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Abstract

Let {u(t , x)}t>0,x2R denote the solution to the parabolic Anderson model with initial condi-
tion �0 and driven by space-time white noise on R+⇥R, and let pt(x) := (2⇡t)�1/2 exp{�x

2
/(2t)}

denote the standard Gaussian heat kernel on the line. We use a non-trivial adaptation of the
methods in our companion papers [6,7] in order to prove that the random field x 7! u(t , x)/pt(x)
is ergodic for every t > 0. And we establish an associated quantitative central limit theorem
following the approach based on the Malliavin-Stein method introduced in Huang, Nualart, and
Viitasaari [11].
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1 Introduction

Consider the parabolic Anderson model,

@tu(t , x) =
1
2@

2
xu(t , x) + u(t , x)⌘(t , x), t > 0, x 2 R, (1.1)

with delta initial condition u(0) = �0, where ⌘ denotes space-time white noise on R+⇥R. Following
Walsh [18], we interpret the stochastic PDE (1.1) in the following mild form:

u(t , x) = pt(x) +

ˆ
(0,t)⇥R

pt�s(x� y)u(s , y) ⌘(ds dy), (1.2)

where

pt(x) =
1

p
2⇡t

e�x2/(2t) for all t > 0 and x 2 R.
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Consider the following renormalization of the solution to (1.1):

U(t , x) :=
u(t , x)

pt(x)
for all t > 0 and x 2 R. (1.3)

It is not too hard to prove that limt#0 U(t , x) = 1 in L
k(⌦) for all x 2 R and k � 2; see Lemma

A.4 below. Therefore, we also define

U(0 , x) := 1 for all x 2 R,

throughout.
Amir, Corwin, and Quastel [1, Proposition 1.4] have shown that the process U(t) := {U(t , x)}x2R

is stationary for every t > 0. The formulation (1.2) of the stochastic PDE (1.1) can be recast equiv-
alently in terms of U as follows:

U(t , x) = 1 +

ˆ
(0,t)⇥R

pt�s(x� y)ps(y)

pt(x)
U(s , y) ⌘(ds dy).

Because
pt�s(a)ps(b)

pt(a+ b)
= ps(t�s)/t

⇣
b�

s

t
(a+ b)

⌘
for all 0 < s < t and a, b 2 R, 1 (1.4)

equation (1.2) can be recast as the following random evolution equation for U :

U(t , x) = 1 +

ˆ
(0,t)⇥R

U(s , y)ps(t�s)/t

⇣
y �

s

t
x

⌘
⌘(ds dy). (1.5)

The purpose of this paper is to study asymptotic properties of the stationary process U(t),
equivalently u(t)/pt. The main results are stated as the following three theorems.

Theorem 1.1. The process U(t) is weakly mixing, hence also ergodic, for every t > 0.

It follows immediately from (1.5) that E[U(t , x)] = 1. Therefore, Theorem 1.1 and the ergodic
theorem together imply that for all t � 0,

lim
N!1

1

N

ˆ N

0
U(t , x) dx = 1 a.s. and in L

1(⌦). (1.6)

In fact, Lemma 2.4 below implies that (1.6) holds in L
k(⌦) for every k � 1.

The next two theorems describe the rate of convergence in the ergodic theorem (1.6). In order
to state those theorems, let us introduce

SN,t :=
1

N

ˆ N

0
[U(t , x)� 1] dx for all N > 0 and t � 0. (1.7)

Then we have the following quantitative central limit theorem.

Theorem 1.2. For every t > 0 there exists a real number c = c(t) > 0 and N0 = N0(t) > e such

that for all N � N0,

dTV

 
SN,tp

Var(SN,t)
, N(0 , 1)

!
 c

r
logN

N
, (1.8)

where dTV denotes the total variation distance, and N(µ ,�
2) denotes the normal law with mean

µ 2 R and variance �
2
> 0.

1In fact, both sides of (1.4) represent the probability density of Xs at b where X denotes a Brownian bridge that
emenates from zero and is conditioned to reach a+ b at time t.
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Theorem 1.2 tacitly implies also that Var(SN,t) > 0 for all N large. As part of the proof of
Theorem 1.2, we in fact prove in Proposition 4.1 below that

Var(SN,t) ⇠
2t logN

N
as N ! 1. (1.9)

Therefore, Theorem 1.2 implies that, for all t > 0,

s
N

logN
SN,t

d
�! N(0 , 2t) as N ! 1. (1.10)

where “
d
�!” denotes convergence in distribution. Since the limiting variance 2t is a linear function

of t, the above suggests the existence of a functional CLT with a Brownian limit. This is confirmed
by the next result of this section.

Theorem 1.3. Choose and fix a real number T > 0. Then, as N ! 1,

s
N

logN
SN,•

C[0,T ]
����!

p

2B, (1.11)

where B denotes a standard one-dimensional Brownian motion, and “
C[0,T ]
����!” denotes weak con-

vergence in the Banach space C[0 , T ] of all continuous, real-valued functions on [0 , T ], endowed
with the uniform topology.

Theorem 1.2 indicates the convergence in total variation distance of the one-dimensional laws.
It seems conceivable that one can obtain the convergence in total variation distance of the finite-
dimensional distributions. Moreover, one might wonder if the weak convergence to Brownian motion
in Theorem 1.3 can be replaced by convergence in total variation. We leave this question as an
open problem for the interested readers.

Open problem: Does the process {

p
N/ logN SN,t}t2[0,T ] converge to {

p
2Bt}t2[0,T ] in total

variation, as N ! 1, for any T > 0?

Now let us compare our work with the existing ones to show the di�culties and hence the
contributions of the current paper. First, regarding Theorem 1.1, in Chen et al [6], we used
Poincaré-type inequalities and Malliavin calculus in order to establish the spatial ergodicity for
a large class of parabolic stochastic PDEs that include the parabolic Anderson model with flat

initial condition u(0) ⌘ 1. Broadly speaking, the method in [6] is also employed here in order to
prove Theorem 1.1. However, because the initial profile of (1.1) is the singular measure �0, novel
technical issues arise. Chief among them is the fact that the Malliavin derivative of the solution
to (1.1) behaves radically di↵erently from the case with constant initial data. This can be seen
by comparing our Lemma 2.1 with Theorem 6.4 of [6]. As a result, the Poincaré-type inequality
[see (2.1)] yields a (logN/N)-decay rate, which is bigger than the 1/N -rate obtained in the flat
case [6], and the asymptotic variance (1.9) is likewise di↵erent from the case of flat initial data.
The Poincaré-type inequality (2.1) is based on the Clark-Ocone formula, and the latter plays an
import role not only in this context, but in fact throughout the paper.

Secondly, for Theorem 1.2, such total variation estimates for spatial averages of solutions to
parabolic stochastic PDEs were introduced by Huang, Nualart, and Viitasaari [11] for the one-
dimensional stochastic heat equation driven by a space-time white noise, and later extended in
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Huang, Nualart, Viitasaari, and Zheng [12] to the multidimensional stochastic heat equation driven
by a noise whose spatially homogeneous covariance is a suitable Riesz kernel. The main ingredient
in deriving such estimates is the Malliavin-Stein approach (see Nourdin and Peccati [13,14]) which
provides a convergence rate, in total variation distance, using a combination of Malliavin calculus
and Stein’s method for normal approximations. But unlike the case considered in Huang et al [11],
where the initial condition was u(0) ⌘ 1, in our setting the solution to (1.1) with delta initial
condition is scaled by the heat kernel, and this produces asymptotic variance for spatial averages
of order log(N)/N ; see (1.9). As a consequence, we need to normalize the average in (1.10) by
the unconventional rate

p
N/ logN . Moreover, the

p
logN/N -rate of convergence of the total

variation distance in Theorem 1.2 is a natural one, which is of the same order as
p
Var(SN,t) as

N ! 1 (see (1.9)). Such a relation also holds in the context of Malliavin-Stein approach to central
limit theorems for other types of SPDEs; see [9, 11, 12, 17]. Furthermore, the presence of these
unexpected logarithmic factors is new in the literature, which shows the slow decorrelation of the
random field U(t), and can be attributed to the singularity of the delta initial condition.

Lastly, the functional central limit theorem stated in Theorem 1.3 is the counterpart in our
framework of Theorem 1.2 in [11]. The convergence in law of finite-dimensional distributions is
obtained using the Malliavin-Stein approach as in the proof of Theorem 1.2 in [11], but the proof
of tightness, however, is more involved due to the singularity of the initial condition and requires
computations which are di↵erent from those in [11] (see the proof of Proposition 6.1).

In the following, after introducing some preliminaries in §2, we first prove Theorem 1.1 in §3.
Then we establish an asymptotic results for the covariance of SN,t in §4, which will be used in the
proof of Theorems 1.2 and 1.3 in §5 and §6, respectively. Finally, some technical lemmas are proved
in Appendix.

Let us close the Introduction with a brief description of the notation of this paper. For every
Z 2 L

k(⌦), we write kZkk instead of (E[|Z|
k])1/k. Let Lip denote the class of all Lipschitz-

continuous, real-valued functions on R, and define for all g : R ! R,

Lip(g) := sup
�1<a<b<1

|g(b)� g(a)|

|b� a|
.

Thus, g 2 Lip if and only if Lip(g) < 1. Recall that if g 2 Lip, then Rademacher’s theorem (see
Federer [10, Theorem 3.1.6]) ensures that g has a weak derivative whose essential supremum is
Lip(g). Let g0 denote a given measurable version of that derivative. Throughout, we define

log+(x) := log(e + x) for every x � 0.

We also use “b” to denote the Fourier transform, normalized so that

f̂(x) =

ˆ
1

�1

eixyf(y) dy for all x 2 R and f 2 L
1(R).

