determinant D, (E | w) of the ODE (3.26) and D p(E | w)
of the “barred” differential equation. For the ex01ted states, formulae (3.8), (3.10)-(3.12) involved
in the definition of D, (E | w) remain the same. © The corresponding equations for D (E | w) are
only notationally different. Similar to the case of the Z, invariant spin chain studled in [14] we
expect that

stim GV (BT 2% )A+((N/(rNo))*r<371r)E) = D,(E|w). (3.32)

Here the function

1
['2(1—

ol
-1"N
GM(E|g) =exp ( > 2m(COS)(7ng) (N/Noy 87" Em) ’ g#1 - (333)
m=1

(which is the same for all the states) has been introduced to ensure the existence of the limit.
Note that the result is valid for any n > 0 provided that 7 # 1,3, 5, ... . At these special values

additional terms o log(/N) need to be included in the exponent in the definition of G (E | g)
for the limits (3.32) to exist, see ref. [14] for details. Similarly, the scaling limit of the eigenvalues
of the operator A, (¢) (3.24) is described as

_ _ _2n _ _
stim GO (E" | 52) A+((N/(rNo))’("+’> E—‘) = Dy(E|w). (3.34)

A verification of the conjectured relations (3.32) and (3.34) may be carried out along the same
lines as for the primary Bethe states. The scaling relations (3.20) for the sums h%) (3.18) and

6 The additional term 11(z) in the ODE does not change the leading asymptotic behaviour of the solutions ¥, and x
in the vicinity of the singularities at z =0 and z = 00

14
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Fig. 7. Presented is numerical data for an RG trajectory of the Z3 invariant spin chain withn =2, k = % , characterized
by §¢ =1, w=0and levels (L, L) = (0, 1). The values of s; = —0.942033 — 1.631649i and 5| = 0.085024 — 0.147266 i
were extracted by means of (3.1) using a certain interpolation procedure to take the limit N — oo. The crosses stand for
2n
the real and imaginary parts of (%)7 rntr) }_153), where I_zgé) denotes the sum over the Bethe roots (3.22). The solid
lines represent the prediction of the barred counterpart to the scaling formula (3.20), namely, Jo(p, § | w) = —0.269543 +
0.4668571. The latter was obtained via a numerical integration of the ODE (3.26), (3.27) with the parameters replaced
aspr> p= % L>L=1,s1 3§ =—0.942033 — 1.631649i and {wy} > {Wy} with wi = 0.778812 — 1.3489421,

2
therein. The dashed lines depict the fit —0.269539 4 0.4668541 + (0.0186614 — 0.0323224i) N 3

their barred versions still hold true provided the J; in the r.h.s. are taken to be the expansion
coefficients (3.13) of the spectral determinant for eq. (3.26). Apart from p and s, they depend

now on the set {wa}a |» which solves the algebraic system (3.28), (3.29), i.e.,

Jj=1Ji(p.s|w), Jj=Ji(p.5 ). (3.35)

For the case of the excited states no explicit analytical expressions are available for the expansion
coefficients J;. Nevertheless, they may be obtained via a numerical integration of the differential
equations. Together with the primary states, a verification of (3.32)-(3.34) for the excited states
was performed, see Fig. 7. We also analyzed the algebraic system (3.28), (3.29). It was observed
that for given L and generic values of the parameters n, p and s the number of solutions is equal
to the r coloured partitions of L:

1 1 , 1 3
Zpar L)g" = Hﬁ=l+rq+§r(r+3)q +gr(r+1)(r+8)q +....

(3.36)
3.3. Product rules

Being an entire function of E, the spectral determinant admits a convergent series expansion
near zero. At infinity, it possesses an asymptotic expansion, whose description requires one to
identify the Stokes lines, i.e., the lines which split the complex E plane into domains where the
asymptotic behaviour is described differently. In the case at hand, the Stokes lines are the lines
of accumulation_ of zeroes. Their location may be deduced from formula (3.32) for D,(E | w)
and (3.34) for D;(E | w) from the knowledge of the pattern of Bethe roots for the low energy
Bethe states of the Z, invariant spin chain. According to (1.11), the Bethe roots accumulate
along lines parallel to the real axis in the complex S plane with 8 = —% log(¢). At the edges
of the distribution, the roots develop a scaling behaviour. Namely, ordering {¢, }nﬂle w.r.t. their
absolute value,
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1 <1l <. 2 1em—1l = [Suml,

formulae (3.32) and (3.34) imply the existence of the limits

2n 2n —
slim (N /(rNo)) ¢; = E; slim — (N/(rNo)) @ ¢,0 = E;. (3.37)
N—o00 N—o00 J
Jj fixed M—j fixed

Evidently, E; coincide with the zeroes of the spectral determinant D, (E |w) and accumulate
along the rays
2 4 2n(r—1
arg(E) =0, —” o D (mod 277) (3.38)

r r

and similarly for ;.

The rays (3.38) divide the complex plane into wedges, in which the spectral determinants
exhibit a different large E' (E)) asymptotic behaviour. To write down the asymptotic formulae for
the different wedges, which will be labelled by £ =1, 2, ...,r, we swap E and E for 6 as

2n6

i — in _2n0__
E=(—1)"1et7 =D gitusn | E=(=1)""'e #&D et (3.39)

Then, from an analysis of the ODE (3.26) and its barred counterpart, one can show that as

Re(6) — +00 and 13m ()] < @ (3.40)
n

the following asymptotics hold true

_1- 211[7 0 No _0
—c® -1 6 g
Dy(E|w)=¢C,(w) exp|:<( D" is r)r+c ez e +0(e ):|

(3.41)
- 2np \ 0 N 0
- ©) -1 0 6 -4
Dy (E | ) = €% (i) exp[((—l) is — T)?%os(% e +0(e )}
Here, by definition,
0 f dd
E{ orodd r (3.42)
sz for even r

and the numerical constant Ny is given by (3.21). For r = 1,2 the coefficients Qﬁ?f?s (w) and

ég‘)g (w) are available in closed analytic form [25]. An efficient numerical procedure for their
computation for any r is described in Appendix C.

