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Abstract

Arguably, the two most popular accelerated or momentum-based optimization methods in
machine learning are Nesterov’s accelerated gradient and Polyaks’s heavy ball, both corre-
sponding to di↵erent discretizations of a particular second order di↵erential equation with
friction. Such connections with continuous-time dynamical systems have been instrumental
in demystifying acceleration phenomena in optimization. Here we study structure-preserving
discretizations for a certain class of dissipative (conformal) Hamiltonian systems, allowing
us to analyze the symplectic structure of both Nesterov and heavy ball, besides providing
several new insights into these methods. Moreover, we propose a new algorithm based on a
dissipative relativistic system that normalizes the momentum and may result in more sta-
ble/faster optimization. Importantly, such a method generalizes both Nesterov and heavy
ball, each being recovered as distinct limiting cases, and has potential advantages at no
additional cost.
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1 Introduction

Gradient based optimization methods are ubiquitous in machine learning since they only
require first order information on the objective function. This makes them computationally
e�cient. However, vanilla gradient descent can be slow. Alternatively, accelerated gradient
methods, whose construction can be traced back to Polyak [1] and Nesterov [2], became
popular due to their ability to achieve best worst-case complexity bounds. The heavy ball
method, also known as classical momentum (CM) method, is given by

vk+1 = µvk � ✏rf(xk), xk+1 = xk + vk+1, (1.1)

where k = 0, 1, . . . is the iteration number, µ 2 (0, 1) is the momentum factor, ✏ > 0 is
the learning rate, and f : Rn ! R is the function being minimized. Similarly, Nesterov’s
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accelerated gradient (NAG) can be found in the form

vk+1 = µvk � ✏rf(xk + µvk), xk+1 = xk + vk+1. (1.2)

Both methods have a long history in optimization and machine learning [3]. They are also
the basis for the construction of other methods, such as adaptive ones that additionally
include some gradient normalization [4–7].

In discrete-time optimization the “acceleration phenomena” are considered counterintu-
itive. By this we mean a mechanism by which an algorithm can be accelerated, i.e. have
a faster convergence; for instance, it is known that gradient descent converges at a rate
of O(1/k) for convex functions, while NAG converges at a rate O(1/k2), which is optimal
in the sense of worst-case complexity. A complete understanding of why NAG is able to
achieve such an improved rate is considered by many experts an important open problem,
and currently there is no guiding principle to construct accelerated algorithms. A promising
direction to understand this has been emerging in connection with continuous-time dynami-
cal systems [8–18] where many of these di�culties disappear or have an intuitive explanation.
Since one is free to discretize a continuous-time system in many di↵erent ways, it is only nat-
ural to ask which discretization strategies would be most suitable for optimization? Such a
question is unlikely to have a simple answer, and may be problem dependent. Unfortunately,
typical discretizations are also known to introduce spurious artifacts and do not reproduce
the most important properties of the continuous-time system [19]. Nevertheless, a special
class of discretizations in the physics literature known as symplectic integrators [19–22] are
to be preferable whenever considering the special class of conservative Hamiltonian systems.

More relevant to optimization is a class of dissipative systems known as conformal Hamil-
tonian systems [23]. Recently, results from symplectic integrators were extended to this case
and such methods are called conformal symplectic integrators [18,24]. Conformal symplectic
methods tend to have long time stability because the numerical trajectories remain in the
same conformal symplectic manifold as the original system [18]. Importantly, these methods
do not change the phase portrait of the system, i.e. the stability of critical points is preserved.
Although symplectic techniques have had great success in several areas of physics and Monte
Carlo methods, only recently they started to be considered in optimization [14, 18] and are
still mostly unexplored in this context. Very recently a great progress has been made [18] by
showing that such an approach is able to preserve the continuous-time rates of convergence
up to a controlled error [18].

In this paper, we relate conformal symplectic integrators to optimization and provide
important insights into CM (1.1) and NAG (1.2). We prove that CM is a first order accurate
conformal symplectic integrator. On the other hand, we show that NAG is also first order
accurate, but not conformal symplectic since it introduces some spurious dissipation—or
excitation. However, it does so in an interesting way that depends on the Hessian r2f ; the
symplectic form contracts in a Hessian dependent manner and so do phase space volumes.
This is an e↵ect of higher order but can influence the behaviour of the algorithm. We
also derive modified equations and shadow Hamiltonians for both CM and NAG. Moreover,
we indicate a tradeo↵ between stability, symplecticness, and such an spurious contraction,
indicating advantages in structure-preserving discretizations for optimization.
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Algorithm 1 RGD method for minimizing a smooth function f(x). In practice, we
recommend setting ↵ = 1 which results in a conformal symplectic method.

Require: Initial state (x0, v0) and parameters ✏ > 0, � > 0, µ 2 (0, 1), ↵ 2 [0, 1]
for k = 0, 1, . . . do

xk+1/2  xk +
p

µ (µ�kvkk2 + 1)�1/2 vk
vk+1/2  

p
µvk � ✏rf(xk+1/2)

xk+1  ↵xk+1/2 + (1� ↵)xk +
�
�kvk+1/2k2 + 1

��1/2
vk+1/2

vk+1  
p

µ vk+1/2

end for

Optimization can be challenging in a landscape with large gradients, e.g. for a function
with fast growing tails. The only way to control divergences in methods such as (1.1) and
(1.2) is to make the step size very small, but then the algorithm becomes slow. One approach
to this issue is to introduce a suitable normalization of the gradient. Here we propose
an alternative approach motivated by special relativity in physics. The reason is that in
special relativity there is a limiting speed, i.e. the speed of light. Thus, by discretizing a
dissipative relativistic system, we obtain an algorithm that incorporates this e↵ect and may
result in more stable optimization in settings with large gradients. Specifically, we introduce
Algorithm 1. Besides the momentum factor µ and the learning rate ✏—also present in
(1.1) and (1.2)—the above relativistic gradient descent (RGD) method has the additional
parameters � � 0 and 0  ↵  1 which brings some interesting properties:

• When � = 0 and ↵ = 0, RGD recovers NAG (1.2). When � = 0 and ↵ = 1, RGD
becomes a second order accurate version of CM (1.1), which has a close behavior but an
improved stability. Thus, RGD can interpolate between these two methods. Moreover,
RGD has the same computational cost as CM or NAG. These facts imply that RGD
is at least as e�cient as CM and NAG if appropriately tuned.

• Let yk ⌘ ↵xk+1/2+(1�↵)xk. The last update in Algorithm 1 implies kxk+1�ykk  1/�.
Thus, with � > 0, RGD is globally bounded regardless how large krfk might be; this
is in contrast with CM and NAG where � = 0, i.e. kxk+1 � ykk  1. The square root
factor in Algorithm 1 has a “relativistic origin” and its strength is controlled by �. For
this reason, RGD may be more stable than CM and NAG, preventing divergences in
settings of large gradients; see Fig. 1 in Section 6 and the plots in Appendix B.

• As we will show, ↵ = 1 implies that RGD is conformal symplectic, whereas ↵ = 0
implies a spurious Hessian driven damping similarly found in NAG. Thus, RGD has the
flexibility of being “dissipative-preserving” or introducing some “spurious contraction.”
However, based on theoretical arguments and empirical evidence, we advocate for the
choice ↵ = 1.1

1The only reason for introducing the extra parameter 0  ↵  1 into Algorithm 1 is to actually let the
experiments decide whether ↵ = 1 (symplectic) or ↵ < 1 (non-symplectic) is desirable or not.

