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Medical imaging data annotation is expensive and time-consuming. Supervised
deep learning approaches may encounter overfitting if trained with limited
medical data, and further affect the robustness of computer-aided diagnosis
(CAD) on CT scans collected by various scanner vendors. Additionally, the
high false-positive rate in automatic lung nodule detection methods
prevents their applications in daily clinical routine diagnosis. To tackle these
issues, we first introduce a novel self-learning schema to train a pre-trained
model by learning rich feature representatives from large-scale unlabeled
data without extra annotation, which guarantees a consistent detection
performance over novel datasets. Then, a 3D feature pyramid network
(3DFPN) is proposed for high-sensitivity nodule detection by extracting
multi-scale features, where the weights of the backbone network are
initialized by the pre-trained model and then fine-tuned in a supervised
manner. Further, a High Sensitivity and Specificity (HS?) network is proposed
to reduce false positives by tracking the appearance changes among
continuous CT slices on Location History Images (LHI) for the detected
nodule candidates. The proposed method’s performance and robustness
are evaluated on several publicly available datasets, including LUNAL6,
SPIE-AAPM, LungTIME, and HMS. Our proposed detector achieves the
state-of-the-art result of 90.6% sensitivity at 1/8 false positive per scan on
the LUNAL6 dataset. The proposed framework's generalizability has been
evaluated on three additional datasets (i.e., SPIE-AAPM, LungTIME, and HMS)
captured by different types of CT scanners.

KEYWORDS

self-supervised learning, lung nodule detection, false positive reduction, feature
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1. Introduction

Lung cancer is one of the world’s leading cancers in terms of incidence and mortality
rates (1). At the time of diagnosis, the disease stage is closely related to the survival of
patients with lung cancer. Therefore, it is critical for the efforts to identify and
intervene in lung cancer in the early stage (2). Computed tomography (CT) has been
shown to visualize tumors better in early clinical diagnosis (3). However, it is
cumbersome and time-consuming for radiologists to detect and label tumors on CTs

01 frontiersin.org



Liu et al.

manually. To better assist the diagnosis of lung cancer, CT-
based automatic pulmonary nodule detection methods have
been widely explored (4-9) to develop computer-aided
diagnosis (CAD) systems (10,11). The CAD framework for
nodule detection commonly consists of a nodule detector
identifying and detecting the location of nodule candidates
and a classifier further distinguishing the false detected
candidates from true nodules with a false positive reduction
procedure. In recent years, deep learning based methods
demonstrated excellent performance on medical image
analysis and preliminary work of lung nodule detection (12—
16) yielded a high sensitivity of over 95% on LUNAI6
challenge dataset (17), but at a high false positive rate (i.e., 8
false positives per scan) which limited their uses in real
clinical processes. Reducing the false-positive rate remains an
open question. Most of the existing methods achieved
sensitivities below 75% at 1/8 false positive per scan. The
high false-positive rate is mainly caused by the following two
reasons. (1) Some normal tissues are morphologically similar
to the nodules in the CT image, leading to a high false
detection rate. The approach for differentiating between the
tissue and nodule is very crucial to reduce false positives for
automatic lung nodule detection scheme. (2) The volumes of
nodules significantly differ from the total CT volume, which
may lead to the miss detection of some nodules. For example,
in the LUNA16 dataset (17), nodules size can range from
3mm to 30 mm (diameter), which varies up to 10 times.
Only 0.059% of the total CT scan volume is occupied by a
10 mm nodule in diameter on a CT scan in a resolution of
213 x 293 pixels and 281 slices. Therefore, it is essential to
design methods for detecting small nodules from large CT
scan volume and further distinguish the normal tissues with
similar appearances of nodules for CT scans with various
machine settings and intensity scales.

For a data-dependent deep learning-based framework,
artifacts such as intensity, machine setting, machine noise, and
image protocol for collected CT scans could cause systematical
differences. In order to develop robust deep learning-based lung
nodule detection methods to handle CTs collected by different
vendors of CT scanners, there is a need for a large amount of
training data to be labeled. However, manually annotating a
large number of CT scans can be tedious, attention-demanding,
and time-consuming. It also requires human expertise in the
specialty of radiology. Recently, a self-supervised learning
(18,19)
representation from the sizeable unlabeled dataset by a well-

approach is proposed to learn the intermediate
designed pretext task in a supervised learning manner. Inspired
by the rotation ConvNets (20,21), in this paper, we simply
rotate the CT scan at certain angles and design a rotation
classification network as the pretext task to distinguish the
rotation angle of each CT scan. The well-trained model
effectively learns the rich features and semantic concept of the
CT scans from a large unlabeled dataset and is then further
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applied as a pre-trained model of the nodule detector for robust
nodule detection training on small annotated datasets.

