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ABSTRACT: Due to a well-known, but curious, minus sign in the Gibbons-Hawking first law
for the static patch of de Sitter space, the entropy of the cosmological horizon is reduced
by the addition of Killing energy. This minus sign raises the puzzling question how the
thermodynamics of the static patch should be understood. We argue the confusion arises
because of a mistaken interpretation of the matter Killing energy as the total internal
energy, and resolve the puzzle by introducing a system boundary at which a proper ther-
modynamic ensemble can be specified. When this boundary shrinks to zero size the total
internal energy of the ensemble (the Brown-York energy) vanishes, as does its variation.
Part of this vanishing variation is thermalized, captured by the horizon entropy variation,
and part is the matter contribution, which may or may not be thermalized. If the matter
is in global equilibrium at the de Sitter temperature, the first law becomes the statement
that the generalized entropy is stationary.
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1 Introduction

Shortly after the discovery of the laws of black hole mechanics [1, 2] and the Hawking
effect [3], Gibbons and Hawking (GH) [4] found that those black hole phenomena extend
quite naturally to the case of “cosmological horizons”. One of the many results they estab-
lished is a “first law of event horizons”, which relates variations away from a given Kerr-de
Sitter (KdS) spacetime:

/ §T €15 = — kb Ao /STG — kySAy/8TG — ). (1.1)
b

Here the integral is over a spatial slice ¥ bounded by the cosmological and black hole
horizons, T}, is the matter energy momentum tensor, £ is the Killing vector that generates
the cosmological KdS horizon, the subscripts ¢ and b on the (positive) surface gravities
and areas A refer to the cosmological and black hole horizons, and €, and J, are the angular
velocity and angular momentum of the black hole relative to the cosmological horizon.!»?
In the case when there is no black hole present, the GH first law of event horizons reduces

to a statement about variations away from a static patch of de Sitter (dS) spacetime,
/ 6T, E4dS” = —k §A/87C, (1.2)
b

where the subscript ¢ is now dropped since only one horizon is present.

'In this paper we use metric signature (= + +-+) and set the speed of light equal to one.
2See also [5] for a derivation of (1.1), without the stress-energy term, using the Hamiltonian formalism.



Another result of Gibbons and Hawking in the same paper is that, when restricted to
a static patch, the de Sitter vacuum state of quantum fields is thermal with respect to the
Hamiltonian generating the Killing flow, at temperature Tgy = hx/27.% Together with
the Bekenstein-Hawking entropy formula Spy = A/4Gh, this implies that the right-hand
side of (1.2) takes on a thermodynamic form, —TgpdSpy. It follows that the entropy of
the static patch is reduced by the addition of Killing energy. This decrease of entropy is
opposite to the usual expectation when energy is added to a positive temperature thermal
state, and this opposite sign has raised the puzzling question of how the thermodynamics
of a static patch should be understood. Despite the long time that has passed since the
original observation by Gibbons and Hawking, in our view a satisfactory answer to this
puzzling question has not yet been given.

Several proposed thermodynamic interpretations of the minus sign have appeared in
the literature. In their pioneering paper, GH considered a physical process in which a
“particle” detector in the static patch absorbs a quantum from the perceived thermal bath
of vacuum fluctuations, and then the system settles down to a new stationary state in which,
according to (1.2), the increase of detector energy is accompanied by a decrease of horizon
area. Their take was that “One can interpret this as a reduction in the entropy of the
universe beyond the event horizon caused by the propagation of some radiation from this
region to the observer”. In this view, the entropy is attributed not to the static patch itself,
but to the region outside the horizon. It is not clear to us what to make of this reasoning.
For one thing, the notion that the entropy refers to degrees of freedom behind the horizon,
although popular especially in the context of black hole physics, seems inconsistent with
the thermodynamic notion of the entropy of a system that interacts directly with agents [6].
Moreover, if the total state is pure, then the entropy outside the horizon would presumably
be equal to the entropy inside the horizon. When referred to that entropy, the same
argument would imply that it should have increased rather than decreased.

Over the intervening years, variations on the GH interpretation have been discussed
in the literature. For instance, ref. [7] also took the viewpoint that the entropy refers to
the region outside the horizon, and posited that therefore the energy relevant to the first
law should be the energy behind the horizon. It was further argued that, since the total
matter Killing energy variation on a closed slice of global de Sitter space vanishes,* the
Killing energy variation behind the horizon is the negative of the left-hand side of (1.2). In
this way, (1.2) is read as an instance of the ordinary first law applied to the region behind
the horizon. It seems to us this proposed interpretation has a serious drawback in addition
to the point above regarding which degrees of freedom the entropy refers to. Namely,
although the Killing energy outside the horizon is the negative of that inside, the Killing
vector is past pointing outside if it is future pointing inside, which means this “energy” is

3This definition of the GH temperature is proportional to the normalization of £*. If £* is normalized
to unity at the center of the static patch it agrees with the standard definition, /27 L, where L is the de
Sitter length.

“In ref. [7] this vanishing was explained verbally and illustrated by an example in three spacetime
dimensions. Since we are not aware of an explicit demonstration in the literature, we have included one in
appendix B.



the opposite of what would normally be thermodynamically relevant. Another variation
of this idea is expressed in [8], which attributes the minus sign to the fact that energy as
“drawn from a de Sitter bath of energy, reducing the entropy of the bath”. But it is not
clear why, when comparing two solutions, energy of a black hole (or other object) in the
static patch must be regarded as having been taken away from the de Sitter bath.

An information-theoretic, physical process interpretation of a reversed relation was
offered in [9], in direct analogy with the case of a black hole: “The entropy increases
when we throw mass outside the cosmological horizon surrounding us. Indeed, the less
information we have about the interior of the cosmological horizon, the higher its entropy
will be.” Something along these lines makes sense to us but, as explained above we think it
is more correct to attribute the entropy to the region accessible to the observers who assign
this entropy, i.e., to the region inside of the static patch. When it crosses the horizon,’
the matter energy is “thermalized” from the viewpoint of these observers, and the entropy
of the state accessible to them thus increases. We shall discuss this interpretation further
below in section 3.2, where we also consider the case of adding mass by throwing it across

the past horizon into the observers’ patch.

A rather different proposed interpretation of the minus sign is that it occurs because
the temperature of the static patch has in fact the negative value —Tgy [10]. A system can
have negative temperature only if its Hamiltonian is bounded above, and it was pointed out
in [10] that this could make sense for the static patch, since there is a largest mass for a de
Sitter black hole, and because there is reason to believe that the static patch must be de-
scribed by a finite dimensional Hilbert space [11, 12]. A major difficulty with this proposal,
however, is that the Killing temperature of quantum fields in the static patch is known
to be positive (and equal to Tgr). This proposal was endorsed in [13, 14] (in the context
of more general causal diamonds in maximally symmetric spacetimes), but we no longer
think that arguments given there for the negative temperature interpretation are cogent.

Finally, a statistical explanation of the minus sign was given in [15] (see also [16, 17]
and [8]). It was argued there in the context of a matrix model that, since the GH entropy
of “de Sitter space” corresponds to the entropy of the maximally mixed state for a region
surrounded by a cosmological horizon, where nothing is fixed but the topology [11, 15, 18]
(see also [19-21]), any further specification of the state, such as the presence of a black
hole or a certain amount of matter Killing energy, amounts to a “constraint” on the state.
This results in a smaller entropy than that of the maximally mixed state. One of the three
arguments in [11] for this maximally mixed state interpretation of the Gibbons-Hawking
entropy of “de Sitter space” was based on the complete diffeomorphism invariance of the GH
partition function in the absence of boundary conditions. In [20] this reasoning is supported
by viewing this state as the limit of a canonical ensemble defined by conditions at a York
boundary that shrinks to zero inside the horizon. This statistical interpretation of the minus
sign is fundamental, but it does not directly clarify the thermodynamic interpretation of
the first law.