3



Let us mention a few related works. Applications of symplectic integrators in optimiza-
tion was first considered in [14]—although this is di↵erent than the conformal symplectic
case explored here. Recently, the benefits of symplectic methods in optimization started
to be indicated [25]. Actually, even more recently, a generalization of symplectic integra-
tors to a general class of dissipative Hamiltonian systems was proposed [18], with theoret-
ical results ensuring that such discretizations are “rate-matching” up to a negligible error;
this construction is general and contains the conformal case considered here as a particu-
lar case. Relativistic systems are obviously an elementary topic in physics but—with some
modifications—the relativistic kinetic energy was considered in Monte Carlo methods [26,27]
and also briefly in [28]. Finally, we stress that Algorithm 1 is a completely new method in the
literature, generalizing perhaps the two most popular existing accelerated methods, namely
CM and NAG, and also has the ability to be conformal symplectic besides being adaptive in
the momentum which may help controlling divergences. We also provide several new insights
into CM and NAG in Section 4.3 and Section 6 which may be of independent interest.

2 Conformal Hamiltonian systems

We start by introducing the basics of conformal Hamiltonian systems and focus on their
intrinsic symplectic geometry; we refer to [23] for details. The state of the system is described
by a point on phase space, (x, p) 2 R2n, where x = x(t) is the generalized coordinates and
p = p(t) its conjugate momentum, with t 2 R being the time. The system is completely
specified by a Hamiltonian function H : R2n ! R and required to obey a modified form of
Hamilton’s equations:

ẋ = rpH(x, p), ṗ = �rxH(x, p)� �p. (2.1)

Here ẋ ⌘ dx
dt , ṗ ⌘ dp

dt , and � > 0 is a damping constant. A classical example is given by

H(x, p) =
kpk2

2m
+ f(x) (2.2)

where m > 0 is the mass of a particle subject to a potential f . The Hamiltonian is the energy
of the system and upon taking its time derivative one finds Ḣ = ��kpk2  0. Thus H is
a Lyapunov function and all orbits tend to critical points, which in this case must satisfy
rf(x) = 0 and p = 0. This implies that the system is stable on isolated minimizers of f .2

Define

z ⌘

x
p

�
, ⌦ ⌘


0 I
�I 0

�
, D ⌘


0 0
0 I

�
, (2.3)

where I is the n⇥ n identity matrix, to write the equations of motion (2.1) concisely as3

ż = ⌦rH(z)| {z }
C(z)

� �Dz|{z}
D(z)

. (2.4)

2This can be generalized for any Hamiltonian H that is strongly convex on p with the minimum at p = 0.
3
C(z) and D(z) will be used later on and stand for “conservative” and “dissipative” parts, respectively.
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Note that ⌦⌦T = ⌦T⌦ = I and ⌦2 = �I, so that ⌦ is real, orthogonal and antisymmetric.
Let ⇠, ⌘ 2 R2n and define the symplectic 2-form !(⇠, ⌘) ⌘ ⇠T⌦ ⌘. It is convenient to use the
wedge product representation of this 2-form, namely4

!(⇠, ⌘) = (dx ^ dp)(⇠, ⌘). (2.5)

We denote !t ⌘ dx(t) ^ dp(t). The equations of motion define a flow �t : R2n ! R2n, i.e.
�t

�
z0) ⌘ z(t) where z(0) ⌘ z0. Let Jt(z) denote the Jacobian of �t(z). From (2.4) it is not

hard to show that (see e.g. [23])

JT
t ⌦Jt = e��t⌦ =) !t = e��t!0. (2.6)

Therefore, a conformal Hamiltonian flow �t contracts the symplectic form exponentially with
respect to the damping coe�cient �. It follows from (2.6) that volumes on phase space shrink
as vol(�t(R)) =

R
R | det Jt(z)|dz = e�n�t vol(R) where R ⇢ R2n. This contraction is stronger

as dimension increases. The conservative case is recovered with � = 0 above; in this case,
the symplectic structure is preserved and volumes remain invariant (Liouville’s theorem). A
known and interesting property of conformal Hamiltonian systems is that their Lyapunov
exponents sum up in pairs to � [31]. This imposes constraints on the admissible dynamics
and controls the phase portrait near critical points. For other properties of attractor sets we
refer to [32]. Finally, conformal symplectic transformations can be composed and form the
so-called conformal group.

3 Conformal symplectic optimization

Consider (2.4) where we associate flows �C
t and �D

t to the respective vector fields C(z)
and D(z). Conformal symplectic integrators can be constructed as splitting methods that
approximate the true flow �t by composing the individual flows �C

t and �D
t . Our procedure to

obtain a numerical map  h, with step size h > 0, is to first obtain a numerical approximation
to the conservative part of the system, ż = ⌦rH(z). This yields a numerical map  C

h that
approximates �C

h for small intervals of time [t, t+h]. One can choose any standard symplectic
integrator for this task. Let us pick the simplest, i.e. the symplectic Euler method [30, pp.
189]. We thus have  C

h : (x, p) 7! (X, P ) where

X = x + hrpH(x, P ), P = p� hrxH(x, P ). (3.1)

Now the dissipative part of the system, ż = ��Dz, can be integrated exactly. Indeed,
ẋ = 0 and ṗ = ��p, thus  D

h : (x, p) = (x, e��hp). With  h ⌘  C
h �  D

h we obtain
 h : (x, p) 7! (X, P ) as

P = e��hp� hrxH(x, P ), X = x + hrpH(x, P ). (3.2)

4It is not strictly necessary to be familiar with di↵erential forms and exterior calculus to understand this
paper. For the current purposes, it is enough to recall that the wedge product is a bilinear and antisymmetric
operation, i.e. dx^ (ady+ bdz) = adx^dy+ bdx^dz and dx^dy = �dy^dx for scalars a and b and 1-forms
dx, dy, dz (think about this as vector di↵erentials); we refer to [29] and [30] for more details if necessary.
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This is nothing but a dissipative version of the symplectic Euler method. Similarly, if we
choose the leapfrog method [30, pp. 190] for  C

h and consider  h ⌘  D
h/2 �  C

h �  D
h/2 we

obtain

X̃ = x +
h

2
rpH

�
X̃, e��h/2p

�
, (3.3a)

P̃ = e��h/2p� h

2

�
rxH

�
X̃, e��h/2p

�
+rxH

�
X̃, P̃

��
, (3.3b)

X = X̃ +
h

2
rpH(X̃, P̃ ), (3.3c)

P = e��h/2P̃ . (3.3d)

This is a dissipative version of the leapfrog, which is recovered when � = 0. Note that
in general (3.2) is implicit in P , and (3.3) is implicit in X̃ and P . However, both will
become explicit for separable Hamiltonians, H = T (p) + f(x), and in this case they are
extremely e�cient. Note also that (3.2) and (3.3) are completely general, i.e. by choosing a
suitable Hamiltonian H one can obtain several possible optimization algorithms from these
integrators. Next, we show important properties of these integrators. (Below we denote
tk = kh for k = 0, 1, . . . , zk ⌘ z(tk), etc.)

Definition 3.1 (Order of accuracy). A numerical map  h is said to be of order r � 1 if
k h(z) � �h(z)k = O(hr+1) for any z 2 R2n. (Recall that h > 0 is the step size and �h is
the true flow.)

Definition 3.2 (Conformal symplectic integrator). A numerical map  h is said to be con-
formal symplectic if zk+1 =  h(zk) is conformal symplectic, i.e. !k+1 = e��h!k, whenever
�̂h is applied to a smooth Hamiltonian. Iterating such a map yields !k = e��tk!0 so that
(2.6) is preserved.