2 Preliminaries

2.1 Clark-Ocone formula

Let H = L
2(R+ ⇥ R). The Gaussian family {W (h)}h2H formed by the Wiener integrals

W (h) =

ˆ
R+⇥R

h(s , x) ⌘(ds dx)
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defines an isonormal Gaussian process on the Hilbert space H. In this framework we can develop
the Malliavin calculus (see Nualart [15]). We denote by D the derivative operator. Let {Fs}s�0

denote the filtration generated by the space-time white noise ⌘.
We recall the following Clark-Ocone formula (see Chen et al [6, Proposition 6.3]):

F = E[F ] +

ˆ
R+⇥R

E [Ds,yF | Fs] ⌘(ds dz) a.s.,

valid for every random variable F in the Gaussian Sobolev space D1,2. Thanks to Jensen’s inequality
for conditional expectations, the above Clark-Ocone formula readily yields the following Poincaré-
type inequality, which plays an important role throughout the paper:

|Cov(F ,G)| 

ˆ
1

0
ds

ˆ
1

�1

dz kDs,zFk2 kDs,zGk2 for all F,G 2 D1,2. (2.1)

2.2 Malliavin derivative of u(t , x)

According to Chen, Hu, and Nualart [4, Proposition 5.1] (see Chen and Huang [5, Proposition 3.2]
for the higher-dimensional case),

u(t , x) 2
\

k�2

D1,k for all t > 0 and x 2 R,

and the corresponding Malliavin derivative Du(t , x) satisfies the following stochastic integral equa-
tion: For s 2 (0 , t),

Ds,yu(t , x) = pt�s(x� y)u(s , y) +

ˆ
(s,t)⇥R

pt�r(x� z)Ds,yu(r , z) ⌘(dr dz) a.s.

We o↵er the following estimate on the Malliavin derivative of u(t , x).

Lemma 2.1. For every T > 0 and k � 2, there exists a real number CT,k > 0 such that for

t 2 (0 , T ) and x 2 R, and for almost every (s , y) 2 (0 , t)⇥ R,

kDs,yu(t , x)kk  CT,k pt�s(x� y)ps(y). (2.2)

Proof. The proof is similar to the proof of Theorem 6.4 of Chen et al [6]. Fix t 2 (0 , T ) and x 2 R.
Let u0(t , x) = pt(x) for every x 2 R, and define iteratively, for every n 2 Z+,

un+1(t , x) := pt(x) +

ˆ
(0,t)⇥R

pt�r(x� z)un(r , z) ⌘(dr dz). (2.3)

Conus, Joseph, Khoshnevisan, and Shiu [8, Theorem 3.3] and Chen and Dalang [3, Theorem 2.4]
found independently, and at the same time, that there exists a real number cT,k > 0 such that for
all (s , y) 2 (0 , T ]⇥ R,

sup
n2Z+

kun(s , y)kk _ ku(s , y)kk  cT,k ps(y). (2.4)

We apply the properties of the divergence operator [15, Prop. 1.3.8] in order to deduce from (2.3)
that for almost every (s , y) 2 (0 , t)⇥ R,

Ds,yun+1(t , x) = pt�s(x� y)un(s , y) +

ˆ
(s,t)⇥R

pt�r(x� z)Ds,yun(r , z) ⌘(dr dz) a.s. (2.5)
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By (2.5), (2.4), and a suitable form of the Burkholder-Davis-Gundy inequality (BDG),

kDs,yun+1(t , x)k
2
k  2c2T,k p

2
t�s(x� y)p2

s(y) + 2ck

ˆ t

s
dr

ˆ
1

�1

dz p2
t�r(x� z)kDs,yun(r , z)k

2
k, (2.6)

where ck = 4k; see [6, (5.6)]. Let Ck := (2c2T,k) _ (2ck). We can iterate (2.6) to find that

kDs,yun+1(t , x)k
2
k

 Ck p
2
t�s(x� y)p2

s(y) + C
2
kp

2
s(y)

ˆ t

s
dr1

ˆ
1

�1

dz1 p2
t�r1(x� z1)p

2
r1�s(z1 � y)

+ · · ·+ C
n
k p

2
s(y)

ˆ t

s
dr1

ˆ
1

�1

dz1

ˆ r1

s
dr2

ˆ
1

�1

dz2 · · ·

ˆ rn�2

s
drn�1

ˆ
1

�1

dzn�1 p2
t�r1(x� z1)

⇥ p2
r1�r2(z1 � z2)⇥ · · ·⇥ p2

rn�1�s(zn�1 � y)

+ C
n+1
k p2

s(y)

ˆ t

s
dr1

ˆ
1

�1

dz1

ˆ r1

s
dr2

ˆ
1

�1

dz2 · · ·

ˆ rn�1

s
drn

ˆ
1

�1

dzn p2
t�r1(x� z1)

⇥ p2
r1�r2(z1 � z2)⇥ · · ·⇥ p2

rn�1�rn(zn�1 � zn)p
2
rn�s(zn � y). (2.7)

In order to simplify the preceding expression, let us first use the elementary identity (1.4) in order
to see that ˆ

1

�1

p2
t�s(x� y)p2

s�r(y � z) dy =

s
t� r

4⇡(t� s)(s� r)
p2
t�r(x� z).

Consequently,

ˆ t

s
dr1

ˆ
1

�1

dz1

ˆ r1

s
dr2

ˆ
1

�1

dz2 · · ·

ˆ rn�1

s
drn

ˆ
1

�1

dzn

p2
t�r1(x� z1)p

2
r1�r2(z1 � z2)⇥ · · ·⇥ p2

rn�1�rn(zn�1 � zn)p
2
rn�s(zn � y)

= (4⇡)�n/2 p2
t�r(x� y)

ˆ t

s
dr1

ˆ r1

s
dr2 · · ·

ˆ rn�1

s
drn

s
t� s

(t� r1)(r1 � r2) · · · (rn�1 � rn)(rn � s)

=

✓
t� s

4⇡

◆n/2

p2
t�r(x� y)

ˆ
0<rn<···<r1<1

dr1 · · · drnp
(1� r1)(r1 � r2) · · · rn

=

✓
t� s

4⇡

◆n/2 �(1/2)n

�(n/2)
p2
t�s(x� y). (2.8)

Together, (2.7) and (2.8) yield

kDs,yun+1(t , x)k
2
k  p2

t�s(x� y)p2
s(y)

nX

j=0

C
j+1
k

✓
t� s

4⇡

◆j/2 �(1/2)j

�(j/2)

 p2
t�s(x� y)p2

s(y)
1X

j=0

C
j+1
k T

j/2

(4⇡)j/2
�(1/2)j

�(j/2)
.

Since the above series is convergent, we can conclude that there exists c0T,k > 0 such that for almost
every (s , y) 2 (0 , t)⇥ R,

sup
n�0

kDs,yun(t , x)kk  c
0

T,k pt�s(x� y)ps(y). (2.9)
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Moreover, (1.4) and (2.9) together yield

sup
n�0

E
�
kDun(t , x)k

2
H

�
 (c0T,2)

2
ˆ t

0
ds

ˆ
1

�1

dy p2
t�s(x� y)p2

s(y)

= (c0T,k)
2p2

t (x)

ˆ t

0
ds

ˆ
1

�1

dy p2
s(t�s)/t

⇣
y �

s

t
x

⌘

= (c0T,k)
2p2

t (x)

ˆ t

0

s
t

4⇡s(t� s)
ds < 1,

(2.10)

where we have used the semigroup property of the heat kernel in the final identity. It follows from
(2.10) and the closability properties of the Malliavin derivative that there exists a subsequence
n(1) < n(2) < · · · of positive integers such that Dun(`)(t , x) converges to Du(t , x) in the weak
topology of L2(⌦ ;H). Then, we use a smooth approximation { "}">0 to the identity in R+ ⇥ R,
and apply Fatou’s lemma and duality for Lk-spaces, in order to find that for almost every (s , y) 2
(0 , t)⇥ R and for all k � 2,

kDs,yu(t , x)kk  lim inf
"!0

����
ˆ

1

0
ds0
ˆ

1

�1

dy0Ds0,y0u(t , x) "(s� s
0
, y � y

0)

����
k

 lim inf
"!0

sup
kGkk/(k�1)1

����
ˆ

1

0
ds0
ˆ

1

�1

dy0 E
⇥
GDs0,y0u(t , x)

⇤
 "(s� s

0
, y � y

0)

���� .

Choose and fix a random variable G 2 L
2(⌦) such that kGkk/(k�1)  1. Because Dun(`)(t , x)

converges weakly in L
2(⌦ ;H) to Du(t , x) as `! 1, we can write

����
ˆ

1

0
ds0
ˆ

1

�1

dy0 E
⇥
GDs0,y0u(t , x)

⇤
 "(s� s

0
, y � y

0)

����

= lim
`!1

����
ˆ

1

0
ds0
ˆ

1

�1

dy0 E
⇥
GDs0,y0un(`)(t , x)

⇤
 "(s� s

0
, y � y

0)

����

 lim sup
`!1

ˆ
1

0
ds0
ˆ

1

�1

dy0
��Ds0,y0un(`)(t , x)

��
k
 "(s� s

0
, y � y

0)

 c
0

T,k

ˆ
1

0
ds0
ˆ

1

�1

dy0 1(0,t)(s
0)pt�s0(x� y

0)ps0(y
0) "(s� s

0
, y � y

0).

Let "! 0 to conclude the proof of (2.2).

2.3 The Malliavin-Stein method

Recall that if X and Y are random variables with respective probability distributions µ and ⌫ on
R, then the total variation distance between X and Y is defined as

dTV(X ,Y ) = sup
B2B(R)

|µ(B)� ⌫(B)|,

where B(R) denotes the family of all Borel subsets of R. The same sort of definition continues
to hold when X and Y are abstract random variables on a topological space X, except B(R) is
replaced by B(X).

