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Abstract. This report presents two scalar auxiliary variable (SAV) ensemble algorithms based on artificial compressibility
(AC) for fast computation of incompressible flow ensembles. We combine and exploit three numerical techniques: ensemble
timestepping, SAV, AC, to design extremely efficient and fast algorithms for the computation of a (possibly large) Navier-Stokes
flow ensemble. The proposed numerical algorithms feature that 1) all ensemble members share a common constant coefficient
matrix allowing the use of efficient block solvers to significantly reduce required computational cost; 2) the computation of the
velocity and the pressure is decoupled, and the pressure can be updated directly without solving a Possion equation, further
reducing the overall computational cost. We prove both algorithms are long time stable under a parameter fluctuation condition,
without any timestep constraints. Extensive numerical tests are also presented to demonstrate the efficiency and effectiveness
of the ensemble algorithms.
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1. Introduction. Geophysical and engineering flow simulations are inevitably subject to uncertainties
from the input data as well as model parameters. The need to address uncertainties has been well recognized
in the past two decades and there has been an intense interest in modeling and quantifying uncertainties
[1, 22, 48, 57–59]. The main challenge in implementing these models and the uncertainty quantification
(UQ) methods in industrial applications is the associated high computational cost. Developing efficient UQ
methods to reduce the cost has been an active research area with the main goal focused on reducing the
sample size required for effective approximation of the stochastic space, e.g., [1, 24, 48, 57]. A different idea
for reducing the computational cost was introduced in [27] which builds on the idea of ensemble timestepping
and exploits the structure of corresponding linear systems for each realization, making it possible to design
highly efficient ensemble simulation algorithms with computational cost not growing linearly with the number
of samples. The ensemble algorithms have been extensively tested in the literature [6, 10–12, 16–18, 23, 26,
28,29,31,32,34,38,42,43,45,53,54] and shown to be able to effectively predict flow statistics in various UQ
applications at significantly reduced computational cost.

The scalar auxiliary variable (SAV) approach was introduced in [51,52] for gradient flows and subsequen-
tially adapted to solve the Navier-Stokes equations in [40, 41]. The idea is to introduce into the governing
system a new scalar auxiliary variable and its associated differential equation that will facilitate the design
of unconditionally stable numerical methods while treating the nonlinear term explicitly. With the nonlinear
term explicit in the SAV schemes, the resulting linear system after spatial discretization is constant, which
puts forth a new way to design and improve the ensemble algorithms both in efficiency and stability in the
literature. In a very recent paper [31] the SAV approach was first combined with the ensemble timesteppng
method to construct efficient ensemble simulation algorithms with provable long time stability without any
timestep constraints. In this report, we propose to use the artificial compressibilty technique to further cut
down the computational cost while maintaining comparable stability with the algorithms studied in [31].

One of the main difficulties in solving the Navier-Stokes equations is the incompressibility constraint and
the coupling of the velocity and pressure. The artificial compressibility (AC) method was introduced in the
1960s by Chorin [5], Temam [55,56], Kuznetsov, Vladimirova and Yanenko [35] to relax the incompressibiltiy
constraint by introducing a small perturbation which makes it possible to devise efficient numerical methods
that decouple the computation of the velocity and pressure. The AC method had been much less studied in
the literature, compared with the popular projection methods, until recently [4, 7–9, 13, 19–21, 23, 29, 36, 39,
47, 49]. The outstanding feature of the AC method is that the computation of the velocity and pressure is
decoupled while the pressure can be updated directly without solving a Poisson equation, reducing the size
of the algebraic linear systems after discretization and avoiding the boundary layers in pressure error due to
artificial boundary condition that is commonly required by the projection methods. This work incorporates
the AC technique into the stabilized SAV ensemble schemes [31] to design highly efficient ensemble simulation
algorithms.
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2. The AC-SAV Ensemble Algorithms.

Model Problem. We consider the setting that the Navier-Stokes equations are subject to uncertainties
in the initial conditions, boundary conditions, body forces, and the kinematic viscosity. Assuming a set of
parameter samples have been generated using an ensemble based UQ method, e.g., [24, 57], and the next
step is to compute the Navier-Stokes equations corresponding to each sample (u0

j (x), gj(x, t), fj(x, t), νj(x)),
j = 1, · · · , J . Our proposed ensemble algorithms are intended for fast calculation at this step and can be
combined with any ensemble based UQ methods to accelerate the UQ procedure and extend its applicability
in industrial applications.

The J Navier-Stokes equations on a bounded domain with J slightly different initial conditions, Dirichlet
boundary conditions, body forces, and the kinematic viscosity (u0

j (x), gj(x, t), fj(x, t), νj(x)), for j =
1, . · · · , J , are given as follows.

∂tuj + (uj · ∇)uj +∇× (νj(∇× uj)) +∇pj = fj , in Ω, (2.1)

∇ · uj = 0, in Ω,

uj = gj , on ∂Ω,

uj(x, 0) = u0
j (x), in Ω.

Algorithms. Herein we present two AC-SAV ensemble algorithms for fast computation of the Navier-
Stokes equations with J different parameter samples. Standard ensemble methods [27] are usually associated
with a possibly restrictive timestep condition that comes from bounding the nonlinear term in the Navier-
Stokes equations. The adapting of the SAV approach in developing ensemble algorithms [31] resolved this
issue as the nonlinear term will be canceled out in the stability proof with a smart manipulation of the
added differential equation for the SAV, leading to fast ensemble algorithms with provable long time stability
without any timestep constraints.

We first introduce the scalar auxiliary variables qj , j = 1, · · · , J , and their associated differential equa-
tions following [31]. Define the scalar auxiliary variable qj(t) by

qj(t) =
√

E(uj) + δ, (2.2)

where E(uj) =
∫

Ω
1
2 |uj |2 dx is the total kinetic energy of the system and δ is an arbitrary positive constant.

The purpose of introducing this scalar variable is to facilitate the canceling of the fully explicit nonlinear
term

∫

Ω
(un

j ·∇)un
j ·un

j dx in the stability analysis. Bounding this term in standard methods will usually lead
to a restrictive CFL condition. Here the idea is to cancel out this nonlinear term directly by placing the
term with a different sign in the differential equation for the scalar variable qj , see (2.5), and avoid the need
to bound this nonlinear term.

By the vector identity

(uj · ∇)uj · uj =
1

2
∇ · (uj |uj |2)−

1

2
|uj |2∇ · uj , (2.3)

and the fact that the velocity uj is divergence free, using the equality qj(t) =
√

E(uj) + δ, integrating over
the flow domain Ω, we have the following equation

1

2
√

E(uj) + δ

∫

Ω

(uj · ∇)uj · uj dx− 1

2qj

∫

∂Ω

(~n · uj)
1
2 |uj |2 dσ = 0. (2.4)

Letting ν̄(x) := 1
J

∑J
j=1 νj(x) denote the ensemble mean of the viscosity, taking derivative of qj(t), using

∇ · uj = 0, and adding the above zero term gives the following ordinary differential equation

dqj
dt

=
1

2qj

∫

Ω

∂uj

∂t
· uj dx− 1

2qj

∫

Ω

ν̄(∇ · uj)
2 dx (2.5)

+
1

2
√

E(uj) + δ

∫

Ω

(uj · ∇)uj · uj dx− 1

2qj

∫

∂Ω

(~n · uj)
1
2 |uj |2 dσ.
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To derive an unconditionally stable scheme, we need to incorporate the above differential equation into
the original Navier-Stokes equations and have a new coupled PDE system. To couple the new variable qj

with the original variables uj , pj , we will add a new term
qj(t)√
E(uj)+δ

, which is equal to 1 by definition, in front

of the nonlinear term (uj ·∇)uj in the momentum equation of the Navier-Stokes equations to form a coupled
system of uj , pj , qj . And this is the reason why we have 1√

E(uj)+δ
in front of the integral of the nonlinear

term in (2.5): multiplying both sides of (2.5) by 2qj in the stability proof will yield
qj(t)√
E(uj)+δ

(uj · ∇)uj ,

which is the same as the nonlinear term from the momentum equation and thus can be canceled out. Note
that the nonlinear term in the zero term in (2.5) plays an essential role in the design of the SAV ensemble
algorithms and eliminating the requirement of a timestep constraint. Adding (2.5) to the original Navier-
Stokes equations forms a new governing system with an added new variable qj :

∂tuj +
qj(t)

√

E(uj) + δ
(uj · ∇)uj +∇× (νj(∇× uj)) +∇pj = fj(x, t), (2.6)

∇ · uj = 0,

dqj
dt

=
1

2qj

∫

Ω

∂uj

∂t
· uj dx− 1

2qj

∫

Ω

ν̄(∇ · uj)
2 dx

+
1

2
√

E(uj) + δ

∫

Ω

(uj · ∇)uj · uj dx− 1

2qj

∫

∂Ω

(~n · gj) 12 |gj |
2 dσ.