Theorem 3.3. Both methods (3.2) and (3.3) are conformal symplectic.

Proof. Note that in both cases  C
h is a symplectic integrator, i.e. its Jacobian JC

h obeys
(JC

h )T⌦JC
h = ⌦—see (2.6) with � = 0. Now the map  D

h defined above is conformal sym-
plectic, i.e. one can verify that its Jacobian JD

h obeys (JD
h )T⌦JD

h = e��h⌦. Hence, any
composition of these maps will be conformal symplectic. For instance,

(JC
h JD

h )T⌦(JC
h JD

h ) = (JD
h )T (JC

h )T⌦JC
h JD

h = (JD
h )T⌦JD

h = e��h⌦. (3.4)

The same would be true for any type of composition whose overall time step add up to h.

Theorem 3.4. The numerical scheme (3.2) is of order r = 1, while (3.3) is of order r = 2.

Proof. The proof simply involves manipulating Taylor expansions for the numerical method
and for the continuous-time system over a time interval of h; this is presented in Appendix A.

We mention that one can construct higher order integrators by following the above ap-
proach, however these would be more expensive, involving more gradient computations per
iteration. In practice, methods of order r = 2 tend to have the best cost benefit.
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4 Symplectic structure of heavy ball and Nesterov

Consider the classical Hamiltonian (2.2) and replace into (3.2) to obtain

pk+1 = e��hpk � hrf(xk), xk+1 = xk + h
mpk+1, (4.1)

where we now make the iteration number k = 0, 1, . . . explicit for convenience of the reader
in relating to optimization methods. Introducing a change of variables,

vk ⌘
h

m
pk, ✏ ⌘ h2

m
, µ ⌘ e��h, (4.2)

we see that (4.1) is precisely the well-known CM method (1.1). Therefore, CM is nothing
but a dissipative version of the symplectic Euler method. Thanks to Theorems 3.3 and 3.4
we have:

Corollary 4.1 (CM is “symplectic”). The classical momentum or heavy ball method (1.1)
is a conformal symplectic integrator for the Hamiltonian system (2.2). Moreover, it is an
integrator of order r = 1.

Consider again the Hamiltonian (2.2) but replaced into (3.3). Let us also replace the last
update (3.3d), i.e. from a previous iteration, into the first update (3.3a).5 We thus obtain

xk+1/2 = xk +
h

2m
e��hpk, pk+1 = e��hpk � hrf(xk+1/2), xk+1 = xk+1/2 +

h

2m
pk+1. (4.3)

Define

vk ⌘
h

2m
pk, ✏ ⌘ h2

2m
, µ ⌘ e��h. (4.4)

Then (4.3) can be written as

xk+1/2 = xk + µvk, vk+1 = µvk � ✏rf(xk+1/2), xk+1 = xk+1/2 + vk+1. (4.5)

The reader can immediately recognize the close similarity with NAG (1.2); this would be
exactly NAG if we replace xk+1/2 ! xk in the third update above. As we will show next, this
small di↵erence has actually profound consequences. Intuitively, by “rolling this last update
backwards” one introduces a spurious friction into the method, as we will show through a
symplectic perspective (Theorem 4.2 below). The method (4.3) is actually a second order
accurate version of (4.1). In order to analyze the symplectic structure one must work on the
phase space (x, p). The true phase space equivalent to NAG is given by

xk+1/2 = xk +
h

m
e��hpk, (4.6a)

pk+1 = e��hpk � hrf(xk+1/2), (4.6b)

xk+1 = xk +
h

m
pk+1, (4.6c)

which is completely equivalent to (1.2) under the correspondence (4.2).

5Note that it is valid to replace successive updates without changing the algorithm.
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Theorem 4.2 (NAG is not “symplectic”). Nesterov’s accelerated gradient (1.2), or equiva-
lently (4.6), is an integrator of order r = 1 to the Hamiltonian system (2.2). This method is
not conformal symplectic but rather contracts the symplectic form as

!k+1 = e��h


I � h2

m
r2f(xk)

�
!k + O(h3). (4.7)

Proof. We work on phase space variables (x, p) thus NAG should be considered in the form
(4.6). First we derive the order of accuracy of this method with respect to its underlying
Hamiltonian system:

ẋ =
p

m
, ṗ = �rf(x)� �p. (4.8)

Denote x = x(tk) and p = p(tk) and expand the exponential in (4.6a) to obtain xk+1/2 =

x + h
mp � h2

m �p + O(h3). Using this and Taylor expansions in the last two updates of (4.6)
yield

pk+1 = p� h�p� hrf(x) +
h2

2
�2p� h2

m
r2f(x)pk + O(h3), (4.9a)

xk+1 = x +
h

m
p� h2

m
�p� h2

m
rf(x) + O(h3), (4.9b)

where it is implicit that rf and r2f are computed at (x, p). From (4.8) we readily have

p(tk + h) = p� hrf � h�p� h2

2m
r2fp +

h2

2
�r2fp +

h2

2
�rf +

h2

2
�2p + O(h3), (4.10a)

x(tk + h) = x +
h

m
p� h2

2m
�p + O(h3). (4.10b)

Hence, by comparison with (4.9) we conclude that xk+1 = x(tk + h) + O(h2) and pk+1 =
p(tk + h) + O(h2), which according to Definition 3.1 means that NAG is an integrator of
order r = 1.

Second, we investigate how NAG deforms the symplectic structure. Consider the varia-
tional form of (4.6) (the notation is standard [30]):

dxk+1/2 = dxk +
h

m
e��hdpk, (4.11a)

dpk+1 = e��hdpk � hr2f(xk+1/2)dxk+1/2, (4.11b)

dxk+1 = dxk +
h

m
dpk+1. (4.11c)

Using these, bilinearity and the antisymmety of the wedge product, together the fact that
r2f is symmetric, we obtain

dxk+1 ^ dpk+1 = dxk ^ dpk+1

= e��hdxk ^ dpk � hdxk ^r2f
�
xk+1/2)dxk+1/2

= e��hdxk ^ dpk �
h2

m
e��hdxk ^r2f(xk+1/2)dpk

= e��hdxk ^ dpk �
h2

m
e��hdxk ^r2f(xk)dpk + O(h3),

(4.12)
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where in the last passage we used a Taylor approximation for xk+1/2. Thus, dxk+1 ^ dpk+1 6=
e��hdxk ^ dpk, showing that the method is not conformal symplectic (see Definition 3.2).
Moreover, using the symmetry of r2f we can write (4.12) as (4.7).

While CM exactly preserve the same dissipation found in the underlying continuous-
time system, NAG introduces some extra contraction or expansion of the symplectic form,
depending whether r2f is positive definite or not. From (4.7), in k iterations of NAG, and
neglecting the O(h3) error term, we have

!k ⇡ e��tk

kY

i=1


I � h2

m
r2f(xk�i)

�
!0

⇡ e��tk


I � h2

m

�
r2f(xk�1)�r2f(xk�2)� · · ·�r2f(x0)

��
!0.

(4.13)

This depends on the entire history of the Hessians from the initial point. Therefore, NAG
contracts the symplectic form slightly more than the underlying conformal Hamiltonian
system—assuming r2f is positive definite—and it does so in a way that depends on the
Hessian of the objective function. Note that this is a small e↵ect of O(h2). Moreover, if
r2f has negative eigenvalues, e.g. f is nonconvex and has saddle points, then NAG actually
introduces some spurious excitation in that direction. To gain some intuition, consider the
simple case of a quadratic function:6

f(x) = (�/2)x2 (4.14)

for some constant �. Thus (4.7) becomes

!k+1 ⇡ e��h+log(1�h2�/m)!k ⇡ e�(�+h�/m)h!k =) !k ⇡ e�(�+h�/m)tk!0. (4.15)

This suggests that, e↵ectively, the original damping of the system is being replaced by
� ! � + h�/m. Thus, if � > 0 there is some spurious damping, whereas if � < 0 there
is some spurious excitation. We will confirm this conclusion from another perspective in
Section 4.3 below.

