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Abstract—There is a growing concern about typically opaque decision-making with high-performance machine learning algorithms.
Providing an explanation of the reasoning process in domain-specific terms can be crucial for adoption in risk-sensitive domains such
as healthcare. We argue that machine learning algorithms should be interpretable by design and that the language in which these
interpretations are expressed should be domain- and task-dependent. Consequently, we base our model’s prediction on a family of
user-defined and task-specific binary functions of the data, each having a clear interpretation to the end-user. We then minimize the
expected number of queries needed for accurate prediction on any given input. As the solution is generally intractable, following prior
work, we choose the queries sequentially based on information gain. However, in contrast to previous work, we need not assume the
queries are conditionally independent. Instead, we leverage a stochastic generative model (VAE) and an MCMC algorithm (Unadjusted
Langevin) to select the most informative query about the input based on previous query-answers. This enables the online determination
of a query chain of whatever depth is required to resolve prediction ambiguities. Finally, experiments on vision and NLP tasks
demonstrate the efficacy of our approach and its superiority over post-hoc explanations.

Index Terms—Explainable AI, interpretable ML, computer vision, generative models, information theory
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1 INTRODUCTION

IN recent years, interpreting large machine learning mod-
els has emerged as a major priority, particularly for trans-

parency in making decisions or predictions that impact
human lives [1], [2], [3]. In such domains, understanding
how a prediction is made may be as important as achieving
high predictive accuracy. For example, medical regulatory
agencies have recently emphasized the need for computa-
tional algorithms used in diagnosing, predicting a progno-
sis, or suggesting treatment for a disease, to explain why a
particular decision was made [4], [5].

On the other hand, it is widely believed that there exists a
fundamental trade-off in machine learning between interpret-
ability and predictive performance [6], [7], [8], [9], [10]. Simple
models like decision trees and linear classifiers are often
regarded as interpretable1 but at the cost of potentially reduced
accuracy compared with larger black boxmodels such as deep

neural networks. As a result, considerable effort has been
given to developing methods that provide post-hoc explana-
tions of black box model predictions, i.e., given a prediction
from a (fixed) model provide additional annotation or elabo-
ration to explain how the prediction was made. As a concrete
example, for image classification problems, one common fam-
ily of post-hoc explanation methods produces attribution
maps which seek to estimate the regions of the image that are
most important for prediction. This is typically approached by
attempting to capture the effect or sensitivity of perturbations
to the input (or intermediate features) on the model output
[11], [12], [13], [14], [15], [16], [17], [18]. However, post-hoc
analysis has been critiqued for a variety of issues [2], [19], [20],
[21], [22], [23] (see also Section 2) and often fails to provide
explanations in terms of concepts that are intuitive or inter-
pretable for humans [24].

This naturally leads to the question of what an ideal
explanation of a model prediction would entail; however,
this is potentially highly task-dependent both in terms of the
task itself as well as what the user seeks to obtain from an
explanation. For instance, a model for image classification is
often considered interpretable if its decision can be
explained in terms of patterns occurring in salient parts of
the image [25] (e.g., the image is a car because there are
wheels, a windshield, and doors), whereas in a medical task
explanations in terms of causality and mechanism could be
desired (e.g., the patient’s chest pain and shortness of breath
is likely not a pulmonary embolism because the blood D-
dimer level is low, suggesting thrombosis is unlikely). Note
that some words or patterns may be domain-dependent and
therefore not interpretable to non-experts, and hence what
is interpretable ultimately depends on the end user, namely
the person who is trying to understand or deconstruct the
decision made by the algorithm [26].
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1. Although later in the paper we will discuss situations in which
even these simple models need not be interpretable.
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In addition to this task-dependent nature of model inter-
pretation, there are several other desirable intuitive aspects
of interpretable decisions that one can observe. The first is
that meaningful interpretations are often compositional and
can be constructed and explained from a set of elementary
units [27]. For instance, words, parts of an image, or
domain-specific concepts [28], [29], [30] could all be a suit-
able basis to form an explanation of a model’s prediction
depending on the task. Moveover, the basic principle that
simple and concise explanations are preferred (i.e., Occam’s
razor) suggests that interpretablity is enhanced when an
explanation can be composed from the smallest number of
these elementary units as possible. Finally, we would like
this explanation to be sufficient for describing model predic-
tions, meaning that there should be no external variables
affecting the prediction that are not accounted for by the
explanation.

Inspired by these desirable properties, we propose a
framework for learning predictors that are interpretable by
design. The proposed framework is based on composing a
subset of user-defined concepts, i.e., functions of the input
data which we refer to as queries, to arrive at the final predic-
tion. Possible choices for the set of queries Q based on the
style of interpretation that is desired include:

1) Salient image parts:For vision problems, if one is inter-
ested in explanations in terms of salient image regions
then this can be easily accomplished in our framework
by defining the query set to be a collection of small
patches (or even single pixels) within an image. This
can be thought of as a generalization of the pixel-wise
explanations generated by attributionmaps.

2) Concept-based explanations:In domains such as medi-
cal diagnosis or species identification, the user might
prefer explanations in terms of concepts identified
by the community to be relevant for the task. For
instance, a “Crow” is determined by the shape of the
beak, color of the feathers, etc. In our framework, by
simply choosing a query for each such concept, the
user can easily obtain concept-based explanations
(see Fig. 1b).

3) Visual scene interpretation:In visual scene understand-
ing, one seeks a rich semantic description of a scene
by accumulating the answers to queries about the
existence of objects and relationships, perhaps gener-
ating a scene graph [31]. One can design a query set
Q by instantiating these queries with trained classi-
fiers. The answers to chosen queries in this context
would serve as a semantic interpretation of the
scene.

4) Deep neuron-based explanations: The above three
examples are query sets based on domain knowl-
edge. Recent techniques [30], [32], [33] have shown
the ability of different neurons in a trained deep net-
work to act as concept detectors. These are learnt
from data by solving auxiliary tasks without any
explicit supervisory signal. One could then design a
Q in which each query corresponds to the activation
level of a specific concept neuron. Such a query set
will be useful for tasks in which it is difficult to spec-
ify interpretable functions/queries beforehand.

Given a user-specified set of queries Q, our framework
makes its prediction by selecting a short sequence of queries
such that the sequence of query-answer pairs provides a
complete explanation for the prediction. More specifically,
the selection of queries is done by first learning a generative
model for the joint distribution of queries and output labels
and then using this model to select the “most informative”
queries for a given input. The final prediction is made using
the Maximum A Posteriori (MAP) estimate of the output
given these query-answer pairs. Fig. 1a gives an illustration
of our proposed framework, where the task is to predict the
bird species in an image and the queries are based on color,
texture and shape attributes of birds. We argue that the
sequence of query-answer pairs provides a meaningful
explanation to the user that captures the subjective nature
of interpretability depending on the task at hand, and that
is, by construction, compositional, concise and sufficient.