System (2.6) is equivalent to (2.1), and we will present numerical algorithms that approximate the
solution of this new governing system. The essential idea of the ensemble timestepping method is to keep
all realizations sharing the same coefficient matrix. So here we need to split the viscosity into two parts: the
mean ν̄ and the fluctuation ν′j , and lag the fluctuation term to the previous time levels so that it does not
contribute to the coefficient matrix. The ensemble fluctuations are defined as follows.

ν′j(x) := νj(x)− ν̄(x), j = 1, . · · · , J.

Let tn = n∆t, n = 0, 1, 2, · · · , N , where N = T/∆t, denote a uniform partition of the interval [0, T ]. We
now present two AC-SAV ensemble algorithms for efficient approximation of (2.6). The first order scheme
based on the backward Euler (BE) timestepping reads

Algorithm 2.1 (AC-SAV-BE). For j = 1, 2, · · · , J , given u1
j , p

1
j , q

1
j , for n = 2, 3, · · · , N − 1, find

un+1
j , pn+1

j , qn+1
j satisfying

un+1
j − un

j

∆t
+

qn+1
j

√

E(un
j ) + δ

(un
j · ∇)un

j +∇pn+1
j +∇× (ν̄(∇× un+1

j )) (2.7)

+∇× (ν′j(∇× un
j ))− αh∆(un+1

j − un
j ) = fn+1

j ,

β(pn+1
j − pnj ) +∇ · un+1

j = 0, (2.8)

qn+1
j − qnj

∆t
=

1

2qn+1
j

(

un+1
j − un

j

∆t
, un+1

j

)

− 1

2qn+1
j

∫

Ω

ν̄(∇ · un+1
j )2 dx (2.9)

+
1

2
√

E(un
j ) + δ

∫

Ω

(un
j · ∇)un

j · un+1
j dx−

bn+1
j

2qn+1
j

,

where bn+1
j =

∫

∂Ω
(~n · gn+1

j ) 12 |g
n+1
j |2 dσ.

The second order scheme based on the second order backward differentiation formula (BDF2) is given
by

Algorithm 2.2 (AC-SAV-BDF2). For j = 1, 2, · · · , J , given u1
j , u

2
j , p

1
j , p

2
j , q

1
j , q

2
j , for n = 2, 3, · · · , N −

1, find un+1
j , pn+1

j , qn+1
j satisfying
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3un+1
j − 4un

j + un−1
j

2∆t
+

qn+1
j

√

E(ũn+1
j ) + δ

(ũn+1
j · ∇)ũn+1

j +∇pn+1
j (2.10)

+∇× (ν̄(∇× un+1
j )) +∇× (ν′j(∇× ũn+1

j ))− 1
2αh∆(3un+1

j − 4un
j + un−1

j ) = fn+1
j ,

β∆t(3pn+1
j − 4pnj + pn−1

j ) +∇ · un+1
j = 0, (2.11)

3qn+1
j − 4qnj + qn−1

j

2∆t
=

1

2qn+1
j

(

3un+1
j − 4un

j + un−1
j

2∆t
, un+1

j

)

− 1

2qn+1
j

∫

Ω

ν̄(∇ · un+1
j )2 dx (2.12)

+
1

2
√

E(ũn+1
j ) + δ

∫

Ω

(ũn+1
j · ∇)ũn+1

j · un+1
j dx−

bn+1
j

2qn+1
j

,

where bn+1
j =

∫

∂Ω
(~n · gn+1

j ) 12 |g
n+1
j |2 dσ and ũn+1

j = 2un
j − un−1

j .

Note that the initial pressure p0j is usually unknown and one needs to use a different method, e.g.,

standard BE or BDF2, to compute p1j and p2j as well as u1
j and u2

j . The values of q
1
j and q2j can be computed

by the definition directly.
In these two algorithms we incorporated a stabilization technique from [31] to increase the accuracy of

the SAV schemes. The stabilizations −αh∆(un+1
j − un

j ) for the AC-SAV-BE scheme and − 1
2αh∆(3un+1

j −
4un

j + un−1
j ) for the AC-SAV-BDF2 scheme add artificial viscosity to the system to better condition the

linear systems to be solved after spatial discretization, and also add antidiffusion at previous time levels to
avoid overdiffusion. They are discretized forms of −αh∆t∆(∂tu) in the first and second order respectively.
It was demonstrated in [31] that this stabilization techniques can effectively increase the accuracy of SAV
methods.

The AC method is incorporated by adding a small perturbation εpt to the mass conservation equation,

and discretized as β∆t
p
n+1

j
−pn

j

∆t
for the AC-SAV-BE scheme and 2β∆t2

3pn+1

j
−4pn

j +p
n−1

j

2∆t
for AC-SAV-BDF2.

With (2.8) and (2.11), we can replace pn+1
j in the momentum equation and only solve the equation for un+1

j

avoiding solving a saddle point problem. Then pn+1
j can be updated directly after obtaining un+1

j without
solving an addition Poisson equation which was required by the projection methods.

We will show how to efficiently implement these two ensemble algorithms in Section 4, where details on
implementation algorithms and linear solvers will be discussed.

3. Long Time Stability of the AC-SAV Ensemble Algorithms. We next prove the long time
stability of both algorithms without any timestep constraints. There is a parameter condition that needs
to be satisfied for each algorithm hence limiting the extent of the fluctuation of the viscosity parameter.
This condition is not difficult to satisfy in UQ applications where the magnitude of the fluctuation is usually
small. Moreover, a larger ensemble can be split into smaller ensembles and the ensemble algorithms can be
applied to each smaller ensemble. One should also notice that this parameter condition only exists when
computing ensembles. For computing just one realization, both of the two algorithms are unconditionally
stable.

We assume νj(x) ∈ L∞(Ω) with νj(x) ≥ νj,min > 0. Define the minimum average ν̄min and the maximum
fluctuation ν′max of the kinematic viscosity as

ν̄min :=
1

J

J
∑

j=1

νj,min, ν′max := max
j

sup
x∈Ω

|ν′j(x)|.

In the stability proof we will assume qnj is real for any n = 0, · · · , N , j = 1, · · · , J so that |qnj | is nonnegative.
In the simulations, if qnj ever becomes complex, the simulation is getting unstable and should be stopped.
Nevertheless, it is shown in our numerical experiments that the stabilization we incorporated in the algorithms
is very effective in increasing the accuracy of the algorithms and preventing the qnj from becoming complex.

Theorem 3.1 (Long Time Stability of AC-SAV-BE). Assume the parameter condition ν′max < ν̄min

holds and qnj is real for any n = 0, · · · , N , j = 1, · · · , J . With homogeneous Dirichlet boundary condition,
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Algorithm 2.1 is nonlinearly, long time stable, and the following energy inequality holds

|qNj |2 +∆t

N−1
∑

n=1

|qn+1
j − qnj |2 +

1

2
ν′max∆t‖∇uN

j ‖2 + α

2
h∆t‖∇uN

j ‖2 + β

2
∆t‖pNj ‖2

+
β

2
∆t

N−1
∑

n=1

‖pn+1
j − pnj ‖2 +

α

2
h∆t

N−1
∑

n=1

‖∇un+1
j − un

j ‖2 (3.1)

≤ |q1j |2 +
1

2
ν′max∆t‖∇u1

j‖2 +
β

2
∆t‖p1j‖2 +

α

2
h∆t‖∇u1

j‖2 +
∆t

2(ν̄min − ν′max)

N−1
∑

n=1

‖fn+1
j ‖2

−1.