In this paper, as shown in Figure 1, our proposed framework
contains three main components. (1) To improve the robustness
of the nodule detector across datasets without requiring extra
annotations, a self- pre-trained model is proposed to learn the
rich spatial features among CT scans obtained from various
manufacturers and obtained through the training by applying
rotation prediction as pretext task. (2) Motivated by 2D Feature
Pyramid Network (FPN) (22), a 3D high-sensitivity feature
pyramid network (3DFPN) is developed for multi-scale feature
prediction by combining the low-level high-resolution feature
with high-level semantic features for the nodules with different
sizes. (3) A false positive reduction network based on location
history images to distinguish differences in the spatial
distribution of nodules and normal tissues in continuous CT
the false while
maintaining high sensitivity and specificity.

slices  significantly ~eliminates positives

We proposed an accurate and robust pulmonary nodule
detection framework (3DFPN-HS?) by integrating an accurate
nodule detection model with a novel false positive reduction
method to achieve the high sensitivity and specificity of diagnosis.
This paper is an extension of our preliminary work (23), and the

new contributions are summarized as follows:

1. To improve the robustness and generality of the nodule

detector without additional annotations, we adopted a pre-
that the
performance of the model across datasets with a simple

trained model can significantly improve
and effective self-supervised learning schema.

2. By combining the pre-trained model with the two-stage
framework (3DFPN-HS?), the experiments and results on
the LUNAI6 state-of-the-art

performance, especially at low false-positive rates.

dataset  demonstrate

3. The generalizability of the proposed framework has been
evaluated on three additional small datasets (SPIE-AAPM,
LungTIME, and HMS) captured by different types of CT
scanners show the robustness of the proposed framework,
which has a high potential for application in clinical
practice.

The remainder of this paper is organized as follows. Section 2
introduces the related work on self-supervised feature learning,
object detection, and lung nodule detection from CT scans.
Section 3 explains the proposed method. Section 4 presents the
implementation details, experimental results, and discussions.
Finally, Section 5 summarizes the remarks of this paper.

2. Related work

As data-driven computational mechanisms, supervised
convolutional neural networks (ConvNets) usually require
large-scale labeled data to obtain good performance and
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The proposed robust nodule detection framework 3DFPN-HS? consists of 3D Feature Pyramid ConvNet (3DFPN) as lung nodule detector and HS? as
false positive reduction network for high sensitivity and specificity lung nodule detection. (1) To improve the robustness of the framework across
different datasets, a pre-trained model trained on the backbone network of detector ResNet-18 is applied to the nodule detection network. The
pre-trained model is obtained by a simple yet effective pretext task training through a rotation prediction network. The original CTs are rotated
through a geometric transformation at (0, 90, 180, 270) degrees and followed by a classification network to predict the rotated angles of CT
scans. (2) The 3DFPN takes the input of the entire CT scan to predict nodule candidates. The backbone network (ResNet-18) of 3DFPN is
initialized by the weights from the pretrained model and then is fine-tuned with small datasets with annotation for pulmonary nodule detection
in a supervised schema. (3) For the detected nodule candidates, the HS? network eliminates the false prediction of normal tissues based on the
change in position of the continuous CT slices on LHI images. The detailed structure of self-supervised pretext task training is shown in Figure 2,
the proposed 3DFPN network can be found in Figure 3, and LHI is illustrated in Figure 4.

Pre-trained Model

Network Training
(Rotation Prediction) o

i "'I»’ ‘ »Nodule?

Tissue?

Location History Image

overcome overfitting. Manually labeling a large number of CT

scans is very expensive and requires multiple expert
radiologists to perform the task to address reader agreement
and variability issues. Therefore, in computer vision, some
researchers proposed self- or un-supervised learning methods
to learn feature representations without requiring manual data
annotations (24-28). The intermediate representations of
images and videos are learned by training the networks on
one or multiple pretext tasks (e.g., regression or classification)
with the modification of unlabeled data.

Recently, self-supervised learning methods are widely
explored, and various pretext tasks have been proposed with
learning by distinguishing the distorted transformations (18),
adopting patches to predict relative position (29), colorizing to
map the image to a distribution (30), and distinguishing
jigsaw puzzle with shuffle patches (19). Zhuang et al (31)
proposed a Rubik’s cube task which extended jigsaw puzzle
(19) of re-ordering 2D image patches to rotate and re-order
3D The the

improvement for classification and segmentation tasks on

cubes. result demonstrated performance
CTs. Zhou et al. (32) proposed model genesis as the pretext
task training through image distortion, in-painting, and
unified method and have proven to benefit the downstream

tasks on image classification and segmentation without any
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annotation. Jing and Tian reviewed self-supervised learning
methods in the comprehensive survey paper (33). The
previous work of self-supervised learning related to lung
nodule mainly focuses on nodule classification and
segmentation. In this paper, we aim to demonstrate the
robustness of the self-supervised learning method on the
pulmonary nodule detection task with the rich semantic
features learned from large scale lung CT scans. (20) rotated
each input image by a multiple of 90 degrees and learned the
semantic content of the image through an image rotation
prediction network. However, previous methods are based on
two dimensions and lacked spatial information. Recently, Jing
and Tian (21) designed a rotation transformation network for
a 3D input sequence to learn rich features from the video.
The network can learn high-level spatial information of
objects in videos while predicting the correct rotations.
Following the framework in (21), by treating each CT scan as
a video, we employ simple yet effective rotation prediction
pretext task for predicting the rotation angle of 3D CT scans
to obtain rich spatial information of CT scans. Several deep
learning-based frameworks for object detection are proposed
to handle small-scale and multi-scale objects (34,35). Single
Shot multi-box Detector (SSD) (36) applied the pyramid

feature hierarchy in the deep convolutional network, which
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FIGURE 2