At first glance, one might think that classical decision
trees [34], [35] based on Q could also produce interpretable
decisions by design. However, the classical approach to
determining decision tree branching rules based on the
empirical distribution of the data is prone to over-fitting
due to data fragmentation. Whereas random forests [36],
[37] are often much more competitive than classical
decision trees in accuracy [38], [39], [40], they sacrifice

Fig. 1. (a) An illustration of our proposed learning framework. The
prediction of a bird species is explained through a short sequence of
interpretable queries, ðq1; q2; . . . ; q7Þ, derived from a user-defined query
set of domain-specific attribute for birds. (b) Interpretable queries.
Each query in this case corresponds to a well-defined bird attribute. For
instance, q3 asks “Does the bird have belly color yellow?”. We visualize
some example images which evaluate to “Yes” and observe that all of
them correspond to birds with a yellow belly. Similarly, all images which
evaluate to “No” corresponds to birds which do not have a yellow belly.
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interpretability, the very property we want to hardwire
into our decision algorithm. Similarly, the accuracy of a
single tree can be improved by using deep networks to
learn queries directly from data, as in Neural Decision
Trees (NDTs) [41]. However, the opaqueness of the inter-
pretation of these learnt queries makes the explanation of
the final output, in terms of logical operations on the
queries at the internal nodes, unintelligible. Fig. 2 illus-
trates this with an example.

In this paper we make the following contributions;

! We propose a novel framework for prediction that is
interpretable by design. We allow the end-user to spec-
ify a set Q of queries about input X and formulate
learning as the problem of selecting a minimal set of
queries from Q whose answers are sufficient for pre-
dicting output Y . We formulate this query selection
problem as an optimization problem over strategies
that minimize the number of queries needed on aver-
age to predict Y from X. A prediction for Y is then
made based on the selected query-answer pairs,
which provide an explanation for the prediction that
is by construction interpretable. The set of selected
query-answer pairs can be viewed as a code for the
input. However, a major difference between our
framework and coding theory is that, due to the con-
straint of interpretability, Q is a vanishingly small
collection of the functions of X, whereas coding the-
ory typically considers Q to be all possible binary
functions ofX.

! Since computing the exact solution to our optimiza-
tion problem is computationally challenging, we
propose to greedily select a minimal set of queries
by using the Information Pursuit (IP) algorithm [42].
IP sequentially selects queries in order of maximum
information gain until enough evidence is gathered
from the query-answer pairs to predict Y . This
sequence of query-answer pairs serves as the

explanation for predicting Y from X. To ameliorate
the computational challenge of computing informa-
tion gain for high-dimensional input and query
spaces, prior work [42] had assumed that query
answers were conditionally independent given Y , an
assumption that is largely inadequate for most pre-
diction tasks we encounter in practice. In this paper,
we propose a latent variable graphical model for the
joint distribution of queries and outputs, pðQðXÞ; Y Þ,
and learn the required distributions using Varia-
tional Autoencoders (VAEs). We then use the Unad-
justed Langevin Algorithm (ULA) to generate
samples required to carry out IP. This gives us a trac-
table algorithm for any task and query set. To the
best of our knowledge, ours is the first implementa-
tion of IP that uses deep generative models and does
not assume that query answers are conditionally
independent given Y .

! Finally, we demonstrate the utility of our framework
on various vision and NLP tasks. In binary image
classification using MNIST, Fashion-MNIST &
KMNIST, and bird species identification using CUB-
200, we observe that IP finds succinct explanations
which are highly predictive of the class label. We
also show, across various datasets, that the explana-
tions generated by our method are shorter and more
predictive of the class label than state-of-the-art post-
hoc explanation methods like Integrated Gradients
and DeepSHAP.

2 RELATED WORK

Methods for interpretable deep learning can be separated
into those that seek to explain existing models (post-hoc
methods) and those that build models that are interpretable
by design. Because they do not negatively impact perfor-
mance and are convenient to use, post-hoc explanations
have been the more popular approach, and include a great
diversity of methods.

Saliency maps estimate the contribution of each feature
through first-order derivatives [11], [12], [16], [17], [43]. Lin-
ear perturbation-based methods like LIME [44] train a linear
model to locally approximate a deep network around a par-
ticular input, and use the coefficients of this model to esti-
mate the contribution of each feature to the prediction.
Another popular set of methods use game-theoretic Shapley
values as attribution scores, estimating feature contributions
by generating predictions on randomly sampled subsets of
the input [45]. We provide quantitative comparisons
between IP and these methods in Section 5.1.2. Recently,
there has been interest in concept-based analogues of these
methods that leverage similar approaches to measure the
sensitivity of a prediction to high-level, human-friendly
concepts as opposed to raw features [46], [47], [48].

Despite certain advantages, what all the above post-hoc
methods have in common is that they come with little guar-
antee that the explanations they produce actually reflect
how the model works [2]. Indeed, several recent studies
[18], [19], [20], [21], [22] call into question the veracity of
these explanations towards the trained model. Adebayo
et al. [19] show that several popular attribution methods act

Fig. 2. The interpretability of an explanation depends on how inter-
pretable the queries are. (a) An illustration of a Deep Neural decision
tree [41] trained on the CUB-2011 dataset of bird images. The bold path
denotes the trajectory the input image xobs takes through the tree. Each
di corresponds to an internal node of the tree and is a black-box func-
tion/query learnt from data. Each li denotes a leaf and computes the
final classification for xobs. The prediction can be explained as a conjunc-
tion of internal node functions, but is it really interpretable? (b) Example
images that get routed to the left sub-tree (d1 $ 0:5) and right sub-tree
(d1 < 0:5) of the root node. Notice that the interpretation of d1 is not clear
from these examples. Compare this to Fig. 1 where the semantics of
each query is unambiguous to the end-user.
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similar to edge detectors and are insensitive to the parame-
ters of the model they attempt to explain! Yang et al.[20]
find that these methods often produce false-positive explan-
ations, assigning importance to features that are irrelevant
to the prediction of the model. It is also possible to adversa-
rially manipulate post-hoc explanations to hide any spuri-
ous biases the trained model might have picked up from
data [23].

Interpretability by Design. These issues have motivated
recent work on deep learning models which are interpretable
by design, i.e., constrained to produce explanations that are
faithful to the underlying model, albeit with varying con-
ceptions of “faithfulness”. Several of these models are
constructed so they behave similarly to or can be well-
approximated by a classically interpretable model, such as a
linear classifier [49], [50] or a decision tree [51]. This allows
for an approximately faithful explanation in raw feature
space. In a similar vein, Pillai & Pirsiavash [52] fix a post-
hoc explanation method (e.g., Grad-CAM [16]), and regular-
ize a model to generate consistent explanations with the
chosen post-hoc method. However, our method does not
just behave like a fully interpretable model or generate
approximately faithful explanations, but rather it produces
explanations that are guaranteed to be faithful and fully
explain a given prediction.

Another approach to building interpretable models by
design is to generate explanations in terms of high-level,
interpretable concepts rather than in raw feature space,
often by applying a linear classifier to a final latent space
of concepts [25], [49], [53]. However these concepts are
learned from data, and may not align with the key con-
cepts identified by the user. For example, Prototypical
Part Networks [25] take standard convolutional architec-
tures and insert a “prototype layer” before the final lin-
ear layer, learning a fixed number of visual concepts that
are used to represent the input. This allows the network
to explain a prediction in terms of these “prototype”
concepts. Since these prototypes are learned embeddings,
there is no guarantee that their interpretation will coin-
cide with the user’s requirements. Furthermore, these
explanations may require a very large number of con-
cepts, while in contrast, we seek minimal-length explana-
tions to preserve interpretability.