Proof. Taking the L2 inner product of (2.7) with un+1
j , (2.8) with pn+1

j and adding the two equations
gives

(

un+1
j − un

j

∆t
, un+1

j

)

+
qn+1
j

√

E(un
j ) + δ

b(un
j , u

n
j , u

n+1
j ) +

∫

∂Ω

(~n · un+1
j )pn+1

j dσ

+
β

2

(

‖pn+1
j ‖2 − ‖pnj ‖2 + ‖pn+1

j − pnj ‖2
)

+ (ν̄∇× un+1
j ,∇× un+1

j )−
∫

∂Ω

(~n · (un+1
j × (ν̄∇× un+1

j )))dσ

+ (ν′j∇× un
j ,∇× un+1

j )−
∫

∂Ω

(~n · (un+1
j × (ν′j∇× un

j )))dσ − αh

∫

∂Ω

(~n · (∇un+1
j −∇un

j )) · un+1
j dσ

+
α

2
h
(

‖∇un+1
j ‖2 − ‖∇un

j ‖2 + ‖∇un+1
j −∇un

j ‖2
)

= (fn+1
j , un+1

j ). (3.2)

Multiplying (2.9) with 2qn+1
j gives

1

∆t

(

|qn+1
j |2 − |qnj |2 + |qn+1

j − qnj |2
)

+
(

ν̄∇ · un+1
j ,∇ · un+1

j

)

=

(

un+1
j − un

j

∆t
, un+1

j

)

+
qn+1
j

√

E(un
j ) + δ

b(un
j , u

n
j , u

n+1
j )− bn+1

j . (3.3)

Adding (3.2) and (3.3) gives

1

∆t

(

|qn+1
j |2 − |qnj |2 + |qn+1

j − qnj |2
)

+ (ν̄∇× un+1
j ,∇× un+1

j ) +
(

ν̄∇ · un+1
j ,∇ · un+1

j

)

+
β

2

(

‖pn+1
j ‖2 − ‖pnj ‖2 + ‖pn+1

j − pnj ‖2
)

+
α

2
h
(

‖∇un+1
j ‖2 − ‖∇un

j ‖2 + ‖∇un+1
j −∇un

j ‖2
)

(3.4)

= (fn+1
j , un+1

j )− (ν′j∇× un
j ,∇× un+1

j ) +

∫

∂Ω

(~n · (un+1
j × (ν′j∇× un

j )))dσ

+

∫

∂Ω

(~n · (un+1
j × (ν̄∇× un+1

j )))dσ −
∫

∂Ω

(~n · un+1
j )pn+1

j dσ + αh

∫

∂Ω

(~n · (∇un+1
j −∇un

j )) · un+1
j dσ − bn+1

j .

Assuming homogeneous Dirichlet condition, applying Cauchy-Schwarz inequality gives

1

∆t

(

|qn+1
j |2 − |qnj |2 + |qn+1

j − qnj |2
)

+ ν̄min‖∇ × un+1
j ‖2 + ν̄min‖∇ · un+1

j ‖2

+
β

2

(

‖pn+1
j ‖2 − ‖pnj ‖2 + ‖pn+1

j − pnj ‖2
)

+
α

2
h
(

‖∇un+1
j ‖2 − ‖∇un

j ‖2 + ‖∇un+1
j −∇un

j ‖2
)

≤ ‖fn+1
j ‖−1‖∇un+1

j ‖+ ν′max‖∇ × un
j ‖‖∇ × un+1

j ‖. (3.5)

Since uj = 0 on ∂Ω, we have

‖∇uj‖2 = ‖∇ · uj‖2 + ‖∇ × uj‖2. (3.6)

Then using Young’s inequalities to the right hand side of (3.5) gives, for any β1 > 0, ε1 > 0,
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1

∆t

(

|qn+1
j |2 − |qnj |2 + |qn+1

j − qnj |2
)

+ ν̄min‖∇un+1
j ‖2 + β

2

(

‖pn+1
j ‖2 − ‖pnj ‖2 + ‖pn+1

j − pnj ‖2
)

+
α

2
h
(

‖∇un+1
j ‖2 − ‖∇un

j ‖2 + ‖∇un+1
j −∇un

j ‖2
)

≤ β1ν̄min‖∇un+1
j ‖2 + 1

4β1ν̄min

‖fn+1
j ‖2

−1 +
ε1ν

′

max

2
‖∇un+1

j ‖2 + ν′max

2ε1
‖∇un

j ‖2. (3.7)

As the last two terms all need to be bounded by ν̄min‖∇un+1
j ‖2, we want to minimize ε1

2 + 1
2ε1

by taking
ε1 = 1. (3.5) then reduces to

1

∆t

(

|qn+1
j |2 − |qnj |2 + |qn+1

j − qnj |2
)

+ ((1− β1)ν̄min − ν′max) ‖∇un+1
j ‖2 (3.8)

+
1

2
ν′max

(

‖∇un+1
j ‖2 − ‖∇un

j ‖2
)

+
β

2

(

‖pn+1
j ‖2 − ‖pnj ‖2 + ‖pn+1

j − pnj ‖2
)

+
α

2
h
(

‖∇un+1
j ‖2 − ‖∇un

j ‖2 + ‖∇un+1
j −∇un

j ‖2
)

≤ 1

4β1ν̄min

‖fn+1
j ‖2

−1.

If the parameter condition is satisfied, then ν̄min − ν′max > 0. Taking β1 = 1
2 − 1

2
ν′

max

ν̄min
> 0, we have

(1− β1)ν̄min − ν′max = (
1

2
+

1

2

ν′max

ν̄min

)ν̄min − ν′max =
1

2
(ν̄min − ν′max) > 0. (3.9)

(3.8) can then be reduced to

1

∆t

(

|qn+1
j |2 − |qnj |2 + |qn+1

j − qnj |2
)

+
1

2
ν′max

(

‖∇un+1
j ‖2 − ‖∇un

j ‖2
)

+
β

2

(

‖pn+1
j ‖2 − ‖pnj ‖2 + ‖pn+1

j − pnj ‖2
)

+
α

2
h
(

‖∇un+1
j ‖2 − ‖∇un

j ‖2 + ‖∇un+1
j −∇un

j ‖2
)

≤ 1

2(ν̄min − ν′max)
‖fn+1

j ‖2
−1. (3.10)

Summing up from n = 1 to n = N − 1 and multiplying through by ∆t gives

|qNj |2 +∆t

N−1
∑

n=1

|qn+1
j − qnj |2 +

1

2
ν′max∆t‖∇uN

j ‖2 + α

2
h∆t‖∇uN

j ‖2 + β

2
∆t‖pNj ‖2

+
β

2
∆t

N−1
∑

n=1

‖pn+1
j − pnj ‖2 +

α

2
h∆t

N−1
∑

n=1

‖∇un+1
j − un

j ‖2 (3.11)

≤ |q1j |2 +
1

2
ν′max∆t‖∇u1

j‖2 +
β

2
∆t‖p1j‖2 +

α

2
h∆t‖∇u1

j‖2 +
∆t

2(ν̄min − ν′max)

N−1
∑

n=1

‖fn+1
j ‖2

−1.

