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Medical imaging data annotation is expensive and time-consuming. Supervised

deep learning approaches may encounter overfitting if trained with limited

medical data, and further affect the robustness of computer-aided diagnosis

(CAD) on CT scans collected by various scanner vendors. Additionally, the

high false-positive rate in automatic lung nodule detection methods

prevents their applications in daily clinical routine diagnosis. To tackle these

issues, we first introduce a novel self-learning schema to train a pre-trained

model by learning rich feature representatives from large-scale unlabeled

data without extra annotation, which guarantees a consistent detection

performance over novel datasets. Then, a 3D feature pyramid network

(3DFPN) is proposed for high-sensitivity nodule detection by extracting

multi-scale features, where the weights of the backbone network are

initialized by the pre-trained model and then fine-tuned in a supervised

manner. Further, a High Sensitivity and Specificity (HS2) network is proposed

to reduce false positives by tracking the appearance changes among

continuous CT slices on Location History Images (LHI) for the detected

nodule candidates. The proposed method’s performance and robustness

are evaluated on several publicly available datasets, including LUNA16,

SPIE-AAPM, LungTIME, and HMS. Our proposed detector achieves the

state-of-the-art result of 90.6% sensitivity at 1/8 false positive per scan on

the LUNA16 dataset. The proposed framework’s generalizability has been

evaluated on three additional datasets (i.e., SPIE-AAPM, LungTIME, and HMS)

captured by different types of CT scanners.

KEYWORDS

self-supervised learning, lung nodule detection, false positive reduction, feature

pyramid network, medical image analysis, deep learning, feature learning

1. Introduction

Lung cancer is one of the world’s leading cancers in terms of incidence and mortality

rates (1). At the time of diagnosis, the disease stage is closely related to the survival of

patients with lung cancer. Therefore, it is critical for the efforts to identify and

intervene in lung cancer in the early stage (2). Computed tomography (CT) has been

shown to visualize tumors better in early clinical diagnosis (3). However, it is

cumbersome and time-consuming for radiologists to detect and label tumors on CTs
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manually. To better assist the diagnosis of lung cancer, CT-

based automatic pulmonary nodule detection methods have

been widely explored (4–9) to develop computer-aided

diagnosis (CAD) systems (10,11). The CAD framework for

nodule detection commonly consists of a nodule detector

identifying and detecting the location of nodule candidates

and a classifier further distinguishing the false detected

candidates from true nodules with a false positive reduction

procedure. In recent years, deep learning based methods

demonstrated excellent performance on medical image

analysis and preliminary work of lung nodule detection (12–

16) yielded a high sensitivity of over 95% on LUNA16

challenge dataset (17), but at a high false positive rate (i.e., 8

false positives per scan) which limited their uses in real

clinical processes. Reducing the false-positive rate remains an

open question. Most of the existing methods achieved

sensitivities below 75% at 1=8 false positive per scan. The

high false-positive rate is mainly caused by the following two

reasons. (1) Some normal tissues are morphologically similar

to the nodules in the CT image, leading to a high false

detection rate. The approach for differentiating between the

tissue and nodule is very crucial to reduce false positives for

automatic lung nodule detection scheme. (2) The volumes of

nodules significantly differ from the total CT volume, which

may lead to the miss detection of some nodules. For example,

in the LUNA16 dataset (17), nodules size can range from

3mm to 30mm (diameter), which varies up to 10 times.

Only 0:059% of the total CT scan volume is occupied by a

10 mm nodule in diameter on a CT scan in a resolution of

213� 293 pixels and 281 slices. Therefore, it is essential to

design methods for detecting small nodules from large CT

scan volume and further distinguish the normal tissues with

similar appearances of nodules for CT scans with various

machine settings and intensity scales.

For a data-dependent deep learning-based framework,

artifacts such as intensity, machine setting, machine noise, and

image protocol for collected CT scans could cause systematical

differences. In order to develop robust deep learning-based lung

nodule detection methods to handle CTs collected by different

vendors of CT scanners, there is a need for a large amount of

training data to be labeled. However, manually annotating a

large number of CT scans can be tedious, attention-demanding,

and time-consuming. It also requires human expertise in the

specialty of radiology. Recently, a self-supervised learning

approach (18,19) is proposed to learn the intermediate

representation from the sizeable unlabeled dataset by a well-

designed pretext task in a supervised learning manner. Inspired

by the rotation ConvNets (20,21), in this paper, we simply

rotate the CT scan at certain angles and design a rotation

classification network as the pretext task to distinguish the

rotation angle of each CT scan. The well-trained model

effectively learns the rich features and semantic concept of the

CT scans from a large unlabeled dataset and is then further

applied as a pre-trained model of the nodule detector for robust

nodule detection training on small annotated datasets.

In this paper, as shown in Figure 1, our proposed framework

contains three main components. (1) To improve the robustness

of the nodule detector across datasets without requiring extra

annotations, a self- pre-trained model is proposed to learn the

rich spatial features among CT scans obtained from various

manufacturers and obtained through the training by applying

rotation prediction as pretext task. (2) Motivated by 2D Feature

Pyramid Network (FPN) (22), a 3D high-sensitivity feature

pyramid network (3DFPN) is developed for multi-scale feature

prediction by combining the low-level high-resolution feature

with high-level semantic features for the nodules with different

sizes. (3) A false positive reduction network based on location

history images to distinguish differences in the spatial

distribution of nodules and normal tissues in continuous CT

slices significantly eliminates the false positives while

maintaining high sensitivity and specificity.