Attention-based models are another popular family of
models that are sometimes considered interpretable by design
[54], [55]. However, attention is only a small part of the overall
computation and can be easily manipulated to hide model
biases [56]. Moreover, the attention coefficients are not neces-
sarily a sufficient statistic for themodel prediction.

Perhaps most similar to our work are Concept Bottleneck
Networks [24], which first predict an intermediate set of
human-specified concepts c and then use c to predict the
final class label. Nevertheless, the learnt mapping from con-
cepts to labels is still a black-box. To remedy this, the
authors suggest using a linear layer for this mapping but
this can be limiting since linearity is often an unrealistic
assumption [27]. In contrast, our framework makes no
linearity assumptions about the final classifier and the clas-
sification is explainable as a sequence of interpretable
query-answer pairs obtained about the input (see Fig. 1a).

Neural Networks and Decision Trees. Unlike the above
methods, which can be thought of as deep interpretable lin-
ear classifiers, our method can be described as a deep deci-
sion tree that branches on responses to an interpretable
query set. Spanning decades, there has been a variety of
work building decision trees from trained neural networks
[29], [57], [58], [59] and using neural networks within nodes
of decision trees [41], [60], [61], [62]. Our work differs from
these in three important aspects. First, rather than allowing
arbitrary splits, we branch on responses to an interpretable
query set. Second, instead of using empirical estimates of
information gains based on training data (which inevitably
encounter data-fragmentation [63] and hence overfitting),
or using heuristics like agglomerative clustering on deep
representations [29], we calculate information gain from a
generative model, leading to strong generalization. Third,
for a given input, say xobs, we use a generative model to
compute the queries along the branch traversed by xobs in
an online manner. The entire tree is never constructed. This
allows for much very deep terminal nodes when necessary
to resolve ambiguities in prediction. As an example, for the
task of topic classification using the HuffPost dataset (Sec-
tion 5.0.3), our framework asks about 199 queries (on aver-
age) before identifying the topic. Such large depths are
impossible in standard decision trees due to memory
limitations.

Information Bottleneck and Minimal Sufficient Statistics. The
problem of finding minimal-length, task-sufficient codes is
not new. For example, the information bottleneck method [64]
seeks a minimum-length encoding for X that is (approxi-
mately) sufficient to solve task Y . Our concept of descrip-
tion length differs in that we constrain the code to consist of
interpretable query functions rather than all functions of the
input, as in the information bottleneck and classical infor-
mation theory. Indeed, arbitrary subsets of the input space
(e.g., images) are overwhelmingly not interpretable to
humans.

Sequential Active Testing and Hard Attention. The informa-
tion pursuit (IP) algorithm we use was introduced in [42]
under the name ”active testing,” which sequentially
observes parts of an input (rather than the whole input at
once), using mutual information to determine ”where to
look next,” which is calculated online. Sequentially guiding
the selection of partial observations has also been indepen-
dently explored in Bayesian experimental design [65]. Sub-
sequent works in these two areas include many ingredients
of our approach (e.g., generative models [31], [66] and
MCMC algorithms [67]). Of particular interest is the work
of Branson et al. [68] which used the CUB dataset to identify
bird species by sequentially asking pose and attribute
queries to a human user. They employ IP to generate the
query sequence based on answers provided by the user,
much like our experiments in Section 5.0.2. However, for
the sake of tractability, all the above works assume that
query answers are independent conditioned on Y . We do
not. Rather, to the best of our knowledge, ours is the first
implementation of the IP algorithm that uses deep genera-
tive models and only assumes that queries are independent
given Y and some latent variable Z. This greatly improves per-
formance, as we show in Section 5.
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The strategy of inference through sequential observation
of portions of the input has been recently re-branded in the
deep learning community as Hard Attention [69], [70], [71].
However, high variance in gradient estimates and scalabil-
ity issues have prevented widespread adoption. In the
future, we wish to explore how our work could inform
more principled and better-performing reward functions
for Hard Attention models.

Visual Question Answering. Although it may appear that
our work is also related to the Visual Question Answering
(VQA) literature [72], [73], [74], [75], [76], [77], we note that
our work addresses a very different problem. VQA focuses
on training deep networks for answering a large set of ques-
tions about a visual scene. In contrast, our framework is
concerned with selecting a small number of queries to ask
about a given image to solve a task, say classification. As we
move on to more complex tasks, an interesting avenue for
future work would involve using VQA systems to supply
answers to the queries used in our framework. However,
this would require significantly more complex generative
models that the ones considered here.

3 LEARNING INTERPRETABLE PREDICTORS BY

COMPOSING QUERIES VIA INFORMATION

PURSUIT

Let X and Y be the input data and the corresponding out-
put/hypothesis, both random variables assuming values in
X and Y respectively. In supervised learning, we seek to
infer Y from X using a finite set of samples drawn from the
joint distribution pXY ðx; yÞ.2 As motivated in Section 1, use-
ful explanations for prediction should be task-dependent,
compositional, concise and sufficient. We capture such proper-
ties through a suitably rich set Q of binary functions qðxÞ, or
queries, whose answers fqðxÞgq2Q collectively determine the
task Y . More precisely, a query set Q is sufficient for Y if

pðy jxÞ ¼ pðy j fx0 2 X : qðx0Þ ¼ qðxÞ 8q 2 QgÞ: (1)

In other words, Q is sufficient for Y if whenever two inputs
x and x0 have identical answers for all queries in Q, their
corresponding posteriors are equal, i.e., pðy jxÞ ¼ pðy jx0Þ.

Given a fixed query set Q, how do we compose queries
into meaningful representations that are predictive of Y ?
We answer this by first formally defining an explanation
strategy p and then formulating the task of composing
queries as an optimization problem.

Explanation Strategies Based on Composing Queries. An
explanation strategy, or just strategy, is a function, p : K& !
Q, where K& is the set of all finite-length sequences gener-
ated using elements from the set K ¼ fðq; qðxÞÞ j q 2 Q; x 2
Xg of query-answer pairs. We require that Q contains a spe-
cial query, qSTOP , which signals the strategy to stop asking
queries and output explpQðxÞ, the set of query-answer pairs
asked before qSTOP . More formally, a strategy p is recur-
sively defined as follows; given input sample xobs

1) q1 ¼ pð;Þ. The first query is independent of xobs.

2) qkþ1 ¼ pðfqi; qiðxobsÞg1:kÞ. All subsequent queries
depend on the query-answer pairs observed so far
for xobs.

3) If qLþ1 ¼ qSTOP terminate, and return

explpQðx
obsÞ :¼ fqi; qiðxobsÞg1:L: (2)

Notice that each qi depends on xobs, but we drop this
dependency in the notation for brevity. We call the number
of pre-STOP queries for a particular xobs as the explanations’
description length and denote it by tpðxobsÞ :¼ jexplpQðxobsÞj.
Computing a strategy on xobs is thus akin to traversing
down the branch of a decision tree dictated by xobs. Each
internal node encountered along this branch computes the
query proposed by the strategy based on the path (query-
answer pairs) observed so far.