Next we prove the long time stability of the AC-SAV-BDF2 scheme.
Theorem 3.2 (Long Time Stability of AC-SAV-BDF2). Assume the parameter condition ν′max < 1

3 ν̄min

holds and qnj is real for any n = 0, · · · , N , j = 1, · · · , J . With homogeneous Dirichlet boundary condition,

Algorithm 2.2 is nonlinearly, long time stable, and the following energy inequality holds

|qNj |2 + |2qNj − qN−1
j |2 +

N−1
∑

n=2

|qn+1
j − 2qnj + qn−1

j |2 + β∆t2
(

‖pNj ‖2 + ‖2pNj − pN−1
j ‖2

)

+ β∆t2
N−1
∑

n=2

‖pn+1
j − 2pnj + pn−1

j ‖2 + 1

2
αh∆t

(

‖∇uN
j ‖2 + ‖2∇uN

j −∇uN−1
j ‖2

)
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+
1

2
αh∆t

N−1
∑

n=2

‖∇un+1
j − 2∇un

j +∇un−1
j ‖2 + 3ν′max∆t‖∇uN

j ‖2 + ν′max∆t‖∇uN−1
j ‖2 (3.12)

≤ |q1j |2 + |2q1j − q0j |2 + β∆t2
(

‖p1j‖2 + ‖2p1j − p0j‖2
)

+
1

2
αh∆t

(

‖∇u1
j‖2 + ‖2∇u1

j −∇u0
j‖2
)

+ 3ν′max∆t‖∇u1
j‖2 + ν′max∆t‖∇u0

j‖2 +
∆t

ν̄min − 3ν′max

N−1
∑

n=2

‖fn+1
j ‖2

−1.

Proof. Taking the L2 inner product of (2.10) with un+1
j , (2.11) with pn+1

j and adding the two equations
gives

(

3un+1
j − 4un

j + un−1
j

2∆t
, un+1

j

)

+
qn+1
j

√

E(ũn+1
j ) + δ

b(ũn+1
j , ũn+1

j , un+1
j ) +

∫

∂Ω

(~n · un+1
j )pn+1

j dσ

+
β

2
∆t
(

‖pn+1
j ‖2 + ‖2pn+1

j − pnj ‖2
)

− β

2
∆t
(

‖pnj ‖2 + ‖2pnj − pn−1
j ‖2

)

+
β

2
∆t‖pn+1

j − 2pnj + pn−1
j ‖2

+ (ν̄∇× un+1
j ,∇× un+1

j )−
∫

∂Ω

(~n · (un+1
j × (ν̄∇× un+1

j )))dσ + (ν′j∇× ũn+1
j ,∇× un+1

j )

−
∫

∂Ω

(~n · (un+1
j × (ν′j∇× ũn+1

j )))dσ − α

2
h

∫

∂Ω

(~n · (3∇un+1
j − 4∇un

j +∇un−1
j )) · un+1

j dσ

+
α

4
h
(

‖∇un+1
j ‖2 + ‖2∇un+1

j −∇un
j ‖2
)

− α

4
h
(

‖∇un
j ‖2 + ‖2∇un

j −∇un−1
j ‖2

)

+
α

4
h‖∇un+1

j − 2∇un
j +∇un−1

j ‖2 = (fn+1
j , un+1

j ). (3.13)

Multiplying (2.12) with 2qn+1
j gives

1

2∆t

(

|qn+1
j |2 + |2qn+1

j − qnj |2
)

− 1

2∆t

(

|qnj |2 + |2qnj − qn−1
j |2

)

+
1

2∆t
|qn+1

j − 2qnj + qn−1
j |2 (3.14)

+
(

ν̄∇ · un+1
j ,∇ · un+1

j

)

=

(

3un+1
j − 4un

j + un−1
j

2∆t
, un+1

j

)

+
qn+1
j

√

E(ũn+1
j ) + δ

b(ũn+1
j , ũn+1

j , un+1
j )− bn+1

j .

Adding (3.13) and (3.14) gives

1

2∆t

(

|qn+1
j |2 + |2qn+1

j − qnj |2
)

− 1

2∆t

(

|qnj |2 + |2qnj − qn−1
j |2

)

+
1

2∆t
|qn+1

j − 2qnj + qn−1
j |2

+
β

2
∆t
(

‖pn+1
j ‖2 + ‖2pn+1

j − pnj ‖2
)

− β

2
∆t
(

‖pnj ‖2 + ‖2pnj − pn−1
j ‖2

)

+
β

2
∆t‖pn+1

j − 2pnj + pn−1
j ‖2

+ (ν̄∇× un+1
j ,∇× un+1

j ) +
(

ν̄∇ · un+1
j ,∇ · un+1

j

)

+
α

4
h
(

‖∇un+1
j ‖2 + ‖2∇un+1

j −∇un
j ‖2
)

− α

4
h
(

‖∇un
j ‖2 + ‖2∇un

j −∇un−1
j ‖2

)

+
α

4
h‖∇un+1

j − 2∇un
j +∇un−1

j ‖2 (3.15)

= (fn+1
j , un+1

j )− (ν′j∇× ũn+1
j ,∇× un+1

j ) +

∫

∂Ω

(~n · (un+1
j × (ν′j∇× ũn+1

j )))dσ

+

∫

∂Ω

(~n · (un+1
j × (ν̄∇× un+1

j )))dσ +
1

4
αh

∫

∂Ω

(~n · (3∇un+1
j − 4∇un

j +∇un−1
j )) · un+1

j dσ

−
∫

∂Ω

(~n · un+1
j )pn+1

j dσ − bn+1
j .

In particular, with homogeneous Dirichlet condition the integrals on the boundary ∂Ω are equal to zero.
Using the fact that ‖∇ × uj‖2 + ‖∇ · uj‖2 = ‖∇uj‖2, applying Cauchy-Schwarz and Young’s inequalities to
the right hand side and and using (2a− b)2 ≤ 6a2 + 3b2 gives, for any β2 > 0, ε2 > 0,

1

2∆t

(

|qn+1
j |2 + |2qn+1

j − qnj |2
)

− 1

2∆t

(

|qnj |2 + |2qnj − qn−1
j |2

)

+
1

2∆t
|qn+1

j − 2qnj + qn−1
j |2
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+
β

2
∆t
(

‖pn+1
j ‖2 + ‖2pn+1

j − pnj ‖2
)

− β

2
∆t
(

‖pnj ‖2 + ‖2pnj − pn−1
j ‖2

)

+
β

2
∆t‖pn+1

j − 2pnj + pn−1
j ‖2

+ ν̄min‖∇un+1
j ‖2 + α

4
h
(

‖∇un+1
j ‖2 + ‖2∇un+1

j −∇un
j ‖2
)

− α

4
h
(

‖∇un
j ‖2 + ‖2∇un

j −∇un−1
j ‖2

)

+
α

4
h‖∇un+1

j − 2∇un
j +∇un−1

j ‖2

≤ ‖fn+1
j ‖−1‖∇un+1

j ‖+ ν′max‖∇ũn+1
j ‖‖∇un+1

j ‖ (3.16)

≤ β2ν̄min‖∇un+1
j ‖2 + 1

4β2ν̄min

‖fn+1
j ‖2

−1 +
ε2ν

′

max

2
‖∇un+1

j ‖2 + ν′max

2ε2
‖∇ũn+1

j ‖2

≤ β2ν̄min‖∇un+1
j ‖2 + 1

4β2ν̄min

‖fn+1
j ‖2

−1 +
ε2ν

′

max

2
‖∇un+1

j ‖2 + ν′max

2ε2
‖∇
(

2un
j − un−1

j

)

‖2

≤ β2ν̄min‖∇un+1
j ‖2 + 1

4β2ν̄min

‖fn+1
j ‖2

−1 +
ε2ν

′

max

2
‖∇un+1

j ‖2 + 3ν′max

ε2
‖∇un

j ‖2 +
3ν′max

2ε2
‖∇un−1

j ‖2.