5Strictly speaking, a patch observer never sees it cross the horizon, but does see it cross the “stretched
horizon”.



In this paper we shall argue that the puzzle of the minus sign is resolved by sharpening
the definition of the thermodynamic ensemble to which the first law is applied, and by clari-
fying the thermodynamic meaning of the so-called first law. To specify the thermodynamic
ensemble we introduce a system boundary, inside the static patch, at which the tempera-
ture of the ensemble can be specified. This is a de Sitter version of the approach York and
collaborators have taken to defining quasi-local thermodynamic ensembles containing black
holes [22-27], and it has also been applied to the case of cosmological horizons [20, 28-31].
After the ensemble is defined in this way, we proceed to the limit in which the boundary
shrinks to zero size, recovering the empty static patch as the background to be varied.
The upshot is that the matter Killing energy is seen as a (generally) non-thermalized con-
tribution to the (vanishing) total Brown-York energy of the ensemble, analogous to the
contribution of the energy of matter outside a black hole to the total energy of the black
hole spacetime, so in the first law it is subtracted from the total energy. The temperature
in the vanishing boundary limit is selected not by a boundary condition, but rather by a
saddle point of the boundaryless partition function, as explained recently in ref. [20].

2 First law for de Sitter with a York boundary

To attribute a thermodynamical meaning to the GH first law (1.2), it must be placed in the
context of a well-defined ensemble. Unlike the case of a black hole, the static patch of de
Sitter space has no asymptotic region where the boundary conditions defining the ensemble
can be specified. Thus, to get a thermodynamic handle on the meaning, we introduce an
artificial boundary with Dirichlet boundary conditions inside the static patch, and later take
the limit where the boundary is vanishingly small. We call this a “York boundary”, since it
was York [22] who introduced such boundaries in the context of black hole thermodynamics
and emphasized that, because of diffeomorphism invariance, gravitational thermodynamics
is necessarily anchored at a boundary (see also [32] for a general discussion).

We assume the boundary is a round 2-sphere with fixed area 47 R?, and that a proper
temperature 7T is fixed at the boundary, and consider the thermodynamic system between
this boundary and the cosmological horizon, called the “horizon patch” (see the shaded
region in figure 1).% If, for each boundary radius R, we choose the temperature 7' to match
the Gibbons-Hawking temperature defined with respect to the Killing vector normalized
at the boundary, the stationary point of the partition function will be a Euclidean horizon
patch of empty dS space, and in the limit R — 0 that will coincide with the full empty static
patch with T = Tqp. The equilibria in this sequence are, however, marginally stable. As
shown in [20], and reviewed in appendix C, they are local maxima of the spherical, reduced
action; but, if the temperature is higher by an arbitrarily small amount, they become

5The reservoir needed to physically fix this temperature is not part of the system, and need not be
physically modeled here, since in any case we will be taking the limit where the boundary vanishes. In
fact, it is not clear whether Dirichlet boundary conditions on a timelike boundary define a well-posed initial
boundary value problem [34], or if the corresponding system is stable [35]. These are important foundational
questions for quasi-local gravitational thermodynamics, but we presume they are irrelevant in the vanishing
boundary limit.



T+

Figure 1. A York boundary (dashed curve) at radius » = R in the dS static patch. The boundary
splits the static patch into two systems: the “pole patch”, i.e., the white region between the pole
and the boundary, and the “horizon patch”, i.e., the shaded region from the boundary to the horizon
(the terminology comes from [33]).

metastable. We shall therefore consider the limit of a sequence of marginally stable de
Sitter patches, keeping in mind that to ensure at least metastability we should in principle
choose the temperature to be slightly higher along the sequence. Alternatively, one could
consider instead a sequence of microcanonical ensembles, which may be stable.

In appendix A we show that the on-shell variations’ of the Brown-York quasi-local
energy Fpy [25], matter Killing energy Fy,, and horizon entropy Spy = A/4Gh are related
by a “first law” of the form®

0Egy = 0FE,, +T65pH . (2.1)
The Brown-York (BY) energy is defined (up to a possible constant counter-term) by

Fry = —174 d*x\/ok, (2.2)
G Js

8
where the integral is over a spatial cross-section S of the boundary, k is the trace of the
extrinsic curvature of the boundary as embedded in a spatial slice (defined with respect
to normal pointing toward the outside of the system, which here is toward the region with
smaller spheres), and o is the determinant of the spatial metric of the boundary cross
section. For the case of a spherical boundary cross-section we have

kR?

"Since we consider a sequence of metastable configurations that lie arbitrarily close to the on-shell
marginally stable configuration, the first law for variations away from an on-shell configuration may be
used (cf. appendix C).

8If the area of the round 2-sphere S is not kept fixed, then there would be an additional term on the
right side of the first law, —PJAs, where P is the Brown-York surface pressure. We include the boundary
area variation in the derivation in appendix A, cf. (A.49).



Further, we define the matter Killing energy with respect to the static patch Killing vector
& normalized to unity at the York boundary,

By = / T, 61d5" | (2.4)
by

where T}, is the matter stress-tensor, and X is the spatial slice between the York boundary
and the horizon.

Since thermodynamics in the static patch is puzzling, it is helpful to first consider how
the analogous first law is understood in the case of black holes. Then, in the limit that the
York boundary recedes to spatial infinity, the left-hand side of (2.1) becomes the variation
of the total energy of the spacetime, i.e., of the ADM mass, the temperature T" becomes
the Hawking temperature measured at infinity, and the entropy variation arises from the
area variation of the black hole horizon. The matter term then refers to matter outside the
black hole, for instance a shell supported by its own stress. Such a shell might or might
not be in thermal equilibrium with the ensemble; in either case the first law relation holds.

The thermodynamic interpretation of the terms in the first law for variations of the
static patch is the same as in the black hole case, mutatis mutandis. But now we can
contemplate the limit in which the boundary radius R goes to zero. The mean extrinsic
curvature approaches the flat space result k — —2/R, so Egy — 0as R — 0. Also, since the
Killing vector was normalized at the boundary, it becomes normalized at the center of the
static patch, so T — Tgy = h/2w L. Our first law thus reduces in the limit to the GH first
law (1.2). The temperature Tgy arises in this limit because, for each boundary radius R,
we have chosen the ensemble temperature so that the saddle point of the partition function
would correspond to empty dS. Once the boundary has shrunk to zero radius, however, it
no longer specifies any ensemble; nevertheless, a temperature equal to the proper GH tem-
perature at the center of the static patch is determined by the inverse of the circumference
of a great circle of the round S* saddle of the boundaryless partition function [20].

It is now clear how to understand the minus sign in the GH first law. The confusion
— for those who, like us, were confused — arose due to a mistaken interpretation of the
matter Killing energy term as referring to energy that is thermalized on account of being
beyond the horizon. But this matter is not beyond the horizon; rather, it is accessible in the
static patch. It is therefore analogous to energy in the region outside a black hole, which
does not contribute to horizon entropy. The variation of the horizon entropy is therefore
the inverse temperature times the variation of the total (BY) energy (which vanishes as
R — 0) minus the contribution of the matter Killing energy. Part of the variation of the
vanishing total energy is the matter contribution, which may or may not be thermalized,
and part is the thermalized contribution captured by the horizon entropy variation.