Focusing on the cases with r = 1 and r = 2, it was observed in refs. [21] and [14], respectively,
that Qﬁg))s (w) and Q(Z) (w) appear in the scaling limit of certain products over the Bethe roots. We
found that the 51m11ar relations hold true for r > 3, namely:

— — — — 1 1y s -0 _
[Ta(@ntnea ) (e +np'q™") =V 0% P € 3@) (3.43)

m=1
N D =D -
X —_—
<rN0)

) A N
rin+r n r
< ) (1+0(v)
n—+r
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Here the remainder terms fall off as a power of N with some positive exponent € and 7, stand
for the inhomogeneities as in eq. (1.10), i.e.,

ne = (=1) eF @D C=1,2,....r). (3.44)

In addition to the relations (3.43), we also established that

20D GO
p

M N n+r 5
El(cm) = (%) [1

—— (1+0(N79)). (3.45)
=1 Chx(w) (1+0()

By taking the product of the Lh.s. of eq. (3.43) over £ = ¢' = 1, 2, ..., r and dividing/multiplying
the result by ]—[,IZI=1 (¢m)" one obtains

r _4dnp

- —r r —r —r (] 2 N ntr 4n N e
[T +) 6 +a)=1(hw) () () (o)
(3.46)
a r r r —r - ¥ _\? N _% 4 N —€
nl;[l(,,f +4") (6" +a )=£[1(¢§3‘}(w)) <%) (n—fr) (1+0(v)).

The advantage of the last two product rules is that they involve the asymptotic coefficients for
the spectral determinant of the ODE (3.26) and its barred variant separately.

The above product rules provide additional support for the proposal for the scaling limit of
the eigenvalues of the Q-operator (3.32) and (3.34). We performed numerical checks for a range
of cases with some of the data being presented in Fig. 8.

4. Quantization condition

A complete description of the conformal field theory underlying the critical behaviour of

the inhomogeneous six-vertex model in the regime g = entr with n > 0 is a difficult task. The
proposed ODEs provide some guidance that allows one to make progress in this problem. Our
analysis suggests that under a suitable normalization, the low energy Bethe states |Wy) for the
Z, invariant spin chain possess a scaling limit such that

Stim (W) = 19, () © T 5 5(@)) - .1)

We expect that the states |¢, ((w)) organize into highest weight representations of a certain

chiral algebra of extended conformal symmetry and similar for | ; 5(w)). In particular, the chiral
components that appear in the scaling limit of the primary Bethe states would be the highest
states in such representations. Immediate questions arise as to the identification of the algebra
of extended conformal symmetry and under what conditions on s, w and s/, w’ do the states
¥, s(w)) and |¥, ¢ (w")) belong to the same chiral module. Moreover, what are the selection
rules for the admissible values of s and s for the states (4.1). All these points for the most part
remain open to us. Here we present some analysis concerning the selection rules.
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Fig. 8. Depicted is the absolute value of the logarithm of the ratio of the Lh.s. to the r.h.s. of the relation (3.43), R =
|log(Lh.s. of (3.43)/r.h.s. of (3.43))|, for £ =1 and £ = 1,2, ..., 6. This was computed for an RG trajectory with w =
L =L = 0 for the Z, invariant spin chain with r = 6, n = 3.5 and k = 0.1 in the sector S* = 0. The Lh.s. is obtained from
the Bethe roots corresponding to the trajectory. For the r.h.s. s = (s1, 52, 53) and § = (51, 52, §3) were swapped in favour
of the “running couplings” s, — Cq bg(N) and 54 = —Cq b—4(N) in accordance with eq. (3.1). The b, (N) themselves
are extracted from the eigenvalues of the quasi-shift operators via formulae (2.10) and (2.13). Also, in the computation of

2
the r.h.s., the correction term O (N ~€) was ignored. The dashed lines are linear-log plots of c; N~ 3 4+ ¢y N~ 3, where
for each value of €’ the coefficients ¢; and ¢ were determined via a fit.

4.1. General quantization condition

The relations (3.43) yield an important consequence. It is obtained by making the specializa-
tions (£, ¢) +— (£ +1,£) and (¢, £') — (£, £ + 1) therein, where £ is taken to be modulo », and
considering the ratio. The Lh.s. of the result is expressed in terms of the eigenvalues ) and
K+ (2.2) of the quasi-shift operators. Keeping in mind that log ((—1)"K©) = 0 (N—7) for r

odd and log (—DVK®) = (-1 L5+ O(N*%) for r even, one finds
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%(_1)@3- (€+1) é(_[)_ W i

rNo e&fl( ) e:“*“( )
“4.2)
where
0 for g even
p— . 4.3)

1 for g odd

Recall that we always assume N is divisible by r and, in constructing an RG trajectory |Wy),
the parity of N/r must be kept fixed. Thus we conclude that the parameters s, § characterizing a
low energy Bethe state are not independent, but obey » — 1 conditions (the product of (4.2) over
£=1,2,...,r is satisfied identically).