As the last three terms all need to be bounded by ν̄min‖∇un+1
j ‖2, we want to minimize ε2

2 + 3
ε2

+ 3
2ε2

by
taking ε2 = 3. The inequality (3.16) then reduces to

1

2∆t

(

|qn+1
j |2 + |2qn+1

j − qnj |2
)

− 1

2∆t

(

|qnj |2 + |2qnj − qn−1
j |2

)

+
1

2∆t
|qn+1

j − 2qnj + qn−1
j |2 (3.17)

+
β

2
∆t
(

‖pn+1
j ‖2 + ‖2pn+1

j − pnj ‖2
)

− β

2
∆t
(

‖pnj ‖2 + ‖2pnj − pn−1
j ‖2

)

+
β

2
∆t‖pn+1

j − 2pnj + pn−1
j ‖2

+
α

4
h
(

‖∇un+1
j ‖2 + ‖2∇un+1

j −∇un
j ‖2
)

− α

4
h
(

‖∇un
j ‖2 + ‖2∇un

j −∇un−1
j ‖2

)

+
α

4
h‖∇un+1

j − 2∇un
j +∇un−1

j ‖2

+ ((1− β2)ν̄min − 3ν′max) ‖∇un+1
j ‖2 + 3

2
ν′max

(

‖∇un+1
j ‖2 − ‖∇un

j ‖2
)

+
1

2
ν′max

(

‖∇un
j ‖2 − ‖∇un−1

j ‖2
)

≤ 1

4β2ν̄min

‖fn+1
j ‖2

−1.

If the parameter condition is satisfied, then ν̄min − 3ν′max > 0. Taking β2 = 1
2 − 3

2
ν′

max

ν̄min
> 0, we have

(1− β2)ν̄min − 3ν′max = (
1

2
+

3

2

ν′max

ν̄min

)ν̄min − 3ν′max =
1

2
(ν̄min − 3ν′max) > 0. (3.18)

(3.17) can then be reduced to

1

2∆t

(

|qn+1
j |2 + |2qn+1

j − qnj |2
)

− 1

2∆t

(

|qnj |2 + |2qnj − qn−1
j |2

)

+
1

2∆t
|qn+1

j − 2qnj + qn−1
j |2 (3.19)

+
β

2
∆t
(

‖pn+1
j ‖2 + ‖2pn+1

j − pnj ‖2
)

− β

2
∆t
(

‖pnj ‖2 + ‖2pnj − pn−1
j ‖2

)

+
β

2
∆t‖pn+1

j − 2pnj + pn−1
j ‖2

+
α

4
h
(

‖∇un+1
j ‖2 + ‖2∇un+1

j −∇un
j ‖2
)

− α

4
h
(

‖∇un
j ‖2 + ‖2∇un

j −∇un−1
j ‖2

)

+
α

4
h‖∇un+1

j − 2∇un
j +∇un−1

j ‖2 + 3

2
ν′max

(

‖∇un+1
j ‖2 − ‖∇un

j ‖2
)

+
1

2
ν′max

(

‖∇un
j ‖2 − ‖∇un−1

j ‖2
)

≤ 1

2(ν̄min − 3ν′max)
‖fn+1

j ‖2
−1.

Summing up from n = 2 to n = N − 1 and multiplying through by 2∆t gives

|qNj |2 + |2qNj − qN−1
j |2 +

N−1
∑

n=2

|qn+1
j − 2qnj + qn−1

j |2 + β∆t2
(

‖pNj ‖2 + ‖2pNj − pN−1
j ‖2

)

+ β∆t2
N−1
∑

n=2

‖pn+1
j − 2pnj + pn−1

j ‖2 + α

2
h∆t

(

‖∇uN
j ‖2 + ‖2∇uN

j −∇uN−1
j ‖2

)
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+
α

2
h∆t

N−1
∑

n=2

‖∇un+1
j − 2∇un

j +∇un−1
j ‖2 + 3ν′max∆t‖∇uN

j ‖2 + ν′max∆t‖∇uN−1
j ‖2 (3.20)

≤ |q2j |2 + |2q2j − q1j |2 + β∆t2
(

‖p2j‖2 + ‖2p2j − p1j‖2
)

+
α

2
h∆t

(

‖∇u2
j‖2 + ‖2∇u2

j −∇u1
j‖2
)

+ 3ν′max∆t‖∇u2
j‖2 + ν′max∆t‖∇u1

j‖2 +
∆t

ν̄min − 3ν′max

N−1
∑

n=2

‖fn+1
j ‖2

−1.

4. Implementation Algorithms. In this section we describe the implementation algorithms for fully
decoupling u, p, and q in the proposed ensemble algorithms respectively, following the decoupling strategy
in [31, 40, 41]. The advantages of the proposed ensemble methods in the aspect of numerical linear algebra
is discussed then.

4.1. Implementation of AC-SAV-BE. We will introduce a new scalar Sn+1
j to decompose the numer-

ical solution un+1
j into two parts yielding two sub-problems for the two components ûn+1

j , ŭn+1
j respectively,

which do not contain Sn+1
j . A separate algebraic equation for Sn+1

j will be derived.
Let

Sn+1
j =

qn+1
j

√

E(un
j ) + δ

, un+1
j = ûn+1

j + Sn+1
j ŭn+1

j . (4.1)

Substituting (4.1) into (2.7)-(2.9) and grouping the terms with Sn+1
j and those without Sn+1

j , we can derive

two separate PDE systems for ûn+1
j , ŭn+1

j . Then instead of solving (2.7)-(2.8), we solve the following two

subproblems for ûn+1
j , ŭn+1

j respectively.























1

∆t
ûn+1
j +∇× (ν̄(∇× ûn+1

j ))− αh∆ûn+1
j − 1

β
∇(∇ · ûn+1

j )

= fn+1
j +

1

∆t
un
j − αh∆un

j −∇× (ν′j(∇× un
j ))−∇pnj , in Ω,

ûn+1
j = gn+1

j , on ∂Ω.

(AC-SAV-BE sub-problem 1)



















1

∆t
ŭn+1
j +∇× (ν̄(∇× ŭn+1

j ))− αh∆ŭn+1
j − 1

β
∇(∇ · ŭn+1

j )

= −(un
j · ∇)un

j , in Ω,

ŭn+1
j = 0, on ∂Ω.

(AC-SAV-BE sub-problem 2)

In both sub-problems, the coefficients for the unknown ûn+1
j or ŭn+1

j are all constants and are independent
of the ensemble index j. So after spatial discretization, the coefficient matrices for all realizations are the
same, and do not change from one time step to another, i.e., the linear system is in the form of

A[xn+1
1 , xn+1

1 , · · · , xn+1
J ] = [bn+1

1 , bn+1
2 , · · · , bn+1

J ].

This is a linear system with multiple right hand sides, which has been well studied in the literature and
efficient block solvers such as block GMRES can be used to compute it efficiently. We will show in our
numerical tests in Section 5 that our ensemble algorithms are extremely fast and comparably accurate,
compared with traditional methods that run each realization independently.

We also need to derive an equation for Sn+1
j .

Sn+1
j =

qn+1
j

√

E(un
j ) + δ

=⇒ qn+1
j =

√

E(un
j ) + δ Sn+1

j . (4.2)
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Plugging this expression of qn+1
j into (3.3) gives

1

∆t
(qn+1

j )2 − 1

∆t
(qnj )

2 +
1

∆t
(qn+1

j − qnj )
2 +

(

ν̄∇ · un+1
j ,∇ · un+1

j

)

−
(

un+1
j − un

j

∆t
, un+1

j

)

− Sn+1
j

∫

Ω

(un
j · ∇)un

j · un+1
j dx+ bn+1

j = 0

=⇒ 1

∆t

(√

E(un
j ) + δ Sn+1

j

)2

− 1

∆t
(qnj )

2 +
1

∆t

(√

E(un
j ) + δ Sn+1

j − qnj

)2

+
(

ν̄∇ · (ûn+1
j + Sn+1

j ŭn+1
j ),∇ · (ûn+1

j + Sn+1
j ŭn+1

j )
)

−
(

ûn+1
j + Sn+1

j ŭn+1
j − un

j

∆t
, ûn+1

j + Sn+1
j ŭn+1

j

)

− Sn+1
j

∫

Ω

(un
j · ∇)un

j · (ûn+1
j + Sn+1

j ŭn+1
j ) dx+ bn+1

j = 0.