3 Comments on the first law

3.1 Thermalized matter and generalized entropy

If matter is present in the unperturbed background spacetime, the quasi-local first law (2.1)
has an additional term on the right side (see appendix A for a derivation):

1
§Egy = T 0Spn + 0Fm + / AV =2 ST 5. (3.1)
by



If the matter is treated as a perfect fluid and is in local equilibrium, as in the classic
Bardeen-Carter-Hawking (BCH) paper [2] (see also [36]), then the two matter terms satisfy
a thermodynamic first law for the fluid alone, which for a fluid at rest with respect to the
Killing vector & takes the form:

1 v
6 F + /Z dV\/—§2§T” §Gu = /E AV —E*(Tindsm + pon), (3.2)

where T}, is the local proper temperature and sy, is the entropy density of the fluid, p is the
local proper chemical potential, and n is the fluid particle number density. If the fluid is in
global equilibrium in the ensemble at the temperature T fixed at the York boundary, then
the Tolman relation holds, \/—&2 T}, = T, so that the net fluid entropy variation becomes
T 6Sm. In this case the matter entropy variation 0.5, combines with the horizon entropy
variation to form the total (generalized) entropy variation, such that the quasi-local first
law takes the form

5By = T 6Syen + / AV /=2 6n, (3.3)
b

where Sgen = Sm + Spu. At fixed BY energy and fluid particle number density, the first
law becomes the statement that the generalized entropy is stationary, 6Sgen|Egy.n = 0.
An important special case is when the background state is empty de Sitter spacetime,
and the matter consists of quantum fields in the de Sitter vacuum state. In semiclassical
gravity, where the stress-energy tensor is replaced by its quantum expectation value but
the metric remains classical, the “quantum corrected” first law of the static patch with a
boundary is
0FERy = 5<Em> + TS, (3.4)

where (E\y,) is the expectation value of the Killing energy. The de Sitter vacuum state of the
quantum matter in the static patch is thermal with respect to the Hamiltonian that gener-
ates time translations of the static patch, which is equal to the Killing energy (2.4) where
the stress tensor is now an operator. The expectation value of the Killing energy variation

is therefore equal to the Killing temperature T' times the von Neumann entropy variation,”

5{Em) = T 6Syx . (3.5)

In the first law (3.4) the von Neumann entropy variation combines with the Bekenstein-
Hawking entropy variation to form the generalized entropy variation: dEgy = T dSgen.
Hence, at fixed BY energy, the quantum first law for variations away from the de Sitter
vacuum is the statement that the generalized entropy is stationary, 0Sgen|rg, = 0. That is,
the stationarity of the generalized entropy holds in this microcanonical ensemble.'? If the
boundary size goes to zero, the BY energy vanishes, so the fixed energy requirement can be
dropped, which implies the generalized entropy is stationary under all variations. The fact
that the generalized entropy is stationary in the de Sitter vacuum appears consistent with

9This is a case of what is commonly called “the first law of entanglement” [37] because, although it is
nothing but an example of the Clausius relation for a Gibbs state, the entropy it refers to is entanglement
entropy if the state variation is restricted to pure states.

10This has been recently shown as well in the context of Jackiw-Teitelboim gravity in [30, 38].



Figure 2. Matter infalling across the past horizon H of a dS static patch.

the idea that this state describes semiclassical fluctuations around the saddle point of the
zero energy microcanonical ensemble, i.e., the maximally mixed state in the Hilbert space
of states of a region surrounded by a horizon. (For related ideas see [11, 12, 15, 18-21].)

3.2 Physical process first law

The first law (2.1) discussed in the previous section is a “stationary state” version, in which
two nearby solutions of the field equations — namely empty dS and a perturbation of that
— are compared. In that setting, we accounted for the minus sign with a thermodynamic
interpretation of the law. In this section we discuss a “physical process” version of the first
law, which offers a different, dynamical perspective on the reason for the minus sign.

The perturbed static patch can arise dynamically via a (small) flow of matter through
the past horizon; see figure 2. The matter energy momentum tensor is related to the Ricci
tensor by Einstein’s equations, and the null-null component of the Ricci tensor on the hori-
zon drives a focusing of the horizon generators via the Raychaudhuri equation, perturbing
the horizon area. The equation for evolution of the horizon area can be integrated, given
a boundary condition. In the case of a black hole perturbed by infalling matter [39-41],
the boundary condition is that the horizon settles down to constant area in the future, and
an essentially identical analysis applies to asymptotic Rindler horizons [42, 43]. In these
cases, one compares the final horizon area to the area at the bifurcation surface of the
unperturbed background spacetime.!!

The change of dS horizon area can be calculated in essentially the same manner, using
the boundary condition that the horizon area is constant (and equal to 47 L?) in the asymp-
totic past or future in the perturbed solution. If matter carrying positive energy falls across
the past horizon of a static patch of dS, as depicted in figure 2, the horizon generators are
focused, so that the horizon area at the bifurcation surface of the background solution is less

"The physical process first law (3.6) is valid only for quasistationary processes; in particular, for the
higher order terms in the Raychaudhuri equation to be negligible, no caustics should form in the region
of integration (i.e. the perturbed past horizon up to the bifurcation surface in the case of dS). In ref. [43]
a condition on the size of the infalling matter to avoid caustics was obtained, and it was shown that the
physical process first law applies to any bifurcate Killing horizon.



than 47 L?. In this way, addition of positive matter energy to the static patch leads to a de-
crease of horizon entropy, hence the minus sign in the physical process form of the first law,

n K

0E = —%&4. (3.6)
Here  is the surface gravity'? and 6 E} = J3 0T, 61 dXY is the Killing energy flux across
the horizon H, defined with respect to the horizon generating Killing field &* of the sta-
tionary background spacetime. To relate the physical process version to the stationary
comparison version of the first law one can use the conservation relation, V¥ (67),,&*) =0,
which holds to leading order in the perturbation, and invoke Stokes’ theorem to equate the
flux of Killing energy across H to the flux across a spatial slice 3 of the static patch.

A similar analysis can be done for a time-reversed process, in which a flux of energy
exits the static patch through the future horizon. This is analogous to the case of matter
falling into a black hole, which produces an increase of the horizon area. The horizon
generators must start out expanding so that, after the flux of matter across the horizon
focuses them, they wind up with vanishing expansion in the asymptotic future. This
analogy was invoked in ref. [9] to give an information-theoretic explanation for the minus
sign in the dS first law: information available in the static patch about the matter is lost, so
the entropy increases. In effect, the matter energy is thermalized. Conversely, when matter
energy enters through the past horizon of the patch, the available information increases,
so the entropy decreases.

3.3 Three-dimensional Schwarzschild-de Sitter solution

The case of three-dimensional spacetime is different from that in higher dimensions, since
there are no classical de Sitter black holes in three dimensions.'® Rather, three-dimensional
SdS is equivalent to a conical defect with a single cosmological horizon [45]. The defect
arises due to a point particle of rest mass m with Killing energy Ey, = —P*{, = my/—E2,
where P* = mu* is the 4-momentum. The point particle may be enclosed inside an
arbitrarily small system boundary radius R, so the BY energy need not vanish in the limit
R — 0. The variation of the BY energy of the “horizon patch” due to a variation dm of
the mass of a point particle at rest at the center of the “pole patch” (cf. figure 1) is equal
to the variation of minus the Killing energy of the point mass.'* This provides another

12YWe take the Killing vector to be future pointing in the static patch and on the horizon. If the surface
gravity is defined by one of the standard linear formulas (e.g., £#V €Y = k&) so that it is positive on the
future horizon, it is then negative on the past horizon, since the Killing vector shrinks with respect to affine
parameter along the horizon Killing flow. However, x can also be defined as positive by definition, which is
what we do in this paper.

