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Optimization is at the heart of machine learning, statistics, and many applied scientific disciplines. It also has a
long history in physics, ranging from the minimal action principle to finding ground states of disordered systems
such as spin glasses. Proximal algorithms form a class of methods that are broadly applicable and are particularly
well-suited to nonsmooth, constrained, large-scale, and distributed optimization problems. There are essentially
five proximal algorithms currently known, each proposed in seminal work: Forward-backward splitting, Tseng
splitting, Douglas-Rachford, alternating direction method of multipliers, and the more recent Davis-Yin. These
methods sit on a higher level of abstraction compared to gradient-based ones, with deep roots in nonlinear
functional analysis. In this paper we show that all of these methods are actually different discretizations of a
single differential equation, namely, the simple gradient flow which dates back to Cauchy (1847). An important
aspect behind many of the success stories in machine learning relies on “accelerating” the convergence of first-
order methods. However, accelerated methods are notoriously difficult to analyze, counterintuitive, and without
an underlying guiding principle. We show that similar discretization schemes applied to Newton’s equation with
an additional dissipative force, which we refer to as accelerated gradient flow, allow us to obtain accelerated
variants of all these proximal algorithms—the majority of which are new although some recover known cases
in the literature. Furthermore, we extend these methods to stochastic settings, allowing us to make connections
with Langevin and Fokker-Planck equations. Similar ideas apply to gradient descent, heavy ball, and Nesterov’s
method which are simpler. Our results therefore provide a unified framework from which several important
optimization methods are nothing but simulations of classical dissipative systems.
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I. INTRODUCTION

The simplest algorithm to solve a smooth optimization
problem,

min
x∈Rn

ϕ(x), (1)

dates back to Cauchy [1]. It is the well-known gradient de-
scent method, xk+1 = xk − h∇ϕ(xk ), where h > 0 is the step
size and k = 0, 1 . . . is the iteration number. Clearly, gradient
descent corresponds to an explicit Euler discretization of the
gradient flow:

ẋ = −∇ϕ(x), (2)

where x ≡ x(t ). To minimize nonsmooth and composite func-
tions, a series of milestone papers introduced algorithms
based on proximal operators, which do not require explicit
gradient computations. For instance, the Douglas-Rachford
algorithm [2] was proposed in the 1950s to solve the heat
equation but nowadays is a standard optimization method
with important applications. Closely related is the alternating
direction method of multipliers (ADMM), introduced inde-
pendently by Glowinsky and Marrocco [3] and Gabay and
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Mercier [4] in the 1970s—ADMM has been gaining sig-
nificant interest in machine learning during the last decade
[5]. Another method—that plays an important role in signal
processing—is the forward-backward splitting introduced by
Lions and Mercier [6] also in the 1970s. These were the
only known proximal-based methods for almost 30 years,
until Tseng [7] proposed a slight modification of the latter
known as forward-backward-forward splitting. Such meth-
ods are designed to minimize composite functions ϕ(x) =
ϕ1(x) + ϕ2(x), where both ϕ1,ϕ2 are allowed to be nons-
mooth. Finding an algorithm that minimizes ϕ(x) = ϕ1(x) +
ϕ2(x) + ϕ3(x), where only ϕ3 is assumed to be smooth, and
which cannot be reduced to any of the previously known
methods, was a longstanding problem that has been recently
solved by Davis and Yin [8]. These five algorithms com-
pose the list of fundamental proximal algorithms currently
known—many other methods are variations of these basic
themes. Such proximal methods can be derived from operator
splitting techniques [9,10], which have origins in the works of
Browder [11–13] and Minty [14], although nowadays form an
entire field of research in convex analysis, optimization, and
nonlinear functional analysis [15,16].

Perhaps surprisingly, we provide a simple yet unified per-
spective on these distinct methods: All of them are different
discretizations of the simple gradient flow (2). More precisely,
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they are first order integrators that preserve the critical points
of this ODE.