We abuse notation and let dTV(F ,N(0 , 1)) denote the total variation distance between the
law of F and the N(0 , 1) law. The following bound on dTV(F ,N(0 , 1)) follows from a suitable
combination of ideas from the Malliavin calculus and Stein’s method for normal approximations;
see Nualart and Nualart [16, Theorem 8.2.1].
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Proposition 2.2. Suppose that F 2 D1,2
satisfies E(F 2) = 1 and F = �(v) for some v in the

L
2(⌦)-domain of the divergence operator �. Then,

dTV(F ,N(0 , 1))  2
p
Var (hDF , viH).

In the proof of Theorem 1.11 we will make use of the following generalization of a result of
Nourdin and Peccati [14, Theorem 6.1.2].

Proposition 2.3. Let F = (F (1)
, . . . , F

(m)) be a random vector such that, for every i = 1, . . . ,m,

F
(i) = �(v(i)) for some v

(i)
2 Dom [�]. Assume additionally that F

(i)
2 D1,2

for i = 1, . . . ,m. Let G

be a centered m-dimensional Gaussian random vector with covariance matrix (Ci,j)1i,jm. Then,

for every h 2 C
2(Rm) that has bounded second partial derivatives,

|E(h(F ))� E(h(G))|  1
2kh

00
k1

vuut
mX

i,j=1

E
⇣��Ci,j � hDF (i) , v(j)iH

��2
⌘
,

where

kh
00
k1 := max

1i,jm
sup
x2Rm

����
@
2
h(x)

@xi@xj

���� .

2.4 On the ergodic theorem (1.6)

Recall the definition (1.7) of SN,t and observe that the ergodic theorem (1.6) can be recast in terms
of the average integral SN,t as follows:

lim
N!1

SN,t = 0 a.s. and in L
1(⌦).

The following lemma proves that the ergodic theorem (1.6) holds in L
k(⌦) for every k � 2, hence

also in L
k(⌦) for every k � 1. It also yields a quantitative upper bound of O(

p
log(N)/N) on the

rate of convergence in L
k(⌦) for every k � 1, with a constant that describes also the behavior of

the limit uniformly in t when t ⌧ 1. Perhaps not surprisingly, the mentioned rate of convergence
coincides with the rate of convergence to normality that was ensured by Theorem 1.2.

Lemma 2.4. For all real numbers k � 2 and T > 0 there exists a number Ak,T > 0 such that

sup
N�e

�����

s
N

logN
SN,t

�����
k

 Ak,T

q
t log+(1/t) uniformly for all t 2 (0 , T ),

where log+(w) := log(e + w) for all w � 0.

Proof. Choose and fix a real number k � 2. By the BDG inequality and (1.4),

kSN,tk
2
k =

1

N2

�����

ˆ
(0,t)⇥R

U(s , y)

ˆ N

0
ps(t�s)/t

⇣
y �

s

t
x

⌘
dx

�
⌘(ds dy)

�����

2

k


ck

N2

ˆ t

0
ds

ˆ
1

�1

dy kU(s , y)k2k

ˆ N

0
ps(t�s)/t

⇣
y �

s

t
x

⌘
dx

�2
,

uniformly for all N, t > 0. Apply (2.4) to see that

kSN,tk
2
k 

ck c
2
T,k

N2

ˆ t

0
ds

ˆ
1

�1

dy

ˆ N

0
ps(t�s)/t

⇣
y �

s

t
x

⌘
dx

�2
,

8



uniformly for all N > 0 and t 2 (0 , T ). Now expand the square and appeal to the semigroup
property of the heat kernel in order to find that, for every N, t > 0,

ˆ
1

�1

dy

ˆ N

0
ps(t�s)/t

⇣
y �

s

t
x

⌘
dx

�2
=

ˆ N

0
dy

ˆ N

0
dz p2s(t�s)/t

⇣
s

t
(y � z)

⌘

=

✓
t

s

◆2 ˆ Ns/t

0
da

ˆ Ns/t

0
db p2s(t�s)/t(a� b)

=
Nt

⇡s

ˆ
1

�1

✓
1� cos z

z2

◆
exp

✓
�
t(t� s)z2

N2s

◆
dz;

see Lemma A.2 of the Appendix. Consequently, if N > 0 and t 2 (0 , T ), then

kSN,tk
2
k 

tckc
2
k,T

⇡N

ˆ
1

�1

dx

✓
1� cosx

x2

◆ ˆ t

0

ds

s
exp

✓
�
t(t� s)x2

N2s

◆

=
ckc

2
k,T logN

⇡N

ˆ
1

�1

✓
1� cosx

x2

◆
GN,t(x) dx,

where GN,t is defined in (A.1) below, in the Appendix. We may appeal to Lemma A.1 of the
Appendix to conclude the result.

3 Proof of Theorem 1.1

Since weak mixing implies ergodicity, it su�ces to prove that U(t) is weakly mixing for every
t > 0. We follow the proof of [6, Corollary 9.1] in order to reduce the proof of Theorem 1.1 to the
verification of the following:

lim
|x|!1

Cov [G(x) ,G(0)] = 0, (3.1)

where the functions g1, . . . , gk 2 C
1
b (R) satisfy gj(0) = 0 and Lip(gj) = 1 for every j = 1, . . . , k,

G(x) :=
kY

j=1

gj(U(t , x+ ⇣
j)) for all x 2 R,

and ⇣1, . . . , ⇣k are fixed real numbers. Thus, it su�ces to prove (3.1).
By the chain rule for the Malliavin derivative [15, Proposition 1.2.4],

Ds,zG(x) =
kX

j0=1

0

BB@
kY

j=1
j 6=j0

gj
�
U(t , x+ ⇣

j)
�

1

CCA g
0

j0

�
U(t , x+ ⇣

j0)
�
Ds,zU(t , x+ ⇣

j0).

Therefore, the definition of the process U in (1.3), (2.4), and Lemma 2.1 together imply the existence
of a real number c = c(T, k) such that

kDs,zG(x)k2 
kX

j0=1

0

@
kY

j=1,j 6=j0

kgj(U(t , x+ ⇣
j))k2k

1

A kDs,zU(t , x+ ⇣
j0)k2k

 c

kX

j=1

pt�s(x+ ⇣
j
� z)ps(z)

pt(x+ ⇣j)
= c

kX

j=1

ps(t�s)/t

⇣
z �

s

t
(x+ ⇣

j)
⌘
,
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uniformly for all 0 < s < t  T and x, z 2 R; the equality holds due to (1.4). Now apply the
Poincaré inequality (2.1) and the semigroup property of the heat kernel to see that

|Cov [G(x) ,G(0)]|  c
2

kX

j,`=1

ˆ t

0
p2s(t�s)/t

⇣
s

t
(x+ ⇣

j
� ⇣

`)
⌘
ds.

This implies (3.1), thanks to the dominated convergence theorem, and concludes the proof.

4 Asymptotic behavior of the covariance

Recall from (1.7) that

SN,t =
1

N

ˆ N

0
[U(t , x)� 1] dx,

where U(t , x) was defined in (1.3). The following proposition provides the asymptotic behavior of
the covariance function of the renormalized sequence of processes SN,t as N tends to infinity.

Proposition 4.1. For every t1, t2 > 0,

lim
N!1

Cov

"s
N

logN
SN,t1 ,

s
N

logN
SN,t2

#
= 2(t1 ^ t2).

Proof. First, let us recall from Chen and Dalang [3, (2.31)] that, for all s > 0 and z 2 R,

E
�
|u(s , z)|2

�
= p2

s(z)(1 + ✓(s)), (4.1)

where

✓(s) := es/4
p

s/2

ˆ p
s/2

�1

e�y2/2 dy for all s > 0. (4.2)

By (1.2), the Itô-Walsh isometry, and (4.1),

Cov [U(t1 , x) , U(t2 , y)] =
1

pt1(x)pt2(y)

ˆ t1^t2

0
ds

ˆ
1

�1

dz pt1�s(x� z)pt2�s(y � z)E
�
|u(s , z)|2

�

=
1

pt1(x)pt2(y)

ˆ t1^t2

0
ds

ˆ
1

�1

dz pt1�s(x� z)pt2�s(y � z)p2
s(z)(1 + ✓(s))

=

ˆ t1^t2

0
ds

ˆ
1

�1

dz ps(t1�s)/t1

✓
z �

s

t1
x

◆
ps(t2�s)/t2

✓
z �

s

t2
y

◆
(1 + ✓(s))

=

ˆ t1^t2

0
ps[(t1�s)/t1+(t2�s)/t2]

✓
s


x

t1
�

y

t2

�◆
(1 + ✓(s)) ds

=:

ˆ t1^t2

0
Ps,t1,t2(x, y)(1 + ✓(s)) ds,

notation being clear from context. Let ⌧ := 2t1t2/(t1 + t2), so that we can write

Ps,t1,t2(x , y) = Ps,⌧

✓
2(xt2 � yt1)

t1 + t2

◆
for Ps,t(w) = p2s(t�s)/t

⇣
sw

t

⌘
.
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If t1 < t2, then

Cov

"s
N

logN
SN,t1 ,

s
N

logN
SN,t2

#
=

1

N logN

ˆ N

0
dy

ˆ N

0
dx Cov [U(t1 , x) , U(t2 , y)]

=
1

N logN

ˆ t1

0
ds (1 + ✓(s))

ˆ N

0
dy

ˆ N

0
dx Ps,⌧

✓
2(xt2 � yt1)

t1 + t2

◆
.

In order to simplify the exposition define

⌧1 :=
2t2

t1 + t2
and ⌧2 =

2t1
t1 + t2

.

