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Drone-based Unmanned Aerial Systems (UAS) provide an
efficient means for early detection and monitoring of remote
wildland fires due to their rapid deployment, low flight altitudes,
high 3D maneuverability, and ever-expanding sensor capabilities.
Recent sensor advancements have made side-by-side RGB/IR
sensing feasible for UASs. The aggregation of optical and thermal
images enables robust environmental observation, as the thermal
feed provides information that would otherwise be obscured in
a purely RGB setup, effectively "seeing through" thick smoke
and tree occlusion. In this work, we present Fire detection and
modeling: Aerial Multi-spectral image dataset (FLAME 2) [1],
the first ever labeled collection of UAS-collected side-by-side
RGB/IR aerial imagery of prescribed burns. Using FLAME 2,
we then present two image-processing methodologies with Multi-
modal Learning on our new dataset: (1) Deep Learning (DL)-
based benchmarks for detecting fire and smoke frames with
Transfer Learning and Feature Fusion. (2) an exemplary image-
processing system cascaded in the DL-based classifier to perform
fire localization. We show these two techniques achieve reasonable
gains than either single-domain video inputs or training models
from scratch in the fire detection task.

I. INTRODUCTION

Even though techniques of rapid public reporting systems,
including geostationary satellites and network of optical smoke
observation cameras [2], have greatly improved, there is still a
need to quickly identify, map and monitor the specific location,
extent and progress of fires. With their features of low flight
altitudes, robust 3D maneuverability, and ever expanding sensor
capability, Unmanned aerial systems (UAS) are a valuable tool
for initial fire detection, monitoring, and management. These
features enable the collection of rapid, high-resolution maps
of vast areas of wildlands.

New generations of hardware have greatly expanded UAS’
onboard computation and communication capabilities. This
expanded edge computing, combined with the unprecedented
performance of Deep Learning (DL) models, enables sophis-
ticated UAS-based wildfire detection and monitoring models
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Figure 1. Handpicked frame pairs from FLAME 2 Dataset [1]. (a)(b) No
Flame with No Smoke, (c) Flame with Smoke, (d) Flame with No Smoke.

to run in real time. To configure a drone fire detection
system embedded with data-driven algorithms, a dataset of
aerial imagery of wildfires and prescribed burning is required,
preferably with a high revisit rate.

Considering this open niche in fire detection datasets, we
collected and published the "Fire detection and modelLing:
Aerial Multi-spectral imagE" dataset (FLAME2) [1]. FLAME
2 provides a collection of side-by-side RGB and IR drone-
collected videos and images taken during a prescribed burn in
northern Arizona in November of 2021. Some sample frame

pairs from the 254p set are presented in Fig 1. A detail of the
labels! annotated by the human experts is presented in Table I

Table |
FLAME 2 DATASET [1] FRAME PAIR LABEL BREAKDOWN.
Label Number of Image Pairs

Fire, Smoke 25,434
Fire, No Smoke 14,317
No Fire, No Smoke 13,700

No Fire, Smoke 0
Total Number 53,451

Resolution (for CNN input) 254 254

We examine different DL-based methods on the collected
dataset FLAME 2 for fire detection (i.e., frame-by-frame fire
classification). Recently, a number of Convolutional Neural

1The "Fire" vs "No-Fire" label indicates whether fire is observed in either
the RGB/IR frame in each pair. The "Smoke" vs "No-Smoke" label indicates
whether smoke obscures at least 50% of the RGB frame in each pair.
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Figure 2. The architecture of the Flame network introduced in [3]. For the regular convolutional layer, the form of parameters is k k C ; Cout;stride. For
separable convolutional layers, the form of parameters is k k C in and kk Cout. For the max pooling layer, the form of parameters is k k; stride. For the
dense layer, the form of parameters is C  Cout., k denotes the kernel size, C and Cout denote the number of input channels and output channels,
respectively.

in

Networks (CNN) models have demonstrated outstanding per- this procedure include concatenation, weighted addition, etc.. It
formance on the vision-based classification task, which is often is noteworthy that different tasks with different domains may
known as the most upstream task. An example of a network require a different strategy for appropriate Feature Fusion.

proposed in [3] for this purpose is shown in Fig. 2. This kind of The following content is organized as follows: in Section
model can further be fine-tuned to a wide variety of downstream  [I-B, we present some popular models and our proposed
tasks such as object detection, semantic segmentation, and network in [3] perform on the FLAME 2 dataset, in Section
instance segmentation. It is noted that new fire detection tasks II-B, we present a fast fire localization framework using multi-

or data often require the time-consuming annotation of new modal data, in Section IIl, we discuss current challenge regard
task data and the high computational cost of training a model to the fire detection task, and in Section 1V, we conclude our
from scratch. To the authors’ knowledge, Transfer Learning is  paper.

a strong approach to compromise this issue, whose concept is

to employ prior knowledge transferred from a related domain 1. CASE STUDIES USING FLAME?2 DATASET

to accelerate and enhance the new model.