We proposed an accurate and robust pulmonary nodule

detection framework (3DFPN-HS2) by integrating an accurate

nodule detection model with a novel false positive reduction

method to achieve the high sensitivity and specificity of diagnosis.

This paper is an extension of our preliminary work (23), and the

new contributions are summarized as follows:

1. To improve the robustness and generality of the nodule

detector without additional annotations, we adopted a pre-

trained model that can significantly improve the

performance of the model across datasets with a simple

and effective self-supervised learning schema.

2. By combining the pre-trained model with the two-stage

framework (3DFPN-HS2), the experiments and results on

the LUNA16 dataset demonstrate state-of-the-art

performance, especially at low false-positive rates.

3. The generalizability of the proposed framework has been

evaluated on three additional small datasets (SPIE-AAPM,

LungTIME, and HMS) captured by different types of CT

scanners show the robustness of the proposed framework,

which has a high potential for application in clinical

practice.

The remainder of this paper is organized as follows. Section 2

introduces the related work on self-supervised feature learning,

object detection, and lung nodule detection from CT scans.

Section 3 explains the proposed method. Section 4 presents the

implementation details, experimental results, and discussions.

Finally, Section 5 summarizes the remarks of this paper.

2. Related work

As data-driven computational mechanisms, supervised

convolutional neural networks (ConvNets) usually require

large-scale labeled data to obtain good performance and

Liu et al. 10.3389/fradi.2022.1041518

Frontiers in Radiology 02 frontiersin.org



overcome overfitting. Manually labeling a large number of CT

scans is very expensive and requires multiple expert

radiologists to perform the task to address reader agreement

and variability issues. Therefore, in computer vision, some

researchers proposed self- or un-supervised learning methods

to learn feature representations without requiring manual data

annotations (24–28). The intermediate representations of

images and videos are learned by training the networks on

one or multiple pretext tasks (e.g., regression or classification)

with the modification of unlabeled data.

Recently, self-supervised learning methods are widely

explored, and various pretext tasks have been proposed with

learning by distinguishing the distorted transformations (18),

adopting patches to predict relative position (29), colorizing to

map the image to a distribution (30), and distinguishing

jigsaw puzzle with shuffle patches (19). Zhuang et al. (31)

proposed a Rubik’s cube task which extended jigsaw puzzle

(19) of re-ordering 2D image patches to rotate and re-order

3D cubes. The result demonstrated the performance

improvement for classification and segmentation tasks on

CTs. Zhou et al. (32) proposed model genesis as the pretext

task training through image distortion, in-painting, and

unified method and have proven to benefit the downstream

tasks on image classification and segmentation without any

annotation. Jing and Tian reviewed self-supervised learning

methods in the comprehensive survey paper (33). The

previous work of self-supervised learning related to lung

nodule mainly focuses on nodule classification and

segmentation. In this paper, we aim to demonstrate the

robustness of the self-supervised learning method on the

pulmonary nodule detection task with the rich semantic

features learned from large scale lung CT scans. (20) rotated

each input image by a multiple of 90 degrees and learned the

semantic content of the image through an image rotation

prediction network. However, previous methods are based on

two dimensions and lacked spatial information. Recently, Jing

and Tian (21) designed a rotation transformation network for

a 3D input sequence to learn rich features from the video.

The network can learn high-level spatial information of

objects in videos while predicting the correct rotations.

Following the framework in (21), by treating each CT scan as

a video, we employ simple yet effective rotation prediction

pretext task for predicting the rotation angle of 3D CT scans

to obtain rich spatial information of CT scans. Several deep

learning-based frameworks for object detection are proposed

to handle small-scale and multi-scale objects (34,35). Single

Shot multi-box Detector (SSD) (36) applied the pyramid

feature hierarchy in the deep convolutional network, which

FIGURE 1

The proposed robust nodule detection framework 3DFPN-HS2 consists of 3D Feature Pyramid ConvNet (3DFPN) as lung nodule detector and HS2 as

false positive reduction network for high sensitivity and specificity lung nodule detection. (1) To improve the robustness of the framework across

different datasets, a pre-trained model trained on the backbone network of detector ResNet-18 is applied to the nodule detection network. The

pre-trained model is obtained by a simple yet effective pretext task training through a rotation prediction network. The original CTs are rotated

through a geometric transformation at (0, 90, 180, 270) degrees and followed by a classification network to predict the rotated angles of CT

scans. (2) The 3DFPN takes the input of the entire CT scan to predict nodule candidates. The backbone network (ResNet-18) of 3DFPN is

initialized by the weights from the pretrained model and then is fine-tuned with small datasets with annotation for pulmonary nodule detection

in a supervised schema. (3) For the detected nodule candidates, the HS
2 network eliminates the false prediction of normal tissues based on the

change in position of the continuous CT slices on LHI images. The detailed structure of self-supervised pretext task training is shown in Figure 2,

the proposed 3DFPN network can be found in Figure 3, and LHI is illustrated in Figure 4.
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directly detected multi-scale objects by using multi-layer feature

mapping in a single pass. However, SSD cannot reuse low-level

feature maps that cause the miss detection of small objects. In

order to detect small objects, Scale Normalization for Image

Pyramids (SNIP) (35) selectively back-propagated the gradient

of objects in different scales. Although small object detection

performance has been significantly improved,the computation

cost could be very high by applying multiple images as input.