We then obtain the equation for Sn+1
j as

An+1
j (Sn+1

j )2 +Bn+1
j Sn+1

j + Cn+1
j = 0, (AC-SAV-BE sub-problem 3)

where

An+1
j =

2

∆t
(E(un

j ) + δ) +
(

ν̄∇ · ŭn+1
j ,∇ · ŭn+1

j

)

−
(

ŭn+1
j

∆t
, ŭn+1

j

)

−
∫

Ω

(un
j · ∇)un

j · ŭn+1
j dx,

Bn+1
j = − 2

∆t

√

E(un
j ) + δqnj + 2

(

ν̄∇ · ûn+1
j ,∇ · ŭn+1

j

)

−
(

ŭn+1
j

∆t
, ûn+1

j

)

−
(

ûn+1
j − un

j

∆t
, ŭn+1

j

)

−
∫

Ω

(un
j · ∇)un

j · ûn+1
j dx,

Cn+1
j =

(

ν̄∇ · ûn+1
j ,∇ · ûn+1

j

)

−
(

ûn+1
j − un

j

∆t
, ûn+1

j

)

+ bn+1
j .

In general, this is a scalar quadratic equation with two roots. By the definition of Sn+1
j , we should

pick the root that is close to 1. In solving sub-problem 1 and sub-problem 2, all realizations have the same
constant coefficient matrix for all time steps and therefore can be solved very efficiently. In sub-problem 3,
we need to solve each realization separately. But since it is a scalar quadratic equation, it can be solved
quickly. After getting ûn+1

j , ŭn+1
j , and Sn+1

j , we have un+1
j = ûn+1

j + Sn+1
j ŭn+1

j . The pressure pn+1
j can be

updated directly without solving a linear system using the formula

pn+1
j = pnj − 1

β
∇ · un+1

j .

4.2. Implementation of AC-SAV-BDF2. Similarly, we introduce an intermediate variable Sn+1
j

and derive three sub-problems for efficient implementation of the AC-SAV-BDF2 ensemble algorithm. Let

Sn+1
j =

qn+1
j

√

E(ũn+1
j ) + δ

, un+1
j = ûn+1

j + Sn+1
j ŭn+1

j . (4.3)

Then instead of solving (2.10)-(2.12), we solve the following two sub-problems for ûn+1
j and ŭn+1

j respectively.







































3

2∆t
ûn+1
j +∇× (ν̄(∇× ûn+1

j ))− 3

2
αh∆ûn+1

j − 1

3β∆t
∇(∇ · ûn+1

j )

= fn+1
j +

2

∆t
un
j − 1

2∆t
un−1
j −∇× (ν′j(∇× ũn+1

j ))

− 2αh∆un
j +

1

2
αh∆un−1

j −∇(
4

3
pnj − 1

3
pn−1
j ), in Ω,

ûn+1
j = gn+1

j , on ∂Ω,

(AC-SAV-BDF2 sub-problem 1)
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

















3

2∆t
ŭn+1
j +∇× (ν̄(∇× ŭn+1

j ))− 3

2
αh∆ŭn+1

j − 1

3β∆t
∇(∇ · ŭn+1

j )

= −(ũn+1
j · ∇)ũn+1

j , in Ω,

ŭn+1
j = 0, on ∂Ω.

(AC-SAV-BDF2 sub-problem 2)

Now we need to derive an equation for Sn+1
j .

Sn+1
j =

qn+1
j

√

E(ũn+1
j ) + δ

=⇒ qn+1
j =

√

E(ũn+1
j ) + δ Sn+1

j . (4.4)

Multiplying (2.12) with 2qn+1
j and then plugging in (4.4) gives

3

∆t
(qn+1

j )2 +
−4qnj + qn−1

j

∆t
qn+1
j +

(

ν̄∇ · un+1
j ,∇ · un+1

j

)

−
(

3un+1
j − 4un

j + un−1
j

2∆t
, un+1

j

)

− Sn+1
j

∫

Ω

(ũn+1
j · ∇)ũn+1

j · un+1
j dx+ bn+1

j = 0

=⇒ 3

∆t
(E(ũn+1

j ) + δ)(Sn+1
j )2 +

−4qnj + qn−1
j

∆t

√

E(ũn+1
j ) + δ Sn+1

j

+
(

ν̄∇ · (ûn+1
j + Sn+1

j ŭn+1
j ),∇ · (ûn+1

j + Sn+1
j ŭn+1

j )
)

−
(

3(ûn+1
j + Sn+1

j ŭn+1
j )− 4un

j + un−1
j

2∆t
, ûn+1

j + Sn+1
j ŭn+1

j

)

− Sn+1
j

∫

Ω

(ũn+1
j · ∇)ũn+1

j · (ûn+1
j + Sn+1

j ŭn+1
j ) dx+ bn+1

j = 0.

At last, we obtain the equation for Sn+1
j as

An+1
j (Sn+1

j )2 +Bn+1
j Sn+1

j + Cn+1
j = 0, (AC-SAV-BDF2 sub-problem 3)

where

An+1
j =

3

∆t
(E(ũn+1

j ) + δ) +
(

ν̄∇ · ŭn+1
j ,∇ · ŭn+1

j

)

−
(

3ŭn+1
j

2∆t
, ŭn+1

j

)

−
∫

Ω

(ũn+1
j · ∇)ũn+1

j · ŭn+1
j dx,

Bn+1
j =

−4qnj + qn−1
j

∆t

√

E(ũn+1
j ) + δ + 2

(

ν̄∇ · ûn+1
j ,∇ · ŭn+1

j

)

−
(

3ŭn+1
j

2∆t
, ûn+1

j

)

−
(

3ûn+1
j − 4un

j + un−1
j

2∆t
, ŭn+1

j

)

−
∫

Ω

(ũn+1
j · ∇)ũn+1

j · ûn+1
j dx,

Cn+1
j =

(

ν̄∇ · ûn+1
j ,∇ · ûn+1

j

)

−
(

3ûn+1
j − 4un

j + un−1
j

2∆t
, ûn+1

j

)

+ bn+1
j .

After getting un+1
j by un+1

j = ûn+1
j + Sn+1

j ŭn+1
j , the pressure can be updated directly as follows.

pn+1
j =

1

3
(4pnj − pn−1

j )− 1

3β∆t
∇ · un+1

j .

4.3. The Algebraic Systems and Linear Solvers. Denote the finite element basis functions for the

velocity u and the pressure p by {χu
j }Nu

j=1, {χ
p
j}

Np

j=1 respectively. We then define matrices Muu, Duu, Duup,
Suu, C(ν), and N(u) whose entries are given as follows.

[Muu]kl =

∫

Ω

χu
l · χu

k , [Duu]kl =

∫

Ω

(∇ · χu
l )(∇ · χu

k), [Duup]kl =

∫

Ω

χp
l (∇ · χu

k),
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[Suu]kl =

∫

Ω

∇χu
l · ∇χu

k , [C(ν)]kl =

∫

Ω

ν(∇× χu
l ) · (∇× χu

k), [N(u)]kl =

∫

Ω

(u · ∇)χu
l · χu

k .

In the next section, we will perform several efficiency tests by comparing the AC-SAV-BE and AC-SAV-
BDF2 ensemble schemes with the ones not using the AC technique, namely the SAV-BE and SAV-BDF2
ensemble schemes [31]. Below we list the coefficient matrices of the algebraic systems corresponding to above
schemes and the standard nonensemble ones, for the realization of sample j = 1, · · · , J .

(1) AC-SAV-BE ensemble:

Aas1e =
1
∆t

Muu +C(ν̄) + αhSuu + 1
β
Duu.

(2) SAV-BE ensemble:

As1e =

(

1
∆t

Muu +C(ν̄) + αhSuu −Duup

−DT
uup 0

)

.

(3) BE nonensemble:

A
(j,n)
1n =

(

1
∆t

Muu +N(un
j ) +C(νj) −Duup

−DT
uup 0

)

.

(4) AC-SAV-BDF2 ensemble:

Aas2e =
3

2∆t
Muu +C(ν̄) +

3

2
αhSuu + 1

3β∆t
Duu.