We then change variables [x ! x/⌧1 and y ! y/⌧2] to obtain

Cov

"s
N

logN
SN,t1 ,

s
N

logN
SN,t2

#

=
1

⌧1⌧2N logN

ˆ t1

0
(1 + ✓(s)) ds

ˆ N⌧1

0
dx

ˆ N⌧2

0
dy Ps,⌧ (x� y)

=
⌧

⌧1⌧2N logN

ˆ t1

0

✓
1 + ✓(s)

s

◆
ds

ˆ N⌧1

0
dx

ˆ N⌧2

0
dy p2⌧(⌧�s)/s(x� y),

where in the last equality we have used the scaling property,

p�(↵w) = ↵
�1p�/↵2(w), valid for all �,↵ > 0 and w 2 R. (4.3)

Since [1[0,a](⇠) = a[1[0,1](a⇠) for all a > 0 and ⇠ 2 R, Parseval’s identity ensures that

Cov

"s
N

logN
SN,t1 ,

s
N

logN
SN,t2

#

=
⌧

2⇡⌧1⌧2 logN

ˆ t1

0

✓
1 + ✓(s)

s

◆
ds

ˆ
1

�1

\1[0,⌧1](w)\1[0,⌧2](w) exp
✓
�
(⌧ � s)⌧

s

w
2

N2

◆
dw

=
1

2⇡⌧1⌧2

ˆ
1

�1

\1[0,⌧1](w)\1[0,⌧2](w)GN,⌧ (w) dw

�
⌧

2⇡⌧1⌧2 logN

ˆ ⌧

t1

ds

s

ˆ
1

�1

\1[0,⌧1](w)\1[0,⌧2](w) exp
✓
�
(⌧ � s)⌧

s

w
2

N2

◆
dw

+
⌧

2⇡⌧1⌧2 logN

ˆ t1

0

✓(s)

s
ds

ˆ
1

�1

\1[0,⌧1](w)\1[0,⌧2](w) exp
✓
�
(⌧ � s)⌧

s

w
2

N2

◆
dw

=: A(1)
N �A

(2)
N +A

(3)
N ,

where the function GN,⌧ is defined in (A.1) below, in the Appendix. We plan to prove that

lim
N!1

A
(1)
N = 2t1 and lim

N!1

A
(2)
N = lim

N!1

A
(3)
N = 0. (4.4)

These facts together conclude the proof of the proposition.

In order to understand the behavior of A(1)
N we first apply Lemma A.1 and the dominated con-

vergence theorem, and then the Parseval identity, in order to verify the first of the three assertions
in (4.4):

lim
N!1

A
(1)
N =

2⌧

2⇡⌧1⌧2

ˆ
1

�1

\1[0,⌧1](w)\1[0,⌧2](w) dw =
2⌧

⌧1⌧2

⌦
1[0,⌧1] , 1[0,⌧2]

↵
L2(R) = 2t1.
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We study A
(2)
N by making a change of variables [s ! ⌧/(s+ 1)] to find that

A
(2)
N =

⌧

2⇡⌧1⌧1 logN

ˆ (t2�t1)/(t2+t1)

0

ds

1 + s

ˆ
1

�1

\1[0,⌧1](w)\1[0,⌧2](w) exp
✓
�
⌧sw

2

N2

◆
dw.

Since exp(�⌧sw2
/N

2)  1, this proves that A
(2)
N = O(1/ logN) ! 0 as N ! 1. Therefore, it

remains to prove the third assertion in (4.4) about A(3)
N . For that, we change variables [s ! ⌧s] to

obtain

���A(3)
N

��� 
⌧

2⇡⌧1⌧2 logN

ˆ
1

�1

���\1[0,⌧1](w)\1[0,⌧2](w)
��� dw
ˆ 1

0

✓(⌧s)

s
exp

✓
�
(1� s)⌧

s

w
2

N2

◆
ds

=
⌧

2⇡⌧1⌧2 logN

ˆ
1

�1

���\1[0,⌧1](w)\1[0,⌧2](w)
��� dw
ˆ

1

0

✓(⌧/(r + 1))

r + 1
exp

✓
�
w

2
⌧r

N2

◆
dr.

By the definition of the function ✓ in (4.2),

✓

✓
⌧

r + 1

◆
exp

✓
�
w

2
⌧r

N2

◆
< ✓

✓
⌧

r + 1

◆
 e⌧/4

r
⌧⇡

r + 1
for all r > 0.

Hence,
���A(3)

N

��� 
e⌧/4t

p
⌧⇡

2⇡⌧1⌧2 logN

ˆ
1

�1

���\1[0,⌧1](w)\1[0,⌧2](w)
��� dw ⇥

ˆ
1

0

dr

(r + 1)3/2
! 0,

as N ! 1. This concludes the proof of (4.4) and hence the proof of the proposition.

5 Proof of Theorem 1.2

For all N, t, s > 0 and y 2 R define

gN,t(s , y) := 1(0,t)(s)
1

N

ˆ N

0
ps(t�s)/t

⇣
y �

s

t
x

⌘
dx and vN,t(s , y) := gN,t(s , y)U(s , y). (5.1)

Because of (1.7) and a stochastic Fubini argument,

SN,t =

ˆ
R+⇥R

vN,t(s , y) ⌘(ds dy) = �(vN,t) a.s., (5.2)

owing to the fact that vN,t is an adapted random field and hence its stochastic integral agrees
with its divergence (see Nualart [15, Chapter 1.3.3]). Our work so far shows that SN,t is Malliavin
di↵erentiable, and that the following defines a version of the Malliavin derivative of SN,t:

Dr,zSN,t = 1(0,t)(r)vN,t(r , z) + 1(0,t)(r)

ˆ
(r,t)⇥R

Dr,zvN,t(s , y) ⌘(ds dy). (5.3)

The key technical result of this section is the following proposition:

Proposition 5.1. For every T > 0 there exists a real number KT > 0 such that

sup
t,⌧2(0,T )

Var hDSN,t , vN,⌧ iH  KT
(logN)3

N3
for all N � e.
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We plan to first prove Proposition 5.1. Then, we will use this proposition to prove Theorem
1.2. The key to the proof of Proposition 5.1 is the following simple decomposition, which is an
immediate consequence of (5.3):

hDSN,t , vN,⌧ iH = XN,t,⌧ + YN,t,⌧ , (5.4)

where

XN,t,⌧ := hvN,t , vN,⌧ iH , and

YN,t,⌧ :=

ˆ
1

0
dr

ˆ
1

�1

dz vN,⌧ (r , z)

 ˆ
(r,t)⇥R

Dr,zvN,t(s , y) ⌘(ds dy)

!
.

(5.5)

The decomposition (5.4) ensures that

VarhDSN,t , vN,⌧ iH  2Var(XN,t,⌧ ) + 2Var(YN,t,⌧ ). (5.6)

Therefore, the bulk of the work is to establish bounds on the last two variances. Those require
some e↵ort and are carried out separately, using slightly di↵erent ideas, in Lemmas 5.3 and 5.4
respectively. In light of those lemmas and (5.6), the proof Proposition 5.1 is immediate, with no
need for additional proof.

First let us observe that the mean of hDSN,t , vN,⌧ iH is carried by XN,t,⌧ .

Lemma 5.2. For every T,N > 0 and t, ⌧ 2 (0 , T ),

EYN,t,⌧ = 0 and E hDSN,t , vN,⌧ iH = EXN,t,⌧ = Cov (SN,t , SN,⌧ ) .

Proof. Thanks to Gaussian integration by parts (see Nualart [15, (1.42)]), E(hDF , V iH) = E[F �(V )]
for all F 2 D1,2 and V 2 Dom[�]. Choose F ⌘ 1 to observe the well-known fact that �(V )
has mean zero, and choose F = �(U) to see that E(hD�(U) , V iH) = Cov(�(U) , �(V )) whenever
U, V 2 Dom[�]. Thanks to (5.2) we can apply the preceding with U = vN,t and V = vN,⌧ to see
that SN,t = �(U) and SN,⌧ = �(V ) [from (5.2)], whence EhDSN,t , vN,⌧ iH = Cov(SN,t ,SN,⌧ ). Since
the Walsh integral has mean zero and U is adapted, EYN,t,⌧ = 0; see (5.5). This and (5.4) together
complete the proof.

Lemma 5.3. For every T > 0 there exists a real number AT > 0 such that

sup
t,⌧2(0,T )

Var(XN,t,⌧ )  AT
(logN)3

N3
uniformly for every N � e.

Proof. Choose and fix 0 < t, ⌧ < T and N � e. It follows readily from (5.5) and our e↵orts thus
far that XN,t,⌧ is Malliavin di↵erentiable, and the following is a version of the Malliavin derivative:

Dr,zXN,t,⌧ = 21[0,t^⌧ ](r)

ˆ t^⌧

r
ds

ˆ
1

�1

dy gN,t(s , y)gN,⌧ (s , y)U(s , y)Dr,zU(s , y).

Moreover, it follows from this and the definition of the H-norm that

kDXN,t,⌧k
2
H = 4

ˆ t^⌧

0
dr

ˆ
1

�1

dz

����
ˆ t^⌧

r
ds

ˆ
1

�1

dy gN,t(s , y)gN,⌧ (s , y)U(s , y)Dr,zU(s , y)

����
2

.
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According to (1.3), (2.4), and Lemma 2.1, whenever 0 < s, s
0
< T and y, y

0
2 R, the following holds

a.s. for a.e. every (r , z) 2 (s ^ s
0
, t)⇥ R:

��E
⇥
U(s , y)Dr,zU(s , y)U(s0, y0)Dr,zU(s0, y0)

⇤��  c
2
4,T kDr,zU(s , y)k4

��Dr,zU(s0, y0)
��
4

 c
2
T,4C

2
T,4

ps�r(y � z)pr(z)

ps(y)

ps0�r(y0 � z)pr(z)

ps0(y0)