13Semi-classical backreaction due to conformal fields can induce a black hole horizon, however, leading
to a three-dimensional quantum de Sitter black hole [44].

141f the Killing vector ¢ is normalized to unity at the boundary, then the matter Killing energy variation
of the point mass at rest at the pole is equal to minus the horizon patch BY energy variation for nonzero
R as well, and is given by dm multiplied by the norm of £ at the location of the particle. In fact, this holds
also in higher dimensions. According to the first law for the pole patch, the matter Killing energy variation
is equal to the pole patch BY energy variation, which is minus the horizon patch BY energy variation since
they are defined with respect to opposite normal directions. In the R — 0 limit both the BY energy of and



understanding of the origin of the minus sign in the three-dimensional case. Unlike the
interpretation offered in ref. [7], which was that —dm in the first law be viewed as the
variation of the Killing energy outside the static patch, here it is seen as the limit of § Egy
as a boundary enclosing the point mass shrinks to zero size.

More precisely, including a York boundary with fixed area in between the cosmological
horizon and the origin, the quasi-local first law for the horizon patch is

§Epy = T 6SpH - (3.7)

Notice there is no matter Killing energy variation dF,, in this context since the only
matter is the point mass at the center of the static patch, which lies outside the system
between the boundary and cosmological horizon. Moreover, the BY energy is given by
Egy = 75V (1 —4Gm)? — R?/L? (see appendix C). When the York boundary shrinks
R — 0, we find

5(—m) = T840 SpH , (3.8)

where Tg% = h/2nL. Since the pure de Sitter GH temperature appears here, this relation
can also be interpreted as a first law for variations from dSg to SdSs. Indeed, the left-hand
side is equal to minus the Killing energy variation in the static patch due to the addition
of a point mass in empty de Sitter space, since §Ey, = /—£26m = dm, where the norm
of £ is evaluated at the center of the empty dSs static patch. Hence, the relation (3.8) is
nothing but the GH first law (1.2) applied to a point mass in three-dimensional de Sitter.
It is worth comparing the first law (3.8) with the first law for SdS3 proposed by [7, 46,

47),
§(—M) = T& 6 Spn , (3.9)

where M is the mass parameter in the metric, and T(S;%S = hv/1 —8GM /2rL is the GH
temperature in the SdS spacetime defined with respect to the Killing vector given by
& = 0; in the coordinate system of (C.1). While the definitions of mass and temperature
are different, the two first laws are indeed consistent, since m and M are related via
V1 —8GM = 1— 4Gm, such that the variations are related by dm = dM/y/1 — 8GM.
Note that while in [7] —M was interpreted as the energy outside the horizon, in our
formulation —m arises from the Brown-York energy as the boundary enclosing the point
particle shrinks to vanishing size.

3.4 York boundary and de Sitter holography

Thus far we have focused on the thermal system extending between the York boundary
and the cosmological horizon, the shaded region in figure 1. Consider now the non-shaded
region of the static patch between the pole and the York boundary, a.k.a. the “pole patch”.
There is a quasi-local first law for the pole patch, given by

§Epy = 6Em — PSAg . (3.10)

Killing energy variation in the pole patch vanish in d > 4 spacetime dimensions, but in d = 3 dimensions
with a point particle at the center they remain nonzero.

~10 -



Here we explicitly allowed for variations of the area As of the boundary cross-section.
The area is conjugate to the “surface pressure” P, which is proportional to the trace of
the spatial stress tensor (see appendix A). Note there is no thermalized entropy variation
since the cosmological horizon is hidden behind the York boundary. In the limit the
York boundary approaches the cosmological horizon, the BY energy vanishes, however, the
pressure-area variation becomes —PdAs — kIA/87G, thereby recovering the Gibbons-
Hawking first law (1.2) for de Sitter horizons.!®

The York boundary to horizon limit reminds us of a candidate proposal for a holo-
graphic description of the dS static patch [49-51]. In this picture the holographic dual the-
ory of a static patch lives at the (stretched) horizon. The maximum entropy associated to
the dual theory on the stretched horizon is large enough to describe the entire static patch.
In fact, it is argued the entropy of the cosmological horizon is equal to the entanglement
entropy of the pair of dual quantum theories living on the two stretched horizons. There is
another proposal for static patch holography [52] (see also [53]) where the dual theory lives
instead on a worldline near the origin » = 0. From the quasi-local perspective, this version
of dS holography coincides with the shrinking boundary limit of the system defined between
the York boundary and the horizon, the “horizon patch”. Thus, the two proposals for static
patch holography correspond to two limits of the York boundary in de Sitter space.

The question arises how these two proposals can be consistent with each other. In
fact, a York boundary of finite radius appears to interpolate between these two proposals
of static patch holography, placing them in a single framework, where the boundary offers
a fitting location to anchor the dual quantum theory. Further, it has been argued that
in de Sitter space the UV/IR connection appears to be inverted compared to standard
AdS/CFT [54], such that long distances in the bulk correspond to low energies in the dual
theory. Thus, perhaps moving the boundary from the pole to the cosmological horizon
corresponds to a flow from the UV to IR of the dual theory, respectively [30]. Alternately,
according to [33] the movement of the York boundary corresponds to a deformation of a
holographic conformal field theory. The precise nature of the dual quantum theory living
on the York boundary in the static patch remains an important open question.
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A Quasi-local Smarr relation and first law

Here we derive the quasi-local Smarr relation and first law, including matter, in the presence
of a York boundary. We focus on a York boundary in the static patch of d-dimensional
de Sitter space, though also extend the formalism to a Schwarzschild-de Sitter black hole.
The computations are quite similar to those in [30] for Jackiw-Teitelboim gravity in two-
dimensional de Sitter space, except that here we consider general relativity plus matter
fields in d dimensions.

Geometric set-up. Consider a d-dimensional spacetime M equipped with metric g, .
We now perform a (d —2) + 1+ 1-dimensional split of the spacetime. We consider a (d—1)-
dimensional timelike York boundary B, which has unit normal n,, and induced metric
Vv = —NyuNy + G- We denote the extrinsic curvature of the boundary as embedded in M
as Ky = 7, Vany = Vyn,. We foliate M by (d — 1)-dimensional spacelike hypersurfaces
>, with timelike unit normal u, and induced metric h,, = wu,u, + g.. The extrinsic
curvature of ¥ is denoted as K, = hCLVauV = V,u,. We assume the background has a
timelike Killing vector field ¢# orthogonal to the ¥ foliation, with norm /—£&2 = N, such
that ¢&# = Nu*. Finally, let S denote the (d — 2)-dimensional spatial intersection of the
York boundary and . Assuming the foliation X is orthogonal to B, the normals u, and
ny obey (u-n)|p = (u-n)|s = 0. This implies both unit normals are also normal to S,
leading to the (d — 2) 4+ 1 + 1-dimensional decomposition of the spacetime metric

Guv = —UuUy + 1Ny, + 0 (A.1)

where 0, = —n,n, + hy, is the induced metric on S. The extrinsic curvature on S as
embedded in ¥ is denoted by k,, = G%Dan,,, where D, is the covariant derivative intrinsic
to S. The three extrinsic curvatures K, K., and k,, are related by, cf. [25],

Koy = kuy — wyuynga® + (0 un + o%u )P Kop (A.2)
where a? = u®V,u? is the acceleration. Some useful contractions of this identity are
K=¢"Kw=k+nq.a®, vw'u'Ku =-n.a® ol'u'Ky = —apanﬁKag. (A.3)
Further, from the Killing equation it follows that
1
u, VEH = VEN | at = NV“N , Ko =0. (A.4)

Lastly, while in the main text we chose the normalization of £ such that N = 1 at the York
boundary, here we consider an arbitrary normalization and hence retain factors of N.