Notice also that we restrict out attention to sequential
strategies so that the resulting explanations satisfy the prop-
erty of being prefix-free.3 This means that explanations gen-
erated for predictions made on an input signal x1 cannot be
a sub-part for explanations generated for predictions on a
different input signal x2; otherwise, the explanation proce-
dure is ambiguous because a terminal node carrying one
label could be an internal node of a continuation leading to
a different label. Sequential strategies generate prefix-free
explanations by design. For non-sequential strategies,
which are just functions mapping an input X to a set of
queries in Q, it is not clear how to effectively encode the
constraint of generating prefix-free explanations.

Concise and Approximately Sufficient Strategies. In machine
learning, we are often interested in solving a task approxi-
mately rather than exactly. Let Q be sufficient for Y , choose a
distance-like metric d on probability distributions and let
! > 0. We propose the following optimization problem to
efficiently compose queries for prediction

min
p

EX jexplpQðXÞj
h i

¼: H!
QðX;Y Þ

s.t. EX½d pðY jXÞ; pðY j explpQðXÞ
! "

) * ! ð! +SufficiencyÞ;

(3)

where the minimum is taken over all strategies p. The solu-
tion p& to (3) provides a criterion for an optimal strategy for
the task of inferring Y approximately from X. The minimal
expected description length objective, H!

QðX;Y Þ, ensures the
conciseness of the explanations, while the constraint
ensures approximate sufficiency of the explanation. The
“metric” d on distributions could be KL-divergence, total
variation, Wasserstein distance, etc. The hyper-parameter !
controls how approximate the explanations are. The poste-
rior pðy j explpQðxobsÞÞ should be interpreted as the condi-
tional probability of y given the event

½xobs)p;Q :¼ fx 2 X j explpQðxÞ ¼ explpQðx
obsÞg: (4)

explpQðXÞ can also be interpreted as a random variable
which maps inputX to its equivalence class ½X)p;Q.

2. We denote random variables by capital letters and their realiza-
tions with small letters.

3. The term prefix-free comes from the literature on instantaneous
codes in information theory.
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The final prediction/inference for the input xobs is then
taken to be the usual MAP estimator, namely

ypred ¼ argmax
y2Y

pðy j explpQðx
obsÞÞ: (5)

The sequence of query-answers streams obtained by p on
xobs serves as the explanation for ypred. One could also moni-
tor the posterior over the labels Y evolving as successive
queries get asked to gain more insight into the strategy’s
decision-making process. Fig. 3 illustrates the overall frame-
work in detail.

Information Pursuit: A Greedy Approximation. Unfortu-
nately, solving (3) is known to be NP-Complete and hence
generally intractable [78]. As an approximate solution to (3)
we propose to use a greedy algorithm called Information
Pursuit (IP). IP was introduced by Geman & Jedynak in
1996 [42] as a model-based, online construction of a single
but deep branch. The IP strategy, that is, p ¼ IP, is recur-
sively defined as follows:

q1 ¼ IPð;Þ ¼ argmax
q2Q

IðqðXÞ;Y Þ

qkþ1 ¼ IPðfqi; qiðxobsÞg1:kÞÞ ¼ argmax
q2Q

IðqðXÞ;Y jSIP
k ðxobsÞÞ

(6)

where I denotes mutual information and SIP
k ðxobsÞ corre-

sponds to the event fx 2 X j fqi; qiðxobsÞg1:k ¼ fqi; qiðxÞg1:kg.
Ties in choosing qkþ1 are broken arbitrarily if the maximum
is not unique.

The algorithm stops when there are no more informative
queries left in Q, that is, it satisfies the following condition

qLþ1 ¼ qSTOP if max
q2Q

IðqðXÞ;Y jSIP
m ðxobsÞÞ * !

8m 2 fL;Lþ 1; . . . ; Lþ Tg; (7)

where hyper-parameter T > 0 is chosen via cross-valida-
tion. This termination criteria corresponds to taking the dis-
tance-like metric d in (3) as the KL-divergence between the
two distributions. Further details about the relation between
this termination criteria and the !-Sufficiency constraint in
(3) are provided in Appendix A.3, which can be found on
the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2022.3225162. For
tasks in which Y is a function of X, a common scenario in

many supervised learning problems, we use a simpler alter-
native

qLþ1 ¼ qSTOP if argmax
y2Y

pðy jSIP
m ðxobsÞÞ $ 1+ !

8m 2 fL;Lþ 1; . . . ; Lþ Tg: (8)

The key distinction between the information gain criteria
used in standard decision tree induction and IP is that the for-
mer uses the empirical distributions to compute (6)while the lat-
ter is based on generative models (as we will see in Section 4).
The use of generativemodels guards against data fragmentation
[63] and thus allows for asking longer sequences of querieswith-
out grossly over-fitting.

How Does IP Compare to the Optimal Strategy p&p&p&p&p&p&p&?We begin
by characterizing the constraint in (3) in terms of mutual
information, the quantity that drives IP.

Proposition 1. Let Sp
k ðXÞ be a random variable where any reali-

zation Sp
k ðxobsÞ, xobs 2 X , denotes the event

Sp
k ðx

obsÞ :¼ fx0 2 X j fqi; qiðxobsÞg1:k ¼ fqi; qiðx0Þg1:kg;

where qi is the ith query selected by p for input xobs. Here we use
the convention that Sp

0 ðXÞ ¼ V (the entire sample space) and
Sp
l ðXÞ ¼ Sp

tpðXÞðXÞ 8l > tpðXÞ. If Q is finite4 and d is taken
to be the KL-divergence, then objective (3) can be rewritten as

H!
QðX;Y Þ :¼ min

p
EX jexplpQðXÞj

h i

s.t.
Xtp

k¼1

IðY ;Sp
k ðXÞ jSp

k+1ðXÞÞ $ IðX;Y Þ + !; (9)

where tp ¼ maxftpðxÞ : x 2 Xg and tpðXÞ is defined as the
number of queries selected by p for inputX until qSTOP .

See Appendix A.1, available in the online supplemental
material, for a detailed proof. The objective in (9) can be alterna-
tively stated as

max
p

Xtp

k¼1

IðY ;Sp
k ðXÞ jSp

k+1ðXÞÞ

s.t. EX jexplpQðXÞj
h i

* g; (10)

where g > 0 is a user-defined hyper-parameter. From (10) it is
clear that the optimal strategy p& would ask a sequence of
queries about X that would maximize the cumulative sum of
themutual information each additional query provides about Y ,
conditioned on the history of query-answers observed so far,
subject to a constraint on the average number of queries that can
be asked. As stated before, solving for p& is infeasible but a
greedy approximation that makes locally optimal choices is
muchmore amenable.

Suppose that one has been given the answers to k queries
about a given input, the locally optimal choice would then
be to ask the most informative query about Y conditioned
on the history of these k query-answers observed. This
greedy choice at each stage gives rise to the IP strategy.

Fig. 3. Schematic view of the overall framework for quantifying explana-
tions for predicting y from xobs. For details see Section 3.