“Acceleration strategies” in the context of optimization
have proved to be powerful and are behind many of the
empirical success stories in machine learning, such as in train-
ing neural networks. The basis of accelerated gradient-based
methods can be traced back to Polyak [17] and Nesterov
[18]—both can be seen as accelerated versions of gradient
descent. Although neither are intuitive in their precise design,
it has recently been shown that both can be obtained as ex-
plicit discretizations of a second-order ODE [19–21]. This
continuous-time perspective on optimization methods is quite
recent and has helped demystify the “magic” of acceleration
techniques. However, the construction and analysis of accel-
erated methods is still obscure, without an underlying guiding
principle—e.g., it is not clear how to “accelerate” a given
algorithm. Accelerated proximal-based methods are even less
known, and can play an important role since they may en-
joy improved stability and be applicable in more general
situations. Moreover, from a mathematical standpoint, such
methods have interesting connections with nonlinear func-
tional analysis. As we will show, several accelerated variants
of each of the above mentioned proximal algorithms can be
obtained as different discretizations of

ẍ + η(t )ẋ = −∇ϕ(x), (3)

with a suitable choice of damping function η(t ) > 0. The
resulting methods—most of which are new in the literature—
are first-order integrators that preserve critical points of this
ODE. Therefore, the above classical dissipative system has
a fundamental importance to optimization. Note that this is
nothing but Newton’s equation with an additional dissipative
force, −η(t )ẋ. When η(t ) = η is constant and ϕ = ω2x2/2 it
reduces to the Caldirola-Kanai oscillator [22,23], which is the
classical limit of the seminal Caldeira-Legget model [24].

Our approach makes connections between optimization
and splitting methods for ODEs [25]. Interestingly, ADMM
and its accelerated variants arise as a rebalanced splitting,
which is a recent technique designed to preserve critical points
[26]—the so-called dual variable of ADMM, originally in-
troduced as a Lagrange multiplier, is precisely the balance
coefficient of Ref. [26]. The other methods we consider also
preserve critical points, but for different reasons, which in turn
sheds light on the connections between ODE splitting and
operator splitting ideas from convex analysis.

Stochastic optimization is an important ingredient in the
machine learning toolbox to reduce the computational bur-
den in training high-dimensional models over large datasets.
By introducing stochastic gradients or stochastic proximal
operators into these methods, instead of Eqs. (2) and (3),
their continuum limit become an overdamped or underdamped
Langevin equation, respectively. The probability distribution
of such stochastic processes is described by a Fokker-Planck
equation. Therefore, there is a close connection between de-
terministic optimization and dissipative classical mechanics,
as well as stochastic optimization and nonequilibrium statisti-
cal mechanics.

This paper is organized as follows. In Sec. II, we introduce
basic concepts related to proximal operators—or mono-
tone operators and their regularizations more generally—and

illustrate how they naturally arise from implicit discretiza-
tions of ODEs. In Sec. III, we show relevant details about
the dynamics of the gradient flows Eqs. (2) and (3). In
Sec. IV, we introduce a slight variation of the balanced
and rebalanced splitting schemes [26] to then show how—
accelerated—ADMM arises from this approach. In Sec. V, we
derive extensions of Davis-Yin, which is known to generalize
both forward-backward and Douglas-Rachford. In Sec. VI,
we introduce accelerated extensions of Tseng’s splitting to
complete the list. The focus of this paper is on discretiza-
tions of Eq. (3) since this allows us to construct entire new
families of accelerated methods that generalize the existing
ones. Moreover, the known methods that are related to Eq. (2)
follow as particular cases—more precisely, through a high
friction limit. At this stage, we briefly summarize and interpret
these results from a physics perspective in Sec. VII. Then, in
Sec. VIII, we shift gears and show how one can extend—quite
easily—these proximal-based methods to stochastic optimiza-
tion settings. As a consequence, the connections with the
continuous-time formalism are promoted to SDEs of the
Langevin type, whose probability distribution are governed
by Fokker-Planck equations. For completeness, in the Ap-
pendix we show that stochastic gradient descent, heavy ball,
and Nesterov fit our general framework—such gradient-based
methods find widespread applications in machine learning but
they are actually simpler. We provide numerical experiments
in Sec. IX that support our theoretical conclusions, and also
illustrate the faster convergence attained by the accelerated
methods. Our final remarks and potential implications of our
analysis are presented in Sec. X.

II. RESOLVENT, YOSIDA REGULARIZATION,
AND PROXIMAL OPERATOR

We start by introducing fundamental concepts from nonlin-
ear functional analysis [15,16] since this is the formalism in
which proximal algorithms are generally discussed. We avoid
excessive formalism in the paper, but here we give a roadmap
to further abstract our analysis.