(5) SAV-BDF2 ensemble:

As2e =

(

3
2∆t

Muu +C(ν̄) + 3
2αhSuu −Duup

−DT
uup 0

)

.

(6) BDF2 nonensemble:

A
(j,n)
2n =

(

3
2∆t

Muu +N(˜̃un+1
j ) +C(νj) −Duup

−DT
uup 0

)

.

One should notice that the matrices Aas1e and Aas2e are not only in reduced size, as compared with As1e

and As2e, but also symmetric and positive definite (SPD), so the conjugate gradient (CG) iterative linear

solver can be applied. When compared to A
(j,n)
1n and A

(j,n)
2n , the matrices Aas1e and Aas2e are fixed not

only for different samples but also for different time steps, so we can simultaneously achieve all realizations
by solving a single linear system with multiple right hand sides (RHSs) corresponding to different samples.
Computational efficiency is then guaranteed as redundant information due to linear dependence of multiple

residuals can be removed beforehand. In contrast, A
(j,n)
1n and A

(j,n)
2n in the nonensemble methods change

over sample index j and time step index n, hence we need to simulate J samples one by one at each time
step.

In application for large-scale simulations especially for 3D problems, one can use the block CG method
[25, 44, 46] or CG method with vectorization operation, preconditioned by multigrid, to handle the systems
associated with Aas1e and Aas2e in the AC-SAV ensemble schemes. As for the SAV-BDF2 ensemble scheme,
the block GMRES method [3, 14] with the least-squares commutator preconditioning was claimed having
good performance [31]. So we keep using this solver for the SAV-BE and SAV-BDF2 ensemble schemes in
the efficiency comparison tests to appear. In particular, the preconditioner inside block GMRES is solved
by the block CG algorithm with a multigrid preconditioner.

5. Numerical Experiments.
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5.1. Tests for convergence rate. To validate the temporal convergence rate of AC-SAV-BE and
AC-SAV-BDF2 ensemble schemes, we consider a simple test problem [15] with Green-Taylor vortex solution
on a square domain Ω = (0, 1)2. The analytic solution and forcing term are given by

u = (− cosx sin y, sinx cos y)T g(t),

p = −1

4
[cos(2x) + cos(2y)]g(t)2,

f(x, y, t) = [g′(t) + 2νg(t)](− cosx sin y, sinx cos y)T ,

with g(t) = eν cos(2t). Initial and Dirichlet boundary conditions are set to match the prescribed analytic
solution. We consider an ensemble computation of J solutions corresponding to

νj = νmin(1 + εj), j = 1, · · · , J.

In this setup, the J realizations have different initial conditions, boundary conditions, and body forces. For
efficiency in computation on fine mesh, we only set J = 3, ε1 = 0, ε2 = 0.2/3, ε3 = 0.4/3, while much larger
J also works.

We will evaluate numerical errors of the velocity in H1 semi-norm and the pressure in L2 norm at T = 2,
computed on successively refined meshs with h = 1/16, · · · , 1/128. Taking ∆t = 0.01 ∗ h, the expected
numerical errors of u and p by the AC-SAV-BE ensemble method are both O(h2 + ∆t) = O(h). In this
test, we set α = 0.5, β = 1. The simulation errors and convergence rates for the first and third samples
are reported in Table 5.1 and Table 5.2, for νmin = 0.01 and νmin = 0.001 respectively. As we can see, the
AC-SAV-BE ensemble scheme is first-order convergent in time as predicted.

Taking ∆t = h, the expected numerical errors of u and p by the AC-SAV-BDF2 ensemble method are
both O(h2 +∆t2) = O(∆t2). Still setting α = 0.5, β = 1, we report the corresponding results in Table 5.3
and Table 5.4 for νmin = 0.01 and νmin = 0.001 respectively. As predicted, the AC-SAV-BDF2 ensemble
scheme has second-order convergence rate in time.

Table 5.1: Errors at T = 2 and convergence rates of the AC-SAV-BE ensemble algorithm (J = 3) with
∆t = 0.01 ∗ h, α = 0.5, β = 1, νmin = 0.01.

h |uh − u|E,1
H1 Rate |ph − p|E,1

L2 Rate |uh − u|E,3
H1 Rate |ph − p|E,3

L2 Rate

1/16 1.32× 10−3 —– 2.81× 10−4 —– 1.26× 10−3 —– 2.83× 10−4 —–
1/32 6.52× 10−4 1.02 1.22× 10−4 1.21 6.22× 10−4 1.02 1.23× 10−4 1.20
1/64 3.26× 10−4 1.00 5.66× 10−5 1.11 3.11× 10−4 1.00 5.70× 10−5 1.11
1/128 1.63× 10−4 1.00 2.73× 10−5 1.05 1.55× 10−4 1.00 2.74× 10−5 1.05

Table 5.2: Errors at T = 2 and convergence rates of the AC-SAV-BE ensemble algorithm (J = 3) with
∆t = 0.01 ∗ h, α = 0.5, β = 1, νmin = 0.001.

h |uh − u|E,1
H1 Rate |ph − p|E,1

L2 Rate |uh − u|E,3
H1 Rate |ph − p|E,3

L2 Rate

1/16 3.04× 10−3 —– 2.76× 10−4 —– 2.92× 10−3 —– 2.76× 10−4 —–
1/32 1.53× 10−3 0.99 1.19× 10−4 1.21 1.46× 10−3 1.00 1.19× 10−4 1.21
1/64 7.72× 10−4 0.99 5.54× 10−5 1.11 7.34× 10−4 0.99 5.54× 10−5 1.11
1/128 3.86× 10−4 1.00 2.67× 10−5 1.05 3.67× 10−4 1.00 2.67× 10−5 1.05

5.2. Efficiency tests. We then test the AC efficiency and ensemble efficiency of AC-SAV-BE and
AC-SAV-BDF2 schemes using the analytic solution stated in Section 5.1. The values of νj are set by taking

νj = νmin(1 + εj), εj = 0.2(j − 1)/J, j = 1, · · · , J.
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Table 5.3: Errors at T = 2 and convergence rates of the AC-SAV-BDF2 ensemble algorithm (J = 3) with
∆t = h, α = 0.5, β = 1, νmin = 0.01.

∆t |uh − u|E,1
H1 Rate |ph − p|E,1

L2 Rate |uh − u|E,3
H1 Rate |ph − p|E,3

L2 Rate

1/16 1.28× 10−2 —– 3.32× 10−3 —– 1.13× 10−2 —– 3.34× 10−3 —–
1/32 2.75× 10−3 2.22 8.12× 10−4 2.03 2.50× 10−3 2.18 8.17× 10−4 2.03
1/64 6.78× 10−4 2.02 2.01× 10−4 2.01 6.21× 10−4 2.01 2.02× 10−4 2.01
1/128 1.69× 10−4 2.00 5.00× 10−5 2.01 1.56× 10−4 2.00 5.03× 10−5 2.01

Table 5.4: Errors at T = 2 and convergence rates of the AC-SAV-BDF2 ensemble algorithm (J = 3) with
∆t = h, α = 0.5, β = 1, νmin = 0.001.

∆t |uh − u|E,1
H1 Rate |ph − p|E,1

L2 Rate |uh − u|E,3
H1 Rate |ph − p|E,3

L2 Rate

1/16 5.70× 10−2 —– 3.22× 10−3 —– 5.50× 10−2 —– 3.22× 10−3 —–
1/32 1.73× 10−2 1.72 7.80× 10−4 2.04 1.58× 10−2 1.80 7.80× 10−4 2.04
1/64 3.13× 10−3 2.47 1.91× 10−4 2.03 2.86× 10−3 2.47 1.92× 10−4 2.03
1/128 6.85× 10−4 2.19 4.75× 10−5 2.01 6.39× 10−4 2.16 4.75× 10−5 2.01

The space and time resolutions are fixed as h = ∆t = 1/64 and the final time is taken at T = 10.