4. The assumption of Q being a finite set is benign. Many interested
applications can be addressed with a finite Q as we show in our
experiments.
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Obtaining approximation guarantees for IP is still an open
problem; however in the special case whereQ is taken to be the
set of all possible binary functions of X, it is possible to show
that IP asks at most 1 query more than p& on average. More for-
mally, we have the following result, whose proof can be found
in Appendix A.2, available in the online supplemental material.

Proposition 2. Let Y be discrete. Let ~HQðX;Y Þ be the expected
description length obtained by the IP strategy. If HðY jXÞ ¼ 0
and Q is the set of all possible binary functions of X such that
HðqðXÞ jY Þ ¼ 0 8q 2 Q, then

HðY Þ * ~HQðX;Y Þ * HðY Þ þ 1 (11)

Having posed the problem of finding explanations as an
optimization problem and proposed a greedy approxima-
tion to solving it, in the next section we propose a tractable
implementation of IP based on deep generative models.

4 INFORMATION PURSUIT USING VARIATIONAL

AUTOENCODERS AND UNADJUSTED LANGEVIN

IP requires probabilistic models relating query-answers and
data to compute the required mutual information terms in (6).
Specifically, computing qkþ1 in (6) (for any iteration number k)
requires computing the mutual information between qðXÞ
and Y given the history SIP

k ðxobsÞ till time k. As histories
become longer, we quickly run out of samples in our dataset
which belong to the event SIP

k ðxobsÞ. As a result, non-paramet-
ric sample-based methods to estimate mutual information
(such as [79]) would be impractical. In this section, we propose
a model-based approach to address this challenge for a gen-
eral supervised learning task and query set Q. In Section 5 we
adapt this model to the specific cases where Q is taken to be
image patches or task-based concepts.

Information Pursuit Generative Model. To make learning
tractable, we introduce latent variables Z to account for all
the dependencies between different query-answers, and we
posit the following factorization of QðXÞ; Y; Z

pQðXÞZY ðQðxÞ; z; yÞ
¼

Y

q2Q
pqðXÞ jZY ðqðxÞ j z; yÞpY ðyÞpZðzÞ; (12)

where QðXÞ ¼ fqðXÞ : q 2 Qg, and z and qðxÞ denote real-
izations of Z and qðXÞ respectively. In other words, we
assume that the query-answers are conditionally indepen-
dent given the label y and a latent vector z. The indepen-
dence assumption in (12) shows up ubiquitously in many
machine learning applications, such as the following.

1) qðXÞqðXÞqðXÞqðXÞqðXÞqðXÞqðXÞ as object presence indicators evaluated at non-over-
lapping windows: Let Q be a set of non-overlapping
windows in the image X with qðXÞ being a random
variable indicating the presence of an object at the qth

location. The correlation between the qs is entirely
due to latent image generating factors Z, such as
lighting, camera position, scene layout, and texture
along with the scene description signal Y .

2) qðXÞqðXÞqðXÞqðXÞqðXÞqðXÞqðXÞ as snippets of speech utterances: A common assump-
tion in speech recognition tasks is that the audio frame

features (qðXÞ) are conditionally independent given
latent phonemesZ (which is oftenmodeled as aHidden
MarkovModel).

The latent space Z is often a lower-dimensional space
compared to the original high-dimensional X. We learn Z
from data in an unsupervised manner using variational
inference. Specifically, we parameterize the distributions
fpvðqðxÞ j z; yÞ 8q 2 Qg with a Decoder Network with shared
weights v. These weights are learned using stochastic Varia-
tional Bayes [80] by introducing an approximate posterior
distribution p0fðz j y;QðxÞÞ parameterized by another neural
network with weights f called the Encoder Network and pri-
ors pY ðyÞ and pZðzÞ. More specifically, the parameters f and
v are learned by maximizing the Evidence Lower BOund
(ELBO) objective. Appendix A.7, available in the online sup-
plemental material, gives more details on this optimization
procedure. The learned Decoder Network pv&ðqðxÞ j z; yÞ is
then used as a plug-in estimate for the true distribution
pqðXÞ jZY ðqðxÞ j z; yÞ, which is in turn used to estimate (12).

Implementing IPIPIPIPIPIPIP Using the Generative Model. Once the
Decoder Network has been learned using variational infer-
ence, the first query q1 ¼ IPð;Þ is the one that maximizes the
mutual information with Y as per (6). The mutual informa-
tion term for any query q is completely determined by
pðqðxÞ; yÞ, which is obtained by numerically marginalizing
the nuisances Z from (12) using Monte Carlo integration. In
particular, we carry out the following computation 8q 2 Q

pqðXÞY ðqðxÞ; yÞ ¼
Z

z
pQðXÞZY ðQðxÞ; z; yÞdz

¼
Z

z
pqðXÞ jZY ðqðxÞ j z; yÞpY ðyÞpZðzÞdz

, 1

N

XN

i¼1

pv& ðqðxÞ j y; zðiÞÞpY ðyÞ

¼: ~pðqðxÞ; yÞÞ: (13)

In the last approximation, pv& ðqðxÞ j y; zðiÞÞ is the distribution
obtained using the trained decoder network. N is the num-
ber of i.i.d. samples drawn and zi - pZðzÞ. We then estimate
mutual information numerically via the following formula

IðY ; qðXÞÞ ¼
X

qðxÞ;y
~pðqðxÞ; yÞlog ~pðqðxÞ; yÞ

~pðqðxÞÞ~pðyÞ
: (14)

The computation of subsequent queries qkþ1 requires the
mutual information conditioned on observed history
SIP
k ðxobsÞ, which can be calculated from the distribution

pðqðxÞ; y jSIP
k ðxobsÞÞ

¼
Z

pðqðxÞ; z; y jSIP
k ðxobsÞÞdz

¼
Z

pðqðxÞ j z; y; SIP
k ðxobsÞÞpðz j y; SIP

k ðxobsÞÞpðy jSIP
k ðxobsÞÞdz

¼
Z

pðqðxÞ j z; yÞpðz j y; SIP
k ðxobsÞÞpðy jSIP

k ðxobsÞÞdz: (15)

The first equality is an application of the law of total proba-
bility. The last equality appeals to the assumption that
fqðXÞ; q 2 Qg are conditionally independent given Y; Z (12).
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To estimate the right-hand side of (15) via Monte Carlo
integration, one needs to sample zi - pðz j y; SIP

k ðxobsÞÞ and
compute

pðqðxÞ; y jSIP
k ðxobsÞÞ , ~pðqðxÞ; y jSIP

k ðxobsÞÞ

: ¼
1

N

XN

i¼1

pv& ðqðxÞjzðiÞ; yÞpðyjSIPkðxobsÞÞ; (16)

where the term pðy jSIP
k ðxobsÞÞ is estimated recursively via

the Bayes’ theorem. This computation is as follows:

pðy jSIP
k ðxÞÞ / pðy; SIP

k ðxÞÞ
¼ pðqkðxÞ; y; SIP

k+1ðxÞÞ
/ pðqkðxÞ j y; SIP

k+1ðxÞÞpðy jS
IP
k+1ðxÞÞ (17)

SIP
0 ðxÞ ¼ ; (since no evidence via queries has been gathered

from x yet) and so pðy jSIP
0 ðxÞÞ ¼ pY ðyÞ. The posterior

pðy jSIP
k ðxÞÞ is obtained by normalizing the last equation in (17)

such that
P

y pðyjSIP
k ðxÞÞ ¼ 1. This recursive updating of the

posterior is similar to the posterior updates used in Bayesian
sequential filtering [81]. The term pðqkðxÞ j y;SIP

k+1ðxÞÞ is esti-
mated using (16).