4.1 Alternative form

It is perhaps more common to find Nesterov’s method in the following form [2]:

xk+1 = yk � ✏rf(yk), yk+1 = xk+1 + µk+1(xk+1 � xk), (4.16)

where µk+1 = k/(k + 3). This is equivalent to (1.2), as can be seen by introducing the
variable vk ⌘ xk � xk�1 and writing the updates in terms of x and v. When µk is constant,
Theorem 4.2 shows that the method is not conformal symplectic. When µk = k/(k + 3),
the di↵erential equation associated to (4.16) is equivalent to (2.1)/(2.2) with � = 3/t. It is
possible to generalize the above results for time dependent cases [18]. Therefore, also in this
case, NAG does not preserve the symplectic structure; we note that (4.7) still holds with
e��h ! e�3 log(1+h/tk) where tk = hk.

6This quadratic function is actually enough to capture the behaviour when close to a critical point x
?

since f(x) ⇡ f(x?)+ 1
2r

2
f(x?)x and one can work on rotated coordinates where r2

f(x?) = diag(�1, . . . ,�n).
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4.2 Preserving stability and continuous-time rates

An important question is whether being “symplectic” is beneficial or not for optimization.
Very recently, it has been shown [18] that symplectic discretizations of dissipative systems
may indeed preserve continuous-time rates of convergence when f is smooth and the sys-
tem is appropriately dampened (choice of �); the continuous-time rates can be obtained via
Lyapunov analysis. Thus, assuming that we have a suitable conformal Hamiltonian sys-
tem, conformal symplectic integrators such as the general method (3.3), provide a principled
approach to construct optimization algorithms that are guaranteed to respect the main prop-
erties of the system, such as stability of critical points and convergence rates. Furthermore,
we claim that there is a delicate tradeo↵ where being conformal symplectic is related to an
improved stability, in the sense that the method can operate with larger step sizes, while
the spurious dissipation introduced by NAG (Theorem 4.2) may improve the convergence
rate slightly, since it introduces more contraction, but at the cost of making the method
less stable; we show these details in Section 6. Next, we also provide important additional
insights into CM and NAG, such as their modified or perturbed equations and their shadow
Hamiltonians, which describe these methods to a higher degree of resolution.

4.3 Shadow dynamical systems for Nesterov and heavy ball

We have shown above that both CM and NAG are a first order integrators to the conformal
Hamiltonian system (4.8), however NAG changes slightly the behaviour of the original system
since it introduces spurious damping or excitation. To understand its behaviour more closely,
one can ask the following question: for which continuous-time dynamical system NAG turns
out to be a second order integrator? In other words, we can look for a modified system that
captures the behaviour of NAG more closely, up to O(h3). Every numerical method is known
to have a modified or perturbed di↵erential equation [30] (the brief discussion in [18] may
also be useful). In answering this question, we thus find the following.

Theorem 4.3 (Shadow dynamical system for Nesterov’s method). NAG (1.2), or its equiv-
alent phase space representation (4.6), is a second order integrator to the following modified
or perturbed equations:

ẋ =
1

m
p� �h

2m
p� h

2m
rf(x), ṗ = �rf(x)� �p� h�

2
rf � h

2m
r2f(x)p. (4.17)

Proof. We look for vector fields F (q, p; h) and G(q, p; h) for the modified system

ẋ =
p

m
+ hF, ṗ = �rf(x)� �p + hG, (4.18)

such that (4.6) is an integrator of order r = 2. This can be done by computing [30]

F = lim
h!0

xk+1 � x(tk + h)

h2
, G = lim

h!0

pk+1 � p(tk + h)

h2
. (4.19)
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From (4.9) and (4.10) we obtain precisely (4.17). By the previously discussed approach
through Taylor expansions one can also readily check that NAG is indeed an integrator of
order r = 2 to this perturbed system.

Note that we can combine (4.17) into a second order di↵erential equation:

mẍ + m

✓
�I +

h

m
r2f(x)

◆
ẋ = �

✓
I +

h�

2
I � h2�2

4
I +

h2

4m
r2f(x)

◆
rf(x), (4.20)

where I denotes the n ⇥ n identity matrix. We see that this equation has several new
ingredients compared to

ẍ + �ẋ = �(1/m)rf(x), (4.21)

which is equivalent to (4.8). First, when h ! 0 the system (4.20) recovers (4.21), as it
should since both must agree to leading order. Second, the spurious change in the damping
coe�cient reflects the behaviour of the symplectic form (4.7) (see also (4.15)). Third, we see
that the gradient rf is rescaled by the contribution of several terms, including the Hessian
r2f , making explicit a curvature dependent behaviour, which also appears in the damping
coe�cient. Note that the modified equation (4.20), or equivalently (4.17), depends on the
step size h, hence it captures an intrinsic behaviour of the discrete-time algorithm that is
not captured by (4.8).

Since CM is also a first order integrator to (4.8), which is actually conformal symplectic,
it is natural to consider its modified equation and compare with the one for NAG (4.17).
We thus obtain the following.

Theorem 4.4 (Shadow Hamiltonian for heavy ball). The heavy ball or CM method (1.1),
equivalently written in the phase space as (4.1), is a second order integrator to the following
modified conformal Hamiltonian system:

ẋ =
1

m
p� h�

2m
p� h

2m
rf(x), ṗ = �rf(x)� �p� h�

2
rf(x) +

h

2m
r2f(x)p. (4.22)

Such a system admits the shadow Hamiltonian

H̃ =
1

2m
kpk2 + f(x)� h�

4m
kpk2 � h

2m
hrf(x), pi+ h�

2
f. (4.23)

Proof. It follows exactly as in Theorem 4.3. Also, one can readily verify that replacing (4.23)
into (2.1) gives (4.23).

We note the striking similarity between (4.22) and (4.17); the only di↵erence is the sign
of the last term in the second equation. Up to this level of resolution, the di↵erence is that
NAG introduces a spurious damping compared to CM, in agreement with the derivation
of the symplectic form (4.7). On the other hand, notice that the perturbed system (4.22)
for CM is conformal Hamiltonian, contrary to (4.17) that cannot be written in Hamiltonian
form; this is the reason why structure-preserving discretizations tend to be more stable, since
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the perturbed trajectories are always close, i.e. within a bounded error, from the original
Hamiltonian dynamics. We can also combine (4.22) into

mẍ + m�ẋ = �
✓

I +
h�

2
I � h2�2

4
I � h2

4m
r2f(x)

◆
rf(x). (4.24)

Again, this is strikingly similar to (4.20). Note that this equation does not have the spurious
damping term (h/m)r2f(x) as in (4.20), making even more explicit that it preserves exactly
the dissipation of the original continuous-time system. As we will show later, there is a
balance between preserving such a dissipation and the stability of the method. While NAG
introduces an extra damping, and may slightly help in an improved convergence since it
dissipates more energy, this comes at the price in a decreased stability. Before showing this
explicitly in Section 6, we first introduce a new optimization methods based on a relativistic
system.