The pre-trained model training consists of two steps. (1) Rotate on input 3D CT scans with four angles as 0°, 90°, 180°, 270° by the rotation
transformation network. (2) The rotation prediction pretext tasks uses the backbone network (ResNet-18) of the proposed nodule detector
(3DFPN) for feature extraction and 2 fully connected (FC) layers to obtain the maximum rotation prediction probability.

directly detected multi-scale objects by using multi-layer feature
mapping in a single pass. However, SSD cannot reuse low-level
feature maps that cause the miss detection of small objects. In
order to detect small objects, Scale Normalization for Image
Pyramids (SNIP) (35) selectively back-propagated the gradient
of objects in different scales. Although small object detection
performance has been significantly improved,the computation
cost could be very high by applying multiple images as input.
To date, a 2D Feature Pyramid Network (FPN) (22)
demonstrated the effectiveness of small object detection by
extracting the multi-scale feature maps containing the general
low-level features of objects at different scales. A top-down
path was introduced to pass global context information
through lateral connections of high-level and low-level
features. The computation of feature extraction was reduced
by directly applying multi-scale feature maps. This FPN
framework can be applied to lung nodule detection on each
2D CT slice. However, without 3D information among CT
slices, high false positives were produced.

Continuous efforts have been made to detect pulmonary
nodules with CT scans. Compared with the traditional
methods based on intensity, shape, texture features, and
context features, the deep learning-based methods have
shown significant performance improvements (37-40). (16)
could achieve an average sensitivity of 84.2% by a 3D Faster
R-CNN detector to learn the rich nodule features combined
with a dual-path network and an encoder-decoder structure
without false positive reduction, while Single-Shot Single-
Scale Lung Nodule Detection (S4ND) (14) introduced 3D
dense and

connections investigated a down-sampling

method for small nodule detection. These frameworks
employed only a single scale feature map and were limited

in the detection of nodules with a large range of sizes. (41)

Frontiers in Radiology

04

proposed a multi-scale nodule detection method. The
method firstly segmented the lung boundary delineation to
obtain the lung region and then applied three sub-
algorithms to detect the candidates in the three nodule size
intervals. Although nodules of different sizes were treated
separately, the sensitivity to 85.6% at 8 false positives per
scan was limited by the rule-based threshold and
morphological algorithms.

Furthermore, in order to reduce false positives, Dou et al.
(13,42) applied three different 3D ConvNet architectures to
adapt the different scales of nodules, and manually set the
threshold to combine the weights. Ding et al. (12) applied a
framework of 2D Faster R-CNN nodule detector with a
reduction classifier and obtained 89.1%
average  sensitivity. Multi-scale = Gradual Integration
Convolutional Neural Network (MGI-CNN) (43) used the

image pyramid network with a multi-stream feature

false-positive

integration for small nodule detection and false-positive
the of these
frameworks is expensive due to the great effort to extract

reduction. However, computation cost
feature maps from images in different sizes and the
multiple training process. Wang et al. (15) applied a 2DFPN
network for lung nodule detection, followed by a
Conditional 3-Dimensional Non-Maximum Suppression
(Conditional 3D-NMS) and Attention 3D CNN (Attention
3D-CNN) for false-positive reduction. However, without the
spatial features within continuous CT slices, the high false-
positive candidates were introduced, resulting in great
efforts in the reduction process.

In this paper, we propose a rich spatial feature extraction
method, an accurate multi-scale nodule detection network,
and an efficient false-positive reduction algorithm for accurate

and robust pulmonary nodule detection.
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FIGURE 3
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Architecture of our proposed 3DFPN network. The input 3D volume is split into 96 x 96 pixels x96 slices. The size of C1, C2, C3, C4, C5 is
96°, 483, 243,123, and 6° respectively. The following convolution layer with kernel size 1 x 1 x 1 converts feature channels to 64 dimensions. 3D
deconvolution and max-pooling layers are applied for integrating each of the convolution layers C2, C3, C4, C5 to the pyramid layers P2, P3, P4, P5.

Predicted Nodule Candidates

3. Method

In this section, we describe the details of the proposed
accurate and robust pulmonary nodule detection framework.
As shown in Figure 1, a pre-trained model is firstly obtained
by employing the rotation prediction as the pretext task to
extract rich spatial features and leverage the noises of CT
scans captured by different manufacturers. The weights of the
pre-trained model are applied to initialize the backbone
network (ResNet-18) of the lung nodule detector 3DFPN. The
3DFPN takes an entire 3D volume of CT scan as input and
outputs the 3D locations of lung nodule candidates. Then, the
high sensitivity and specificity (HS*) network predicts the
probability of the true or false positive for the cropped 3D
cube centered with the candidate nodules.