Generally, We name the data from the related domain as
source data and the data from the current task as target data. We define the type of wildfire as four types: Flame with
In fire detection, a common practice (e.g., used in [4], [5]) is Smoke (YY), Flame with No Smoke (YN), Smoke with No
to utilize feature spaces of related source data (i.e., images in Flame (NY), and No Flame with No Smoke (NN). Something
other fields) and target data. This is known as Homogeneous noteworthy is that the class ‘Smoke with No Flame’ does not
transfer learning. The basic operation is to fine-tune the most  €Xist in the FLAME 2 dataset, but we retain this type for future
recent state-of-the-art CNN models of some general tasks (often  research. Additionally, the "Smoke" class indicates whether
very large). They are pre-trained on some large natural image smoke is observed to fill at least 50% of the frame, as per
datasets, such as ImageNet-1K (1.28M images with 1,000 visual estimate by human experts [1].
classes), which leads them to have enough capacity to extract In this work, we evaluate some widely used machine learning
different levels of representations from the imagery signals. and deep learning classification models (i.e. "benchmarks"),
Then we revise the classifier (generally, some last layers) of including Logistic Regression, LetNet(1989) [9], Vgg(2014)
the model based on the purpose of the wildfire task and retrain  [10], MobileNet(2017) [11], and ResNet(2016) [12], on the
these layers. In summary, Transfer Learning can offer such
advantages: 1) fast employment since few parameters need
to be re-trained on the new task; 2) rich experience in low- Pre-train
level feature extraction often boosts the model performance. A

typical training strategy is presented in Fig.3. | ‘
In the fire domain, thermal cameras expand data redundancy, ‘ “ WY == H ’ |“ Dog
)

preserving feature information that is occluded to shorter,

A. DL-based fire classification

visible spectrum wavelengths. Medium and long wavelength Source Extractor Classifier”  Source
thermal infrared cameras are able to penetrate dense smoke — D e — — — — — L
and foliage, providing information that would otherwise be lost in Fine-tune

a purely visual spectrum setup [6]. Thus, some DL models use

RGB-thermal image pairs as the input. This technique is .

often named Multi-modal learning. The essential steps of this I H ‘ j m=Hl w £+ [ Fire, Smoke
technique include: i) in different layers, the model learns Tl . '

features from different domains separately. ii) at some layers, TS;%? xractor 2 {‘Zgg

the features from two domains will be mixed, which is known as
Feature Fusion. This procedure is important and is well-studied Figure 3. A typical training strategy of transfer learning. The gray layers are
in some works [7], [8]. The most fundamental operations of  frozen, meaning no need to update when training in target task.
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new dataset, as well as our method "Flame" [3]). Note that
Vgg, MobileNet, and ResNet are pre-trained, which leverage
Transfer Learning as discussed in Section I. Some of the
models that used Multi-modal Learning are shown in Table Il.
Here, we only consider two simple methods to perform
feature fusion (shown in Fig 4(a-b)), named Early Fusion and
Late Fusion. Specifically, in Early Fusion, we just concatenate
the paired images and modify the number of channels of the
first layer input from 3 to 6. In Late Fusion, either RGB or IR
will be fed to models with the same architecture (i.e., the upper
stream learns from the RGB domain while the lower stream
learns from the IR domain). We then concatenate the features
extracted from each stream and feed the fused features to a fully
connected layer to perform classification. Hence, subsequent
layers can learn high-level representations from the RGB and IR
domains.

|’ ——— Prediction
B
(3+3) x HxW
(a) Early Fusion

Features

Prediction

Features.

(b) Late Fusion

Figure 4. Two approaches for feature fusion.

In order to accelerate the testing process, for each experiment,
we only used 1% randomly sampled data and split it into 80% to
train (500 pairs) and 20% to test (120 pairs). Sampling also
enhances the reliability of each model’s performance, which
alleviates the similarity of training and test datasets as
consecutive frames in a video are very similar. Each model was

Table 11
COMPARISON OF AVERAGED PERFORMANCE OF DIFFERENT MODELS WITH
DIFFERENT MODE. THE MODELS WITH THE SIGN "*’ DENOTE THE
FINE-TUNED PRE-TRAINED MODELS.

Model Mode F1 Score  Precision  Recall  Accuracy
Logistic RGB 89.57 90.99 89.48 90.37
Logistic IR 92.61 92.94 92.43 92.43
Logistic Early Fusion  96.71 96.92 96.65 96.54
LeNet5 RGB 95.39 95.86 95.12 95.33
LeNet5 IR 923 92.19 92.79 92.15
LeNet5 Early Fusion 97.16 97.35 97.1 97.01
Flame RGB 94.53 95.18 94.38 94.86
Flame IR 86.81 87.47 86.91 85.79
Flame Early Fusion  94.88 96.01 94.95 94.86
Flame Late Fusion 95.24 95.84 95.61 94.95
VGG16* RGB 99.92 99.9 99.93 99.91
VGG16* IR 97.35 97.57 97.26 97.29
MobileNetv2*  RGB 99.36 99.33 99.42 99.35
MobileNetv2* IR 97.51 97.65 97.43 97.38
MobileNetvV2*  Late Fusion 99.82 99.78 99.87 99.81
ResNet18* RGB 98.46 98.57 98.37 98.32
ResNet18* IR 96.54 96.97 96.27 96.26
ResNet18* Late Fusion 99.5 99.46 99.56 99.44