To date, a 2D Feature Pyramid Network (FPN) (22)

demonstrated the effectiveness of small object detection by

extracting the multi-scale feature maps containing the general

low-level features of objects at different scales. A top-down

path was introduced to pass global context information

through lateral connections of high-level and low-level

features. The computation of feature extraction was reduced

by directly applying multi-scale feature maps. This FPN

framework can be applied to lung nodule detection on each

2D CT slice. However, without 3D information among CT

slices, high false positives were produced.

Continuous efforts have been made to detect pulmonary

nodules with CT scans. Compared with the traditional

methods based on intensity, shape, texture features, and

context features, the deep learning-based methods have

shown significant performance improvements (37–40). (16)

could achieve an average sensitivity of 84:2% by a 3D Faster

R-CNN detector to learn the rich nodule features combined

with a dual-path network and an encoder-decoder structure

without false positive reduction, while Single-Shot Single-

Scale Lung Nodule Detection (S4ND) (14) introduced 3D

dense connections and investigated a down-sampling

method for small nodule detection. These frameworks

employed only a single scale feature map and were limited

in the detection of nodules with a large range of sizes. (41)

proposed a multi-scale nodule detection method. The

method firstly segmented the lung boundary delineation to

obtain the lung region and then applied three sub-

algorithms to detect the candidates in the three nodule size

intervals. Although nodules of different sizes were treated

separately, the sensitivity to 85:6% at 8 false positives per

scan was limited by the rule-based threshold and

morphological algorithms.

Furthermore, in order to reduce false positives, Dou et al.

(13,42) applied three different 3D ConvNet architectures to

adapt the different scales of nodules, and manually set the

threshold to combine the weights. Ding et al. (12) applied a

framework of 2D Faster R-CNN nodule detector with a

false-positive reduction classifier and obtained 89:1%

average sensitivity. Multi-scale Gradual Integration

Convolutional Neural Network (MGI-CNN) (43) used the

image pyramid network with a multi-stream feature

integration for small nodule detection and false-positive

reduction. However, the computation cost of these

frameworks is expensive due to the great effort to extract

feature maps from images in different sizes and the

multiple training process. Wang et al. (15) applied a 2DFPN

network for lung nodule detection, followed by a

Conditional 3-Dimensional Non-Maximum Suppression

(Conditional 3D-NMS) and Attention 3D CNN (Attention

3D-CNN) for false-positive reduction. However, without the

spatial features within continuous CT slices, the high false-

positive candidates were introduced, resulting in great

efforts in the reduction process.

In this paper, we propose a rich spatial feature extraction

method, an accurate multi-scale nodule detection network,

and an efficient false-positive reduction algorithm for accurate

and robust pulmonary nodule detection.

FIGURE 2

The pre-trained model training consists of two steps. (1) Rotate on input 3D CT scans with four angles as 0� , 90� , 180� , 270� by the rotation

transformation network. (2) The rotation prediction pretext tasks uses the backbone network (ResNet-18) of the proposed nodule detector

(3DFPN) for feature extraction and 2 fully connected (FC) layers to obtain the maximum rotation prediction probability.

Liu et al. 10.3389/fradi.2022.1041518

Frontiers in Radiology 04 frontiersin.org



3. Method

In this section, we describe the details of the proposed

accurate and robust pulmonary nodule detection framework.

As shown in Figure 1, a pre-trained model is firstly obtained

by employing the rotation prediction as the pretext task to

extract rich spatial features and leverage the noises of CT

scans captured by different manufacturers. The weights of the

pre-trained model are applied to initialize the backbone

network (ResNet-18) of the lung nodule detector 3DFPN. The

3DFPN takes an entire 3D volume of CT scan as input and

outputs the 3D locations of lung nodule candidates. Then, the

high sensitivity and specificity (HS2) network predicts the

probability of the true or false positive for the cropped 3D

cube centered with the candidate nodules.

3.1. Self-supervised pre-trained model

To enable the proposed nodule detector for rich 3D CT

feature exaction, a pre-trained model is obtained for the

representative and discriminative features without using any

additional labels. As shown in Figure 2, inspired by (20,21), a

rotation transformation is first performed on 3D CT scans to

obtain the rotation class with a certain angle. The rotation

transform rotates 3D CT scans on the axial plane at an angle u

(0�, 90�, 180�, 270�). Predicting the correct rotation

transformation of an image requires localizing orientations and

types of salient objects. Classifying the rotation translation

enables ConvNet to learn high-level spatial information of the

objects. A dataset consisting of four rotating classes on CT

scans is prepared for the pretext task (rotation prediction)

training in a supervised manner, aiming to maximize the

classification probability of rotation angle. The backbone

network of nodule detector (ResNet-18) is applied to classify

the rotation classes of the input CT scans, followed by two

fully connected layers for probability prediction. Therefore, rich

spatial CT scans features are learned by distinguishing the

feature structures of the lung area in the CT scans. The cross-

entropy loss is applied with K rotation angles (here k ¼ 4) and

rotation r as shown in Equation (1):

loss(ci j u) ¼ �1=K
X

K

r¼1

log (F(G(ci, r) j u)), (1)

where the classification network is defined as F( � ju) for spatial
feature learning and the rotation transformation from the

input 3D CT scans to the categories of rotation angle is

represented as G(c j y).