3.1. Self-supervised pre-trained model

To enable the proposed nodule detector for rich 3D CT
feature exaction, a pre-trained model is obtained for the
representative and discriminative features without using any
additional labels. As shown in Figure 2, inspired by (20,21), a
rotation transformation is first performed on 3D CT scans to
obtain the rotation class with a certain angle. The rotation
transform rotates 3D CT scans on the axial plane at an angle 6
(0°, 90°, 180°, 270°). the
transformation of an image requires localizing orientations and

Predicting correct  rotation

types of salient objects. Classifying the rotation translation
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enables ConvNet to learn high-level spatial information of the
objects. A dataset consisting of four rotating classes on CT
scans is prepared for the pretext task (rotation prediction)
training in a supervised manner, aiming to maximize the
classification probability of rotation angle. The backbone
network of nodule detector (ResNet-18) is applied to classify
the rotation classes of the input CT scans, followed by two
fully connected layers for probability prediction. Therefore, rich
spatial CT scans features are learned by distinguishing the
feature structures of the lung area in the CT scans. The cross-
entropy loss is applied with K rotation angles (here k = 4) and
rotation r as shown in Equation (1):

K
loss(c; | 0) = fl/KZIOg (F(G(ci» 1) | 0)), (1
r=1

where the classification network is defined as F( - |6) for spatial
feature learning and the rotation transformation from the
input 3D CT scans to the categories of rotation angle is
represented as G(c| y).

3.2. 3D feature pyramid network for
nodule detection

The recent progress of computer vision suggests feature
(FPN) for the
performance on objects at various scales (22). However, the

pyramid networks powerful  detection

original FPNs are designed to handle 2D images. Motivated
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FIGURE 4

The proposed Location History Images (LHI) to distinguish tissues and nodules from the predicted nodule candidates. (A) The true nodules (green
boxes) have similar appearances to the false detected tissues (orange boxes). (B) The location variances for nodules and tissues are oriented
differently in LHIs. True nodules generally have a circular region representing the spatial changes as the brighter center (the size of the nodules
decreases in the following CT slides) or a darker center (the size of the nodules increases in the following CT slides). On the other hand, the
location variance for false detected tissues tends to change in certain directions, such as a gradual change of the trajectory line.

Frontiers in Radiology 06 frontiersin.org



Liu et al.

10.3389/fradi.2022.1041518

TABLE 1 Comparison between 2DFPN (22) and our proposed 3DFPN. With the 3D input of the proposed network, the feature pyramid layers are

parallel connected with all the high and low-level features.

Method Input 3D Lateral Integrate upper  Integrate lower = Upsample higher = Downsample lower
volume connections layer layer layer layer

2DFPN (22) No v v No v No

3DFPN v v v v v v

(Ours)

by this, we propose a 3DFPN for 3D pulmonary nodule location
detection from 3D CT volumetric scans. Different than (22),
which only concatenating the upper-level features, to further
preserve location details and obtain strong semantic features,
a dense pyramid network is proposed by integrating the low-
level and high-level layers for high-resolution and high-
semantic features, respectively. Table 1 highlights the main
differences between 2DFPN and our 3DFPN.

As shown in Figure 3, the bottom-up network extracts
features from the convolution layers 2-5, refer to as C2, C3,
C4, C5, followed by a convolution layer with kernel size
1 x1x1 to convert the features from the convolution layers
to the same size. The feature pyramid network is composed of
four layers: P2, P3, P4, P5. The max-pooling layer integrates
low-level layer features with high-level features. 3DFPN
predicts a confidence score and the corresponding location as
[x, ¥, 2, d] for each nodule candidate, where [x, y] are the
spatial coordinates on each CT slice, z is the index number of
the CT slice, d is the diameter of the nodule candidate. The
backbone network of the
weights of the pre-trained model and further refined with

detector is initialized with the

small labeled datasets with supervised learning.

3.3. HS? network for false positive
reduction

As shown in Figure 4(A), the appearance of some tissues
(orange box) is similar to that of real nodules (green box),
which are likely to be detected as nodule candidates and
generate a large number of false positives. Table 2 illustrates
the analysis of 300 false positives predicted by the proposed
nodule detector 3DFPN. We observe that 241 False Positives
(FPs) are caused by the high appearance similarity of tissues
(80.3%), 33 of them are due to inaccurate size detection
(11%), and 26 FPs are caused by inaccurate location detection
(8.7%). The majority of false positives are caused by normal
tissue regions with a similar appearance. However, by treating
each CT scan as a video, we discover that the orientations of

TABLE 2 Statistic Analysis for False Positive Nodule Candidates.

Tissue  Inaccurate Size  Inaccurate Location

Percentage 80.3% 11% 8.7%
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tissues and nodules present different patterns among the
consecutive slices, as shown in Figs. 4(B), 5 and 6. The
variance of true nodules tends to expand outward or diminish
towards the center in continuous CT slices. Therefore, we
propose a novel method to further distinguish the tissues
among nodule candidates for false positive reduction.

Inspired by Motion History Image (MHI) (44,45), we define
the Location History Image (LHI) as f. The intensity value of
LHI within (1, 7) slice is represented by f(x, y, s) by given any
pixel location (x, y) on a CT slice s. The LHI is fed to a feed-
forward neural network HS® with two convolutional layers
and three fully connected layers. The HS? network refines
predicted labels for true nodules and tissues.