evaluated ten times using the above 1% sampling approach.
ADAM [13] optimizer with 1e 3 learning rate is used for the
Flame network, and 1e 4 for the other models. The batch
size is set to 64. Also, the label smoothing with probability
0.2 is applied in the training phase. For a fair comparison, we
train the models that learn from scratch with 50 epochs and

the pre-trained models with 30 epochs. We are more interested in
the macro-level metrics, such as macro F1 score, macro
recall, and macro precision, rather than only accuracy. This is
because in the real world, wildfire is occasional, and the
model’s performance cannot be simply demonstrated by the
classification accuracy (i.e., For instance, one may have only
one wildfire sample in a total of 1,000 images. If the model
labels all samples as no-fire, the accuracy would be 99.9%.
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The results are shown in Table Il and Fig. 5. Generally,
models that learn from multi-modality exhibit improved perfor-
mance as compared to models that learn from a single domain.
This is consistent with our discussion before. Similarly, the pre-
trained models generally outperform our customized models,
as they are pre-trained on large datasets and have a good
understanding of the different features of fire imagery in our
task. Our customized model, on the other hand, is trained using
only a few hundred images with fewer parameters (Flame only
has 7003,000 parameters) and can achieve reasonable results.

B. Image-processing-based fire localization

After classification, fire localization can perform by using the
multi-modal data. We use Maximally Stable Extremal Regions
(MSER) method to detect the image blob features and then
generate bounding boxes based on these detected features.
Specifically, we first convert the image to gray-scale, in which
an extremal region R is defined as a contiguous subset of the
image D which satisfies, forall p2 R; g2 @R: I(p) > 1(q)
or I(p) < I(q), where @R denotes the boundary of the region
R, and I() denotes the intensity of the pixel. Suppose an
extremal region R; denotes the intensity of every pixel in the
region is smaller than i. We define q(i) as

jRi+  Rijj
jRij
where denotes a small positive number, Ri Ri. always holds,
and jj denotes cardinality. When q(i) is a local minimal, R; is a
maximally stable extremal region. Then bounding box is
generated based on the maximally stable extremal regions. As a
conventional image processing method, it does not require any

data for training purposes. Moreover, this approach is stable
and can perform multi-scale detection without any smoothing.

q(i) =

(1)
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Figure 6. Flame detection(cb)ased on pixel segmentagig% and MSER-NMS. (a)
RGB image with detected flame location (red bounding box), (b) IR image,
(c) Fire line which applied for pixel segmentation, pixels below the fire line
will be suppressed, (d) Image processed IR image with detected flame location
(yellow bounding box).

As the MSER method usually generates many partially
overlapping bounding boxes for the same object. In order to
avoid unnecessary calls and to provide a more precise
localization of the flames, we use a Non-Maximum Suppression
(NMS) method to eliminate the overlapping bounding boxes
in favor of the strongest one. By fine-tuning the suppression
processes of non-maximum parameters and the threshold of
pixel intensity (fire-line) on IR images, the algorithm identifies
areas with higher fire probability.

Figure 6 shows the result of flame detection, where the
flame detection’s accuracy is not affected by smoke. Thus, our
proposed framework is simple, stable, computation friendly,
and labor-free.

Il. CHALLENGE

Fire detection tasks often suffer from the lack of generaliza-
tion as a result of cross-dataset domain shift. Each dataset
has its specific underlying characteristics, such as camera
angle, image scale, terrain, etc. This issue often results in
poor transferable performance on the new task or catastrophic
forgetting of the old task. This can be eliminated by training all
data simultaneously or with Multi-task Learning; however, this
is not practically feasible. By guiding model adaptations based
on relations of domain knowledge between tasks, continuous
learning provides a more efficient, middle-ground solution
for sequential task learning. Some classic solutions included:
i)regularization-based [14] and ii) replay-based [15]. It is
noteworthy that the former is privacy-preserving which does
not require access to the old data, while the latter often can
reach a better performance. From another perspective, even
if the data in the new task is insufficient annotated, Domain
Adaption can alleviate the problem, which aims to
leverage knowledge learned by the model from another related
domain with adequate labeled data [16].

To the authors’ knowledge, these paradigms for wildfire
should attract the attention of the community, but only limited

works focus on it. This may be because of the lack of a
standardized benchmark.

IV. CONCLUSION

This work presents two image-processing-based method-
ologies, showcased on our newly released FLAME 2 dataset.
The first methodology investigated multiple DL models with
different training strategies, including training from scratch,
Transfer Learning, and Multi-modal learning. We exhibit the
respective strengths of Transfer Learning and Multi-modal
learning to accelerate and enhance the detection model. We
then demonstrate the fire localization with smoke occlusion
based on conventional methods, which are fast, stable, and,
more importantly, do not require pixel-level annotated data for
training purposes. Our goal is to develop a real-time wildfire
detection system for compute-limited edge devices based on
our image processing methods. We also hope the community
can improve our fundamental approaches and explore more
tasks using the FLAME 2 dataset.
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