For the case r = 2, a closed analytic formula exists for the asymptotic coefficients Qigf)s (w)

and €. (W), see sec. 3 of ref. [25]. Through the study of (4.2) it was found that the space of states
of the Conformal field theory underlying the Z; invariant spin chain possesses both a continuous
component with s taking any real values as well as a discrete one, where s belongs to a discrete
set of pure imaginary numbers. When r is odd, s is by definition zero so that the N dependent
factor in the L.h.s. of the above relations is absent. Then, if p and p are given, (4.2) constitute
r — 1 independent complex conditions imposed on the r — 1 complex numbers (s1, ..., s-—1) and
S1,.-.,8 1 ). They thus play the rdle of a “quantization condition” and are expected to yield a
discrete set of admissible values for s and s. For even r, the N dependent factor is present in
the relations (4.2). As in the case r =2 we expect that together with a discrete set of values, s =
s = s ¢ may take any real values leading to a continuous component in the spectrum. The other
r — 2 complex numbers (sg, ... s%_l) and (51, .. -55—1) belong to a certain discrete set, similar
to the case of odd r. Unfortunately, a comprehensive analysis of the quantization condition (4.2)
is hampered by the fact that an analytic expression for the asymptotic coefficients is absent.

Nevertheless, by computing Q s(w) and Q( ) s(w) via the procedure explained in Appendix C,

some numerical checks were carrled out, see Table 1.

4.2. Quantization condition for the primary Bethe states

Let’s first discuss some simple facts concerning the pattern of the Bethe roots for the primary
Bethe states. For this purpose, it is useful to make the following observation regarding the solu-
tions to the Bethe Ansatz equations (1.1) with the inhomogeneities n; as in eq. (1.10). Suppose
that the number of Bethe roots M = % — §% is divisible by 7 and assume that ¢; have the form

e (=D o= F e (c=1,2,...,M/r: £=1,2,...r). (4.4)

Substituting this into (1.1), one obtains

N N-28%
[cosh(ac - %)]7 _ ik 12—'[ sinh(oe — ap — 1Y) 4.5)

cosh(a, + %) sinh(ae — ap +i7)

These are easily recognized to be the Bethe Ansatz equations for the Heisenberg XXZ spin - %
chain (1.3) of length N /r and where y is substituted for y with
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Table 1

Presented is numerical data obtained from the spin chain with r =5, n = 2.5, k = 0.1 and in the sector S =1 that
was used for the verification of the quantization condition (4.2). The rows correspond to different RG trajectories. For
all of them w = 0, while the chiral levels L and L are shown in the first column. The next two columns list the values
of s = (s1,52) and § = (51, 52). They were obtained from b, (N) (2.10) by interpolating data at finite N to N = oo,
see eq. (3.1). Also, for the states with non-zero levels, we give the sets w and w, which satisfy the system of algebraic
equations (3.28) and its barred version, respectively. The absolute value of the difference between the 1.h.s. and the r.h.s.
of the four independent relations (4.2) with £ = 1, 2, 3, 4 is displayed in the four last columns. For the r.h.s., the correction
term O (N ~€) was ignored and o = 0 since the RG trajectories were built for lattice sizes keeping N /5 an even integer.

|L.h.s. — r.h.s.| of relation (4.2)
LI s=06ns) w={w)l_, §=G.5). 0={a)l_, =1 (=2 (=3 (=4

s1 =—0.5482 4 1.6871i 51 =—0.4520 — 1.39121
s =+0.8181 4 0.59431i 5 =+0.8017 — 0.58251

(0,0) 1.6x 1074 46x1075 1.8x107% 18x107%
51 =+40.0974 4+ 1.8226i 5| = —2.9344 — 3.7480i

0,1) s =+03824+0.9444i 5 =40.7373+0.28551 3.1x 107% 3.9x107% 69x 1074 6.8x 1074
W] = +1.2595 — 0.9676i

51 =+0.2683 —0.8257i 5 =—0.5075 — 1.5618i
(1,0) sp=-+0.4242+0.3082i 5 =+09775—0.7102i 52x107% 44x107% 39x 1074 3.9x 10~*
wy = —0.6077 — 1.8703i

51 = —4.0464 — 1.28821 51 =—2.6122 — 4.07251
5o =+0.7113 4+ 1.73741 §p =40.6267 4+ 0.64011

—4 —4 -3 -3
@ = 413211 - 179051 @) =+12004 — 1.0040; 8> 1077 961075 LIx1072 18510
wy = +1.5367 — 0.93981
- Tr
7= . (4.6)
n+r
The equations correspond to the sector with the z-projection of the total spin taking the value
S*/r=0, %, 1,.... It is well known that for the vacuum state in this sector, i.e., the state with

the lowest eigenvalue of the XXZ Hamiltonian, the corresponding solution is such that all the «,
are real and distinct,

<o <...<AM/r, @7

provided the absolute value of the twist parameter k is sufficiently small. Computing the eigen-
value of the Hamiltonian H of the Z, invariant spin chain via eq. (2.1), where the Bethe roots
are taken to be as in (4.4) with this choice of «., turns out to yield the lowest energy in the sector
with given value of S*.

For a generic primary Bethe state of the Z, invariant spin chain the pattern of the Bethe roots
remains qualitatively similar. Namely, they are split into » groups such that the argument of ¢; in

each group is approximately equal to 27” (€ —1)with€=1,2,...,r. However, there occurs the
possibility that the number of Bethe roots with roughly equal phases is different. In other words,
DM DM "
=1 u e v oyt (4.8)
with
2
arg (V) ~ (¢ - 1) (mod 277) (4.9)
r

and the integers M, are not necessarily the same. It should be mentioned that at the edges of the
Bethe root distribution along each ray, the argument of some of the roots may deviate signifi-
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cantly from 27” (€ — 1). Then the allocation of the roots to the neighbouring groups labelled by £
or £ + 1 (modr) could become ambiguous. Ignoring this subtlety, the states may be assigned the
set of numbers

N N

N
m1=M1—E, mzZMz—;, e, erMr—;, (4.10)

which are integers for N/r even and half-integers for N/r odd. They are not independent, but
satisfy

m+my+...+m =-5<0, @11

since the total number of roots is equal to % — S%. The states where at the edges of the root
distribution the Bethe roots do not deviate much from the rays and, in addition, there are no
significant gaps along the ray typically correspond to the primary Bethe states.