5 Dissipative relativistic optimization

Let us briefly mention some simple but fundamental concepts to motivate our approach. The
previous algorithms are based on (2.2) which leads to a classical Newtonian system where
time is just a parameter, independent of the Euclidean space where the trajectories live.
This implies that there is no restriction on the speed, kvk = kdx/dtk, that a particle can
attain. This translates to a discrete-time algorithm, such as (4.1), where large gradients rf
give rise to a large momenta p, implying that the position updates for x can diverge. On the
other hand, in special relativity, space and time form a unified geometric entity, the (n + 1)-
dimensional Minkowski spacetime with coordinates X = (ct; x), where c denotes the speed
of light. An infinitesimal distance on this manifold is given by ds2 = �(cdt)2 + kdxk2. Null
geodesics correspond to ds2 = 0, implying kvk2 = kdx/dtk2 = c2, i.e. no particle can travel
faster than c. This imposes constraints on the geometry where trajectories take place—it
is actually a hyperbolic geometry. With that being said, the idea is that by discretizing a
relativistic system we can incorporate these features into an optimization algorithm which
may bring benefits such as an improved stability.

A relativistic particle subject to a potential f is described by the following Hamiltonian:

H(x, p) = c
p
kpk2 + m2c2 + f(x). (5.1)

In the classical limit, kpk ⌧ mc, one obtains H = mc2 + kpk2/(2m) + f(x) + O(1/c2),
recovering (2.2) up to the constant E0 = mc2, which has no e↵ect in deriving the equations
of motion. Replacing (5.1) into (2.1) we thus obtain a dissipative relativistic system:

ẋ =
cpp

kpk2 + m2c2
, ṗ = �rf � �p. (5.2)

Importantly, in (5.2) the momentum is normalized by the
p

· factor, so ẋ remains bounded
even if p was to go unbounded. Now, replacing (5.1) into the first order accurate conformal
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symplectic integrator (3.2), we readily obtain

pk+1 = e��hpk � hrf(qk), xk+1 = xk +
hcpk+1p

kpk+1k2 + m2c2
. (5.3)

When c ! 1 the above updates recover CM (4.1). Thus, this method is a relativistic
generalization of CM or heavy ball. Moreover, the method (5.3) is a first order conformal
symplectic integrator by construction (see Theorems 3.3 and 3.4).

One can replace the Hamiltonian (5.1) into (3.3) to obtain a second order version of (5.3).
However, motivated by the close connection between NAG and (4.3)—recall the comments
following (4.5) about NAG “rolling back” the last update—let us additionally introduce a
convex combination, ↵xk+1/2 +(1�↵)xk where 0  ↵  1, between the initial and midpoint
of the method. In this manner, we can interpolate between a conformal symplectic regime
and a spurious Hessian damping regime (recall Theorem 4.2). Therefore, we obtain the
following integrator:

xk+1/2 = xk + (hc/2)e��h/2pk
.p

e��hkpkk2 + m2c2, (5.4a)

pk+1/2 = e��h/2pk � hrf(xk+1/2), (5.4b)

xk+1 = ↵xk+1/2 + (1� ↵)xk + (hc/2)pk+1/2

.q
kpk+1/2k2 + m2c2, (5.4c)

pk+1 = e��h/2pk+1/2. (5.4d)

We call this method Relativistic Gradient Descent (RGD). By introducing

vk ⌘
h

2m
pk, ✏ ⌘ h2

2m
, µ ⌘ e��h, � ⌘ 4

c2h2
, (5.5)

the updates (5.4) assume the equivalent form stated in Algorithm 1 in the introduction.

RGD (5.4) (resp. Algorithm 1) has several interesting limits, recovering the behaviour of
known algorithms as particular cases. For instance, when c ! 1 (resp. � ! 0) it reduces
to an interpolation between CM (4.1) (resp. (1.1)) and NAG (4.6) (resp. (1.2)). If we
additionally set ↵ = 0 it becomes precisely NAG, whether when ↵ = 1 it becomes a second
order version (in terms of accuracy) of CM.7 When ↵ = 1, and arbitrary c (or �), RGD is
a conformal symplectic integrator thanks to Theorems 3.3. Recall also that Theorem 3.4
implies that RGD is a second order accurate integrator. When ↵ = 0, and arbitrary c (or �),
RGD is no longer conformal symplectic and introduces a Hessian driven damping in the spirit
of NAG. Finally, the parameter c (or �) controls the strength of the normalization term in
the position updates of (5.4) (or Algorithm 1), which can help preventing divergences when
navigating through a rough landscape with large gradients, or fast growing tails. Indeed,
note that kxk+1 � ↵xk+1/2 � (1 � ↵)xkk  1/� is always bounded for � > 0; this becomes
unbounded when � ! 0, i.e. in the classical limit of CM and NAG.

In short, RGD is a novel algorithm with quite some flexibility and unique features,
generalizing perhaps the two most important accelerated gradient based methods in the

7The dynamics of both CM and this second order version is pretty close, and if anything the latter is
even more stable than the former (see Section 6).
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literature, which can be recovered as limiting cases. Next, we illustrate numerically through
simple yet insightful examples that RGD can be more stable and faster than CM and NAG.

6 Tradeo↵ between stability and convergence rate

Here we illustrate an interesting phenomenon: there is a tradeo↵ between stability versus
convergence rate. Intuitively, an improved rate is associated to a higher “contraction,” i.e.
the introduction of spurious dissipation in the numerical method. However, this makes the
method less stable, and ultimately very sensitive to parameter tuning. On the other hand,
a geometric or structure-preserving integrator may have slightly less contraction, since it
preserves the original dissipation of the continuous-time system exactly, but it is more stable
and able to operate with larger step sizes. Furthermore, a structure-preserving method is
guaranteed to reproduce very closely, perhaps even up to a negligible error, the continuous-
time rates of convergence [18]. This indicates that there may have benefits in considering
this class of methods for optimization, such as conformal symplectic integrators that are
being advocated in this paper.

Stability of a numerical integrator means the region of hyperparameters, e.g. values
of the step size, such that the method is able to converge. The larger this region, more
stable is the method. The convergence rate is a measure of how fast the method tends to
the minimum, and this is related to the amount of contraction between subsequent states,
or subsequent values of the objective function. For instance, since NAG introduces some
spurious dissipation—recall (4.7) and (4.20)—we expect that it may have a slightly higher
contraction compared to CM, which exactly preserves the dissipation of the continuous-
time system—recall (4.24). Thus, such a spurious dissipation can induce a slightly improved
convergence rate, but as we will show below, at the cost of making the method more unstable
and thus requiring smaller step sizes.

Let us consider a standard linear stability analysis, which involves a quadratic function
(4.14) such that the previous methods can be treated analytically. Thus, replacing (4.14)
into CM in the form (4.1) it is possible to write the algorithm as a linear system:

zk+1 = TCMzk, TCM =


1� h2�/m (h/m)e��h

�h� e��h

�
, (6.1)

where we denote z =
⇥
x
p

⇤
. Similarly, NAG in the form (4.6) yields

zk+1 = TNAGzk, TNAG =


1� h2�/m (h/m)e��h(1� h2�/m)
�h� e��h(1� h2�/m)

�
, (6.2)

while RGD (5.4), with c!1 and ↵ = 1, yields8

zk+1 = TRGDzk, TRGD =


1� h2�/(2m) h/(2m)e��h/2(2� h2�/(2m))
�h�e��h/2 e��h(1� h2�/(2m))

�
. (6.3)

8The case of finite c is nonlinear and not amenable to such an analysis. However, the case c!1 already
provides useful insights.
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Figure 1: Stability of CM (4.1) (blue), NAG (4.6) (green), and RGD (5.4) with c!1 and ↵ = 1
(black)—in this case it becomes a dissipative version of the Leapfrog to system (4.8). We plot the
eigenvalues in the complex plane; x-axis is the real part, y-axis is the imaginary part. The unit
circle represent the stability region, i.e. once an eigenvalue leaves the gray area the corresponding
method becomes unstable. Both CM and RGD are symplectic thus their eigenvalues always move
on a circle of radius e

��h/2 centered at the origin. NAG has eigenvalues in the smaller circle with
radius 1/(e�h +1) and centered at 1/(e�h +1) on the x-axis; the circle is dislocated from the origin
precisely due to spurious dissipation. From left to right we increase the step size h while keeping �,
m, and � fixed. As h increases the eigenvalues move on the circles in the counterclockwise direction
until they fall on the real line. Eventually they leave the unit circle and the associated method
becomes unstable. Note how CM has higher stability than NAG, and RGD has even higher stability
than CM.