Quasi-local Smarr relation. We derive the quasi-local Smarr relation and first law
using the covariant phase space formalism of Iyer and Wald [55, 56]. Before including
matter fields, we first focus on vacuum general relativity characterized by the Einstein-
Hilbert Lagrangian d-form, including a cosmological constant A,

€

L =
167G

(R—2A), (A.5)
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where € is the volume d-form on M. A total variation of L yields
0L = E,,69" +db(g,69) (A.6)

where the equation of motion d-form £, is

1

Ew = 1561

G[,I,V + Aguu)e ) <A7)

and the symplectic potential (d — 1)-form 6 is

0(g,09) =0 -€=0%q, (A.8)
with )
o R wiZ o prTo
and €, = €qay..a, 15 the volume form on M whose first index is displayed while the

remaining (d — 1) indices are suppressed.
For every diffeomorphism generated by a smooth spacetime vector field £+, there is an
associated Noether current (d — 1)-form Jg,

Je=0(9,Leg) =& L, (A.10)

where L¢ denotes the Lie derivative along {. When the equations of motion are satisfied,
E,, =0, J¢ is closed, and hence locally it is an exact form

= dQs , (A.11)

where Q¢ is known as the Noether charge (d — 2)-form. Explicitly, on the boundary of X,
denoted 0%, the Noether charge form is

> v
Qe = 1677G6Wv§ , (A.12)

where €py; is the ‘volume’ form on 9%; on S we have €., = (n u, —nyu,) as its binormal.
The Smarr relation follows from the integral identity of (A.11) and applying Stokes’
theorem

/EJg = - Q¢ - (A.13)

In the case of the de Sitter static patch, 0¥ = S U B, where B denotes the bifurcation
surface of the cosmological horizon. Since (g, L¢g) = 0 for Killing vectors, we find for the

e
/Jg e %:/Eg-e. (A.14)

Here Ve denotes the ‘Killing volume’ [13] (usually denoted by © in the literature).
Meanwhile, the right-hand side of (A.13) is

Lagrangian (A.5)

- Qe = fig@g—%é@g . (A.15)
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where the orientation is taken to be toward the pole for the Noether charge integral over S
and away from the pole for the integral over B. The second term is proportional to the
area of bifurcation surface B,

A.16

$.0c=—g7z4 (A.16)

where we used V,&,|p = —keu and €, = —2. Further, via the metric decomposi-
tion (A.1)

= A7

Qels = 8 G (A.17)

where we inserted (A.3) and (A.4). By adding zero, we can rewrite this as

d— 3 Nkeg Negs S

= — v A.1
Qels =~G55rc ta=a* o> (A.18)
where 1
st = o G[ EMY 4+ (nga® + k)ot] (A.19)
is the spatial stress contribution to the Brown-York stress-energy tensor [25].
Altogether, substituting (A.14), (A.16), and (A.18) into (A.13) yields
d—3 1 K 1 27V
- NEk) = Ap — Ns*o,,) — ——o— . A .20
1—28nG Js (SNR) = grg4s d—zfg(ﬁs Sow) = Tpsa - AW

For a spherically symmetric spacetime, N and s, may be pulled out of the integral
leading to the quasi-local Smarr relation for the dS static patch

2NV
STGN

(d—3)Egy = (d—2) { Ap — AS] - (A.21)

8TGN

Here As = [gd?2z\/o is the area of the round (d —2)-sphere S, (d—2)P = s*,,, (whose
thermodynamic meaning is given in appendix C) and Epy is the Brown-York quasi-local
energy given in (2.2). Explicit expressions for P and Epy can be found in (C.9) and (C.7),
respectively, for SdS spacetime.

Quasi-local first law. The first law follows from the integral identity [55]

|wlo.00.ce0) = § 6Qc—¢-01= foQe—¢-0)+ f o0, (A22)
> ox S B
where we used that | = 0. Here w(g, d19,029) = 616(g, d2g9) — d20(g, 01) is the symplectic

current (d — 1)-form. If a Hamiltonian H¢ corresponding to the evolution of £ exists in
phase space, then by Hamilton’s equations we have

SHe = [ wl9.09.Leg) (A.23)

When ¢ is a Killing vector w(g,dg, Le¢g) = 0, such that

~ 4 00 = § 5Qc —¢-0). (A.24)
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We now explicitly evaluate each side of this integral relation. The quantity on the left-hand
side is simply

- 72 5Qe = <34z (A.25)
since k is constant over B. Evaluating the right-hand side is more involved. First,
from (A.17), the variation of the Noether charge at S is
Neg 1

ON
25 o a) =g ca) :
P [(n a)2a dow + (n-a) N +d(n-a)| , (A.26)

where we used deg = 65%0'“‘” do . Next, to determine & - 0|s we first need the pullback of

6Q§|5 =

the symplectic potential to B, for which we use a result from [57, 58] (ignoring the exact
contribution dC on the right side, since { - dC = LC' — d(& - C') vanishes after integrating
over S)

€B
0(g,0 = ———— (KM — 4" K)oy + b A2
(9,09)l5 = =15 (K" =" K)dvu + b, (A.27)
where b is the Gibbons-Hawking-York boundary (d — 1)-form on B
€B
b=— K. A.28
8rG ( )

Then, with a little effort, we find'®
Nes
8w
where s*” is the Brown-York spatial stress tensor (A.19). Putting together (A.26)
and (A.29) yields'”

£-0|ls=— —(5k—(n-a+k)%a’“’6auy—(n-a)(SWN—é(nﬂ) —Neg%s‘“’éaw, (A.29)

N 1
[ —" Neszs"80,, . A.
[0Qe —&-0]|s 87TG5(1€63) + €558 dou (A.30)
Returning to the variational identity (A.24), we thus find
1 K 1
— —— ¢ Nb(kes) = ——=0Ap — ¢ Nes=s"do,,, . A.31
877Gfé (hes) = grg4s f{g 5% 0%u (A.31)

As a final simplification, we assume S represents a round (d — 2)-sphere on a spherically
symmetric spacetime, such that k" = ﬁka‘“’ and hence s*¥ = Po"”. Moreover, given a
spherically symmetric configuration, NV and P are constant over S, so they may be pulled
out of the integral. Thus, after using 63%0"“1/ 00, = des, we arrive at the quasi-local

(mechanical) first law
K

8TGN
The form of this quasi-local first law is exactly the same as for a Schwarzschild black

hole [22, 25]. It does not only hold for a spatial slice between the York boundary and the
bifurcation surface of the horizon, but for any slice between B and a cross section of the

§Epy = §Ap — PSAs . (A.32)

horizon (see footnote 17).

16To arrive at this expression we made frequent use of (A.3), the decomposition V. = Opuw — Uply,
variations dep = €p 3V 6V, u*u”60,, = 0 and Suy, = u,SN/N (which follows from u, = —Nd,t) and
§-epls = —Nes.