The resolvent of an operator A can be defined as

JλA ≡ (I + λA)−1, (4)

where λ is the so-called spectral parameter. Even though λ can
be complex, we will only need λ ∈ R. Another useful concept
is the Yosida regularization of A:

Aλ ≡ λ−1(I − JλA). (5)

Let H be a Hilbert space with inner product 〈·|·〉 : H ×
H → C. A multivalued map A : H ⇒ H , with domA ≡ {x ∈
H | Ax (= ∅}, is said to be monotone if and only if

〈Ay − Ax|y − x〉 ! 0 for all x, y ∈ dom A. (6)

A monotone operator is said to be maximal if no enlargement
of its graph is possible. It turns out that every monotone oper-
ator admits a maximal extension, thus we henceforth assume
that all operators are maximal monotone. What matters for
us is that in this case the resolvent is single-valued, i.e., JλA :
H → H is a function. Moreover, x% is a zero of A, namely,
x% ∈ zer(A) ≡ {x ∈ H | 0 ∈ Ax}, if and only if JλA(x%) = x%.
Thus, zeros of A are fixed points of the resolvent, JλA, and vice
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versa. Consequently, the Yosida regularization is also single-
valued, and x% is a zero of A if and only if Aλx% = 0, so that
zeros of A are also zeros of Aλ and vice versa. The advantage
of working with the Yosida regularization is that it allows us to
deal with multivalued operators by considering single-valued
operators. Indeed, it can be shown that Aλx → A0x as λ ↓ 0,
where A0x is the element of minimal norm in the set Ax.

These ideas can be made more intuitive by considering a
function ϕ : Rn → R, which for the moment we assume to
be differentiable. The function ϕ is convex if and only if its
gradient, A = ∇ϕ, is (maximal) monotone. In this case, the
resolvent (4) becomes the so-called proximal operator:1

Jλ∂ϕ (x) ≡ proxλϕ (x)

≡ arg min
y

(
ϕ(y) + 1

2λ
‖y − x‖2

)
. (7)

Then (5) becomes (∇ϕ)λ(x) = λ−1[x − proxλϕ (x)], which is
the gradient of the Moreau envelope ϕλ, i.e., (∇ϕ)λ(x) =
∇ϕλ(x), where

ϕλ(x) ≡ min
y

(
ϕ(y) + 1

2λ
‖y − x‖2

)
. (8)

When ϕ is nonsmooth its gradient ∇ϕ is ill-defined. How-
ever, there exists a generalization which is the notion of
subdifferential set; it is defined as ∂ϕ(x) ≡ {g ∈ Rn | ϕ(y) −
ϕ(x) ! 〈g|y − x〉 for all y ∈ Rn}. If ϕ is differentiable, then
∂ϕ(x) = {∇ϕ(x)}. We thus see that even though ϕ may not
be differentiable, its Moreau envelope always is, and we can
thus treat the problem with standard calculus on ϕλ. We have
limλ↓0 ∇ϕλ(x) ∈ ∂φ(x), and this limit is the vector of minimal
norm in the subdifferential set ∂ϕ(x).

More generally, our results in this paper show that all
the previously mentioned algorithms correspond to discretiza-
tions of the differential inclusion [16],

ẋ ∈ −Ax, (9)

for a monotone operator A : H ⇒ H that is composite, A =
A1 + A2 + A3. Similarly, the accelerated variants of these al-
gorithms are related to the second-order differential inclusion,

ẍ + η(t )ẋ ∈ −Ax. (10)

However, dealing with differential inclusions, i.e., nonsmooth
dynamical systems, involve several technicalities. A simple
way to avoid the issue is to focus on their Yosida regulariza-
tions, namely,

ẋ = −Aµx (11)

and

ẍ + η(t )ẋ = −Aµx, (12)

respectively, which are well-posed ODEs. (Note that x(t ) de-
pends on µ > 0, which we omit in the notation.) At the end

1This can be easily seen as follows. The solution y of Eq. (7)
obeys ∇ϕ(y) + (1/λ)(y − x) = 0, i.e., (I + λ∇ϕ)y = x, which from
Eq. (4) gives y = Jλ∇ϕx. We replaced ∇ϕ ,→ ∂ϕ in Eq. (7) anticipat-
ing generalization to nonsmooth cases.

of the day one can take the limit µ ↓ 0 to recover results
for Eqs. (9) and (10) [16]. In the context of nonsmooth op-
timization this means considering the gradient of the Moreau
envelope, ∇ϕµ, instead of the subdifferential, ∂ϕ—this point
will be further clarified below.