3.2. 3D feature pyramid network for
nodule detection

The recent progress of computer vision suggests feature

pyramid networks (FPN) for the powerful detection

performance on objects at various scales (22). However, the

original FPNs are designed to handle 2D images. Motivated

FIGURE 3

Architecture of our proposed 3DFPN network. The input 3D volume is split into 96� 96 pixels �96 slices. The size of C1, C2, C3, C4, C5 is

963 , 483 , 243 , 123 , and 63 respectively. The following convolution layer with kernel size 1� 1� 1 converts feature channels to 64 dimensions. 3D

deconvolution and max-pooling layers are applied for integrating each of the convolution layers C2, C3, C4, C5 to the pyramid layers P2, P3, P4, P5.
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FIGURE 4

The proposed Location History Images (LHI) to distinguish tissues and nodules from the predicted nodule candidates. (A) The true nodules (green

boxes) have similar appearances to the false detected tissues (orange boxes). (B) The location variances for nodules and tissues are oriented

differently in LHIs. True nodules generally have a circular region representing the spatial changes as the brighter center (the size of the nodules

decreases in the following CT slides) or a darker center (the size of the nodules increases in the following CT slides). On the other hand, the

location variance for false detected tissues tends to change in certain directions, such as a gradual change of the trajectory line.
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by this, we propose a 3DFPN for 3D pulmonary nodule location

detection from 3D CT volumetric scans. Different than (22),

which only concatenating the upper-level features, to further

preserve location details and obtain strong semantic features,

a dense pyramid network is proposed by integrating the low-

level and high-level layers for high-resolution and high-

semantic features, respectively. Table 1 highlights the main

differences between 2DFPN and our 3DFPN.

As shown in Figure 3, the bottom-up network extracts

features from the convolution layers 2–5, refer to as C2, C3,

C4, C5, followed by a convolution layer with kernel size

1� 1� 1 to convert the features from the convolution layers

to the same size. The feature pyramid network is composed of

four layers: P2, P3, P4, P5. The max-pooling layer integrates

low-level layer features with high-level features. 3DFPN

predicts a confidence score and the corresponding location as

[x, y, z, d] for each nodule candidate, where [x, y] are the

spatial coordinates on each CT slice, z is the index number of

the CT slice, d is the diameter of the nodule candidate. The

backbone network of the detector is initialized with the

weights of the pre-trained model and further refined with

small labeled datasets with supervised learning.

3.3. HS2 network for false positive
reduction

As shown in Figure 4(A), the appearance of some tissues

(orange box) is similar to that of real nodules (green box),

which are likely to be detected as nodule candidates and

generate a large number of false positives. Table 2 illustrates

the analysis of 300 false positives predicted by the proposed

nodule detector 3DFPN. We observe that 241 False Positives

(FPs) are caused by the high appearance similarity of tissues

(80:3%), 33 of them are due to inaccurate size detection

(11%), and 26 FPs are caused by inaccurate location detection

(8:7%). The majority of false positives are caused by normal

tissue regions with a similar appearance. However, by treating

each CT scan as a video, we discover that the orientations of

tissues and nodules present different patterns among the

consecutive slices, as shown in Figs. 4(B), 5 and 6. The

variance of true nodules tends to expand outward or diminish

towards the center in continuous CT slices. Therefore, we

propose a novel method to further distinguish the tissues

among nodule candidates for false positive reduction.

Inspired by Motion History Image (MHI) (44,45), we define

the Location History Image (LHI) as f . The intensity value of

LHI within (1, t) slice is represented by f (x, y, s) by given any

pixel location (x, y) on a CT slice s. The LHI is fed to a feed-

forward neural network HS2 with two convolutional layers

and three fully connected layers. The HS2 network refines

predicted labels for true nodules and tissues.

The intensity of LHI is calculated according to Equation (2):

f (x, y, s) ¼ t if c(x, y, s) ¼ 1
max (0, f (x, y, s� 1)� 1) otherwise

�

,

(2)

where the update function c(x, y, s) is obtained by the spatial

differentiation of the pixel intensity of two consecutive CT

slices. The algorithm has the following steps. (1) If

jI(x, y, s)� I(x, y, s� 1)j is larger than a threshold,

c(x, y, s) ¼ 1, otherwise, c(x, y, s) ¼ 0. (2) For the current

slice, if c(x, y, s) ¼ 1, f ¼ t. Otherwise, if f (x, y, s) is not

zero, it is attenuated with a gradient of 1. If f (x, y, s) equals

zero, then remains as zero. (3) Repeat steps (1) and (2) until

all the slices are processed. Therefore, the proposed LHIs can

adequately represent the location variance among continuous

CT slices and their change patterns.