'"Note the right side can be expressed as 1~ [N(n -a)des — Nes(ok + %k“”éaw)]. When evaluated at
an arbitrary cross section A of the horizon, we have N — 0 and N(n - a) — &, such that fH [0Qe —&-6] =
Kk0Ay /871G,
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Adding matter. We now minimally couple dynamical matter fields v to general relativ-
ity, with Lagrangian form Ly, (g,, V,1)e. Following Iyer [36] (see also [13]), an arbitrary
variation of the total Lagrangian L = Ly + Ly, is

0L = B, 89" + EF5¢ + dbg(g,69) + dbum (s, 6¢) . (A.33)

Here we denote the collection ¢ = {g,v}, and used
§Lun = S0 — eTW5g’“”’ + dOum (0, 86) | (A.34)

with B being the matter field equations of motion d-form, 7}, is the matter stress-energy
tensor, and 6y, is the symplectic potential (d — 1)-form due to the matter fields. Further,

1 1

By = B = 570w = | g

1
. "l e. (A.35)

G;w + Ag,uu) - 9

Next we decompose all relevant forms, 6,w, and J¢ into gravitational and matter contribu-
tions, e.g., J¢ = Jég + Jg" Assuming the background matter field equations, Ej =0, the
following variational identities can be proven

(6,08, £9) = 0" (6, £e6) + ST (€ g — dIE - 0n(9,59)] . (A36)

and
wg(9,09, Leg) = 0J¢(9, Leg) — (€ Elae)ogu — d[§ - 0g(g,99)] - (A.37)

Importantly, the total w is closed on shell. Moreover, 6 H¢ distributes itself into a gravi-
tational Hamiltonian variation dH, ? and a matter Hamiltonian variation 5Hén, formally
given by

5H§E/Ewg(g,5g,£§g), 5H?E/Ewm(ﬂ),5¢7£§1/))- (A.38)

Lastly, note that the Noether currents Jén and Jfg are not closed on shell separately; only
the total Jg¢ is. Specifically, assuming Eg‘ = 0, the (d — 2)-Noether charge forms QZ“ and
Q% are defined through

J&t =dQg — T ¢ e, (A.39)

and

JE=dQE + ﬁ(aw + Ag™) ey . (A.40)

We now show that including matter in this way will modify the quasi-local Smarr
relation (A.21) and first law (A.32) by an additional integral contribution over the Cauchy
slice 3.

Consider first the Smarr relation, which follows from the integral identity (A.13) ap-
plied to the total Noether current and Noether charge. The left-hand side is expressed as
the sum of

/Jg / o(9,Leg) —€-Ly], and /Jg—/z (6,Led) — € Lu]. (A4l
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Using 0, (g, L¢g) = 0 for Killing vectors, and the on-shell Einstein-Hilbert Lagrangian (A.5)
Ae Te

Lon shell _ A .49
T (d-24rG  d—2 ( )
the integral identity (A.13) becomes
AVe g
_ = m A4
where V is the Kllhng volume (A.14). Subtracting [, dQg" from both sides and using (A.39)
leads to T AV,
_ T,U,V v . — 76 = g . A44
/E Sue +/2d—2£ G~ Dy e (A.44)

Specifically, for de Sitter space with background matter stress-energy we find the quasi-local
Smarr relation

Ve d-
(= 3)Bay = (d—2) | g A - PAs| - gt = 2
™

-~ [ 14
STGN N z< d—29 )’5"6”’
(A.45)

which is a generalization of (A.21) to nonvanishing background matter fields. The unfa-
miliar minus sign in front of the integral disappears if we insert €,|s;, = —u,(u - €). Thus
the final term contributes positively to the BY energy, if (TW — % gtv ) Euuy > 0.

A similar argument holds for the first law. From the integral identity (A.22) we have

0He = 7{92[562% — & 0g(9,09)] + 7{92[562? — & (9, 09)] (A.46)

where 0Hy = 5H§g + 0H{".  Presently, 5H§g = 0 since wg(g,09,Leg) = 0, while
from (A.36), (A.38) and (A.39) it follows that

o _
SHE = [ ¢ 5T b0 = 0T Ge)| + § 802 —¢-0u(000)] . (AdT)
Implementing this with (A.46) yields
e o
L |6 3700 — 81| = 155~ ¢ b,(9.00)) (4.48)

where we point out the left-hand side is not equal to the matter Hamiltonian variation
0H" in the present setup, since the boundary integral on the right side in (A.47) could be
nonzero. In particular, £ - € integrated over the York boundary is nonvanishing. Then, for
a dS background with matter we find the quasi-local first law

1 1
_ R [ald - . e=THV
- GNMB PSAs /5 (T €ues) + 5; /Z & 5T Sgu - (A.49)

When the background spacetime is pure de Sitter, and the stress tensor is associated to

0FERy =

matter fields and not to the cosmological constant, the second integral on the right van-
ishes.!® Further, we recognize the first integral as the variation of the Killing energy (2.4),

8The derivation of the first law does not assume that the background matter fields share the Killing
symmetry. Therefore, a fluid description that uses potentials which do not share the same symmetry as the
stress tensor is also covered by this computation. For example, the cosmological constant can be treated
as a perfect fluid, and could contribute to T"" in (A.49). In that case, the second integral does not vanish,
but on a maximally symmetric background it combines with the first integral to form — fz 8T,%¢%4, which
is equal to VedA/87G [13].

17 -



T

Figure 3. The Penrose diagram of Schwarzschild-de Sitter spacetime. The York boundary lies at
r = R between the black hole and cosmological horizon, and hence defines two distinct thermal
systems: the white region between the black hole horizon and the boundary, and the shaded region
between the boundary and the cosmological horizon.

N~1Y$E,,.'"9 Further, note that if we choose the normalization of the Killing vector ¢ such
that it has unit norm at the system boundary, N|p = 1, and fix the area Ag, we recover
the form of the first law (3.1) expressed in the main text, which reduces to (2.1) if the
background stress tensor vanishes. Lastly, in the limit the boundary shrinks to zero size,
then P — 0 and Epy — 0, thus the quasi-local first law reduces to the GH first law (1.2).

Schwarzschild-de Sitter black hole. The above derivations all easily extend to the
case of a York boundary inside the static patch of a Schwarzschild-de Sitter (SdS) black
hole. The essential new feature is that the static patch now has a black hole horizon r = ry,
in addition to the cosmological horizon r = r., replacing the pole at » = 0. Placing the
York boundary between the black hole and cosmological horizons bisects the static patch
into two distinct systems: (i) the black hole system r € [rp, R], and (ii) the cosmological
system r € [R,r.]. Then, X denotes a spatial slice extending between S and the bifurcate
surface By of either the black hole or cosmological horizon (see figure 3).

With this set-up in place, it is straightforward to redo the analysis for either the
cosmological or black hole systems separately. For the cosmological system the quasi-local
Smarr relation (A.21) of SAS becomes

2A

K
Ve
STGN ¢

TGN

(d—3)Epy. = (d—2) A, — PCAS} - (A.50)
Here k. refers to the surface gravity of the cosmological horizon, P, is the surface pres-
sure and V¢ refers to the Killing volume of the cosmological system. Likewise, the first

law (A.49) for SdS is (setting 7" = 0 in the background)

Ke

E =
0BBY c TGN

1
A — P.bAs — — T,.,E"e” . A5l
dAp, 0As N/26”§€ (A.51)

The notation in this appendix is related to that in the main text by: €|z = —dX, = —u,dV.
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Identical expressions hold for the black hole system, where one replaces k. — Ky, B. — By,
etc.