As a warmup, and also to introduce the basic building
blocks of our approach, let us show a simple example on how
to derive a proximal algorithm from (9), or equivalently (11).
Consider an implicit discretization of Eq. (9):

xk+1 − xk

h
+ O(h) ∈ −Axk+1. (13)

Using the resolvent (4) and neglecting O(h2) terms, we can
solve this recurrence as

xk+1 = JhAxk . (14)

This algorithm finds zeros of the monotone operator A. For a
nonsmooth function ϕ, we set A = ∂ϕ to obtain

xk+1 = proxhϕ (xk ). (15)

This is the well-known proximal gradient method, extensively
studied in convex analysis and optimization literatures. Now,
consider instead an analogous discretization of the regularized
ODE (11):

xk+1 − xk

h
+ O(h) = −Aµxk+1. (16)

From the resolvent (4) we get

xk+1 = JhAµ
xk . (17)

Employing the useful formula [15]

JλAµ
= (λ + µ)−1(µI + λJ(λ+µ)A), (18)

we conclude that JλAµ
→ JλA as µ ↓ 0. Thus, Eq. (17) be-

comes precisely Eq. (14) in the limit µ ↓ 0. In the case of a
nonsmooth function ϕ, the RHS of (11) is simply −∇ϕµ, i.e.,
the gradient of Moreau envelope, whereas the RHS of (9) is
−∂ϕ, i.e., the subdifferential set. Hence, we could have con-
sidered a discretization of the gradient flow (2) with ϕ ,→ ϕµ

and then take the limit µ ↓ 0. Even simpler, we could have
actually ignored nonsmoothness issues altogether and simply
discretized Eq. (2), replacing ∇ϕ ,→ ∂ϕ where appropriate—
this results in updates in terms of the proximal operator (7) and
the procedure can be formally justified by the above steps.

Next, let us consider a similar discretization approach but
for the second-order ODE (12). The differential operator on
the LHS can be discretized as

xk+1 − 2xk + xk−1

h2
+ ηk

xk − xk−1

h
+ O(h). (19)

Defining

x̂k ≡ xk + γk (xk − xk−1), γk ≡ (1 − hηk ), (20)

where ηk ≡ η(tk ) is the discretized damping coefficient, as-
sumed to be only a function of time, we obtain

ẍ(tk ) + η(tk )ẋ(tk ) = xk+1 − x̂k

h2
+ O(h). (21)

This relation will prove extremely convenient in pretty much
all discretizations considered in this paper. Note that it allows
us to discretize the second-order system (12) in very similar
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way as the first-order system (11)—essentially, it suffices to
replace xk ,→ x̂k and h ,→ h2. Thus, an implicit discretization
of Eq. (12) yields (xk+1 − x̂k )/h2 = −Aµxk+1, which can be
readily solved with the resolvent to obtain

xk+1 = Jh2Aµ
x̂k . (22)

Taking µ ↓ 0 yields xk+1 = Jh2Ax̂k . For a nonsmooth function
ϕ, we set A = ∂ϕ and replace the resolvent by the proximal
operator, hence obtaining

xk+1 = proxhϕ (x̂k ), (23a)

x̂k+1 = xk+1 + γk+1(xk+1 − xk ). (23b)

Note that in this last passage we redefined the step size, h2 ,→
h, and this should be also reflected in (20). The above algo-
rithm corresponds to an “accelerated version” of the proximal
gradient method (15)—in the next section we will show that
this second-order system may indeed have faster convergence
compared to the first-order gradient flow. Note also that the
nonaccelerated method (15) can be recovered from (23) by
setting γk = 0. Physically, this corresponds to a “large friction
limit” as we will explain in more detail shortly.

Already at this stage we have several new methods encoded
in Eq. (23) due to the possibility of choosing different damp-
ing functions η(t ). Reasonable choices (that will be justified
in the next section) are a constant damping,

η(t ) = η ⇒ γk = 1 −
√

h η, (24)

which is originally related to Polyak’s heavy ball method [17],
and a decaying damping,

η(t ) = r/t (r ! 3) ⇒ γk = k/(k + r), (25)

where usually r = 3 and this is originally related to Nesterov’s
method [18,19].2 However, other choices are possible and we
allow an arbitrary η(t ) in our discretizations.