Having estimated pðqðxÞ; y jSIP
k ðxobsÞÞ, we then numeri-

cally compute the mutual information between query-answer
qðXÞ and Y given history for every q 2 Q via the formula

IðY ; qðXÞ jSIP
k ðxobsÞÞ ¼

X

qðxÞ;y
~pðqðxÞ; yjSIP

k ðxobsÞÞlog
~pðqðxÞ; y jSIP

k ðxobsÞÞ
~pðqðxÞjSIP

k ðxobsÞÞ~pðyjSIP
k ðxobsÞÞ

: (18)

Estimating pðz j y; SIP
k ðxobsÞÞpðz j y; SIP
k ðxobsÞÞpðz j y; SIP
k ðxobsÞÞpðz j y; SIP
k ðxobsÞÞpðz j y; SIP
k ðxobsÞÞpðz j y; SIP
k ðxobsÞÞpðz j y; SIP
k ðxobsÞÞ with the Unadjusted Langevin

Algorithm. Next we describe how to sample from this poste-
rior pðz j y; SIP

k ðxobsÞÞ using the Unadjusted Langevin Algo-
rithm (ULA). ULA is an iterative algorithm used to
approximately sample from any distribution with a density
known only up to a normalizing factor. It has been success-
fully applied to many high-dimensional Bayesian inference
problems [82], [83], [84]. Given an initialization zð0Þ, ULA
proceeds by

zðiþ1Þ ¼ zðiÞ þ hrUðzðiÞÞ þ
ffiffiffiffiffi
2h

p
zðiþ1Þ: (19)

Here ðzðiÞÞi$1 - N ð0; IÞ and h is the step-size. Asymptoti-
cally, the chain ðzðiÞÞi$1 converges to a stationary distribu-
tion that is “approximately” equal to a measure with
density / eUðzÞ [85].

For IP, we need samples from pðz j y; SIP
k ðxobsÞ. This is

achieved by initializing zð0Þ using the last iterate of the ULA
chain used to simulate pðz j y; SIP

k+1ðxobsÞ.5 We then run ULA
forN iterations by recursively applying (19) with

UðzÞ :¼ log pðz; SIP
k ðxobsÞjyÞ ¼ log pðSIP

k ðxobsÞjz; yÞpðzÞpðyÞ:

The number of steps N is chosen to be sufficiently large
to ensure the ULA chain converges “approximately” to the
desired z - pðz j y; SIP

k ðxobsÞÞ. We use the trained decoder

network
Qk

i¼1 pvðqiðxÞ j z; yÞ, with qi being the ith query
asked by IP for input x, as a proxy for pðSIP

k ðxobsÞÞ j z; yÞ. We
then obtain stochastic approximations of (15) by time aver-
aging the iterates

p qðxÞ; yjSIP
k ðxobsÞ

$ %
,1

N

XN

i¼1

pv qðxÞjzðiÞ; y
! "

p yjSIP
k ðxobsÞ

$ %
; (20)

where ðzðiÞÞ1:N are the iterates obtained using the ULA
chain whose stationary distribution is “approximately”
pðz j y; SIP

k ðxobsÞÞ.
Algorithmic Complexity for IP. For any given input x, the

per-iteration cost of the IP algorithm is OðN þ jQjmÞ6,
where jQj is the total number of queries, N is the number of
ULA iterations, and m is cardinality of the product sample
space qðXÞ . Y . For simplicity we assume that the output
hypothesis Y and query-answers qðXÞ are finite-valued and
also that the number of values query answers can take is the
same. However, our framework can handle more general
cases. See Appendix A.6 for more details, available in the
online supplemental material.

5 EXPERIMENTS

In this section, we empirically evaluate the effectiveness of
our method. We begin by analyzing the explanations pro-
vided by IP for classifying individual input data, in terms of
words, symbols, or patterns (the queries). We find in each
case that IP discovers concise explanations which are ame-
nable to human interpretation. We then perform quantita-
tive comparisons which show that (i) IP explanations are
more faithful to the underlying model than existing attribu-
tion methods; and (ii) the predictive accuracy of our method
using a given query set is competitive with black-box mod-
els trained on features provided by the same set.

5.0.1 Binary Image Classification With Patch Queries

Task and Query Set. We start with the simple task of binary
image classification. We consider three popular datasets –
MNIST [86], Fashion-MNIST[87] and KMNIST [88]. We
choose a threshold for binarizing these datasets since they
are originally grayscale. We choose the query set Q as the
set of all w. w overlapping patch locations in the image.
The answer qðXÞ for any q 2 Q is the w2 pixel intensities
observed at the patch indexed by location q. This choice of
Q reflects the user’s desire to know which parts of the input
image are most informative for a particular prediction, a
common practice for explainability in vision tasks [25]. We
conduct experiments for multiple values of w and conclude
that w ¼ 3 provides a good trade-off between the required
number of queries and the interpretability of each query.
Note that when w > 1 the factorization in (12) that we use
to model pðQðxÞ; y; zÞ and compute mutual information no
longer holds as the overlapping queries qðXÞ are now caus-
ally related (and therefore dependent even when conditioned
on Z, making them unable to be modeled by a VAE). So
instead of training a VAE to directly model the query set

5. zð0Þ - N ð0; IÞ for the first iteration of IP.
6. In this computation we have assumed, for simplicity, a unit cost

for any operation that was computed in a batch concurrently on a GPU.
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pðQðxÞ j y; zÞ, we train a VAE to model the pixel distribution
pðx j y; zÞ, and then compute the probability distribution
over the patch query pðqðxÞ j z; yÞ as the product of the prob-
abilities of all pixels in that patch.7

IP in Action. Fig. 4a illustrates the decision-making pro-
cess of IP using 3. 3 patch queries on an image xobs of a 6
from the MNIST test set. The first query is near the center of
the image; recall from (6) that this choice is independent of
the particular input image and represents the patch whose
pixel intensities have maximum mutual information with Y
(the class label). The updated posterior, pðY jSIP

1 ðxobsÞÞ, con-
centrates most of its mass on the digit “1”, perhaps because
most of the other digits do not commonly have a vertical
piece of stroke at the center patch. However, the next query
(about three pixels below the center patch) reveals a hori-
zontal stroke and the posterior mass over the labels immedi-
ately shifts to f2; 3; 6; 8g. The next two queries are well-
suited to discerning between these four possibilities and we

see that after asking 4 questions, IP is more than 90% confi-
dent that the image is a 6. Such rich explanations in terms of
querying informative patches based on what is observed so
far and seeing how the belief pðY jSIP

k ðxobsÞÞ of the model
evolves over time is missing from post-hoc attribution
methods which output static importance scores for every
pixel towards the black-box model’s final prediction.