For the solution of the Bethe Ansatz equations of the form (4.4), corresponding to the lowest
energy state (S° = 0) of the Z, invariant spin chain, the eigenvalues of the quasi-shift operators
(2.2) are given by

KO =1. (4.12)

In turn, this implies that in the scaling limit all the parameters s, and 5, occurring in the ODEs
(3.6) and (3.7) are zero. Then, upon a change of variables, the differential equations coincide
with the Schrodinger equations which describe the scaling limit of the primary states for the
XXZ spin chain (see eq. (A.4)).

Consider the quantization condition (4.2) specialized to the primary Bethe states. In this case,
the sets w and w are trivial and the relation can be written as

r 4 ¢
28 N\ 7 sy FRGW@ xi g2
o) "_( ) =(-1)7e 7S (1+0(N’€)>. (4.13)
rNo Fp(s®©) FpGEED)
Here s© and §© denote
0 _ (O (0 <0 _ (O <0
sO= (517 50) $O=(5". .5 (4.14)
with
5O = (1) ot Zee-1 5. 50 = (—1)r o Te2e-1) 5, . (4.15)

The function

Fl,(s)EFp(sl,...s[%]) (4.16)
is a certain connection coefficient for the ODE
(51
[—33+e’”+p2+zsa e“”]l/~/=0. 4.17)

a=1

To define it, one considers a Jost solution to the differential equation, which for Re(p) > 0 is
uniquely specified by the condition:

Yy —eP’ s vV —> —00. (4.18)
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Then the coefficient F,(s) occurs in the asymptotics:

~ rv. sv 2
Yp(v) = Fp(s) exp —I+?+—62 as v—> 400. (4.19)
r
Recall that s, which appears in the above equation along with (4.13), is identically zero for r odd,
while s = s = S 4 for even r. Clearly, F,,(s) is an entire function of all the variables (s1, ..., s[%])

so that it is unambiguously defined when its arguments are any complex numbers.

Taking the logarithm of both sides of (4.13) one obtains

4 2% N Fo(s@tD)y F3G©) 57
2D stog (222 ) 41 P P —2 ( —) O(N~¢).
r b ”g(rNo>+log[ R Fpaey | =2\t ) T o)

(4.20)
Here ny with £ =1, ..., r are some numbers, such that
Z for N
ne e 1 or N/r even @21
Z+ 5 for N/rodd

In order to assign them a precise meaning, it is necessary to fix the branch of the logarithm
containing the functions F, and F};. An evident requirement is that the sumover £ =1,2,...,r
of the Lh.s. vanishes. This implies the condition

ny+...+n =-S5 (4.22)

One may expect that, with the branch of the logarithm being suitably chosen, the (half-)integers
ny are simply related to my labelling the primary Bethe states from (4.10). To explore this further,
let’s consider the cases r =2, 3.

For r = 2 the connection coefficient F,(s) admits the simple analytical expression:

. T(1+2p)

F,(s)=23"r"7 — T°F (4.23)
' FGG+p+3)
This is because the corresponding ODE (4.17) reduces to
[—02+e +p2+se' |9 =0 (r=2), 4.24)

which may be brought to the form of the confluent hypergeometric equation. The relations (4.20)
specialized to r = 2 consist of only one independent equation. Setting £ =2 and £ = 1 therein
and taking the difference, one finds

Nz%l—* 3 1 l" 1 is l" 1 -~ is
[ (§+5):|_2“0g|:22is Gtr+3) (§+P+7)}

FG+p=5TG+p—%)
=27 (n; —n)) + O(N™°) (4.25)

where N( was substituted for its expression (3.21) in terms of the parameter n. This is the quan-
tization condition studied in refs. [9,13,14] in the context of the Z, invariant spin chain with
ny —np replacedby m=my —my € Z." The branch of the logarithm in this case is chosen such

7 Our parameter (— %) coincides with s, which is used in those works, see also Appendix A.
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that the 1.h.s. is a continuous function for real s, which vanishes at s = 0. Taking into account
that n; + np = m; + my = —S%, one concludes that

Ny =my (r = 2) . (4.26)

For r > 3 a simple analytic formula for F),(s), similar to (4.23), does not exist. Nevertheless
this function can be analyzed within the perturbation theory and WKB approximation applied to
eq. (4.17). For r = 3 the ODE becomes

[—33+e3”+p2+sw“]x?f=0 (r=3) 4.27)
and a perturbative calculation yields the first terms of the Taylor expansion
l 2p 2
log Fjy(s1) =1lo I Tr(14+ 2
g Fp(s1) = g[zf ( "‘3)}
+ (5. 3) Csi— fo(5.3) Cst+0G)) . (4.28)

Here the functions f(k, g) and f>(h, g) are quoted in Appendix B, while

Wi

3

4.29
FZ __) ( )
On the other hand, the WKB approximation gives that as | arg(s;)| < 7 and |s1| — oo,
r'a+2p)
log F =1 — ) —pl
og Fjp(s1) Og( N ) p log(s1)
F2( )y 3 T2(3) _3 _3

. pHs t+0(s, %) (4.30)

3f TR T
(in the r.h.s. of this equation and (4.28) log(1) = 0). The zeroes of the entire function Fj(s1)
accumulate on the negative s; axis, which is a Stokes line. As s; — —o0, it is possible to show
that

ra+2
Fp(S1)=(%np) Is1177
201 203
XeXp(—lsni ;/(%— ;j“_) (1 —8p%) Isy |7 +0(|s1|3))
21y 2 .
X €OS <np—|s1|i ;/(24_) 8«/(_) (1—8p?)|si| 3 +0(|Sl|g)>. 4.31)

This way, the function log F,(s1) can be fixed at small s; via formula (4.28) and then extended
by continuity to the wedge |arg(s;)| < w7 — §, where 0 < § < 1 is chosen in such a way so that
the zeroes of F),(s1) are excluded from the domain.