A linear system is stable if the spectral radius of its transition matrix is ⇢(T )  1. We can
compute the eigenvalues of the above matrices and check for which range of parameters they
remain inside the unit circle; e.g. for given �, m, and � we can find the allowed range of
the step size h for which the maximum eigenvalue in absolute value is |�max|  1. Instead of
showing the explicit formulas for these eigenvalues, which can be obtained quite simply but
are cumbersome, let us illustrate what happens graphically.

In Fig. 1, the shaded gray area represents the unit circle. Any eigenvalue that leaves this
area makes the associated algorithm unstable. Here we fix m = � = � = 1 (other choices
are equivalent) and we vary the step size h > 0. These eigenvalues are in general complex
and lie on a circle which is determined by the amount of friction in the system. Note how
for CM and RGD this circle is centered at the origin, with radius

p
µ ⌘ e��h/2, since these

methods are conformal symplectic and exactly preserve the dissipation of the underlying
continuous-time system. However, NAG introduces a spurious damping which is reflected
as the circle being translated from the center, at a distance 1/(e�h + 1), and moreover this
circle has a smaller radius of 1/(e�h + 1) compared to CM and RGD; since this radius is
smaller, NAG may have a faster convergence when these eigenvalues are complex. As we
increase h (left to right in Fig. 1), the eigenvalues move counterclockwise on the circles until
falling on the real line, where one of them goes to the left while the other goes to the right.
Eventually, the leftmost eigenvalue leaves the unit circle for a large enough h (third panel
in Fig. 1). Note that NAG becomes unstable first, followed by CM, and only then by RGD.
The main point is that CM and RGD can still be stable for much larger step sizes compared
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to NAG, and RGD is even more stable than CM as seen in the rightmost plot in Fig. 1;
this is a consequence of RGD being an integrator of order r = 2 whereas CM is of order
r = 1. Hence, even though NAG may have a slightly faster convergence (due to a stronger
contraction), it requires a smaller step sizes and its stability is more sensitive compared to
a conformal symplectic method. On the other hand, both CM and RGD can operate with
larger step sizes, which in practice may even result in a faster solver compared to NAG.

To provide a more quantitative statement, after computing the eigenvalues of the above
transition matrices for given µ ⌘ e��h, m, and �, we find the following threshold for stability:

hCM 
p

m(1 + µ + µ2 + µ3)
�
(µ
p

�), (6.4)

hNAG 
p

m(1 + µ + µ2 + µ3)
�p

µ�(1 + µ + µ2), (6.5)

hRGD 
p

2m(1 + µ + µ2 + µ3)
�p

µ�(1 + µ). (6.6)

We can clearly see that RGD has the largest region for h, followed by CM, then by NAG, in
agreement with the results of Fig. 1.

7 Numerical experiments

Let us compare RGD (Algorithm 1) against NAG (1.2) and CM (1.1) on some test problems.
We stress that all hyperparameters of each of these methods were systematically optimized
through Bayesian optimization [33] (the default implementation uses a Tree of Parzen esti-
mators). This yields optimal and unbiased parameters automatically. Moreover, by checking
the distribution of these hyperparameters during the tuning process we can get intuition on
the sensitivity of each method. Thus, for each algorithm, we show its convergence rate in
Fig. 2 when the best hyperparameters were used. In addition, in Fig. 3 we show the dis-
tribution of hyperparameters during the Bayesian optimization step—the parameters are
indicated and color lines follow Fig. 2. Such values are obtained only when the respective
algorithm was able to converge. We note that usually CM and NAG diverged more often
than RGD which seemed more robust to parameter choice. Below we describe some of the
optimization problems where such algorithms were tested over. In Appendix B we provide
several additional experiments illustrating the benefits of RGD. The actual code related to
our implementation is extremely simple and can be found at [34].

7.1 Correlated quadratic

Consider f(x) = (1/2)xTQx where Qij = ⇢|i�j|, ⇢ = 0.95, and Q has size 50 ⇥ 50—this
function was also used in [14]. We initialize the position at random, x0,i ⇠ N (0, 10), and the
velocity as v0 = 0. The convergence results are shown in Fig. 2a. The distribution of param-
eters during tuning are in Fig. 3a, showing that ↵! 1 is preferable. This gives evidence for
an advantage in being conformal symplectic. Note also that � > 0, thus “relativistic e↵ects”
played a role in improving convergence.
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Figure 2: Convergence rate showing improved performance of RGD (Algorithm 1); see text.
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Figure 3: Histograms of hyperparameter tuning by Bayesian optimization. Tendency towards
↵ ⇡ 1 indicates benefits of being symplectic, while ↵ ⇡ 0 of being extra damped as in NAG.
Tendency towards � > 0 indicates benefits of relativistic normalization. (Colors follow Fig. 2.)

7.2 Random quadratic

Consider f(q) = (1/2)xTQx where Q is a 500 ⇥ 500 positive definite random matrix with
eigenvalues uniformly distributed in [10�3, 10]. Convergence rates are in Fig. 2b with the
histograms of parameter search in Fig. 3b. Again, there is a preference towards ↵ ! 1,
evidencing benefits in being conformal symplectic.

7.3 Rosenbrock

For a challenging problem in higher dimensions, consider the nonconvex Rosenbrock function
f(x) ⌘

Pn�1
i=1

�
100(xi+1�x2

i )
2+(1�xi)2

�
with n = 100 [35,36]; this case was already studied

in detail [37]. Its landscape is quite involved, e.g. there are two minimizers, one global at
x? = (1, . . . , 1)T with f(x?) = 0 and one local near x ⇡ (�1, 1, . . . , 1)T with f ⇡ 3.99. There
are also—exponentially—many saddle points [37], however only two of these are actually
hard to escape. These four stationary points account for 99.9% of the solutions found
by Newton’s method [37]. We note that both minimizers lie on a flat, deep, and narrow
valley, making optimization challenging. In Fig. 2c we have the convergence of each method
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initialized at x0,i = ±2 for i odd/even. Fig. 3c shows histograms for parameter selection.
Again, we see the favorable symplectic tendency, ↵ ! 1. Here relativistic e↵ects, � 6= 0,
played a predominant role in the improved convergence of RGD.