The intensity of LHI is calculated according to Equation (2):

B T if Y(x,y,8)=1
JESDE { max (0, f(x, y, s — 1) — 1) otherwise

>

2

where the update function ¢(x, y, s) is obtained by the spatial
differentiation of the pixel intensity of two consecutive CT
The algorithm has the following steps. (1) If
[I(Cx, y,8) —I(x, y,s —1)| is threshold,
Y(x, ¥, 5) = 1, otherwise, Y(x,y,s) =0. (2) For the current

slices.
larger than a
slice, if (x,y,s) =1, f =7 Otherwise, if f(x,y,s) is not
zero, it is attenuated with a gradient of 1. If f(x, y, s) equals
zero, then remains as zero. (3) Repeat steps (1) and (2) until
all the slices are processed. Therefore, the proposed LHIs can
adequately represent the location variance among continuous
CT slices and their change patterns.

4. Experimental results and
discussions

4.1. Datasets

In this paper, we employ training, testing, and performance
evaluation on five public datasets: NLST, LUNA16, SPIE-
AAPM, LungTime, and HMS Lung Cancer datasets. Table 3
summarizes the details of these datasets.

NLST Dataset: The national lung screening trial (NLST)
(46) is a public dataset aimed to determine whether low-dose
spiral CT screening for lung cancer can reduce lung cancer

frontiersin.org
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s-1

FIGURE 5

S s+1

Examples of the detected true nodule candidates (the left image of each column) and their corresponding LHIs (the right image of each column)
calculated between (s—2, s—1), (s—1, s), and (s, s+ 1) slices shown in the s—1, s, s+ 1 columns. The green arrows mark the position of
candidates. As shown in the figure, the true nodules have a circular region on LHI images as the location of the nodule approach to the center

or the edge of nodule volume. Furthermore, the center location of the nodule candidates barely changes in the continuous slices.

mortality in high-risk populations compared with chest

screening. The data includes participant characteristics,
screening test results, diagnostic procedures, lung cancer, and
mortality with more than 75,000 CT scans captured by four
different manufacturers of CT scanners (i.e., GE, Philips,
Siemens, and Toshiba.) Since this dataset is vast and there are
no annotations for nodule locations, the NLST dataset is used
for rotation transformation based self-supervised feature
learning. In a total of 13,762 CT scans are applied for pretext
task training.

LUNA16 Dataset: LUNA16 challenge dataset (17)

contains 1, 186 nodules, ranging in size from 3 to 30 mm

Frontiers in Radiology

from 888 CT scans and agreed by at least 3 out of 4
radiologists. The dataset is officially divided into 10 subsets.
To conduct a fair comparison with other lung nodule
detection methods, we follow the same cross-validation
protocol by applying 9 subsets as training and the
remaining subset as testing and reporting the average
performance. We split 10% of the training data used for
validation to monitor the convergence of the training
process. The nodule detector 3DFPN is initialized by the
pre-trained model trained on the NLST dataset and fine-
tuned on the LUNAI16 training subsets and perform the
evaluation on the testing subset.

frontiersin.org
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s-1 S s+1

FIGURE 6

Examples of false detected tissue candidates (the left image of each column) and their corresponding LHIs (the right image of each column)
calculated between three continuous slices (s — 2, s — 1), (s — 1, s), and (s, s + 1) shown in the s — 1, s, s+ 1 columns. The orange arrows mark the
position of false detected tissue candidates. LHIs of tissues are shown to have clear differences with true nodules. Compared with the LHIs of
the true nodules in Figure 5, the wide variation of tissue location follows certain patterns, illustrated as intensity variances along the trajectory
lines in the LHIs

TABLE 3 Detailed Information of the Datasets. SPIE-AAPM Dataset: The SPIE-AAPM dataset is collected
Dataset Manufacturer CT Nodule for a 'Grand Challenge’ of the diagnostic classification of
number number malignant and benign lung nodule by the international society

for optics and photonics (SPIE) with the support of American

NLST GE Healthcare Philips Healthcare 13,762 - L. . . -
Siemens Healthcare Toshiba Association of Physicists in Medicine (AAPM) and the
Healthcare National Cancer Institute (NCI) (47). It contains 70 CT scans
LUNA16 GE Healthcare 888 1186 from 70 patients, with the annotation of nodule location and
SPIE-AAPM  Philips Healthcare 70 70 the nodule diagnosis categories of benign or malignant. It is
LungTIME  Siemens Healthcare 157 394 applied in our paper for cross-dataset testing.
HMS Lung  GE Healthcare 229 254 Lung TIME Dataset: The Lung Test Images from Motol
Cancer Environment (Lung TIME) is publicly available and contains
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157 CT scans with 394 nodules (48). The nodules are in the
range of 2-10 mm in diameter. The CT scans annotations of
the nodule location are provided. It is employed in our paper
for cross-dataset testing.

HMS Lung Cancer Dataset: HMS Lung Cancer dataset (49)
contains the CT scans and lung tumor sections generated by
clinical care professionals used in competition with 461
patients. HMS contains a total number of 229 CT scans and
254 nodules with the nodule location annotation. It is
employed in our paper for cross-dataset testing.