The quantization condition (4.20) for r = 3 can be written as
ilog (Fp(eJr%esl)) —ilog (F,, (e+%([71) s1)> +ilog (F,; (ef%w*l) 51))
: —2miyg - ¢ —€
—ilog (Fp(e™¥05)) =27 (me+ = ) + O(N 7). 4.32)
r

We found that if the logarithm of F,(s1) is fixed as above, then the (half-)integers n, are related
to my from eq. (4.10) as
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Ny =my_| U~L+r; r=3). (4.33)

Furthermore, by means of the asymptotic formula for the logarithm of F,(s1) (4.30), itis straight-
forward to show

_ 2| 3
= [rz(g)}

Y
sil=r [r%i)}

Here m is given in terms of the triple (my, mo, m3) as

2 2
m+m

where m, my are defined via the condition
mjmy > 0. (4.36)

Formula (4.34) is valid as m >> 1 with p and p being kept fixed. Note that if all m, mp and m3
have the same sign, their absolute value must be smaller than S* = p + p > 0. As aresult, (4.34)
becomes inapplicable. Also, for all the RG trajectories we were able to construct, where the
(half-)integers (mp, my, m3) could be defined unambiguously, at least two of them were smaller
or equal to zero so that mj,myg <0.

[SEN

4 1—8p° _
m3 (1+ p— +o(m 2))

(4.34)

[NEN

o2
m3 (1 + 19 8p +0(m_2)) )

7 m?

The condition (4.36) does not fix m, my taken from the triple (my, m, m3) unambiguously.
This is not important for the description of the asymptotics of |s1| and |s7| since (4.34) involves
only m, which is invariant under the permutation m; <> my. Turning to the large m asymptotic
formula for the arguments of s1, 51 we supplement (4.36) with the requirement

[mj| > [myg| . 4.37)
Then we found that

2w 4 m; —m,
arg(sy)) = 5 e + (—1)#(7)) 3 arctan (]7]6) + o(lml_z)

m; + my
arg(s1) + arg(51) = o(Im|72) (4.38)
where (—1)*P) stands for the parity of the permutation P : (1,2, 3) — (j, k, £), while
0 for £=1
ue=43—-1 for £=2. 4.39)
+1 for £=3

Note that for the case m; = my, the arctangent in (4.38) vanishes and arg(s;) = ZT” we+o(jm|=2)
and similarly for arg(sy). Also, the condition (4.36) guarantees the inequality

T 4 m; —my T
—— < —arctan| ——— | < —. (4.40)
3 3 m;j + my 3

In order to illustrate the accuracy of (4.34) and (4.38), some numerical data for 51 and 5 obtained
from the solution of the Bethe Ansatz equations corresponding to the primary Bethe states is
compared with the predictions coming from these asymptotic formulae in Table 2.
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Table 2

In order to demonstrate the accuracy of the asymptotic formulae (4.34) and (4.38), primary Bethe states |Wy) were
constructed for the Z3 invariant spin chain that are characterized by different triples (my, my, m3). The values of s, 51
were then obtained by computing by, b_;1 (2.10) from the eigenvalues of the quasi-shift operator and then taking the
scaling limits s1 = C slimy_, o b1, 5] = —C slimy_, o, b_1 with the coefficient C; as in eq. (3.2). The result was
used to generate the numbers listed in the columns “Bethe Ansatz”. Recall that m is given in terms of (mp, mp, m3) by
eq. (4.35) with mj, my being defined through the conditions (4.36) and (4.37). Note that for the three primary Bethe
states considered, the asymptotic formula (4.38) yields the same result for arg(sy), which is given in the last column, and
similarly for arg(5;). The parameters were taken to be n = 2.5, k = 0.05, while for all the states w =0, S* =2.

4

Isg]/m3 arg(sy)
(my, mp, m3) Bethe Ansatz formula (4.34) Bethe Ansatz formula (4.38)
(-2,—-1,1) 1.265280 1.280089 2.534721
(—4,-2,4) 1.351599 1.352403 2.523989 +2.523396
(—6,-3,7) 1.365639 1.365794 2.523508

_ 4 _

Is1]/m3 arg(s))
(mp, my, m3) Bethe Ansatz formula (4.34) Bethe Ansatz formula (4.38)
(-2,-1,1) 1.185686 1.194405 —2.522902
(—4,-2,4) 1.330539 1.330982 —2.523408 —2.523396
(—6,-3,7) 1.356189 1.356273 —2.523398

5. The spectral determinants at large E

In the context of the ODE/IQFT correspondence, an important role belongs to the study of the
large E asymptotic expansion of the spectral determinants. The first few terms in the expansion
were already presented in (3.39)-(3.41). Let’s denote the r.h.s. of the last of these formulae by

N 2n 0
@)\ _ (0 0 0 -1 14
C (9):Q:p’s(w) exXp We +((_1) ls_n+r>;i|. (51)

Recall that the integer £ = 1,2,...r labels the different wedges arg (-1 "' E) e (2Z (¢ —
1), 27”5) (mod 27) in the complex E plane. An analysis of the ODE (3.26) shows that the full
asymptotic expansion may be represented in the form

DﬂE|w)xcﬂMe)wp(ﬂﬁw)+1wy+ﬁwkm), (5.2)

where the formal asymptotic series S (), 1(0) and H (0) are described as follows.
The largest corrections to (3.41) come from S ©(®). In particular,
(554 .
> ot T = % T s P00 6

a=1

1
sO@)y= —— _
©) 2nm

with S}Z) (0) decaying faster as & — oo than the explicitly displayed terms. The latter linearly
depend on the parameters s, entering into the differential equation (3.26). Within the usual inter-
pretation s, are the eigenvalues of certain Integrals of Motion (IM) S,. The subscript a coincides
with the charge of these operators w.r.t. the Z, symmetry transformations. Furthermore, their
conformal dimensions are given by