Explanation Length Versus Task Complexity. Fig. 6 shows that
IP requires an average of 5.2, 12.9 and 14.5 queries of size 3.
3 to predict the label with 99% confidence (! ¼ 0:01 in (8)) on
MNIST, KMNIST and FashionMNIST, respectively. This
reflects the intuition that more complex tasks require longer
explanations. For reference, state-of-the-art deep networks on
these datasets obtain test accuracies in order MNIST $
KMNIST$ FashionMNIST (see last row in Table 1).

Effect of Patch Size on Interpretability. We also run IP on
MNIST with patch sizes of 1. 1 (single pixels), 2. 2, 3. 3,
and 4. 4. We observed that IP terminates at 99% confidence
after 21.1, 9.6, 5.2, and 4.6 queries on average, respectively.
While this suggests that larger patches lead to shorter
explanations, we note that explanations with larger patches
use more pixels (e.g., on MNIST, IP uses 21.1 pixels on aver-
age for 1. 1 patches and 54.7 pixels on average for 4. 4

Fig. 4. (a) IP on MNIST. The top row displays the test image with red boxes denoting the current queried patch and blue boxes denoting previous
patches. The second row shows the revealed portion of the image that IP gets to use at each query. The final row shows the model’s estimated poste-
riors at each query, beginning at a nearly uniform prior before converging on the true digit “6” after 4 queries. (b) IP on CUB Bird Species Classifica-
tion. On the left we show the input image and on the right we have a heatmap of the estimated class probabilities at each iteration. We only show the
top 10 most probable classes out of the 200. To the right, we display the queries asked at each iteration, with red indicating a “no” response and green
a “yes” response. (c) IP on HuffPost News. We show the input news item and a heatmap depicting the evolution of topic probabilities as IP asks
queries and gathers answers. Words colored in red are absent from the sentence while words in green are present. For our visualization, we compute
the KL divergence between each successive posterior and plot only the top 20 queries that led to the greatest change in posterior class probabilities.

7. Since the patches overlap in our query set, when computing the
conditional probability of a patch query given history we only consider
the probability of the pixels in the patch that have not yet been
observed in our history.
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patches). That being said, very small patch queries are hard
to interpret (see Fig. 5) and very large patch queries are also
hard to interpret since each patch contains many image fea-
tures. Overall, we found that 3. 3 patches represented the
right trade-off between interpretability in terms of edge pat-
terns and minimality of the explanations. Specifically, single
pixels are not very interpretable to humans but the explana-
tions generated are more efficient in terms of number of pixels
needed to predict the label. On the other extreme, using the
entire image as a query is not interesting from an interpret-
ability point of view since it does not help us understand
which parts of the image are salient for prediction. We refer
the reader to Appendix B.3.1, available in the online supple-
mental material, for additional patch size examples and
quantitative analysis.

5.0.2 Concept-Based Queries

Task and Query Set. What if the end-user is interested in a
more semantic explanation of the decision process in terms
of high-level concepts? This can be easily incorporated into
our framework by choosing an appropriate query set Q. As
an example we consider the challenging task of bird species
classification on the Caltech-UCSD Birds-200-2011 (CUB)
dataset [89]. The dataset contains images of 200 different
species of birds. Each image is annotated with 312 binary
attributes representing high-level concepts, such as the col-
our and shape of the beak, wings, and head. Unfortunately,
these attribute annotations are very noisy. We follow [24] in
deciding attribute labels by majority voting. For example, if
more than 50% of images in a class have black wings, then
we set all images in that class to have black wings. We con-
struct Q by choosing a query for asking the presence/
absence of each of these 312 binary attributes. Unfortu-
nately, attribute annotations are not available at test time.
To remedy this, we train a CNN (see [24] for details) to
answer each query using the training set annotations, which
is then used to answer queries at test time. Subsequently,
we learn a VAE to model the joint distribution of query-
answers supplied by this CNN (instead of the ground truth
annotations) and Y , so our generative model can account
for any estimation errors incurred by the CNN. Finally, we
carry out IP as explained in Section 4.

IP in Action.Consider the image of aGreat Crested Flycatcher in
Fig. 4b. IP proceeds by asking most informative queries about
various bird attributes progressively making the posterior
over the species labelsmore andmore peaked.After 5 queries,
IP has gathered that the image is of a bird that has a perching-
like shape, all-purpose beak and yellow belly, but does not
have a yellow throat nor yellow upperparts. This results in a
posterior concentrated on just 4 species that exhibit these char-
acteristics. IP then proceeds to discount Green Jay and Scott
Oriolewhich have black breasts with query 6. Likewise, Tropi-
cal Kingbirds have grayish back and is segregated from Great
Crested Flycatcherswhich have buff-coloured backs with query
7. Finally after 9 queries, IP is 99% confident about the current
class. Such concept-based explanations are more accessible to
non-experts, especially on fine-grained classification datasets,
which typically require domain expertise. On average IP takes
14.7 queries to classify a given bird image with ! ¼ 0:007 as
the stopping criteria (See (7)).

5.0.3 Word-Based Queries

Task and Query Set. Our framework can also be successfully
applied to other domains like NLP. As an example we con-
sider the task of topic identification from newspaper
extended headlines (headline + short description field)
using the the Huffington Post News Category Dataset [90].
We adopt a simple query set that consists of binary queries
probing the existence of words in the extended headline.
The words are chosen from a pre-defined vocabulary
obtained by stemming all words in the HuffPost dataset
and choosing the top-1,000 according to their tf-idf scores
[91]. We process the dataset to merge redundant categories
(such as Style & Beauty and Beauty & Style), remove semanti-
cally ambiguous, HuffPost-specific categories (e.g., Impact
or Fifty) and remove categories with few samples, arriving
at 10 final categories (see Appendix B.1, available in the
online supplemental material).

IP in Action. Fig. 4c shows an example run of IP on the
HuffPost dataset. Note that positive responses to queries
are very sparse, since each extended headline only contains
8.6 words on average out of the 1,000 in the vocabulary. As
a result, IP asks 125 queries before termination. As dis-
cussed in Section 2, such long decision paths would be
impossible in decision trees due to data fragmentation and
memory limitations. For clarity of presentation we only

TABLE 1
Classification Accuracy of Our Model (Information Pursuit) Rela-

tive to Baselines on Different Test Sets

Model MNIST KMNIST Fashion CUB HuffPost

INFORMATION

PURSUIT

96.78% 91.02% 85.60% 76.73% 71.21%

DECISION TREE[34] 90.23% 78.00% 80.80% 68.80% 63.00%
MAP USING Q 99.05% 94.25% 87.56% 76.80% 71.72%
BLACK-BOX USING

Q
99.15% 95.10% 88.43% 76.30% 71.48%

BLACK-BOX 99.83%
[93]

98.83%
[88]

96.70%
[87]

82.70%
[24]

86.45%8

See 5.1.1 for details on each model.

Fig. 5. IP with 1. 1 patches on MNIST. Through the first 6 iterations, IP
asks queries in the same center vertical region as in Fig. 4a (which uses
3. 3 queries), outlining the distinctive loop in the bottom of the “6”. How-
ever, reaching 99% confidence requires a total of 21 1. 1 queries as
opposed to just 4 3. 3 ones. For conciseness, we show only the 6
queries that led to the greatest KL divergence between successive pos-
terior class probabilities.