4. Experimental results and
discussions

4.1. Datasets

In this paper, we employ training, testing, and performance

evaluation on five public datasets: NLST, LUNA16, SPIE-

AAPM, LungTime, and HMS Lung Cancer datasets. Table 3

summarizes the details of these datasets.

NLST Dataset: The national lung screening trial (NLST)

(46) is a public dataset aimed to determine whether low-dose

spiral CT screening for lung cancer can reduce lung cancer

TABLE 1 Comparison between 2DFPN (22) and our proposed 3DFPN. With the 3D input of the proposed network, the feature pyramid layers are
parallel connected with all the high and low-level features.

Method Input 3D
volume

Lateral
connections

Integrate upper
layer

Integrate lower
layer

Upsample higher
layer

Downsample lower
layer

2DFPN (22) No
p p

No
p

No

3DFPN

(Ours)

p p p p p p

TABLE 2 Statistic Analysis for False Positive Nodule Candidates.

Tissue Inaccurate Size Inaccurate Location

Percentage 80.3% 11% 8.7%
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mortality in high-risk populations compared with chest

screening. The data includes participant characteristics,

screening test results, diagnostic procedures, lung cancer, and

mortality with more than 75,000 CT scans captured by four

different manufacturers of CT scanners (i.e., GE, Philips,

Siemens, and Toshiba.) Since this dataset is vast and there are

no annotations for nodule locations, the NLST dataset is used

for rotation transformation based self-supervised feature

learning. In a total of 13,762 CT scans are applied for pretext

task training.

LUNA16 Dataset: LUNA16 challenge dataset (17)

contains 1, 186 nodules, ranging in size from 3 to 30 mm

from 888 CT scans and agreed by at least 3 out of 4

radiologists. The dataset is officially divided into 10 subsets.

To conduct a fair comparison with other lung nodule

detection methods, we follow the same cross-validation

protocol by applying 9 subsets as training and the

remaining subset as testing and reporting the average

performance. We split 10% of the training data used for

validation to monitor the convergence of the training

process. The nodule detector 3DFPN is initialized by the

pre-trained model trained on the NLST dataset and fine-

tuned on the LUNA16 training subsets and perform the

evaluation on the testing subset.

FIGURE 5

Examples of the detected true nodule candidates (the left image of each column) and their corresponding LHIs (the right image of each column)

calculated between (s� 2, s� 1), (s� 1, s), and (s, sþ 1) slices shown in the s� 1, s, sþ 1 columns. The green arrows mark the position of

candidates. As shown in the figure, the true nodules have a circular region on LHI images as the location of the nodule approach to the center

or the edge of nodule volume. Furthermore, the center location of the nodule candidates barely changes in the continuous slices.

Liu et al. 10.3389/fradi.2022.1041518
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SPIE-AAPM Dataset: The SPIE-AAPM dataset is collected

for a ’Grand Challenge’ of the diagnostic classification of

malignant and benign lung nodule by the international society

for optics and photonics (SPIE) with the support of American

Association of Physicists in Medicine (AAPM) and the

National Cancer Institute (NCI) (47). It contains 70 CT scans

from 70 patients, with the annotation of nodule location and

the nodule diagnosis categories of benign or malignant. It is

applied in our paper for cross-dataset testing.

Lung TIME Dataset: The Lung Test Images from Motol

Environment (Lung TIME) is publicly available and contains

FIGURE 6

Examples of false detected tissue candidates (the left image of each column) and their corresponding LHIs (the right image of each column)

calculated between three continuous slices (s� 2, s� 1), (s� 1, s), and (s, sþ 1) shown in the s� 1, s, sþ 1 columns. The orange arrows mark the

position of false detected tissue candidates. LHIs of tissues are shown to have clear differences with true nodules. Compared with the LHIs of

the true nodules in Figure 5, the wide variation of tissue location follows certain patterns, illustrated as intensity variances along the trajectory

lines in the LHIs.

TABLE 3 Detailed Information of the Datasets.

Dataset Manufacturer CT
number

Nodule
number

NLST GE Healthcare Philips Healthcare

Siemens Healthcare Toshiba

Healthcare

13,762 –

LUNA16 GE Healthcare 888 1186

SPIE-AAPM Philips Healthcare 70 70

LungTIME Siemens Healthcare 157 394

HMS Lung

Cancer

GE Healthcare 229 254
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157 CT scans with 394 nodules (48). The nodules are in the

range of 2–10 mm in diameter. The CT scans annotations of

the nodule location are provided. It is employed in our paper

for cross-dataset testing.

HMS Lung Cancer Dataset: HMS Lung Cancer dataset (49)

contains the CT scans and lung tumor sections generated by

clinical care professionals used in competition with 461

patients. HMS contains a total number of 229 CT scans and

254 nodules with the nodule location annotation. It is

employed in our paper for cross-dataset testing.