Sa: (AA)=(1-20) (a=1,....15]). (5.4)
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Similarly the large E asymptotic of D ﬁ(E | ) involves the eigenvalues of the operators S,,
whose Z, charges are (—a) and conformal dimensions read as

Se: (AA)=(0,1-2) (a=1,....15]). (5.5)

The formal asymptotic series S 1(15) () in (5.3) has the general structure

oo I3
2a
S7O0) =3 (10" Spa e @ (5.6)

m=1a=1
Again, the coefficients S, , of the expansion are expressed in terms of the eigenvalues of certain
operators whose Z, charges are a and which have conformal dimensions A =2m + 1 — 27“ and
A=0.

Among the coefficients S, 4, those with a = % for even r deserve special attention:

Spr=h, @m=1,2,...; r—even). 5.7

3
They are the eigenvalues of certain operators I, with Z, charges 5 (mod r) and which have
integer conformal dimensions

Lyt (A, A)=(2m,0). (5.8)

The operators I, are expected to be local IM, i.e., they admit an expression of the form

2 d
u
Ly = / i ), (59)
2
0

where 77,41 (u) are chiral local fields of Lorentz spin 2m + 1 such that
o1 () =0. (5.10)
Similarly the expansion of the spectral determinant D ;,(E | w) yields the eigenvalues of

2

- du - _ - _
Ly, = / = T @), 0o 41 (i) = 0. (5.11)
0
These have the same Z, charge as I, i.e., % (mod r).
While I,,, and I,,, appear only when r is even, it is expected that for generic positive integer
r the theory possesses the additional local IM I, and I, 1. For the former ones

2
du _
Lyt = / o Do) 3T 3 () =0, (5.12)
0

where the chiral local density 75, has Lorentz spin 2m and similarly for iszl. These local IM
are all Z, invariant. The eigenvalues of I,,,_ appear in 7 (6) in the formula (5.2). In particular,
the leading term reads explicitly as

1 . S
I(Q)Z_ﬁr(—z—n)r(%Jrﬂ)lle9+..., (5.13)
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where

»? 52 ,
:n+r+5_ﬁ+L (SEOfOI‘I’Odd;SES%fOI‘I"CVCI’l). (5.14)

The corresponding operator is of the form

I

& (o +...). (5.15)

I:
! 21

0\5’

Here d¢ is the chiral component of the current associated with the global U(1) symmetry of
the spin chain.® The ellipses stand for the contribution of other degrees of freedom. Note that
formula (5.15) fixes any ambiguity in the normalization of I, which is chosen in such a way that

its eigenvalues are given by (5.14). This follows since the eigenvalue of the zero mode foz i 3—7’; ap
is P = Jr%. The CFT Hamiltonian coincides with
Hepr =1 +1; . (5.16)
The full series for 7 (6) takes the form
o (=D 4" I\ r I\ ntr —@m—1)
1(0) = Z 2 T T(—(m—3L)T(m— %) EL) Iy e=@m=D0 (5.17)
m=1
Here the coefficients 15,1 depend on p such that as p — oo,
1 = ( P’ )m +0(p™2). (5.18)
n—+r
These are the eigenvalues of the local IM I, from (5.12).
Finally, the term H® (6) from (5.2) stands for the formal asymptotic series
s 2
AY@) =Y AP e, (5.19)
m=1

It involves the eigenvalues of the “dual non-local” IM, whose Lorentz spin depends on » and
is given by 2"7’" with m =1,2,3,... . For the case r = 1, such operators were first discussed
in the context of the quantum KdV theory in ref. [23]. Also note that the coefficient Qf;,l,)s (w) in
(5.1) can be interpreted as the eigenvalue of the simplest non-local IM, which is related to the

so-called reflection operators [24,25].
6. Conclusion

The main result of the paper is the class of second order linear differential equations and the
quantization condition that describe the scaling limit of the Z, invariant spin chain in the critical

regime with anisotropy parameter g = en% and n > 0. We can not claim to have developed an
ODE/IQFT correspondence for the model as the field theory description lies beyond the scope

8 The current d¢ is normalized through the operator product expansion d¢(u1) d¢(uy) = — 5+ O(D).

1
2(uy—u3)
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of this work. We believe that further studying the theory is worthwhile since even a superficial
analysis reveals many interesting features of the CFT underlying the critical behaviour. Among
them is an infinite degeneracy of the ground state (as well as all conformal primary states) and
the presence of a continuous component in the spectrum which occurs in the case of even r. To
conclude the paper, we would like to mention two possible directions which, in our opinion, may
help to better understand the critical behaviour of the model.

The first concerns the algebra of extended conformal symmetry. A way of proceeding in its
study is provided by the densities for the local IM (5.9), (5.12) (T, ]_"j) with j =2,4,6,... for
odd r and j =2,3,4,... for even r. Since such fields are periodic, e.g., Tj(u + 27) = T; (u),
and occur inside an integral, they are defined up to a total derivative:

ij-)Tj—}-an_l, le-)Tj—i-f_)@j_] R 6.1)
where O;_1 ((7).,'_1) are local chiral fields of Lorentz spin j — 1 (1 — j). Based on the experience
gained from the study of the cases » = 1, 2 we expect that the densities can be chosen such that
they generate a closed VV-algebra. The explicit construction of the algebra of extended conformal

symmetry would be an important step for describing the CFT underlying the critical behaviour
of the lattice system.