=: 1
4AT pr(s�r)/s

⇣
z �

r

s
y

⌘
pr(s0�r)/s0

⇣
z �

r

s0
y
0

⌘
,

where we have appealed to (1.4) in the last line. Therefore,

E
�
kDXN,t,⌧k

2
H

�
 AT

ˆ t^⌧

0
dr

ˆ
1

�1

dz

ˆ t^⌧

r
ds

ˆ
1

�1

dy

ˆ t^⌧

r
ds0
ˆ

1

�1

dy0

⇥ gN,t(s , y)gN,⌧ (s , y)gN,t(s
0
, y

0)gN,⌧ (s
0
, y

0)pr(s�r)/s

⇣
z �

r

s
y

⌘
pr(s0�r)/s0

⇣
z �

r

s0
y
0

⌘

= AT

ˆ t^⌧

0
dr

ˆ t^⌧

r
ds

ˆ
1

�1

dy

ˆ t^⌧

r
ds0
ˆ

1

�1

dy0

⇥ gN,t(s , y)gN,⌧ (s , y)gN,t(s
0
, y

0)gN,⌧ (s
0
, y

0)p[r(s�r)/s]+[r(s0�r)/s0]

⇣
r

s
y �

r

s0
y
0

⌘
,

thanks to the semigroup property of the heat kernel. Since gN,⌫(s, y) 
⌫
sN

�1 for all N > 0, ⌫ �

s > 0 and y 2 R, we may bound two of the g-terms from above, each by N
�1, in order to find that

E
�
kDXN,t,⌧k

2
H

�


AT

N2

ˆ t^⌧

0
dr

ˆ t^⌧

r

t _ ⌧

s
ds

ˆ
1

�1

dy

ˆ t^⌧

r

t _ ⌧

s0
ds0
ˆ

1

�1

dy0

⇥ gN,t^⌧ (s , y)gN,t^⌧ (s
0
, y

0)p[r(s�r)/s]+[r(s0�r)/s0]

⇣
r

s
y �

r

s0
y
0

⌘

=
AT

N4

ˆ t^⌧

0
dr

ˆ t^⌧

r

t _ ⌧

s
ds

ˆ
1

�1

dy

ˆ t^⌧

r

t _ ⌧

s0
ds0
ˆ

1

�1

dy0
ˆ N

0
dx

ˆ N

0
dx0

⇥ ps({t^⌧}�s)/(t^⌧)

⇣
y �

s

t ^ ⌧
x

⌘
ps0({t^⌧}�s0)/(t^⌧)

✓
y
0
�

s
0

t ^ ⌧
x
0

◆

⇥ p[r(s�r)/s]+[r(s0�r)/s0]

⇣
r

s
y �

r

s0
y
0

⌘
.

It follows from (4.3) that

p[r(s�r)/s]+[r(s0�r)/s0]

⇣
r

s
y �

r

s0
y
0

⌘
=

s

r
p[s(s�r)/r]+[s2(s0�r)/(s0r)]

⇣
y �

s

s0
y
0

⌘
.

Therefore, the semigroup property of the heat kernel implies the following:

E
�
kDXN,t,⌧k

2
H

�


AT (t _ ⌧)2

N4

ˆ t^⌧

0

dr

r

ˆ t^⌧

r
ds

ˆ t^⌧

r

ds0

s0

ˆ
1

�1

dy0
ˆ N

0
dx

ˆ N

0
dx0

ps0({t^⌧}�s0)/(t^⌧)

✓
y
0
�

s
0

t ^ ⌧
x
0

◆

⇥ p[s(s�r)/r]+[s2(s0�r)/(s0r)]+[s({t^⌧}�s)/(t^⌧)]

⇣
s

s0
y
0
�

s

t ^ ⌧
x

⌘
.

A repeated appeal to (4.3) yields

p[s(s�r)/r]+[s2(s0�r)/(s0r)]+[s({t^⌧}�s)/(t^⌧)]

⇣
s

s0
y
0
�

s

t ^ ⌧
x

⌘

=
s
0

s
p[(s0)2(s�r)/(sr)]+[s0(s0�r)/r]+[(s0)2({t^⌧}�s)/{s(t^⌧)}]

✓
y
0
�

s
0

t ^ ⌧
x

◆
.
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And yet another appeal to the semigroup property reveals the following:

E
�
kDXN,t,⌧k

2
H

�


AT (t _ ⌧)2

N4

ˆ t^⌧

0

dr

r

ˆ t^⌧

r

ds

s

ˆ t^⌧

r
ds0
ˆ N

0
dx

ˆ N

0
dx0

⇥ p[(s0)2(s�r)/(sr)]+[s0(s0�r)/r]+[(s0)2({t^⌧}�s)/{s(t^⌧)}]+[s0({t^⌧}�s0)/(t^⌧)]

✓
s
0

t ^ ⌧
(x� x

0)

◆

=
AT (t _ ⌧)2(t ^ ⌧)

N4

ˆ t^⌧

0

ds

s

ˆ t^⌧

0

ds0

s0

ˆ s^s0

0

dr

r

ˆ N

0
dx

ˆ N

0
dx0

⇥ p[(t^⌧)2(s�r)/(sr)]+[(t^⌧)2(s0�r)/(s0r)]+[(t^⌧)({t^⌧}�s)/s]+[(t^⌧)({t^⌧}�s0)/s0](x� x
0),

thanks also to scaling (4.3) and Fubini’s theorem. Since

2(t ^ ⌧)(t ^ ⌧ � r)

r
=

(t ^ ⌧)2(s� r)

sr
+

(t ^ ⌧)2(s0 � r)

s0r
+

(t ^ ⌧)(t ^ ⌧ � s)

s
+

(t ^ ⌧)(t ^ ⌧ � s
0)

s0
,

we appeal to Lemma A.2 in order to find that

E
�
kDXN,t,⌧k

2
H

�


AT (t _ ⌧)2(t ^ ⌧)

N3⇡

ˆ t^⌧

0

ds

s

ˆ t^⌧

0

ds0

s0

ˆ s^s0

0

dr

r

ˆ
1

�1

dz '(z)e�((t^⌧)((t^⌧)�r))z2/(rN2)
.

Integrating in the variables s and s
0 yields

E
�
kDXN,t,⌧k

2
H

�


AT (t _ ⌧)2(t ^ ⌧)

N3⇡

ˆ t^⌧

0

dr

r

✓
log

✓
t ^ ⌧

r

◆◆2 ˆ
R
e�

(t^⌧)((t^⌧)�r)
r

z2

N2 '(z)dz,

Making the change of variables (t^⌧)�r
r = ✓, allows us to write

E
�
kDXN,t,⌧k

2
H

�


AT (t _ ⌧)2(t ^ ⌧)

N3⇡

ˆ
R
'(z)dz

ˆ
1

0
d✓

1

✓ + 1
(log(✓ + 1))2 e�

(t^⌧)✓z2

N2 .

Integrating by parts and using the fact that

✓
1

3
(log(✓ + 1))3e�

(t^⌧)✓z2

N2

◆✓=1

✓=0

= 0,

we obtain

E
�
kDXN,t,⌧k

2
H

�


AT (t _ ⌧)2(t ^ ⌧)

3N3⇡

ˆ
R
'(z)dz

ˆ
1

0
d✓ (log(✓ + 1))3 e�

t✓z2

N2
(t ^ ⌧)z2

N2

=
AT (t _ ⌧)2(t ^ ⌧)

3N3⇡

ˆ
R
'(z)dz

ˆ
1

0
d✓

✓
log

✓
N

2

(t ^ ⌧)z2
✓ + 1

◆◆3

e�✓
.

Using the inequality

log

✓
N

2

(t ^ ⌧)z2
✓ + 1

◆
 2 logN + log(✓ + 1) + log

✓
1

t ^ ⌧
+ 1

◆
+ log

✓
1

z2
+ 1

◆



✓
2 logN + log

✓
1

t ^ ⌧
+ 1

◆◆✓
1 + log(✓ + 1) + log

✓
1

z2
+ 1

◆◆
,

and taking into account that

C :=

ˆ
R
'(z)dz

ˆ
1

0
d✓

✓
1 + log(✓ + 1) + log

✓
1

z2
+ 1

◆◆3

e
�✓

< 1,
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we finally get

E
�
kDXN,t,⌧k

2
H

�


CAT (t _ ⌧)2(t ^ ⌧)

3N3⇡

✓
2 logN + log

✓
1

t ^ ⌧
+ 1

◆◆3

,

which provides the desired estimate.

Lemma 5.4. For every T > 0 there exists a real number A
0

T > 0 such that

sup
t,⌧2(0,T )

Var (YN,t,⌧ )  A
0

T
(logN)3

N3
uniformly for every N � e.

Proof. Lemma 5.2 ensures that YN,t,⌧ has mean zero, and hence

Var (YN,t,⌧ ) = E

ˆ t^⌧

0
dr

ˆ
1

�1

dz

ˆ t^⌧

0
dr0
ˆ

1

�1

dz0
 ˆ

(r,t)⇥R
vN,⌧ (r , z)Dr,zvN,t(s , y) ⌘(ds dy)

!

⇥

 ˆ
(r0,t)⇥R

vN,⌧ (r
0
, z

0)Dr0,z0vN,t(s , y) ⌘(ds dy)

!
,

which, by Fubini’s theorem, is

=

ˆ t^⌧

0
dr

ˆ
1

�1

dz

ˆ t^⌧

0
dr0
ˆ

1

�1

dz0
ˆ t

r_r0
ds

ˆ
1

�1

dy gN,⌧ (r , z)gN,⌧ (r
0
, z

0)g2N,t(s , y)

⇥E
⇥
U(r , z) ·Dr,zU(s, y) · U(r0 , z0) ·Dr0,z0U(s , y)

⇤
.

Combine (1.3) and (2.4) with Lemma 2.1 in order to see that
��E
⇥
U(r , z) ·Dr,zU(s , y) · U(r0 , z0) ·Dr0,z0U(s , y)

⇤��  c
2
T,4kDr,zU(s , y)k4kDr0,z0U(s , y)k4

 c
2
T,4C

2
T,4

ps�r(y � z)pr(z)

ps(y)

ps�r0(y � z
0)pr0(z0)

ps(y)
=: LT pr(s�r)/s

⇣
z �

r

s
y

⌘
pr0(s�r0)/s

✓
z
0
�

r
0

s
y

◆
.