4.2. Data preprocessing

A preprocessing procedure is required to original CT scans

for accurate nodule detection. First, the masks of the lung

regions are extracted by lung region segmentation. The 2D

single slice is processed first with a Gaussian filter to remove

the fat, water, and kidney background and followed by a 3D

connection volume extraction to remove unrelated areas (50).

However, it takes 9 to 22 seconds to obtain the mask for each

CT scan. To accelerate the processing speed for large datasets,

we employ the LGAN method (51) and train the network on

10, 000 CT slices for lung mask extraction to speed up the

process in an average of 5 seconds per scan. Additionally, CT

scans with a practical value of Hounsfield Unit between

[� 1200, 600] are transformed into the gray value of [0, 255]

by a linear mapping. The spacing (mm/pixel) of CT scans

between different patients and machines is various, and the

re-sampling is applied to unify the spacing to 1 mm.

4.3. Experimental settings

4.3.1. Self-supervised pre-trained model
The 3D CT scans are rotated at four angles (0�, 90�, 180�,

270�). The backbone network of 3DFPN (ResNet-18) is used to

extract rich spatial features from the input CT scans, and two

fully connected layers are applied to maximize the probability

of rotation classes. The pre-trained model is then employed to

initialize the weights for lung nodule detector 3DFPN. During

the training, the learning rate is set to 0.1, decreasing by 1=2

after 70 and 85 epochs, with the weight decay of 5e�4. The total

training includes 100 epochs, and the batch size is set to 16.

4.3.2. 3DFPN
The 3DFPN network takes the entire CT scan as input and

selects the volume of 96� 96� 96 pixels through the sliding

window schema. This size is selected experimentally to ensure

that it accommodates the entire nodule even with the largest

nodule (approx. 30 mm). In our 3DFPN, the anchor sizes

used to obtain candidate regions from the feature maps are

[33, 53, 103, 153, 203, 253, 303] pixels. The nodule positions

are predicted by 3D feature maps of the corresponding

anchor regions. During the training process, the regions to the

ground-truth regions with an Intersection-over-Union (IoU)

threshold less than 0:02 are referred to as negative samples

and with the threshold value greater than 0:4 are positive

samples. To avoid the similarity between positive and negative

samples, the regions between IoU values are ignored. We

follow the 2DFPN (22) to predict the nodule candidates with

a 3� 3 convolutional layer and followed by two 1� 1 sibling

convolution as classification and regression layer. The

classification layer predicts the confidence score of the

candidate classes, and the regression layer learns the offset

between the region proposals and the ground-truth. Smooth

L1 loss (52) and binary cross-entropy loss (BCE-loss) are used

for location regression and classification, respectively. The

proposals with a probability greater than 0.1 are selected as

nodule candidates. Non-maximum suppression is further

applied to eliminate multiple predicted nodule candidates.

4.3.3. HS2 network
The HS2 network consists of two convolution layers with 30

and 50 output channel dimensions, and three fully connected

layers with (2048, 1024, 512) channel dimensions. The ReLU

activation is applied after each convolution layer and followed

by a batch normalization layer. 11 continuous CT slices are

selected for LHI image generation with 5 slices before and

after the current slice of nodule candidate. The sizes of the

convolution kernel are set based on empirical experiments.

Image patches are aligned with each predicted nodule

candidate region but twice the size in both the x and y

directions. To calculate the intensity of LHIs, the thresholds

of spatial difference between two consecutive slices are set to

30 and 40 for data augmentation. LHIs are resized to 48� 48

pixels as the input of the HS2 network. To overcome the

unbalanced data candidates, we randomly sample the false-

positive candidates with a similar amount of true candidates

and apply the data augmentation, including flipping, rotating,

and cropping with 0:9 of the original size. In training, the

learning rate starts at 0:01 and decreases to 1=10 for every

500 epochs. 2, 000 epochs are executed in training. The

average prediction time for an entire CT scan is about 0:53

min/scan on one GeForce GTX 1080 GPU using Python 2.7.

4.4. Evaluation metrics

The performance is measured by Free-Response Receiver

Operating Characteristic (FROC) analysis and Competition

Performance Metric (CPM), the same as other methods.

Following the LUNA16 challenge evaluation method, the FROC

curve plots detection sensitivity and the points on the

corresponding false positives curve are obtained by the true

positive rate (true positives over the sum of true positives and
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false negatives) while the false positive rate at 1=4, 1=2, 1, 2, 4, 8 per

scan respectively. The CPM score is calculated by averaging the

sensitivity of all false-positive levels per scan. Sensitivity is defined

as the ratio of true positives divided by the total number of true

positives and false negatives. Specificity is the ratio of true

negatives over the total number of true negatives and false positives.