It is worth pointing out the Gibbons-Hawking first law of event horizons (1.1) may
be recovered from the above quasi-local first law. In the limit where the York boundary
approaches the black hole horizon, R — 1}, the extrinsic curvature trace approaches zero
k — 0, while N(n“a,) — —kyp, hence NP. — —k;,/87G. Additionally, in this limit
Egy. — 0 while As — Ap,, and thence,

0En = —K0A:/87G — Kpd Ay /8TG . (A.52)

Similarly, in the limit R — 7, the quasi-local Smarr relation (A.50) reduces to the (gener-
alized) Smarr formula for SdS, see e.g. [5],

0= H,CAC HbAb _ 2 A‘/%
- 8G 877G d—287G’

(A.53)

An identical analysis holds for the black hole system, where instead the York boundary
approaches the cosmological horizon, R — r., and NP, — —k./87G and so forth. Although
the first law and Smarr formula for two event horizons can be recovered in this way from a
limit of the first law with a York boundary, a temperature has not been fixed at the York
boundary, so these are not thermodynamic equilibrium relations. In fact, since the two
horizons have different surface gravity, the system is not in equilibrium, so the first law
in this context is related to a limit of nonequilibrium thermodynamics in which the time
dependence is neglected.

B Total attractive Killing energy vanishes on a closed slice

Here we show that the total matter Killing energy variation vanishes on a closed slice of
global de Sitter space, which was stated without proof in ref. [7]. In fact, we derive two
more general statements about the total matter energy (variation) on a closed spatial slice
Y of stationary spacetimes with a Killing field £ and with background matter stress-energy
tensor TH”. The first statement is about the total (attractive) Killing energy on ¥ in the
background spacetime, and the second one involves metric and matter field variations away
from the background spacetime. The results apply in particular to a Cauchy slice ¥ of a
global asymptotically de Sitter space with matter stress-energy.

First, we remind the reader of the on-shell identity (A.44).2° Since the spatial slice %
is closed, the boundary integral on the right-hand side of this identity vanishes. Therefore,
the following integral over X is zero

T A
uwy n n —
/Z<T 739 +(d—2)47rGg >§Me,, 0. (B.1)

20This identity was derived in [2] by integrating the Killing identity relating two derivatives of the Killing

vector to the Ricci tensor, V, V#&” = R*,£”. The term involving the derivatives of the Killing vector turns
into a surface integral (which is equivalent to the Noether charge integral in (A.44)) and vanishes on a
closed slice. The Ricci tensor term yields the attractive Killing energy density via the Einstein equation.

~19 —



Note the integrand is not the same as the matter Killing energy density (2.4). In fact, the
Einstein equation implies that the quantity between brackets is simply the Ricci tensor
R¥ divided by 87 G. For static spacetimes with £ = Nu*, where u* is the unit normal
to X, the integrand is proportional to the scalar R*“w,u,, which via the Raychaudhuri
equation governs the focusing of a timelike geodesic congruence initially tangent to u*.
The integrand could thus be called the “attractive Killing energy density” or “focusing
Killing energy density”.

Second, we invoke the variational on-shell identity (A.48). On a closed slice ¥ the
boundary integral on the right again vanishes. Thus, we find?!

1
/E [5 5T 0 — 6 (T €ue,)| = 0. (B.2)

In empty de Sitter space the first term vanishes, and we are left with the desired result that
the first-order variation of the total matter Killing energy vanishes on a Cauchy surface,
0En =0on X. As an example, ref. [7] considered empty three-dimensional de Sitter space
and variations towards dS space with two point particles at the poles (see section 3.3). Since
the matter Killing energy variation in the static patch with future pointing Killing vector
is equal to the point mass m, whereas in the opposite patch it is —m because the Killing
vector is past pointing, hence the total Killing energy variation vanishes on a closed slice.

C On-shell Euclidean action of Schwarzschild-de Sitter

Although not directly relevant to this paper, we include here results about the thermody-
namics of Schwarzschild-de Sitter (SAS) ensembles with a York boundary that could be use-
ful for future applications. Following York’s original paper [22] we compute the on-shell Eu-
clidean action for SdS without fluid matter, using static coordinates, and we derive explicit
formulae for the thermodynamic quantities discussed in the main text. In [20] the on-shell
Euclidean action for SdS was also computed in a coordinate independent way; our results
are in agreement, but here in addition we compute the surface pressure and heat capacity.
It is straightforward to extend the analysis below to include fluid matter, as shown in [28].
In static patch coordinates the SdS line element is
2

ds* = —f(r)dt* + f 1 (r)dr® + r?dQ5_,, f(r)=1- % - m : (C.1)
where A(r) = Qq_or® 2 and M denotes the mass of the black hole. When 0 < M <
My, the blackening factor f(r) has two distinct positive roots: (i) the black hole horizon
r = rp and (ii) the cosmological horizon r = r., where r, < r.. The Nariai solution
M = My corresponds to the case where the two horizon radii coincide. Each horizon has
its own surface gravity s . which depends on the normalization of the horizon generating

21This variational identity can also be obtained from writing the stress tensor trace and the cosmological
constant term in (B.1) in terms of the Ricci scalar and then varying the whole integral. The variation of
the Ricci scalar produces minus the first term in (B.2), plus a boundary term which vanishes on a closed
slice (see (29) in [2]), while the variation of the Killing energy yields minus the second term.
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Killing vector. For concreteness let us define the surface gravity with respect to the time-
translation Killing vector £ = 0;, in which case it is equal to

d—3)—(d—1)r} /L? 1d—3167GM
Iibc::t( )~ @ Ure/L7 |, (1d=3167GM 7 : (C.2)
’ 2ry.c 2d—2 Ab,c L?
where the ‘4’ sign refers to the black hole horizon while the ‘—’ sign is associated with the

cosmological horizon.

Upon Wick rotating the time coordinate t — —¢7, the Fuclidean SdS spacetime has
a conical singularity at each horizon 73, .. Nonetheless, the Euclidean section for either
the black hole or cosmological system (see figure 3) can be made smooth by removing the
conical singularity at r, or r., respectively. The conical singularity at either horizon is

smoothed out by making the Euclidean time 7 is periodic in the inverse Gibbons-Hawking
2

hR:-,c :

inverse Tolman temperature

The proper length of the boundary at r = R is equal to the

Bye = /0 " Ry = Tl (C.3)

We now express the canonical partition function Z(8 ) of either system as a gravitational

temperature 519cH =

FEuclidean path integral, which, in a saddle-point approximation is
Z(Bhe) e e (C4)
where [ fc is the on-shell Euclidean action. Off-shell, the total Euclidean action is

1 1

I=- d* —2A) — — a’! : :
167G I mp T/ ) 817G Jomg wAk (C5)

With respect to the Euclideanized SdS solution, the total on-shell action I . for either
system is

(C.6)

Boed=2, | B> 16nGMR Ay,
L2 (d—2)As 4G’
sign on the first term corresponds to the black hole system while the ‘4’

)

where the ‘—
is associated with the cosmological system. The limit of (C.6) where the York boundary
coincides with the other horizon, R — ry, is ill-defined since there is a conical singularity
at that location in Euclidean SdS. However, by taking the contribution from the conical
singularity properly into account the on-shell action of the total Euclidean SdS manifold

can be shown to be finite and equal to I, = _%‘ — 2 [59-63].
From the on-shell action (C.6) we may directly compute the thermodynamic energy
oI, 1 d—2
Ey. = “] =+——"A(R R C.7
byC (aﬁhc )48 87TG R ( ) f( ) ’ ( )

where the positive sign corresponds to the cosmological system and the negative sign for
the black hole system. Note the energy Ej . is equivalent to the quasi-local energy given
in (2.2). Similarly, the thermodynamic entropy is

OIE Ay
= L) —If =22 :
Sb,c 5[)76 <86b,c >AS b,c 4Gh (C 8)
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Therefore, the free energy satisfies 8y .Fp . = 1, fa = By c—T} ¢S As an aside, may include
a standard background subtraction contribution to the action % I dd_l:z:\ﬁlCo, where
Ko is the mean extrinsic curvature at » = R in a pure dS background. Doing so leads to
background subtracted energies Eb,c and Fb,c-

Further, by fixing the entropy Sy ., we define a surface pressure B, . to be

r=R
_ 2 C.9
1 [d-3 [ R 167rGMR Su = (C9)
- T 81G | R L2 (d—2)A \/1 _ R _ _16aGMRE |’
L7 ~ [d-2)A(R)
where the ‘+’ and ‘—’ signs correspond to the black hole and cosmological systems, respec-

tively. Nicely, the pressure P, . coincides with the trace of the spatial stress s*” (A.19),
P, = ﬁs““aw.