8. We fine-tuned a Bert Large Uncased Transformer model [92] with
the last layer replaced with a linear one. See Appendix B.2.3, available
in the online supplemental material, for details.
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show the 20 queries with the greatest impact on the esti-
mated posterior (as measured by KL-divergence from previ-
ous posterior). Upon reaching the first positive query “eat”,
the probability mass concentrates on the categories Food &
Drink and Wellness with little mass on Travel. However, as
the queries about the existence of “citi”, “visit”, “york”, and
“bar” in the extended headline come back positive, the
model becomes more and more confident that “Travel” is
the correct class. IP requires about 199.3 queries on average
to predict the topic of the extended headline with ! ¼ 10+3

as the stopping criteria (See (7)). Additional details on the
HuffPost query set are in Appendix B.1, available in the
online supplemental material.

Further examples of IP performing inference on all tasks
can be found in Appendix B.3, available in the online sup-
plemental material.

5.1 Quantitative Evaluation

5.1.1 Classification Accuracy

We compare the classification accuracy of our model’s pre-
diction based on the query-answers gathered by IP until ter-
mination with several other baseline models. For each of the
models considered, we first give a brief description and
then comment on their performance with respect to IP. All
the results are summarized in Table 1.

DECISION TREE refers to standard classification trees learnt
using the popular CART algorithm [34]. In the Introduction,
we mentioned that classical decision trees learnt using Q to
supply the node splitting functions will be intepretable by
construction but are not competitive with state-of-the-art
methods. This is illustrated in our results in Table 1. Across
all datasets, IP obtains superior performance since it is
based on an underlying generative model (VAE) and only
computes the branch of the tree traversed by the input data
in an online manner, thus it is not shackled by data frag-
mentation and memory limitations.

MAP USING Q refers to the Maximum A Posteriori esti-
mate obtained using the posterior distribution over the
labels given the answers to all the queries in Q (for a given
input). Recall, IP asks queries until the stopping criteria is
reached (Equations (7) & (8)). Naturally, there is a trade-off
between the length of the explanations and the predictive
performance observed. If we ask all the queries then the
resulting explanations of length jQj might be too long to be
desirable. The results for IP reported in Table 1 use different
dataset-specific stopping criteria according to the elbow in

their respective accuracy versus explanation length curves
(see Fig. 6). On the binary image datasets, (MNIST,
KMNIST, and FashionMNIST) IP obtains an accuracy
within 3% of the best achievable upon seeing all the query-
answers with only about 2% of the total queries in Q. Simi-
larly for the CUB and Huffpost datasets, IP achieves about
the same accuracy as MAP USING Q but asks less than 5%
and 20% of total possible queries respectively.

BLACK-BOX USING Q refers to the best performing deep net-
work model we get by training on features supplied by eval-
uating all q 2 Q on input data from the various training
datasets. For the binary image datasets, this is just a 4-layer
CNN with ReLU activations. For CUB we use the results
reported by the sequential model in [24]. For HuffPost, we
found a single hidden layer with ReLU non-linearity give
the best performance. Further architectural and training
details are in Appendix B.2, available in the online supple-
mental material. In Table 1 we show that across all datasets,
the predictive performance obtained by MAP USING Q is on
par with the best performance we obtained using black-box
expressive non-interpretable networks BLACK-BOX USING Q.
Thus, our generative models, which form the backbone for
IP, are competitive with state-of-the-art prediction methods.

BLACK-BOX refers to the best performing black-box model on
these datasets in terms of classification accuracy as reported in
literature; to the best of our knowledge. In Table 1, we see a per-
formance gap in each dataset when compared with MAP USING

Q which uses an interpretable query set. This is expected since
explainability can be viewed as an additional constraint on
learning. For example, on FashionMNIST we see an almost
8:5% relative fall in accuracy due to binarization. This is because
it is harder to decipher between some classes like shirts and
pullovers at the binary level. On the other hand, binary patches
are easily interpretable as edges, foregrounds and backgrounds.
Similarly, there is a relative drop of accuracy of about 17% for
the HuffPost dataset since our queries regarding the existence
of different words ignore their arrangement in sentences. Thus
we lose crucial contextual information used by state-of-the-art
transformer models [92]. Ideally, we would like query sets to be
easily interpretable, lead to short explanations and be sufficient
to solve the task. Finding such query sets is nontrivial and will
be explored in future work.

5.1.2 Comparison to Current Attribution Methods

At first glance, it might seem that using attribution meth-
ods/saliency maps can provide the same insights as to

Fig. 6. Trade-off between predictive performance and explanation length Different points along the curves correspond to different values of ! as the
stopping criteria (7) is varied. The colored dotted vertical line in each plot indicates the avg. explanation length v/s test accuracy at the ! value used
as the stopping criteria for reporting results for the IP strategy in this work. For each plot, the x-axis ranges from 0 to the size of the query set, jQj,
chosen for that task.
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which parts of the image or more generally which queries in
Q were most influential in a decision made by a black-box
model trained on input features supplied by all the query-
answers. However, the unreliability of these methods in
being faithful to the model they try to explain brings their
utility into question [19], [20], [22]. We conjecture that this is
because current attribution methods are not designed to
generate explanations that are sufficient statistics of the
model’s prediction. We illustrate this with a simple experi-
ment using our binary image classification datasets.

For each input image x, we compute the corresponding
attribution map eðxÞ for the model’s predicted class using
two popular attribution methods, Integrated gradients (IG)
[94] andDeepSHAP [45].We then compute theLmost impor-
tant 3. 3 patches, where L is the number of patches queried
by IP for that particular input image. For computing the attri-
bution/importance of a patch we average the attributions of
all the pixels in that patch (following [20]). We proceed as fol-
lows: (i) Given eðxÞ, compute the patch with maximum attri-
bution and add these pixels to our explanation, (ii) Zero-out
the attributions of all the pixels in the previously selected
patch and repeat step (i) until L patches are selected. The final
explanation consists of L possibly overlapping patches. Now,
we evaluate the sufficiency of the generated explanation for
themodel’s prediction by estimating theMAP accuracy of the
posterior over labels given the intensities in the patches
included in this explanation. This is done via a VAE trained to
learn the joint distribution over image pixels and class labels.
We experiment with both the raw attribution scores returned
by IG andDeepSHAP and also the absolute values of the attri-
bution scores for eðxÞ. The results are reported in Table 2. In
almost all cases (with the exception of DeepSHAPon Fashion-
MNIST), IP generates explanations that aremore predictive of
the class label than popular attributionmethods.

6 CONCLUSION

We have presented a step towards building trustworthy inter-
pretable machine learning models that respect the domain-
and user-dependent nature of interpretability. We address
this by composing user-defined, interpretable queries into con-
cise explanations. Furthermore, unlike many contemporary
attempts at explainability, our method is not post-hoc, but is
interpretable by design and guaranteed to produce faithful
explanations. We formulate a tractable approach to implement

this framework through deep generative models, MCMC
algorithms, and the information pursuit algorithm. Finally, we
demonstrate the effectiveness of our method across various
vision and language tasks at generating concise explanations
describing the underlying reasoning process behind the pre-
diction. Future work will be aimed at extending the proposed
framework to more complex tasks beyond classification such
as scene parsing, image captioning, and sentiment analysis.
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