4.5. Experimental results and analysis

4.5.1. Comparison with other methods
Table 4 shows the FROC evaluation results at 1=8, 1=4, 1=2,

1, 2, 4, 8 false-positive levels for our proposed method compared

with state-of-the-art methods on LUNA16. The highlighted

numbers in the table represent the best performance for each

column. Since most state-of-the-art methods do not use the

pre-trained model, all the methods are tested on the LUNA16

dataset without the pre-trained model for a fair comparison,

following the same FROC evaluation. The state-of-the-art

methods are divided into two groups for the frameworks

without false positive reduction (14,16,41) and with false

positive reduction process (12,13,15,42,43). As shown in the

table, compared with the state-of-the-art detection methods,

the proposed 3DFPN surpasses 13:9% false positive at 0.125

per scan and 2% on average CPM. Compared with the

framework with the false positive reduction, our framework

outperforms 5:5% average sensitivity over most results of

other methods and 1% than Kim et al. (43). Moreover, the

proposed framework achieves the best performance at most of

FP levels. As mentioned above, CAD systems require not only

high sensitivity but also high specificity. Table 4 shows that

the proposed HS2 network significantly reduces false positives.

3DFPN-HS2 obtains the maximum sensitivity of 97:14% for

2 FPs per scan. Additionally, the proposed framework

remains a high sensitivity above 90% for the 1=8, 1=4, and

1=2 FP per scan. The experimental results show that the

proposed 3DFPN-HS2 reaches high sensitivity and specificity

with state-of-the-art performance for lung nodule detection.

The nodule detection results are shown in Figure 7.

To further analyze the performance of the detected network

for various nodule sizes, we followed (53) to classify the test set

into three categories. According to the size distribution of

pulmonary nodules, the average CPM for 10-fold cross-

validation are evaluated on the nodule sizes between 3 mm to

5mm (small), 5 mm to 10 mm (medium), and larger than

10 mm (large), respectively. As shown in Table 4, 3DFPN-HS2

shows improvements in sensitivity for small, medium and

large-sized nodule diameters compared with 3DFPN.

Specifically, the 3DFPN performs well in detecting large and

medium-sized nodule diameters as easy to detect. With the

pre-trained model and false-positive reduction, the result

shows a 3% improvement on average CPM for the small

nodule detection and yields the best performance overall.

4.5.2. Robustness with the self-supervised

pre-trained model
As shown in Table 5, we conduct two sets of experiments to

assess the robustness of frameworks that does not apply the

pretrained model and that employ the pretrained model. For

the experiment without the pre-trained model, the 3DFPN-HS2

model is trained from scratch on the LUNA16 training set. The

experiment with the pre-trained model applies the weights

from the pre-trained model to initialize the model parameters,

and then fine-tunes the model on the LUNA16 dataset, with

the results highlighted in Table 5. The models are trained and

fine-tuned only on LUNA 16 training set and further tested on

TABLE 4 FROC Performance comparison with the state-of-the-art methods on LUNA16 dataset: sensitivity and the corresponding false positives at
1=8, 1=4, 1=2, 1, 2, 4, 8 per scan. Our 3DFPN-HS2 method achieves the best performance (with .90% sensitivity) at most of false positive levels and
significantly outperforms others especially at the low false positive levels (1=8 and 1=4). 3DFPN indicates the nodule detector without false
positive reduction. 3DFPN-HS2 is with false positive reduction. 3DFPN-HS2 w shows the results applying pre-trained model trained on the NLST
dataset. CPMs,CPMm, and CPMl show the average detection performance for the small, medium, and larger nodules, respectively.

Methods 1/8 1/4 1/2 1 2 4 8 CPM Score CPMs CPMm CPMl

Without False Positive Reduction

Gupta et al. (41) 0.531 0.629 0.790 0.835 0.843 0.848 0.856 0.763 – – –

Zhu et al. (16) 0.692 0.769 0.824 0.865 0.893 0.917 0.933 0.842 – – –

Khosravan et al. (14) 0.709 0.836 0.921 0.953 0.953 0.953 0.953 0.897 – – –

With False Positive Reduction

Dou et al. (13) 0.677 0.737 0.815 0.848 0.879 0.907 0.922 0.827 – – –

Dou et al. (42) 0.659 0.745 0.819 0.865 0.906 0.933 0.946 0.839 – – –

Wang et al. (15) 0.676 0.776 0.879 0.949 0.958 0.958 0.958 0.878 – – –

Ding et al. (12) 0.748 0.853 0.887 0.922 0.938 0.944 0.946 0.891 – – –

Kim et al. (43) 0.904 0.931 0.943 0.947 0.952 0.956 0.962 0.942 – – –

3DFPN (Ours) 0.848 0.876 0.905 0.933 0.943 0.957 0.970 0.919 0.894 0.909 0.937

3DFPN-HS2 (Ours) 0.904 0.914 0.933 0.957 0.971 0.971 0.971 0.952 0.914 0.945 0.977

3DFPN-HS2 w (Ours) 0.906 0.923 0.948 0.981 0.981 0.981 0.981 0.957 0.928 0.953 0.979
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FIGURE 7

Visualization of some detected true nodules with different sizes from 3mm to 25mm in diameter d by our proposed 3DFPN-HS2 framework. For

better visualization, the detected nodule regions are zoomed in, as shown in the orange circles. The green box indicates the predicted region,

and the red box represents the ground-truth. Some of the red boxes are not observed because they are perfectly overlapped with the green

boxes. The results demonstrate that our 3DFPN-HS2 framework is capable of detecting lung nodules of different sizes from CT scans accurately.
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the LUNA16 testing set and three different datasets (SPIE-

AAPM, LungTime, and HMS Lung Cancer datasets) for cross-

dataset validation. Additionally, we compare the experiments

without and with the false positive reduction method. Using

the pre-trained model shows slight improvements at all the

false positive levels than those without the pre-trained model.