4.2. Data preprocessing

A preprocessing procedure is required to original CT scans
for accurate nodule detection. First, the masks of the lung
regions are extracted by lung region segmentation. The 2D
single slice is processed first with a Gaussian filter to remove
the fat, water, and kidney background and followed by a 3D
connection volume extraction to remove unrelated areas (50).
However, it takes 9 to 22 seconds to obtain the mask for each
CT scan. To accelerate the processing speed for large datasets,
we employ the LGAN method (51) and train the network on
10, 000 CT slices for lung mask extraction to speed up the
process in an average of 5 seconds per scan. Additionally, CT
scans with a practical value of Hounsfield Unit between
[ — 1200, 600] are transformed into the gray value of [0, 255]
by a linear mapping. The spacing (mm/pixel) of CT scans
between different patients and machines is various, and the
re-sampling is applied to unify the spacing to 1 mm.

4.3. Experimental settings

4.3.1. Self-supervised pre-trained model

The 3D CT scans are rotated at four angles (0°, 90°, 180°,
270°). The backbone network of 3DFPN (ResNet-18) is used to
extract rich spatial features from the input CT scans, and two
fully connected layers are applied to maximize the probability
of rotation classes. The pre-trained model is then employed to
initialize the weights for lung nodule detector 3DFPN. During
the training, the learning rate is set to 0.1, decreasing by 1/2
after 70 and 85 epochs, with the weight decay of 5¢~*. The total
training includes 100 epochs, and the batch size is set to 16.

4.3.2. 3DFPN

The 3DFPN network takes the entire CT scan as input and
selects the volume of 96 x 96 x 96 pixels through the sliding
window schema. This size is selected experimentally to ensure
that it accommodates the entire nodule even with the largest
nodule (approx. 30 mm). In our 3DEFPN, the anchor sizes
used to obtain candidate regions from the feature maps are
[3%, 5% 10% 15%, 20% 253, 30°] pixels. The nodule positions
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are predicted by 3D feature maps of the corresponding
anchor regions. During the training process, the regions to the
ground-truth regions with an Intersection-over-Union (IoU)
threshold less than 0.02 are referred to as negative samples
and with the threshold value greater than 0.4 are positive
samples. To avoid the similarity between positive and negative
samples, the regions between IoU values are ignored. We
follow the 2DFPN (22) to predict the nodule candidates with
a 3 x 3 convolutional layer and followed by two 1 x 1 sibling
The
classification layer predicts the confidence score of the

convolution as classification and regression layer.
candidate classes, and the regression layer learns the offset
between the region proposals and the ground-truth. Smooth
L1 loss (52) and binary cross-entropy loss (BCE-loss) are used
for location regression and classification, respectively. The
proposals with a probability greater than 0.1 are selected as
nodule candidates. Non-maximum suppression is further
applied to eliminate multiple predicted nodule candidates.

4.3.3. HS? network

The HS? network consists of two convolution layers with 30
and 50 output channel dimensions, and three fully connected
layers with (2048, 1024, 512) channel dimensions. The ReLU
activation is applied after each convolution layer and followed
by a batch normalization layer. 11 continuous CT slices are
selected for LHI image generation with 5 slices before and
after the current slice of nodule candidate. The sizes of the
convolution kernel are set based on empirical experiments.
Image patches are aligned with each predicted nodule
candidate region but twice the size in both the x and y
directions. To calculate the intensity of LHIs, the thresholds
of spatial difference between two consecutive slices are set to
30 and 40 for data augmentation. LHIs are resized to 48 x 48
pixels as the input of the HS®> network. To overcome the
unbalanced data candidates, we randomly sample the false-
positive candidates with a similar amount of true candidates
and apply the data augmentation, including flipping, rotating,
and cropping with 0.9 of the original size. In training, the
learning rate starts at 0.01 and decreases to 1/10 for every
500 epochs. 2,000 epochs are executed in training. The
average prediction time for an entire CT scan is about 0.53
min/scan on one GeForce GTX 1080 GPU using Python 2.7.

4.4. Evaluation metrics

The performance is measured by Free-Response Receiver
Operating Characteristic (FROC) analysis and Competition
Performance Metric (CPM), the same as other methods.
Following the LUNA16 challenge evaluation method, the FROC
curve plots detection sensitivity and the points on the
corresponding false positives curve are obtained by the true
positive rate (true positives over the sum of true positives and
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false negatives) while the false positive rate at 1/4,1/2,1, 2, 4, 8 per
scan respectively. The CPM score is calculated by averaging the
sensitivity of all false-positive levels per scan. Sensitivity is defined
as the ratio of true positives divided by the total number of true
positives and false negatives. Specificity is the ratio of true
negatives over the total number of true negatives and false positives.