Plug this into the preceding identity for Var(YN,t,⌧ ) in order to see that

Var(YN,t,⌧ )  LT

ˆ t^⌧

0
dr

ˆ
1

�1

dz

ˆ t^⌧

0
dr0
ˆ

1

�1

dz0
ˆ t

r_r0
ds

ˆ
1

�1

dy

⇥ gN,⌧ (r , z)gN,⌧ (r
0
, z

0)g2N,t,x(s , y)pr(s�r)/s

⇣
z �

r

s
y

⌘
pr0(s�r0)/s

✓
z
0
�

r
0

s
y

◆
.

We can apply first (5.1), and then the semigroup property of the heat kernel, in order to see that
for all x̃ 2 [0, 1]
ˆ

1

�1

gN,⌧ (r , z)pr(s�r)/s

⇣
z �

r

s
y

⌘
dz 

1

N

ˆ N

0
dx1

ˆ
1

�1

dz pr(s�r)/s

⇣
z �

r

s
y

⌘
pr(⌧�r)/⌧

⇣
z �

r

⌧
x1

⌘

=
1

N

ˆ N

0
p[r(s�r)/s]+[r(⌧�r)/⌧ ]

⇣
r

s
y �

r

⌧
x1

⌘
dx1.

Therefore,

Var(YN,t,⌧ ) 
LT

N2

ˆ t^⌧

0
dr

ˆ t^⌧

0
dr0
ˆ t

r_r0
ds

ˆ
1

�1

dy

ˆ N

0
dx1

ˆ N

0
dx2 g

2
N,t(s , y)

⇥ p[r(s�r)/s]+[r(⌧�r)/⌧ ]

⇣
r

s
y �

r

⌧
x1

⌘
p[r0(s�r0)/s]+[r0(⌧�r0)/⌧ ]

✓
r
0

s
y �

r
0

⌧
x2

◆
.
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Since gN,⌫(s, y) 
⌫
sN

�1 for all N > 0, ⌫ � s > 0 and y 2 R, we have

Var(YN,t,⌧ ) 
t
2
LT

N4

ˆ t^⌧

0
dr

ˆ t^⌧

0
dr0
ˆ t

r_r0

ds

s2

ˆ
1

�1

dy

ˆ N

0
dx1

ˆ N

0
dx2

⇥ p[r(s�r)/s]+[r(⌧�r)/⌧ ]

⇣
r

s
y �

r

⌧
x1

⌘
p[r0(s�r0)/s]+[r0(⌧�r0)/⌧ ]

✓
r
0

s
y �

r
0

⌧
x2

◆
.

Now we use scaling [see (4.3)] to see that

p[r(s�r)/s]+[r(⌧�r)/⌧ ]

⇣
r

s
y �

r

⌧
x1

⌘
=

s

r
p[s(s�r)/r]+[s2(⌧�r)/(r⌧)]

⇣
y �

s

⌧
x1

⌘
,

with an analogous expression holding for the version with the variables with the primes. This
endeavor, and the semigroup property of the heat kernel, together yield

Var(YN,t,⌧ ) 
t
2
LT

N4

ˆ t^⌧

0

dr

r

ˆ t^⌧

0

dr0

r0

ˆ t

r_r0
ds

ˆ N

0
dx1

ˆ N

0
dx2 p

�+�0

⇣
s

⌧
x1 �

s

⌧
x2

⌘
,

with � and �0 being the following functions whose variable-dependencies are excised for ease of
exposition:

� :=
s(s� r)

r
+

s
2(⌧ � r)

r⌧
, �0 :=

s(s� r
0)

r0
+

s
2(⌧ � r

0)

r0⌧
.

A change of variables [a = sx1/⌧, a
0 = sx2/⌧ ] yields

Var(YN,t,⌧ ) 
t
2
⌧
2
LT

N4

ˆ t^⌧

0

dr

r

ˆ t^⌧

0

dr0

r0

ˆ t

r_r0
ds s

�2
ˆ Ns/⌧

0
da

ˆ Ns/⌧

0
da0 p

�+�0 (a� a
0)

=
t
2
⌧LT

⇡N3

ˆ t

0

ds

s

ˆ s^⌧

0

dr

r

ˆ s^⌧

0

dr0

r0

ˆ
1

�1

dz '(z)e�(�+�0)z2⌧2/(2N2s2)

=
t
2
⌧LT

⇡N3

ˆ
1

�1

dz '(z)

ˆ t

0

ds

s

✓ˆ s^⌧

0

dr

r
e��z2⌧2/(2N2s2)

◆2

=
t
2
⌧LT

⇡N3

ˆ
1

�1

dz '(z)

ˆ t

0

ds

s

✓ˆ s^⌧

0

dr

r
e�z2(r�1

�s�1+r�1
�⌧�1)⌧2/(2N2)

◆2

, (5.7)

where '(z) = (1� cos z)/z2, and we have used Lemma A.2 in the first equality.
Case 1: t  ⌧ . In this case, from the proceeding,

Var(YN,t,⌧ ) 
t
2
⌧LT

⇡N3

ˆ
1

�1

dz '(z)

ˆ ⌧

0

ds

s

✓ˆ s

0

dr

r
e�z2(r�1

�s�1+r�1
�⌧�1)⌧2/(2N2)

◆2

.

Using change of variable s�r
r = ✓, we obtain

Var(YN,t,⌧ ) 
t
2
⌧LT

⇡N3

ˆ
1

�1

dz '(z)

ˆ ⌧

0

ds

s

✓ˆ
1

0

d✓

✓ + 1
e�z2(2✓s�1+s�1

�⌧�1)⌧2/(2N2)

◆2

=
t
2
⌧LT

⇡N3

ˆ
1

�1

dz '(z)

ˆ ⌧

0

ds

s
e�z2(s�1

�⌧�1)⌧2/N2

✓ˆ
1

0

d✓

✓ + 1
e�z2✓⌧2/(sN2)

◆2

=
t
2
⌧LT

⇡N3

ˆ
1

�1

dz '(z)

ˆ
1

0

d⇠

⇠ + 1
e�z2⇠⌧/N2

✓ˆ
1

0

d✓

✓ + 1
e�z2✓(⇠+1)⌧/N2

◆2


t
2
⌧LT

⇡N3

ˆ
1

�1

dz '(z)

✓ˆ
1

0

d✓

✓ + 1
e�z2✓⌧/N2

◆3

,

17



where, in the second equality, we use change of variable ⌧�s
s = ⇠. Since for z 6= 0

ˆ
1

0

d✓

✓ + 1
e�z2✓⌧/N2

=

ˆ
1

0

1

✓ + ⌧z2

N2

e�✓d✓



ˆ
1

1
e�✓d✓ +

ˆ 1

0

1

✓ + ⌧z2

N2

d✓ = e�1 + log

✓
1 +

N
2

⌧z2

◆

 e�1 + 2 logN + log(1 + 1/⌧) + log(1 + z
�2) (5.8)

and taking into account that
ˆ
R
'(z)(1 + log(1 + z

�2))3dz < 1,

we obtain that

sup
0<t⌧T

Var (YN,t,⌧ )  L
0

T
(logN)3

N3
uniformly for every N � e.

Case 2: t > ⌧ . In this case, according to (5.7), we have

Var(YN,t,⌧ ) 
t
2
⌧LT

⇡N3

ˆ
1

�1

dz '(z)

ˆ ⌧

0

ds

s

✓ˆ s

0

dr

r
e�z2(r�1

�s�1+r�1
�⌧�1)⌧2/(2N2)

◆2

+
t
2
⌧LT

⇡N3

ˆ
1

�1

dz '(z)

ˆ t

⌧

ds

s

✓ˆ ⌧

0

dr

r
e�z2(r�1

�s�1+r�1
�⌧�1)⌧2/(2N2)

◆2


L
0

T (logN)3

N3
+

t
2
⌧LT

⇡N3

ˆ
1

�1

dz '(z)

ˆ t

⌧

ds

s

✓ˆ ⌧

0

dr

r
e�z2(r�1

�s�1+r�1
�⌧�1)⌧2/(2N2)

◆2

(5.9)

where the second inequality holds by the result of Case 1. Moreover, a change of variable ⌧�r
r = ✓

yields that

ˆ
1

�1

dz '(z)

ˆ t

⌧

ds

s

✓ˆ ⌧

0

dr

r
e�z2(r�1

�s�1+r�1
�⌧�1)⌧2/(2N2)

◆2

=

ˆ
1

�1

dz '(z)

ˆ t

⌧

ds

s

✓ˆ
1

0

d✓

1 + ✓
e�z2(⌧�1

�s�1+2✓⌧�1)⌧2/(2N2)

◆2



ˆ
1

�1

dz '(z)

ˆ t

⌧

ds

s

✓ˆ
1

0

d✓

1 + ✓
e�z2✓⌧/N2

◆2

 log
t

⌧

ˆ
1

�1

dz '(z)
�
e�1 + 2 logN + log(1 + 1/⌧) + log(1 + z

�2)
�2

,

where the last inequality is due to (5.8). The proceeding together with (5.9) implies that

sup
0<⌧<tT

Var (YN,t,⌧ )  L
00

T
(logN)3

N3
uniformly for every N � e.

The proof is complete.

We now conclude this section with the following.
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Proof of Theorem 1.2. From Proposition (5.1) [with t = ⌧ ], we see that for all T > 0 there exists a
number KT > 0 such that

Var hDSN,t , vN,tiH  KT
(logN)3

N3
for all t 2 (0 , T ) and N � e.

By (5.2) and Proposition 2.2,

dTV

 
SN,tp

Var(SN,t)
, Z

!
 2

vuutVar

*
DSN,tp
Var(SN,t)

,
vN,tp

Var(SN,t)

+

H

 2
p

KT
(logN)3/2

N3/2Var(SN,t)
uniformly for all t 2 (0 , T ) and N � e.

Proposition 4.1 ensures that Var(SN,t) ⇠ 2t log(N)/N as N ! 1, which concludes the proof.