First of all, we compare the performance of the first-order methods, AC-SAV-BE (α = 1, β = 1) and
SAV-BE (α = 1), on simulating a single flow, i.e. J = 1. This is to show the advantage of using AC technique.
Extensive testing is performed by considering various νmin values: νmin = 0.1, 0.01, 0.001. In the efficiency
tests, we use the block CG linear solver with the multi-grid preconditioner for the AC-SAV-BE method. As
for the SAV-BE scheme, the block GMRES solver with the least-squares commutator preconditioner, which is
tested to be efficienct in [31], is taken to handle the algebraic linear systems. Our MATLAB implementation
is based on the data structure of iFEM package.

Table 5.5 reports the execution times and solution errors computed by the first-order schemes. It is
observed that the AC-SAV-BE scheme outperforms the SAV-BE scheme as it takes much less CPU time but
maintains similar accuracy, thanks to the splitting of velocity and pressure by the AC technique. Note that
the reason why the reported CPU time for SAV-BE decreases as νmin decreases is that the least-squares
commutator preconditioner is more efficient for smaller viscosity, as reported in Table 1 of [31].

Next, we study the ensemble efficiency by varing the number J of realizations from 1 to 100. The
execution times of simulations with J = 1, 10, 100 by the AC-SAV-BE and AC-SAV-BDF2 ensemble schemes
are plotted in Figure 5.1. There, the red dash line is a reference for linear increase of execution time with
respect to the sample size J . As we can see, the advantage of the two ensemble algorithms is apparent as the
ensemble size increases, the execution time is significantly reduced as compared to individual simulations of
J flows. This is because all the realizations in the ensemble method share a common matrix, hence all the
J realizations can be achieved simutaneously.

5.3. Long time stability on a double driven cavity flow. We then simulate the two-dimensional
driven cavity flow [2], a classical benchmark problem, to test the AC-SAV-BDF2 scheme. To be specific,
the flow in the square Ω = (0, 1)2 is driven by two sides of the boundary: (u1, u2) = (1, 0) on y = 1 and
(u1, u2) = (0,−1) on x = 0. No-slip boundary condition is imposed on the other parts of the boundary.
The initial velocity and external body force are set to be zero. Taking ν = 10−3 and then ν = 10−4, we run
simulations until T = 60 to study the long time stability of the proposed AC-SAV-BDF2 scheme.

Our numerical experiments are performed with h = 1/64, ∆t = 0.01, 0.05, 0.002. The time histories of
energy and Sn

j computed with α = 1, β = 1 in the AC-SAV-BDF2 scheme are plotted in Figure 5.2 for the

case ν = 10−3. Notice that Sn
j does converge to one when the simulation is performed using relatively large

time steps. Similar results are also obtained for the case ν = 10−4, as shown in Figure 5.3. Figure 5.2 and
5.3 illustrate the long time stability of the AC-SAV-BDF2 scheme. We also state that the AC-SAV-BDF2
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Table 5.5: Execution times and solution errors at final time T = 10 computed by the first-order schemes
with h = ∆t = 1/64, J = 1.

AC-SAV-BE (α = 1, β = 1) SAV-BE (α = 1)

νmin |E[uh − u]|H1 |E[ph − p]|L2 Exe time |E[uh − u]|H1 |E[ph − p]|L2 Exe time

0.1 9.728× 10−3 4.442× 10−3 755 s 6.656× 10−3 4.948× 10−3 19339 s
0.01 2.980× 10−2 2.984× 10−3 1014 s 3.105× 10−2 3.903× 10−3 7355 s
0.001 1.246× 10−1 3.003× 10−3 1108 s 1.124× 10−1 3.961× 10−3 5736 s
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Fig. 5.1: Execution times of simulations with J = 1, 10, 100. The red dash line is a reference for linear
increase of execution time with respect to the sample size J . The simulations are performed with T = 10,
h = ∆t = 1/64, β = 1.

scheme has very loose time step constraints for convergence. For both ν = 10−3 and ν = 10−4, a large
∆t = 0.01 with α = 1, β = 1 is good enough for stable and reliable simulations.

The velocity fields of the double driven cavity flow at t = 60 computed with ν = 10−3 and ν = 10−4 are
also plotted in the left and right of Figure 5.4, respectively.

5.4. Flow past cylinder. Our final test is on the two-dimensional flow past cylinder, a classical
benchmark problem introduced in Schäfer and Turek [50]. This problem has been widely used, in [30, 37]
for instance, to study the stability or effectiveness of certain time stepping methods. In our work, the aim
is to show that the AC-SAV-BDF2 scheme produces reasonable simulations even with large time steps if
appropriate stabilization and AC parameters are chosen.

Consider the flow in a 2.2×0.41 rectangular channel around a cylinder of radius 0.05 centered at (0.2, 0.2).
No-slip boundary conditions are imposed on the cylinder, also the top and bottom of the channel, while the
inflow/outflow boundary conditions are prescribed as

u1(0, y) = u1(2.2, y) =
6

0.412
sin(πt/8)y(0.41− y),

u2(0, y) = u2(2.2, y) = 0.

The initial velocity and external force are set to zero. The viscosity is ν = 10−3. Based on the inflow profile
and the cylinder diameter L = 0.1, the Reynolds number is Re = 100. For this value of Re, the problem
features a laminar flow, with a Kármán vortex street developing behind the cylinder. In particular, the eddy
becomes unstable from t = 2, it is then shed on alternate sides of the cylinder between t = 4 and t = 6.

The numerical solutions are computed with Taylor-Hood elements holding 63920 number of degrees of
freedom for velocity and 16155 for pressure. The spatial resolution ranges from 0.0030 to 0.0147. Simulations
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Fig. 5.2: Double driven cavity flow: time histories of energy and Sn
j computed by the AC-SAV-BDF2 scheme

with ν = 10−3, h = 1/64, T = 60, J = 1 = j.
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Fig. 5.3: Double driven cavity flow: time histories of energy and Sn
j computed by the AC-SAV-BDF2 scheme

with ν = 10−4, h = 1/64, T = 60, J = 1 = j.

are performed with ∆t = 0.01, 0.005, 0.002, while the stabilization and AC parameters are fixed as α = 4, β =
1. The corresponding time histories of energy and Sn

j are plotted in Figure 5.5. Again, we observe that
Sn
j does converge to one when the simulation is performed using relatively large time steps. For instance, a

large ∆t = 0.01 is good enough for stable and reliable simulations.
The velocity fields and velocity magnitudes of the flow at t = 4, 5, 6, 7, 8 computed by the AC-SAV-

BDF2 method with ∆t = 0.01 are plotted in Figure 5.6. Figure 5.7 is then for ∆t = 0.002. In all plots,
the simulation results are satisfactory: the AC-SAV-BDF2 method is stable and the flow patterns produced
match with those in [30, 33].

6. Conclusions. We have presented two extremely fast ensemble simulation algorithms well-suited for
UQ applications. The algorithms are designed based on recently developed ensemble timestepping method,
the SAV approach, and the AC technique, resulting in linear systems that have the same constant coefficient
matrix so that highly efficient block linear solvers can be used to significantly reduce the computational
cost and simulation time. In particular the AC technique decouples the computation of the velocity and
pressure reducing the size of the linear systems to be solved at each time step. Moreover the pressure
can be updated directly without solving a Poisson equation avoiding the boundary layer in pressure errors
due to artificial boundary condition. We proved both algorithm are long time stable without any timestep
constraints. Extensive numerical experiments were performed to demonstrate that our ensemble algorithms
are highly efficient and competitively accurate compared with traditional methods that run each realization
independently.
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ν = 10−3, ∆t = 0.01 ν = 10−4, ∆t = 0.01

ν = 10−3, ∆t = 0.005 ν = 10−4, ∆t = 0.005

ν = 10−3, ∆t = 0.002 ν = 10−4, ∆t = 0.002

Fig. 5.4: Velocity fields of the double driven cavity flow at T = 60, computed by the AC-SAV-BDF2 scheme
with h = 1/64, J = 1. Left: ν = 10−3; right: ν = 10−4. From top to bottom: ∆t = 0.01, 0.005, 0.002.
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