4.5. Experimental results and analysis

4.5.1. Comparison with other methods

Table 4 shows the FROC evaluation results at 1/8, 1/4, 1/2,
1, 2, 4, 8 false-positive levels for our proposed method compared
with state-of-the-art methods on LUNAI6. The highlighted
numbers in the table represent the best performance for each
column. Since most state-of-the-art methods do not use the
pre-trained model, all the methods are tested on the LUNA16
dataset without the pre-trained model for a fair comparison,
following the same FROC evaluation. The state-of-the-art
methods are divided into two groups for the frameworks
without false positive reduction (14,16,41) and with false
positive reduction process (12,13,15,42,43). As shown in the
table, compared with the state-of-the-art detection methods,
the proposed 3DFPN surpasses 13.9% false positive at 0.125
per scan and 2% on average CPM. Compared with the
framework with the false positive reduction, our framework
outperforms 5.5% average sensitivity over most results of
other methods and 1% than Kim et al. (43). Moreover, the
proposed framework achieves the best performance at most of
FP levels. As mentioned above, CAD systems require not only
high sensitivity but also high specificity. Table 4 shows that
the proposed HS? network significantly reduces false positives.
3DFPN-HS* obtains the maximum sensitivity of 97.14% for

10.3389/fradi.2022.1041518

2 FPs per scan. Additionally, the proposed framework
remains a high sensitivity above 90% for the 1/8, 1/4, and
1/2 FP per scan. The experimental results show that the
proposed 3DFPN-HS* reaches high sensitivity and specificity
with state-of-the-art performance for lung nodule detection.
The nodule detection results are shown in Figure 7.

To further analyze the performance of the detected network
for various nodule sizes, we followed (53) to classify the test set
into three categories. According to the size distribution of
pulmonary nodules, the average CPM for 10-fold cross-
validation are evaluated on the nodule sizes between 3 mm to
5mm (small), 5mm to 10mm (medium), and larger than
10 mm (large), respectively. As shown in Table 4, 3DFPN-HS?
shows improvements in sensitivity for small, medium and
nodule compared with 3DFPN.
Specifically, the 3DFPN performs well in detecting large and

large-sized diameters
medium-sized nodule diameters as easy to detect. With the
pre-trained model and false-positive reduction, the result
shows a 3% improvement on average CPM for the small
nodule detection and yields the best performance overall.

4.5.2. Robustness with the self-supervised
pre-trained model

As shown in Table 5, we conduct two sets of experiments to
assess the robustness of frameworks that does not apply the
pretrained model and that employ the pretrained model. For
the experiment without the pre-trained model, the 3DFPN-HS?
model is trained from scratch on the LUNA16 training set. The
experiment with the pre-trained model applies the weights
from the pre-trained model to initialize the model parameters,
and then fine-tunes the model on the LUNA16 dataset, with
the results highlighted in Table 5. The models are trained and
fine-tuned only on LUNA 16 training set and further tested on

TABLE 4 FROC Performance comparison with the state-of-the-art methods on LUNA16 dataset: sensitivity and the corresponding false positives at
1/8, 1/4, 1/2, 1, 2, 4, 8 per scan. Our 3DFPN-HS*> method achieves the best performance (with >90% sensitivity) at most of false positive levels and
significantly outperforms others especially at the low false positive levels (1/8 and 1/4). 3DFPN indicates the nodule detector without false
positive reduction. 3DFPN-HS? is with false positive reduction. 3DFPN-HS? % shows the results applying pre-trained model trained on the NLST
dataset. CPM,,CPM,,, and CPM,; show the average detection performance for the small, medium, and larger nodules, respectively.

Methods 1/8 1/4 1/2 1 2 4 8 CPM Score CPM; CPM,, CPM,;
Without False Positive Reduction

Gupta et al. (41) 0.531 0.629 0.790 0.835 0.843 0.848 0.856 0.763 - - -
Zhu et al. (16) 0.692 0.769 0.824 0.865 0.893 0.917 0.933 0.842 - - -
Khosravan et al. (14) 0.709 0.836 0.921 0.953 0.953 0.953 0.953 0.897 - - -
With False Positive Reduction

Dou et al. (13) 0.677 0.737 0.815 0.848 0.879 0.907 0.922 0.827 - - -
Dou et al. (42) 0.659 0.745 0.819 0.865 0.906 0.933 0.946 0.839 - - -
Wang et al. (15) 0.676 0.776 0.879 0.949 0.958 0.958 0.958 0.878 - - -
Ding et al. (12) 0.748 0.853 0.887 0.922 0.938 0.944 0.946 0.891 - - -
Kim et al. (43) 0.904 0.931 0.943 0.947 0.952 0.956 0.962 0.942 - - -
3DFPN (Ours) 0.848 0.876 0.905 0.933 0.943 0.957 0.970 0.919 0.894 0.909 0.937
3DFPN-HS? (Ours) 0.904 0914 0.933 0.957 0.971 0.971 0.971 0.952 0914 0.945 0.977
3DFPN-HS? % (Ours) 0.906 0.923 0.948 0.981 0.981 0.981 0.981 0.957 0.928 0.953 0.979
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FIGURE 7

Visualization of some detected true nodules with different sizes from 3 mm to 25 mm in diameter d by our proposed 3DFPN-HS? framework. For
better visualization, the detected nodule regions are zoomed in, as shown in the orange circles. The green box indicates the predicted region,
and the red box represents the ground-truth. Some of the red boxes are not observed because they are perfectly overlapped with the green
boxes. The results demonstrate that our 3DFPN-HS? framework is capable of detecting lung nodules of different sizes from CT scans accurately.