The second direction is the study of the limit n — co. As is the case for r = 2, one expects
that it can be interpreted as a classical limit, where the CFT admits a Lagrangian description. If
so, this would certainly yield valuable insights into the physical content of the theory.
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Appendix A

The special cases r = 1, 2 for the proposed ODE (3.6) have already been discussed in the
literature. For r = 1, the differential equation reads as

2

1

-1

I S e L r=1). (A.1)
z 72 z

Via the change of variables:
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7= 1 Exxzx?, W= x Uxxz (A2)
and parameters
p=vati(t+d), n=a, E=2"@1Exgy (A3)

this ODE becomes the Schrodinger equation for the anharmonic oscillator appearing in refs. [17—
19]:

L+1
[— 3+ (xiz) +x% — Exxz]‘l’xxz =0. (A4)

It describes the scaling behaviour of the XXZ spin chain with anisotropy parameter g = ewi_il
see, e.g., refs. [14,21].

When r =2, eq. (3.6) becomes

172—l S1
I:_az2+ Z24_Z—1+E_”_2Zni|\IJ:0 r=2). (A5)

The substitution
zZH> iz, s> —2s, E— i) (A.6)

brings it to the form of the differential equation discussed in ref. [13] in the context of the scaling
limit of the Z; invariant spin chain.

Appendix B

Here we present the explicit formulae for fi, f», which enter into egs. (3.15) and (4.28). We
use the same notation as in ref. [14], where these functions have previously appeared.

The function f) is defined as
rl'(1—-2g) T(g+2h)
sin(rg) T —g+2h)°
As for f7, it is more complicated and is given by the integral

(B.1)

fi(h, 8) =

oo
4o T2(1—g) T(Qg+2h) dx Si(x)
F2(%+g) 'l —2g+2h) 2w x +1ih

—00

fah, g) =2 (0<g <%, Me(h) > 0)

(B.2)
with
S1(x) =sinhQRax)'(1 —2g +2ix) '(1 —2g — 2ix) (F(g +2ix)I'(g — 21x))2 . (B.3)

For% < g < 1 one has

x
L T2(1—g) T@g+2h) / dx 85i1(%)
r2(d +¢) T —2g+2h) 27 x +ih

—00

folh,g) =2 (B.4)

_ sin@rg)NG —49)l*(1 — o) (3g — ”) (L <g<1, fe(h)>0)
! ,l .

Qh+1—2g)2h — 1+ 2g)
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Appendix C

The coefficient (’SE,DS (w), appearing in the large E asymptotic expansion of the spectral de-
terminant (3.41), may be expressed in terms of the connection coefficients of the differential
equation

(51

2 -
TR ST o ) [i=o.

— (14w e ) 1+ wg

where

sO= (=D et and W@ =(=1) e 7Dy, (C2)
This ODE is obtained from (3.26) by changing variables,

= (=1 "leT@ e woel ), (C3)

and setting E to infinity therein. Assuming that ie(p) > 0 we consider a solution of (C.1) such
that

Uy —eP’ as v— —o00. (C4)

A straightforward WKB analysis yields that when v — +o0,

2
1//p(v)—>C(£) (w) exp| — H—i(—l)Z E—I——GT (C5)
4 2 r
with
0 for odd r
s = ) (C.6)
st for even r

One can show that (’Sﬁf)s (w) is expressed in terms of the connection coefficient C,(f,)s(w) as

¢ (w) = T Chx(w)
( ) (n+r) n+r 2 W (C7)

n+r

The computation of ég{é(ﬁ)), which occurs in the large E asymptotic formula (3.41)
of the spectral determinant D,—,(E | w) is analogous. The relevant ODE would formally co-

incide with (C.1) upon the substitution of the variables (v,lﬁ) — (v, 1;) and parameters
©  ©

(p,Sa’, Wy yng, L) — (P, § sa , wé ), i, L), where together with (C.2) we use the notation
50 = (1@ @D 5, and W = (=1)" et T D g, (C.8)

The connection coefficient is extracted from the  — 400 asymptotic of the solution v 5> which

is defined by the condition 1/:15 — ePV as v — —oo. Namely,
= - 2 rv
V(@) — CO\ (@) exp ( - % Fi(=1)! % += e7> (C.9)

(recall that s =5 4 for r even and is identically zero for r odd). Then the barred version of (C.7)
reads as

30



G.A. Kotousov and S.L. Lukyanov Nuclear Physics B 993 (2023) 116269

s C(f)
¢ (i )—,/ ~ (141) 2 oD M +(2_j). (C.10)

n+r
The following comments are in order here. For the case when there are no apparent sin-

gularities, the coefficients Cﬁf)s and CI(;Z)E are expressed in terms of the function F,(s) =
Fp(st, ..., s[%]) (4.16) used in sec. 4.2:

C0) = Fy(s“), CL@) = FpGY), (C.11)

where s = (s{”, ..., 57), 5 = (5{“, L. 52) with 5§ and 5 being defined in egs. (C.2)
2 2

and (C.8), respectively.

The above procedure for calculating the asymptotic coefficients, say, Q%)s(w) works under
the assumption that fe(p) > 0. Nevertheless, it may be extended to any 2p # —1,—2,... as
follows. One notes that W, (z) = e? Iﬁp with z related to v as in (C.3) solves the differential
equation

(02 +0@+n@) ¥, = (C.12)
and satisfies
Wy (e*iz) = =P W, (2) . (C.13)

Here the Lh.s. is understood as an analytical continuation along a small contour wrapping
around z = 0 in the counter-clockwise direction. Such a solution W, (z) may be defined for any
2p # —1,—2,.... By reverting to the original variables v, 1/7[, and using (C.5), one extracts the
connection coefficient C,, (e) s(w). In turn, C(z) (w) is obtained via formula (C.7).