7.4 Matrix completion

Consider an n⇥ n matrix M of rank r ⌧ n with observed entries in the support (i, j) 2 ⌦,
where P⌦(M)ij = Mij if (i, j) 2 ⌦ and P⌦(M)ij = 0 projects onto this support. The goal
is to recover M from the knowledge of P⌦(M). We assume that the rank r is known. In
this case, if the number of observed entries is O(rn) it is possible to recover M with high
probability [38]. We do this by solving the nonconvex problem minU,V kP⌦(M � UV T )k2F ,
where U, V 2 Rn⇥r, by alternating minimization: for each iteration we apply the previous
algorithms first on U with V held fixed, followed by similar updates for V with the new U
fixed. This is a know technique for gradient descent (GD), which we additionally include as
a baseline. We generate M = RST where R, S 2 Rn⇥ r have iid entries from the normal
distribution N (1, 2). We initialize U and V sampled from the standard normal. The support
is chosen uniformly at random with sampling ratio s = 0.3, yielding p = sn2 observed entries.
We set n = 100 and r = 5. This gives a number of e↵ective degrees of freedom d = r(2n� r)
and the “hardness” of the problem can be quantified via d/p ⇡ 0.325. Fig. 2d shows the
convergence rate, and Fig. 3d the parameter search.

8 Discussion and outlook

This paper introduces a new perspective on a recent line of research connecting accelerated
optimization methods to continuous-time dynamical systems that have been playing a major
role in machine learning. We brought conformal symplectic techniques for dissipative sys-
tems into this context, besides proposing a new method called Relativistic Gradient Descent
(RGD), based on a dissipative relativistic system; see Algorithm 1. RGD generalizes both
the classical momentum (CM) or heavy ball method—given by (1.1)—as well as Nesterov’s
accelerated gradient (NAG)—given by (1.2); each of these methods are recovered as par-
ticular cases from RGD which has no additional computational cost compared to CM and
NAG. Moreover, RGD has more flexibility, can interpolate between a conformal symplec-
tic behaviour or introduce some Hessian dependent damping in the spirit of NAG, and has
potential to control instabilities due to large gradients by normalizing the momentum. In
our experiments, RGD significantly outperformed CM and NAG, specially in settings with
large gradients or functions with a fast growth; besides Section 7 we report several additional
examples in Appendix B.

We also elucidated what is the symplectic structure behind CM and NAG. We found
that the former turns out to be a conformal symplectic integrator (Corollary 4.1), thus being
“dissipative-preserving,” while the latter introduces a spurious contraction of the symplectic
form by a Hessian driven damping (Theorem 4.2). This is an e↵ect of second order in the step
size but may a↵ect convergence and stability. We pointed out a tradeo↵ between this extra
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contraction and the stability of a conformal symplectic method. We also derived modified
or perturbed equations for CM and NAG, describing these methods to a higher degree of
resolution; this analysis provides several new insights into these methods and may form
the basis for exploring these algorithms using di↵erent techniques compared to standard
approaches in pure optimization.

On a higher level, this paper shows how structure-preserving discretizations of classical
dissipative systems can be useful for studying existing optimization algorithms, as well as
introduce new methods inspired by real physical systems. A thorough justification for the
use of structure-preserving—or “dissipative symplectic”—discretizations in this context was
recently provided in [18] under great generality.

Finally, a more refined analysis of RGD is certainly an interesting future problem, though
considerably challenging due to the nonlinearity introduced by the

p
1 + �kvk2 term in the

updates of Algorithm 1. To give an example, even if one assumes a simple quadratic function
f(x) = (�/2)x2, the di↵erential equation (5.2) is nonlinear and does not admit a closed form
solution, contrary to the di↵erential equation associated to CM and NAG which is linear
and can be readily integrated. Thus, even in continuous-time, the analysis for RGD is likely
to be involved. Finally, it would be interesting to consider RGD in a stochastic setting,
namely investigate its di↵usive properties in a random media, which may bring benefits to
nonconvex optimization and sampling.
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A Order of accuracy of the general integrators

It is known that a composition of the type  A
h � B

h , where A and B represents the components
of distinct vector fields, leads to an integrator of order r = 1, whereas a composition in the
form  A

h/2 �  B
h �  A

h/2 leads to an integrator of order r = 2 [30]—the latter is known as
Strang splitting. However, here we provide an explicit and direct proof of these facts for the
generic integrators (3.2) and (3.3), respectively.

Proof of Theorem 3.4. From the equations of motion (2.1) and Taylor expansions:

x(tk + h) = x + hẋ +
h2

2
ẍ + O(h3)

= x + hrpH +
h2

2

�
r2

xpHẋ +r2
ppHṗ

�
+ O(h3)

= x + hrpH +
h2

2
r2

xpHrpH �
h2

2
r2

xprxH �
h2

2
�r2

ppHp + O(h3),

(A.1)
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and

p(tk + h) = p + hṗ +
h2

2
p̈ + O(h3)

= p� hrxH � h�p +
h2

2

�
�r2

xxHẋ�r2
xpHṗ� �ṗ

�
+ O(h3)

= p� hrxH � h�p� h2

2
r2

xxHrpH +
h2

2
r2

xpHrxH +
h2

2
�r2

xxHp

+
h2

2
�rxH +

h2

2
�2p + O(h3),

(A.2)

where we denote x ⌘ x(tk) and p ⌘ p(tk) for tk = kh (k = 0, 1, . . . ), and it is implicit that
all gradients and Hessians of H are being computed at (x, p).

Consider (3.2). Under one step of this map, starting from the point (x, p), upon using
Taylor expansions we have

xk+1 = x + hrpH + O(h2) (A.3)

and
pk+1 = e��hp� hrxH + O(h2) = p� �hp� hrxH(x, p) + O(h2). (A.4)

Comparing these last two equations with (A.1) and (A.2) we conclude that

xk+1 = x(tk + h) + O(h2), pk+1 = p(tk + h) + O(h2). (A.5)

Therefore, the discrete state approximates the continuum state up to an error of O(h2),
obeying Definition 3.1 with r = 1.

The same approach is applicable to the numerical map (3.3). Expanding the first update:

X̃ = x +
h

2
rpH

�
x + (h/2)rpH, p� (h/2)�p

�
+ O(h3),

= x +
h

2
rpH +

h2

4
r2

xpHrpH �
h2

4
�r2

ppHp + O(h3).

(A.6)

Expanding the second update:

P̃ = e��h/2p� h

2
rxH

�
x + (h/2)rpH, p� (h/2)�p

�

� h

2
rxH

�
x + (h/2)rpH, p� (h/2)�p� hrxH

�
+ O(h3),

= e��h/2p� hrxH �
h2

2
r2

xxHrpH +
h2

2
�r2

xpHp +
h2

2
r2

xpHrxH + O(h3).

(A.7)

Making use of (A.6) and (A.7) we thus find:

X = X̃ +
h

2
rpH(X̃, P̃ )

= x +
h

2
rpH +

h2

4
r2

xpHrpH �
h2

4
�r2

ppHp

+
h

2
rH

�
x + (h/2)rpH, p� (h/2)�p� hrxH

�
+ O(h3)

= x + hrpH +
h2

2
r2

xpHrpH �
h2

2
�r2

ppHp� h2

2
r2

ppHrxH + O(h3).

(A.8)
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Comparing with (A.1) we conclude that

xk+1 = x(tk + h) + O(h3). (A.9)

Finally, from (A.7) we have

P = e��h/2P̃

= e�hp� e��h/2
n

hrxH +
h2

2
r2

xxHrpH +
h2

2
�r2

xpHp� h2

2
r2

xpHrxH
o

+ O(h3)

= p� �hp +
h2

2
�2p� hrxH �

h2

2
r2

xxHrpH +
h2

2
�r2

xpHp

+
h2

2
r2

xpHrxH +
h2

2
�rxH + O(h3).

(A.10)

Comparing this with (A.2) implies

pk+1 = p(tk + h) + O(h3). (A.11)

Therefore, in this case we satisfy Definition 3.1 with r = 2.