6 Proof of Theorem 1.3

In order to prove Theorem 1.3 we need to establish the weak convergence of the finite-dimensional
distributions, as well as tightness. The following addresses tightness.

Proposition 6.1 (Tightness). For every T > 0, k � 2, and � 2 (0 , 1/6), there exists a number

L = L(T, k , �) > 0 such that for all " 2 (0 , 1],

sup
0<tT

E
⇣
|SN,t+" � SN,t|

k
⌘
 L"

�k

✓
logN

N

◆k/2

uniformly for all N � e.

The proof of Proposition 6.1 hinges on the following lemma, which is a useful inequality when
t stays away from zero.

Lemma 6.2. For every T > 0, k � 2 and � > 0, there exists a number K = K(T, k, �) > 0 such

that

E
⇣
|SN,t+" � SN,t|

k
⌘


K"
k/2

(t ^ 1)k(1+�)/2

✓
logN

N

◆k/2

,

uniformly for all N � e, t 2 (0 , T ], and ✏ 2 (0, 1).

Proof. Thanks to (1.5) and (1.7), we may write the following: For all N, t > 0,

SN,t+" � SN,t =
1

N

ˆ N

0
[U(t+ " , x)� U(t , x)] dx

=

ˆ
(0,t)⇥R

U(s , y)A(s , y) ⌘(ds dy) +

ˆ
(t,t+")⇥R

U(s , y)B(s , y) ⌘(ds dy),

almost surely, where

A(s , y) :=
1

N

ˆ N

0


ps(t+"�s)/(t+")

✓
y �

sx

t+ "

◆
� ps(t�s)/t

⇣
y �

sx

t

⌘�
dx, and

B(s , y) :=
1

N

ˆ N

0
ps(t+"�s)/(t+")

✓
y �

sx

t+ "

◆
dx,
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and the dependence on the parameters N and " are subsumed for ease of notation. Thus,

kSN,t+" � SN,tkk  TA + TB, (6.1)

where

TA :=

�����

ˆ
(0,t)⇥R

U(s , y)A(s , y) ⌘(ds dy)

�����
k

and TB :=

�����

ˆ
(t,t+")⇥R

U(s , y)B(s , y) ⌘(ds dy)

�����
k

.

We will estimate TA and TB separately and in reverse order.
To estimate TB we appeal to the BDG inequality (with BDG constant ck) as follows:

T
2
B  ck

ˆ t+"

t
ds

ˆ
1

�1

dy kU(s , y)k2k|B(s , y)|
2
 ckc

2
k,T

ˆ t+"

t
ds

ˆ
1

�1

dy |B(s , y)|2

=
ckc

2
k,T

N2

ˆ t+"

t
ds

ˆ
1

�1

dy

ˆ N

0
dx1

ˆ N

0
dx2 ps(t+"�s)/(t+")

✓
y �

sx1

t+ "

◆
ps(t+"�s)/(t+")

✓
y �

sx2

t+ "

◆
,

where we used (2.4) to deduce the second inequality. Rearrange the integrals and compute the
dy-integral first to see from the semigroup property of the heat kernel that

T
2
B 

ckc
2
k,T

N2

ˆ t+"

t
ds

ˆ N

0
dx1

ˆ N

0
dx2 p2s(t+"�s)/(t+")

✓
s(x1 � x2)

t+ "

◆

=
ckc

2
k,T (t+ ")2

N2

ˆ t+"

t

ds

s2

ˆ sN/(t+")

0
dx1

ˆ sN/(t+")

0
dx2 p2s(t+"�s)/(t+")(x1 � x2),

after a change of variables. Since the dx2-integral is bounded above by one, it follows that

T
2
B 

ckc
2
k,T (t+ ")

N

ˆ t+"

t

ds

s
<

ckc
2
k,T (t+ ")

Nt
". (6.2)

The estimation of TA is more involved, though it starts in the same way as did the process of
bounding TB. Namely, we write, using the BDG inequality,

T
2
A  ck

ˆ t

0
ds

ˆ
1

�1

dy kU(s , y)k2k|A(s , y)|2

 ckc
2
k,T

ˆ t

0
ds

ˆ
1

�1

dy |A(s , y)|2 [by (2.4)]

=
ckc

2
k,T

2⇡

ˆ t

0
ds

ˆ
1

�1

d⇠
���[A(s)(⇠)

���
2
=

tckc
2
k,T

2⇡N

ˆ t

0

ds

s

ˆ
1

�1

d⇠
���[A(s)(t⇠/(Ns))

���
2
,

(6.3)

owing to Plancherel’s theorem and a change of variables. The correct change of variables is slightly
tricky to find. But once we have it set up, as we have done above, we note that

[A(s)(t⇠/(Ns)) =
1

N

ˆ N

0


exp

✓
i

tx⇠

N(t+ ")
�

t
2(t+ "� s)⇠2

2s(t+ ")N2

◆
� exp

✓
i
x⇠

N
�

t(t� s)⇠2

2sN2

◆�
dx

=

ˆ 1

0


exp

✓
i
ty⇠

t+ "
�

t
2(t+ "� s)⇠2

2s(t+ ")N2

◆
� exp

✓
iy⇠ �

t(t� s)⇠2

2sN2

◆�
dy

= J1 + J2,
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where

J1 :=

ˆ 1

0
eity⇠/(t+") dy ⇥


exp

✓
�
t
2(t+ "� s)⇠2

2s(t+ ")N2

◆
� exp

✓
�
t(t� s)⇠2

2sN2

◆�
, and

J2 :=

ˆ 1

0


exp

✓
i
ty⇠

t+ "

◆
� exp(iy⇠)

�
dy ⇥ exp

✓
�
t(t� s)⇠2

2sN2

◆
.

Since (a+ b)2  2a2 + 2b2 for all a, b 2 R, we see from (6.3) that

T
2
A 

2tckc2k,T
2⇡N

ˆ t

0

ds

s

ˆ
1

�1

d⇠ |J1|
2 +

2tckc2k,T
2⇡N

ˆ t

0

ds

s

ˆ
1

�1

d⇠ |J2|
2
. (6.4)

Define,

'(z) :=
1� cos z

z2
for all z 2 R \ {0}, (6.5)

and '(0) = 1/2 to preserve continuity. It is then easy to see that

|J1| =

s

2'

✓
t⇠

t+ "

◆ ����exp
✓
�
t
2(t+ "� s)⇠2

2s(t+ ")N2

◆
� exp

✓
�
t(t� s)⇠2

2sN2

◆����

=

s

2'

✓
t⇠

t+ "

◆
exp

✓
�
t(t� s)⇠2

2sN2

◆ ����1� exp

✓
�

"t⇠
2

2(t+ ")N2

◆����

Therefore,

ˆ t

0

ds

s

ˆ
1

�1

d⇠ |J1|
2
 2

ˆ t

0

ds

s

ˆ
1

�1

d⇠ '

✓
t⇠

t+ "

◆
exp

✓
�
t(t� s)⇠2

sN2

◆ ����1� exp

✓
�

"t⇠
2

2(t+ ")N2

◆����
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 C

ˆ t

0

ds

s

ˆ
1

�1
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1

⇠2
exp

✓
�
t(t� s)⇠2

sN2

◆ ����1� exp

✓
�

"t⇠
2

2(t+ ")N2

◆����
2


C

N

ˆ
1

1

dr

r

ˆ
1

�1

dz
1

z2
exp

�
�t(r � 1)z2

� ����1� exp

✓
�

"tz
2

2(t+ ")

◆����
2


C

N

ˆ
1

1

dr

r

ˆ
1

�1

dz
1

z2
exp

�
�t(r � 1)z2

� "tz
2

2(t+ ")


C"

2N

ˆ
1

1

dr

r

ˆ
1

�1

dz exp
�
�t(r � 1)z2

�

=
C"

N

ˆ
1

1

1

r
p

t(r � 1)
dr

=
C"

N
p
t
, (6.6)

where in the third step we have changed the variables z = ⇠/N and r = t/s, in the fourth step we
have applied the inequality (1� e

�x2
)2  1� e

�x2
 x

2, and the constant C is a generic constant
that may change values at each appearance .

Next, we estimate the same quantity but where J1 is replaced by J2. A few lines of computation
show that

ˆ 1

0


exp

✓
i
ty⇠

t+ "

◆
� exp(iy⇠)

�
dy =

ei⇠

i⇠


exp

✓
�i"⇠

t+ "

◆
� 1

�
+

"

it⇠


exp

✓
it⇠

t+ "

◆
� 1

�
,
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provided that ⇠ 6= 0. Because (a+ b)2  2a2 + 2b2 for all a, b 2 R,
����
ˆ 1

0


exp

✓
i
ty⇠

t+ "

◆
� exp(iy⇠)

�
dy

����
2


4

⇠2


1� cos

✓
"⇠

t+ "

◆�
+

4"2

t2⇠2


1� cos

✓
t⇠

t+ "

◆�


2

⇠2

✓
"⇠

t+ "

◆2

+
2"2

t2⇠2

✓
t⇠

t+ "

◆2

<
4"2

t2 + "2
,

since 1 � cos ✓ 
1
2✓

2 for all ✓ 2 R. Alternatively, we could have used the tautological bound,
1� cos ✓  2 in order to deduce

����
ˆ 1

0


exp

✓
i
ty⇠

t+ "

◆
� exp(iy⇠)

�
dy

����
2


8

⇠2
+

8"2

t2⇠2


8

⇠2

✓
t
2 + "

2

t2

◆
.

Combine the preceding two bounds in order to see that

����
ˆ 1

0


exp

✓
i
ty⇠

t+ "

◆
� exp(iy⇠)

�
dy

����
2

 8

⇢✓
"
2

t2 + "2

◆
^

✓
t
2 + "

2

t2⇠2

◆�
.