References

[1] R.J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London, 1982.
[2] A. Luther, I. Peschel, Calculation of critical exponents in two dimensions from quantum field theory in one dimen-
sion, Phys. Rev. B 12 (1975) 3908-3917.
[3] L.P. Kadanoff, A.C. Brown, Correlation functions on the critical lines of the Baxter and Ashkin-Teller models, Ann.
Phys. 121 (1979) 318-342.
[4] F.C. Alcaraz, M.N. Barber, M.T. Batchelor, Conformal invariance, the XXZ chain and the operator content of two-
dimensional critical systems, Ann. Phys. 182 (1988) 280-343.
[5] R.J. Baxter, Generalized ferroelectric model on a square lattice, Stud. Appl. Math. 50 (1971) 51-69.
[6] V.V. Bazhanov, G.A. Kotousov, S.M. Koval, S.L. Lukyanov, Some algebraic aspects of the inhomogeneous six-
vertex model, SIGMA 17 (2021) 025, arXiv:2010.10615 [math-ph].
[7] J.L. Jacobsen, H. Saleur, The antiferromagnetic transition for the square-lattice Potts model, Nucl. Phys. B 743
(2006) 207-248, arXiv:cond-mat/0512058.
[8] Y. Ikhlef, J. Jacobsen, H. Saleur, A staggered six-vertex model with non-compact continuum limit, Nucl. Phys. B
789 (2008) 483-524, arXiv:cond-mat/0612037.
[9] Y. Ikhlef, J.L. Jacobsen, H. Saleur, An integrable spin chain for the SL(2,R)/U(1) black hole sigma model, Phys.
Rev. Lett. 108 (2012) 081601, arXiv:1109.1119 [hep-th].
[10] H. Frahm, M.J. Martins, Phase diagram of an integrable alternating Uy [s/(2[1)] superspin chain, Nucl. Phys. B 862
(2012) 504-552, arXiv:1202.4676 [cond-mat].
[11] C. Candu, Y. Ikhlef, Nonlinear integral equations for the SL(2,R)/U(1) black hole sigma model, J. Phys. A 46 (2013)
415401, arXiv:1306.2646 [hep-th].
[12] H. Frahm, A. Seel, The staggered six-vertex model: conformal invariance and corrections to scaling, Nucl. Phys. B
879 (2014) 382406, arXiv:1311.6911 [comd-mat].

31



G.A. Kotousov and S.L. Lukyanov Nuclear Physics B 993 (2023) 116269

[13] V.V. Bazhanov, G.A. Kotousov, S.M. Koval, S.L. Lukyanov, On the scaling behaviour of the alternating spin chain,
J. High Energy Phys. 08 (2019) 087, arXiv:1903.05033 [hep-th].

[14] V.V. Bazhanov, G.A. Kotousov, S.M. Koval, S.L. Lukyanov, Scaling limit of the Z, invariant inhomogeneous six-
vertex model, Nucl. Phys. B 965 (2021) 115337, arXiv:2010.10613 [math-ph].

[15] Y. Ikhlef, J.L. Jacobsen, H. Saleur, The Z, staggered vertex model and its applications, J. Phys. A 43 (2010) 225201,
arXiv:0911.3003 [math-ph].

[16] G.A. Kotousov, S.L. Lukyanov, ODE/IQFT correspondence for the generalized affine s((2) Gaudin model, J. High
Energy Phys. 09 (2021) 201, arXiv:2106.01238 [hep-th].

[17] A. Voros, Exact quantization condition for anharmonic oscillators (in one dimension), J. Phys. A 27 (1994)
4653-4661.

[18] P. Dorey, R. Tateo, Anharmonic oscillators, the thermodynamic Bethe Ansatz, and nonlinear integral equations, J.
Phys. A 32 (1999) L419-1.425, arXiv:hep-th/9812211.

[19] V.V. Bazhanov, S.L. Lukyanov, A.B. Zamolodchikov, Spectral determinants for Schrodinger equation and Q opera-
tors of conformal field theory, J. Stat. Phys. 1-2 (2001) 567-576, arXiv:hep-th/9812247.

[20] V.V. Bazhanov, S.L. Lukyanov, A.B. Zamolodchikov, Higher level eigenvalues of Q operators and Schroedinger
equation, Adv. Theor. Math. Phys. 7 (2003) 711-725, arXiv:hep-th/0307108.

[21] G.A. Kotousov, S.L. Lukyanov, Bethe state norms for the Heisenberg spin chain in the scaling limit, Nucl. Phys. B
947 (2019) 114748, arXiv:1906.07081 [hep-th].

[22] J.L. Cardy, Operator content of two-dimensional conformally invariant theories, Nucl. Phys. B 270 (1986) 186-204.

[23] V.V. Bazhanov, S.L. Lukyanov, A.B. Zamolodchikov, Integrable structure of conformal field theory II. Q-operator
and DDV equation, Commun. Math. Phys. 190 (1997) 247-278, arXiv:hep-th/9604044.

[24] A.B. Zamolodchikov, Al.B. Zamolodchikov, Structure constants and conformal bootstrap in Liouville field theory,
Nucl. Phys. B 477 (1996) 577-605, arXiv:hep-th/9506136.

[25] G.A. Kotousov, S.L. Lukyanov, Spectrum of the reflection operators in different integrable structures, J. High Energy
Phys. 02 (2020) 029, arXiv:1910.05947 [hep-th].

32



	On the scaling behaviour of an integrable spin chain with Zr symmetry
	1 Introduction
	2 Output from numerical work
	2.1 Low energy spectrum for odd r
	2.2 Low energy spectrum for r even

	3 ODEs for the scaling limit of the Zr invariant spin chain
	3.1 Differential equations for the primary Bethe states
	3.2 Eigenvalues of the Q-operator in the scaling limit
	3.3 Product rules

	4 Quantization condition
	4.1 General quantization condition
	4.2 Quantization condition for the primary Bethe states

	5 The spectral determinants at large E
	6 Conclusion
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