From the above general results it is immediate that:

• CM (1.1)—or equivalently (4.1) which is more appropriate to make connections with
the continuous-time system—is a first order integrator to the conformal Hamiltonian
system (2.1) with the classical Hamiltonian (2.2); the equations of motion are explicitly
given by (4.8).

• The relativistic extension of CM given by (5.3) is a first order integrator to the con-
formal relativistic Hamiltonian system (5.2).

• RGD (5.4) with ↵ = 1—also equivalently written as Algorithm. 1—is a second order
integrator to system (5.2).

B Additional numerical experiments

Here we compare RGD (Algorithm 1) with CM (1.1) and NAG (1.2) on several additional
test functions; for details on these functions see e.g. [39] and references therein. We follow
the procedure already described in Section 7 where we optimized the hyperparameters of
these algorithm using Bayesian optimization.9 We report the convergence rate using the
best parameters found together with histograms of the parameter search. In all cases we
initialize the velocity as v0 = 0. The initial position x0 was chosen inside the range where
the corresponding test function is usually considered.

9We provide the actual code used in our numerical simulations in [34].

21



First we consider functions with a quadratic growth. These results are shown in Figs. 4–7.
In this case RGD performed similarly to CM and NAG, although with some improvement.
In any case RGD proved to be more stable, i.e. it worked well for a wider range of hyperpa-
rameters.

We expect that RGD stands out on settings with large gradients or objective functions
with fast growing tails. Therefore, in the remaining figures, i.e. Fig. 8–15, we consider more
challenging optimization problems with functions that grow stronger than a quadratic. For
some of these problems the minimum lies on a flat valley, making it hard for an algorithm to
stop around the minimum after gaining a lot of speed from a very steep descent direction.
Note that in all these cases the improvement of RGD over CM and NAG is significant, and
the parameter �—which controls relativistic e↵ects—had an important role. The conformal
symplecticity, which is indicated by the tendency ↵ ! 1, also brings an improved stability
in the discretization. These results provide compelling evidence for the benefits of RGD.
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Figure 4: Booth function: f(x, y) ⌘ (x+ 2y� 7)2 + (2x+ y� 5)2. Global minimum at f(1, 3) = 0.
We initialize at x0 = (10, 10). This function is usually evaluated on the region �10  x, y  10.
All methods perform well on this problem which is not challenging.
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Figure 5: Matyas function: f(x, y) ⌘ 0.26(x2 + y
2) � 0.48xy. Global minimum is at f(0, 0) = 0.

We initialize at x0 = (10,�7). This function is usually evaluated on the region �10  x, y  10.
Even though the function has a—not so strong—quadratic growth, we see a slight improvement of
RGD; note � > 0. Note also the “symplectic tendency” ↵! 1.

22



0 100 200 300 400

k

10�18

10�14

10�10

10�6

10�2

102

f
(x

)
�

f
�

CM

NAG

RGD
0.000 0.005 0.010
0

250

500

✏

0.8 0.9
0

10

20

µ

0 5 10
0.0

0.1

�

0.0 0.5 1.0
0

1

2
↵

Figure 6: Lévi function #13 : f(x, y) ⌘ sin2 3⇡x + (x� 1)2(1 + sin2 3⇡y) + (y � 1)2(1 + sin2 2⇡y).
It is multimodal with the global minimum at f(1, 1) = 0. We initialize at x0 = (10,�10). This
function is usually studied on the region �10  x, y  10. Although this function is nonconvex, the
optimization problem is not very challenging. However, we noticed that CM and NAG got stuck
on a local minimum more often than RGD when running this example multiple times.
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Figure 7: Sum of squares : f(x) ⌘
Pn

i=1 ix
2
i . The minimum is at f(0) = 0. We consider n = 100

dimensions and initialize at x0 = (10, . . . , 10). The usual region of study is �10  xi  10. Note
that there is a clear tendency towards ↵! 1 in this case, i.e. in being conformal symplectic.
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Figure 8: Beale function: f(x, y) ⌘ (1.5� x + xy)2 + (2.25� x + xy
2)2 + (2.625� x + xy

3)2. The
global minimum is at f(3, 1/2) = 0, lying on a flat and narrow valley which makes optimization
challenging. Note also that this functions grows stronger than a quadratic. This function is usually
considered on the region �4.5  x, y  4.5. We initialize at x0 = (�3,�3). Note how CM and
NAG were unable to minimize the function, while RGD was able to find the global minimum to
high accuracy; � � 0 played a predominant role, indicating benefits from “relativistic e↵ects.”
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Figure 9: Chung-Reynolds function: f(x) ⌘
�Pn

i=1 x
2
i

�2
. The global minimum is at f(0) = 0. This

function is usually considered on the region �100  xi  100. We consider n = 50 dimensions and
initialize at x0 = (50, . . . , 50). Note that RGD was able to improve convergence by controlling the
kinetic energy with � > 0. We also see the benefits of being conformal symplectic, i.e. ↵! 1.
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Figure 10: Quartic function: f(x) ⌘
Pn

i=1 ix
4
i . The global minimum is at f(0) = 0. This function

is usually considered over �1.28  xi  1.28. We choose n = 50 dimensions and initialize at
x0 = (2, . . . , 2).
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Figure 11: Schwefel function: f(x) ⌘
Pn

i=1 x
10
i . The minimum is at f(0) = 0. The function is

usually considered over �10  xi  10. This function grows even stronger than the previous two
cases. We consider n = 20 dimensions and initialize at x0 = (2, . . . , 2). Note that � > 0 is essential
to control the kinetic energy and improve convergence.
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Figure 12: Qing function: f(x) ⌘
Pn

i=1(x
2
i � i)2. This function is multimodal, with minimum at

x
?
i = ±

p
i, f(x?) = 0. The function is usually studied in the region �500  xi  500. We consider

n = 100 dimensions with initialization at x0 = (50, . . . , 50).
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Figure 13: Zakharov function: f(x) ⌘
Pn

i=1 x
2
i +

�
1
2

Pn
i=1 ixi

�2
+

�
1
2

Pn
i=1 ixi

�4
. The minimum is

at f(0) = 0. The region of interest is usually �5  xi  10. We consider n = 5 and initialize at
x0 = (1, . . . , 1). Note that � > 0 played a dominant role here, and ↵! 1 as well. RGD successfully
minimized this function to high accuracy, contrary to CM and NAG that were unable to get even
close to the minimum.
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Figure 14: Three-hump camel back function: f(x, y) ⌘ 2x2 � 1.05x4 + x
6
/6 + xy + y

2. This is
a multimodal function with global minimum is at f(0, 0) = 0. The region of interest is usually
�5  x, y  5. We initialize at x0 = (5, 5). The two local minima are somewhat close to the global
minimum which makes optimization challenging. Only RGD was able to minimize the function.

25



0.0 0.5 1.0 1.5 2.0

k ⇥103

10�23

10�18

10�13

10�8

10�3

102

107

f
(x

)
�

f
�

CM

NAG

RGD

0.000 0.005 0.010
0

200

✏

0.8 1.0
0

5

10

µ

0 20 40
0.000

0.025

0.050

�

0.0 0.5 1.0
0

2

↵

Figure 15: Rosenbrock function: f(x) ⌘
Pn�1

i�1

�
100(xi+1 � x

2
i )

2 + (xi � 1)2
�
. The global minimum

is at f(1, . . . , 1) = 0. More details about this function was described in Section 7. Here we consider
n = 1000 dimensions and initialize at x0 = (2.048, . . . , 2.048). This function is usually studied in
the region �2.048  xi  2.048. Note that � > 0 was important for the improved convergence.
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