With this on-shell Euclidean analysis in place, we recognize the mechanical first
law (A.32) as a quasi-local first law of thermodynamics. Indeed, with the thermodynamic

quantities above, the Smarr relation (A.21) and first law (A.32) may be verified explicitly.??

Special case: three-dimensional Schwarzschild-de Sitter. When d = 3, the black-
ening factor of the SdS solution (C.1) simplifies to

7”2

(C.10)
for 0 < M < 1/8G. There is now only a cosmological horizon at r. = L\/1 — 8GM, but
not a black hole horizon, and the SdS solution is equivalent to a conical defect [45]. In
fact, in the global extension of SdS3 there are two conical singularities, one at each pole of
a two-sphere. The defect arises due to a point mass m at the origin r = 0, characterized
by a stress-energy tensor

g(Q)TuVU”UV = m5(2) (T) ) (C.ll)

where ¢ refers to the determinant of the metric on a constant ¢ surface ¥ and u# =
120! is the unit normal to ¥. The point mass m is related to M via 4Gm = 1 —
V1 —8GM [46].

For the cosmological system between a York boundary at r = R and the cosmological
horizon, the on-shell Brown-York energy, horizon entropy, Tolman temperature, and surface
pressure are given as a function of M and R by (see also [33])

1 R2 27 L\/1 —8GM
EBY—@ 1—8GM—ﬁ, SpH = el ;

hv1l—8GM 1 1 R 1

(C.12)

T= , P=_——_-°
2

rl 1 —sam - B 8rG L% 1 —sam - &

22For instance, at fixed radius R one can check that: 6Ey . = £ 7= L_§M = Zbe 0Ap,c-

N(R) N(R) 387G
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Figure 4. Heat capacity of black hole system (left) and cosmological system (right) as a function
of the boundary radius R for d = 4. The graphs are meaningful only between the horizon radii
(thick circles), where both heat capacities vanish. The minimum on the right lies at the Nariai
radius L/+/3. Here r, = 0.1 and L = 1.

These thermodynamic quantities satisfy the quasi-local first law
0Fgy =T 6Sgy — PéAs , (C.13)

with As = 27w R. Since there is no black hole horizon, the limit R — 0 sees a vanishing
pressure, however, a non-vanishing BY energy, as described in the main text.

Heat capacity and thermal stability. Of interest is whether thermal systems with a
horizon are stable under thermal fluctuations. Indeed, this was a central motivation which
led York [22] to introduce a fictitious boundary in the first place: the heat capacity of an
asymptotically flat Schwarzschild black hole system becomes positive for a boundary radius
R < 3GM in d = 4, where M is the mean value of the black hole mass in the ensemble
at fixed temperature.?> The positive heat capacity indicates that the system is thermally
stable. Likewise, we may compute the heat capacity for the black hole and cosmological sys-
tems in the SdS solution. At fixed area As of the York boundary, the heat capacity C4, is

oS OF oM 1 /oT\*
cur($), (), (30), =i ()0 e
0T )4 OM Jas \ OT Juq N(R) \OM )4,
where the ‘+’ sign refers to the black hole system while the ‘—’ sign is associated with the
cosmological system. Explicitly, for the black hole system we have

1 R2 7’2_3 1 rf
o 27 M T L?  Rd-3 L2
bAs = Kp 1 7‘,?73 r,f 1 R2 7"573 1 7"5 d—3+27"§/L2—(d—1)r‘bl/L4 )
spis (L 12) (L= —ges (L 12 (d—3—(d—1)r2/L2)?

(C.15)
A similar relation holds for the cosmological system, up to an overall minus sign and
the replacements r, — 7. and k; — k.. In figure 4 we plot the heat capacities for each

1/(d—3)
2In higher dimensions the heat capacity is positive when R < 1y (2&;}3)) , where rp is the

Schwarzschild radius.
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Figure 5. The phase diagram for cosmological horizon patches in d = 4 spacetime dimensions,
with boundary size R and inverse temperature § (figure adapted from [20]). The temperature on
the upper (semicircular) boundary of the metastable r. = L region is the GH Tolman temperature
at R. In the metastable region the configuration with r. = L is a local (endpoint) minimum of the
action, while the absolute (endpoint) minimum has either r. = R or r. = fi, where R is the radius
of the other horizon when one horizon has radius R. The dotted path describes the R — 0 sequence
of metastable de Sitter patches considered in the main body of this paper. Not shown are the black
hole and thermal de Sitter phases, which have higher action along the dashed path [20].

system as a function of radius R at fixed mass M and de Sitter radius L. In either
system, the heat capacities vanish when R = r;, .. Moreover, for the black hole system,
we observe Cy, is positive when 7, < R < Ry and Ry < R < r, and negative between
Ry < R < Ry, where Rj 2 refer to two (complicated) values where the heat capacity
encounters discontinuities. Thus, the black hole system is thermodynamically stable for
small systems R < R; and large systems R > Ry. The heat capacity of the cosmological
system, computed from the on-shell action, is negative everywhere between r, < R < 7,
indicating that the cosmological system in the on-shell configuration is thermodynamically
unstable for all values of R. Note that these stability properties refer to an ensemble at
a fixed boundary temperature, which in the saddle point configuration coincides with the
Tolman temperature evaluated at the boundary radius.

In [20] the thermal instability of the cosmological system was inferred from the fact
that the cosmological horizon solution is a local maximum (instead of a minimum) of
the action as a function of the mass parameter in the spatial SdS line element. If negative
Schwarzschild-de Sitter mass parameters are allowed in the solutions to the constraints, the
action is unbounded below, corresponding to arbitrarily large horizon size. However, it was
argued in [20] that the York boundary conditions defining the ensemble should represent
the interface with a physically sensible reservoir, and that negative mass parameter would
correspond to a reservoir whose energy is unbounded below, hence that configurations
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with negative mass parameters should be excluded. If this is done, the minimum of the
action for configurations with a cosmological horizon lies at one of the two endpoints of the
allowed configuration space. For a given boundary size, at sufficiently high temperatures,
the endpoint with minimum action has a horizon radius equal to the de Sitter radius
(corresponding to zero mass parameter), whereas at lower temperatures the minimum lies
at the other endpoint which is a configuration in which the boundary coincides with a
black hole horizon for R < L/+/3 and a cosmological horizon for R > L/4/3. One can
choose a path through the (R,T) parameter space, with T" greater than the GH Tolman
temperature at R and ending at (R = 0,7 = h/2nL), along which the configuration with
de Sitter radius horizon is metastable since it lies at a local but not global minimum of
the action. Figure 5, taken from [20], shows the phase diagram of the system, on which
we have superimposed a path of the sort just described. In the main text we consider
such a path in the limit that T" approaches the GH Tolman temperature at R, for which
the configurations are marginally stable, so that the first law for variations away from an
on-shell configuration may be applied.
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