Consequently,
ˆ t

0

ds

s

ˆ
1

�1

d⇠ |J2|
2
 8

ˆ t

0

ds

s

ˆ
1

�1

d⇠ exp

✓
�
t(t� s)⇠2

sN2

◆✓
"
2

t2 + "2

◆
^

✓
t
2 + "

2

t2⇠2

◆�

=
8 logN

t

ˆ
1

�1

GN,t(⇠)

✓
"
2

t2 + "2

◆
^

✓
t
2 + "

2

t2⇠2

◆�
d⇠,

where GN,t is defined in (A.1) in the Appendix. Lemma A.1 of the Appendix now tells us that

ˆ t

0

ds

s

ˆ
1

�1

d⇠ |J2|
2

 56 log(N) log+(1/t)

ˆ
1

�1

✓
"
2

t2 + "2

◆
^

✓
t
2 + "

2

t2⇠2

◆�
log+(1/|⇠|) d⇠

= 56 log(N) log+(1/t)

✓
t
2 + "

2

t2

◆ˆ
1

�1

✓
"
2
t
2

(t2 + "2)2

◆
^

1

⇠2

�
log+(1/|⇠|) d⇠

<
560 log(N) log+(1/t)"

t
;

(6.7)

see Lemma A.3 in the Appendix. Combine (6.4) with (6.6) and (6.7) in order to find that

T
2
A  aT,k,�

logN

N

"

t1+�
,

where aT,k,� is a real number depends only on (T, k, �). We combine this bound with (6.2) and then
(6.1) to conclude the proof.

We are now ready for the following.

Proof of Proposition 6.1. We assume without incurring loss in generality that T > 1/e. Choose
and fix two arbitrary numbers ↵ 2 (0 , 1) and � 2 (0 , 1). On one hand, Lemma 6.2 implies that,
uniformly for all " 2 (0 , 1/e), N � e, and t 2 ("� , T ],

kSN,t+" � SN,tkk  M"
(1�2�(1+�))/2

r
logN

N
, (6.8)
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with M := K
1/k. [The condition T > 1/e is there merely to ensure that ("� , T ] 6= ?]. On the other

hand, Lemma 2.4 implies the existence of a real number M 0 = M
0(T, k ,↵) such that, uniformly for

all N � e and t 2 (0 , "� ],

kSN,t+" � SN,tkk  kSN,t+"kk + kSN,tkk  M
0
"
�↵/2

r
logN

N
. (6.9)

Choose � = (2 + ↵+ 2�)�1 to match the exponents of " in (6.8) and (6.9) and hence conclude the
asserted inequality of the proposition with L := M _M

0 and � := ↵/{2(2+↵+2�)}. To finish the
proof we note that � can be any number in (0 , 1/6) since ↵ 2 (0 , 1) and � > 0 are arbitrary.

Armed with Proposition 6.1, we conclude the section with the following.

Proof of Theorem 1.3. Choose and fix some T > 0. By Lemma 2.4 and Proposition 6.1, a stan-
dard application of Kolmogorov’s continuity theorem and the Arzelà-Ascoli theorem ensures that
{

p
N/ log(N)SN,•}N�e is a tight net of processes on C[0 , T ]. Therefore, it remains to prove that

the finite-dimensional distributions of the process t 7!
p
N/ logN SN,t converge to those of

p
2B;

see for example Billingsley [2].
Let us choose and fix some T > 0 and m � 1 points t1, . . . , tm 2 (0 , T ). Proposition 4.1 ensures

that, for every i, j = 1, . . . ,m,

Cov
�
SN,ti ,SN,tj

�
⇠ 2(ti ^ tj)

logN

N
as N ! 1. (6.10)

Therefore, there exists N0 > 0 such that

Var(SN,ti) � ti
logN

N
for every i = 1, . . . ,m and N > N0. (6.11)

Choose and fix an arbitrary N > N0, and consider the following random variables:

Fi :=
SN,tip

Var(SN,ti)
for i = 1, . . . ,m,

and define Ci,j := Cov(Fi , Fj) for every i, j = 1, . . . ,m. We will write F := (F1 , . . . , Fm), and
let G = (G1 , . . . , Gm) denote a centered Gaussian random vector with covariance matrix C =
(Ci,j)1i,jm.

Recall from (5.1) the random fields vN,t1 , . . . , vN,tm , and define rescaled random fields V1, . . . , Vm

as follows:
Vi :=

vN,tip
Var(SN,ti)

for i = 1, . . . ,m.

According to (5.2), Fi = �(Vi) for all i = 1, . . . ,m. Lemma 5.2 ensures that EhDFi , VjiH = Ci,j for
all i, j = 1, . . . ,m. Therefore, Lemma 2.3 ensures that

|Eh(F )� Eh(G)|  1
2kh

00
k1

vuut
mX

i,j=1

VarhDFi , VjiH,

for all h 2 C
2
b (Rm). Proposition 5.1 and (6.11) together assure us that

VarhDFi , VjiH =
VarhDSN,ti , vN,tj iH

Var(SN,ti)Var(SN,tj )


KT logN

N min1km tk
.
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whence
|Eh(F )� Eh(G)|  ckh

00
k1

p
logN/

p

N, (6.12)

for c = 1
2

p
KT /min1km tk.

Now we let N ! 1: Thanks to (6.10), Ci,j ! (ti ^ tj)/
p
titj whence G converges weakly

to (Bti/
p
ti)1im as N ! 1. Therefore, it follows from (6.12) that F converges weakly to

(Bti/
p
ti)1im as N ! 1. One more appeal to (6.10) shows that

s
N

logN

✓
SN,t1
p
2t1

, . . . ,
SN,tm
p
2tm

◆
d
�!

✓
Bt1
p
t1

, . . . ,
Btm
p
tm

◆
as N ! 1.

It follows from this fact that the finite-dimensional distributions of t 7!
p
N/ logN SN,t converge

to those of
p
2B as N ! 1. This verifies the remaining goal of this proof.

A Appendix

We include in this section a few technical results that have been used along the paper. In order to
describe the first result, define

GN,t(x) :=
t

logN

ˆ t

0
exp

✓
�
(t� s)t

s
·
x
2

N2

◆
ds

s
for all N, t > 0 and x 2 R \ {0}. (A.1)

Lemma A.1. For every t > 0 and x 2 R \ {0},

sup
N�e

GN,t(x)  7t log+(1/t) log+(1/|x|),

where we recall that log+(w) := log(e + w) for all w � 0. Moreover,

lim
N!1

GN,t(x) = 2t for every t > 0 and x 2 R. (A.2)

Proof. We change variables in order to see that

GN,t(x) =
t

logN

ˆ
1

0

e�s

s+ tx2

N2

ds =
t

logN
(AN �BN + CN ).

where

AN :=

ˆ 1

0

ds

s+ tx2

N2

= log

✓
N

2

tx2
+ 1

◆
, BN :=

ˆ 1

0

1� e�s

s+ tx2

N2

ds, CN :=

ˆ
1

1

e�s

s+ tx2

N2

ds.

This proves (A.2) because BN , CN 2 (0 , 1). Next, we observe that

N
2

tx2
+ 1  N

2
�
e + t

�1
� �

e + |x|
�2
�
,

whence
AN  2 logN + log+(1/t) + 2 log+(1/|x|)  5 log(N) log+(1/t) log+(1/|x|),

for all N � e, t > 0, and all non-zero x. This does the job since BN +CN  2, which is manifestly
less than or equal to 2 log+(1/t) log+(1/|x|).
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The following lemma provides a useful heat-kernel formula.

Lemma A.2. For all N, t > 0, we haveˆ N

0
dx1

ˆ N

0
dx2 pt(x1 � x2) =

N

⇡

ˆ
1

�1

'(z)e�tz2/(2N2) dz.

where '(z) was defined in (6.5).

Proof. Plancherel’s theorem implies thatˆ N

0
dx1

ˆ N

0
dx2 pt(x1 � x2) =

1

2⇡

ˆ
1

�1

|\1[0,N ](y)|
2e�ty2/2 dy

=
N

2

2⇡

ˆ
1

�1

|[1[0,1](Ny)|2e�ty2/2 dy.

A change of variables [z = Ny] implies the lemma, since |[1[0,1](z)|2 = 2'(z) for all z 2 R.

Finally, we mention the following simple inequality.

Lemma A.3. For every " 2 (0 , 1),ˆ
1

�1

✓
" ^

1

z2

◆
log+(1/|z|) dz < 10

p
".

Proof. Let J(") denote the integral in question. Because " < 1 and log(2e)  2,

J(") = 4

ˆ
1

1/e

✓
" ^

1

z2

◆
dz + 2"

ˆ 1/e

0
log(1/z) dz < 4"

ˆ
1

1/e

✓
1 ^

1

"z2

◆
dz + 2",

since z 7! log(1/z) defines a probability density function on (0 , 1) and 0 < " < 1. Change variables
to see that

J(") < 4
p
"

ˆ
1

p
"/e

✓
1 ^

1

r2

◆
dr + 2" = 8

p
"+ 2

✓
1�

2

e

◆
",

which readily implies the result since " <
p
".

Lemma A.4. Let cT,k be the constant defined in (2.4) and set CT := ⇡
1/42�1/2

cT,2 . Then,

sup
x2R

kU(t , x)� 1k2  CT t
1/4

for all t 2 (0 , T ].

Proof. Owing to (1.5), E[U(t , x)] = 1 for all t 2 (0 , T ] and x 2 R, and

Var[U(t , x)] =

ˆ t

0
ds

ˆ
1

�1

dy
���ps(t�s)/t

⇣
y �

s

t
x

⌘���
2
E
�
|U(s , y)|2

�

 c
2
T,2

ˆ t

0
ds

ˆ
1

�1

dy
���ps(t�s)/t

⇣
y �

s

t
x

⌘���
2

[see (1.3) and (2.4)]

= c
2
T,2

ˆ t

0
p2s(t�s)/t(0)ds = c

2
T,2

p
⇡t/4,

thanks to the semigroup property of the heat kernel and a few computations. This completes the
proof.
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