Experiments performed on SPIE-AAPM, LungTime, and HMS

Lung Cancer datasets with the nodule detector trained only on

the LUNA16 dataset shows a significantly decreasing

performance compared to the results on the LUNA16 testing

set, especially for 1=8 false positive per scan. It is because

LUNA16 has a relatively limited training set and cannot robust

to other datasets. Compared with the model trained only on

the LUNA16 dataset, the framework applying the self-

supervised pre-trained model shows a significant improvement

in all false positive levels on all of these datasets. Specifically, on

1=8 false positive per scan, the sensitivity is increased 7:4% on

SPIE-AAPM, 13:5% on LungTIME, and 8:9% on HMS,

respectively. For the 8 false positives per scan, the accuracy is

comparable to that of LUNA16. The significant improvement

in performance demonstrates the robustness of applying the

pre-trained model across different datasets without additional

annotations. Because the model is trained on the LUNA16

training set, the test results on the LUNA16 test set have

already achieved great performance as shown in Table 5.

Therefore, compared with the other three datasets, the

performance of this model is only slightly improved on the

LUNA16 test set with the pre-training model than without the

pre-trained model.

4.5.3. Effectiveness of HS2 network for FP

reduction
The superiority of HS2 network on LUNA16 dataset is

demonstrated by two experiments. As shown in Figure 8

TABLE 5 FROC Performance comparison with and without using the pre-trained model, with and without false positive reduction: sensitivity and the
corresponding false positives at 1=8, 1=4, 1=2, 1, 2, 4, 8 per scan. The 3DFPN-HS2 is only fine-tuned (with the pre-trained model)/trained (without the
pre-trained model) on LUNA16 training set and tested on LUNA16 test set. At all levels of false positives per scan, the sensitivities of the framework
using a pre-trained model and false positive reduction significantly outperform the one without the pre-trained model and false positive reduction.

Datasets Pre-trained HS2 1/8 1/4 1/2 1 2 4 8 CPM Score

LUNA16 no no 0.848 0.876 0.905 0.933 0.943 0.957 0.970 0.919

no
p

0.904 0.914 0.933 0.957 0.971 0.971 0.971 0.952p p
0.906 0.923 0.948 0.981 0.981 0.981 0.981 0.957

SPIE-AAPM no no 0.764 0.791 0.839 0.873 0.895 0.914 0.923 0.857

no
p

0.808 0.852 0.877 0.914 0.928 0.947 0.964 0.899p p
0.823 0.866 0.891 0.933 0.957 0.966 0.966 0.914

LungTIME no no 0.775 0.816 0.839 0.874 0.924 0.937 0.956 0.874

no
p

0.797 0.826 0.862 0.891 0.927 0.948 0.969 0.889p p
0.814 0.837 0.874 0.899 0.931 0.952 0.974 0.897

HMS Lung Cancer no no 0.624 0.681 0.712 0.784 0.827 0.898 0.909 0.776

no
p

0.657 0.703 0.746 0.805 0.846 0.912 0.927 0.799p p
0.752 0.823 0.856 0.894 0.921 0.941 0.958 0.877

FIGURE 8

Comparison between the proposed 3DFPN and 3DFPN-HS2 . Left: comparison of the proposed 3DFPN and 3DFPN-HS2 on LUNA16 dataset without

using the pre-trained model. 3DFPN-HS
2 greatly improves the performance of the 3DFPN at all FP levels per scan. Right: the number of false positives

reduced from 629 to 97 for a total of 88 CT scans with the confidence score above 0 after applying the HS
2 network.
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(left), the result of 3DFPN-HS2 with the false positive reduction

is increased more than 5% at 1/8 FP level compared with

3DFPN without the HS2 network. In addition, in Figure 8

(right), we further compare the numbers of FPs with (blue

bar) and without (orange bar) HS2 network in all the

predicted nodule candidates in 88 CT scans (subset 9). The

3DFPN-HS2, with HS2 for false positive reduction, can

distinguish the false detected tissues from true nodules,

significantly reducing FPs by 84.5%. In addition, our proposed

3DFPN without HS2 network can still reach 97% at 8 FPs per

scan, surpassing other state-of-the-art methods (shown in

Table 4.)

5. Conclusion

In this paper, we have proposed an effective and robust

3DFPN-HS2 framework for lung nodule detection with a self-

supervised feature learning schema. The different sizes of lung

nodules can be detected by enriching the local and global

features through a 3D feature pyramid network. By

introducing the HS2 network and treating each CT scan as a

video, false positives are significantly reduced based on the

patterns of location variance for nodules and tissues in

continuous CT slices. Spatial features of CT scans can be

effectively learned from large-scale CT scans without using

additional labels by applying a self-supervised feature learning

schema. The learned features can significantly improve the

robustness of the proposed framework across different clinic

datasets. As high sensitivity and specificity are achieved with

robustness to the data from multiple CT scanner

manufacturers, the proposed framework has a high potential

in routine clinical practice.
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