Frontiers in Radiology 12 frontiersin.org



Liu et al. 10.3389/fradi.2022.1041518

TABLE 5 FROC Performance comparison with and without using the pre-trained model, with and without false positive reduction: sensitivity and the
corresponding false positives at 1/8, 1/4, 1/2, 1, 2, 4, 8 per scan. The 3DFPN-HS? is only fine-tuned (with the pre-trained model)/trained (without the
pre-trained model) on LUNA16 training set and tested on LUNA16 test set. At all levels of false positives per scan, the sensitivities of the framework
using a pre-trained model and false positive reduction significantly outperform the one without the pre-trained model and false positive reduction.

Datasets Pre-trained HS? 1/8 1/4 1/2 1 2 4 8 CPM Score
LUNAL6 no no 0.848 0.876 0.905 0933 0.943 0.957 0.970 0919

no Vv 0.904 0914 0.933 0957 0971 0.971 0971 0.952

i v 0.906 0.923 0.948 0981 0.981 0.981 0.981 0957
SPIE-AAPM no no 0.764 0.791 0.839 0.873 0.895 0.914 0923 0.857

no v 0.808 0.852 0.877 0914 0.928 0.947 0.964 0.899

i v 0.823 0.866 0.891 0.933 0.957 0.966 0.966 0914
LungTIME no no 0.775 0.816 0.839 0.874 0.924 0.937 0.956 0.874

no Vv 0.797 0.826 0.862 0.891 0.927 0.948 0.969 0.889

v i 0.814 0.837 0.874 0.899 0.931 0.952 0974 0.897
HMS Lung Cancer no no 0.624 0.681 0.712 0.784 0.827 0.898 0.909 0.776

no i 0.657 0.703 0.746 0.805 0.846 0.912 0927 0.799

i Vv 0.752 0.823 0.856 0.894 0921 0.941 0.958 0.877
the LUNAI16 testing set and three different datasets (SPIE- SPIE-AAPM, 13.5% on LungTIME, and 8.9% on HMS,
AAPM, LungTime, and HMS Lung Cancer datasets) for cross- respectively. For the 8 false positives per scan, the accuracy is
dataset validation. Additionally, we compare the experiments comparable to that of LUNA16. The significant improvement
without and with the false positive reduction method. Using in performance demonstrates the robustness of applying the
the pre-trained model shows slight improvements at all the pre-trained model across different datasets without additional
false positive levels than those without the pre-trained model. annotations. Because the model is trained on the LUNAL6
Experiments performed on SPIE-AAPM, LungTime, and HMS training set, the test results on the LUNAI6 test set have
Lung Cancer datasets with the nodule detector trained only on already achieved great performance as shown in Table 5.
the LUNA16 dataset shows a significantly decreasing Therefore, compared with the other three datasets, the
performance compared to the results on the LUNAIG6 testing performance of this model is only slightly improved on the
set, especially for 1/8 false positive per scan. It is because LUNAI6 test set with the pre-training model than without the
LUNAI6 has a relatively limited training set and cannot robust pre-trained model.
to other datasets. Compared with the model trained only on
the LUNA16 dataset, the framework applying the self- 4.5.3. Effectiveness of HS2 network for FP
supervised pre-trained model shows a significant improvement reduction

in all false positive levels on all of these datasets. Specifically, on The superiority of HS? network on LUNAI6 dataset is

1/8 false positive per scan, the sensitivity is increased 7.4% on demonstrated by two experiments. As shown in Figure 8
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FIGURE 8
Comparison between the proposed 3DFPN and 3DFPN-HS?. Left: comparison of the proposed 3DFPN and 3DFPN-HS? on LUNA16 dataset without
using the pre-trained model. 3DFPN-HS? greatly improves the performance of the 3DFPN at all FP levels per scan. Right: the number of false positives
reduced from 629 to 97 for a total of 88 CT scans with the confidence score above 0 after applying the HS? network.
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(left), the result of 3DFPN-HS? with the false positive reduction
is increased more than 5% at 1/8 FP level compared with
3DFPN without the HS* network. In addition, in Figure 8
(right), we further compare the numbers of FPs with (blue
bar) and without (orange bar) HS®> network in all the
predicted nodule candidates in 88 CT scans (subset 9). The
3DFPN-HS?, with HS? for false positive reduction, can
distinguish the false detected tissues from true nodules,
significantly reducing FPs by 84.5%. In addition, our proposed
3DFPN without HS* network can still reach 97% at 8 FPs per
scan, surpassing other state-of-the-art methods (shown in
Table 4.)

5. Conclusion

In this paper, we have proposed an effective and robust
3DFPN-HS? framework for lung nodule detection with a self-
supervised feature learning schema. The different sizes of lung
nodules can be detected by enriching the local and global
3D feature
introducing the HS? network and treating each CT scan as a

features through a pyramid network. By
video, false positives are significantly reduced based on the
patterns of location variance for nodules and tissues in
continuous CT slices. Spatial features of CT scans can be
effectively learned from large-scale CT scans without using
additional labels by applying a self-supervised feature learning
schema. The learned features can significantly improve the
robustness of the proposed framework across different clinic
datasets. As high sensitivity and specificity are achieved with
the data CT

manufacturers, the proposed framework has a high potential

robustness  to from multiple scanner

in routine clinical practice.
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