A. Large friction limit

We noted that setting γk = 0 into Eq. (23) yields the prox-
imal gradient method (15), which is a discretization of the
first-order gradient flow (2). We also said that this corresponds
to a “large friction limit” of the second-order gradient flow (3).
Since this idea will reappear later on, we provide more details.

First, from a discrete-time viewpoint, with γk = 0 we have
x̂k = xk . Dropping k for simplicity, note that the damping
becomes η = (1 − γ )/h → 1/h as γ → 0, i.e., η → ∞ as
h → 0. Therefore, this corresponds indeed to an “overdamped
limit.” Moreover, replacing η → 1/h into Eq. (21) yields

hẍ + ẋ = xk+1 − xk

h
+ O(h2). (26)

Note that ẍ becomes negligible for sufficiently small step
sizes, i.e., the above reduces to ẋ = (xk+1 − xk )/h + O(h),

2The particular choice of γk in Eq. (25) is to maintain consistency
with the optimization literature but γk = k/(k + r) ≈ 1 − r/k = 1 −
hηk for large k which can equally be used.

which is precisely a discretization of the LHS of Eq. (2)—or
of Eq. (11) more generally.

Second, from a continuous-time viewpoint, note that
Eq. (12) is in natural units where the mass m = 1. Restoring
the mass we have

mẍ + mηẋ = −Aµx. (27)

The overdamped limit can be obtained with η → 1/m and
m → 0, in which case we recover Eq. (11). It is in this
sense that the gradient flow is a large friction limit—or a
zero-mass limit—of the accelerated gradient flow. Intuitively,
a very light particle has negligible acceleration due a large
frictional force, and the first-order system (11) approximates
the dynamics of the second-order system (12) when η is suf-
ficiently large. This same idea often appears in the theory of
stochastic processes where a second-order Langevin equation
is well-approximated by a first-order Langevin equation when
the “fluid” representing the heat bath is highly viscous.

B. A note on nonsmoothness

Above, we discretized the regularized ODEs (11) and (12)
and then took the limit µ ↓ 0 to reduce the fixed point itera-
tions to the case of monotone operators. By choosing A = ∂ϕ
these algorithms are appropriate for minimizing a nonsmooth
function ϕ, through the proximal operator (7). Although we
were careful in taking “nonsmoothness” into account, apart
from this µ limit, the discretization procedure is exactly the
same as if we had considered Eqs. (2) and (3) for which ϕ is
assumed to be differentiable. In other words, everything works
fine if we replace ∇ϕ ,→ ∂ϕ where appropriate—this point
was also noted in the discussion after Eq. (18). Moreover, even
when we split the operators, as we will do in the following, it
is still possible to introduce some parameter µ that justifies
the procedure. Therefore, to avoid unnecessary formalism,
hereafter we assume that ϕ is differentiable for all practical
purposes— one should keep in mind that this assumption can
be removed by introducing Yosida regularizations or Moreau
envelopes and taking the µ ↓ 0 limit.

III. CONTINUUM DYNAMICS

Here we provide some details about the dynamics of the
gradient flows (2) and (3). Note that the first-order system (2)
yields the simplest dynamics that follows a descent direction
on ϕ, thus it is naturally suited for optimization purposes. The
second-order system (3) corresponds to its accelerated version
in a classical mechanical sense, and also follows a descent
direction but can oscillate. This is an actual dissipative system
with Lagrangian

L = 1
2 eθ (t )‖ẋ‖2 − eθ (t )ϕ(x), (28)

where θ̇ (t ) ≡ η(t ), or equivalently with the explicit time-
dependent Hamiltonian

H = 1
2 e−θ (t )‖p‖2 + eθ (t )ϕ(x). (29)

The physical energy is given by E = 1
2‖ẋ‖2 + ϕ(x) and

dissipates at a rate Ė = −η(t )‖ẋ‖2 " 0, i.e., it decreases
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monotonically with time, thus forcing trajectories to approach
the ground state ϕ% ≡ minx ϕ(x). In fact, E is a Lyapunov
function, enabling us to conclude that the system is stable3 on
a minimizer x% ≡ arg minxϕ(x). This holds for any bounded
damping η(t ) > 0. In addition, if η(t ) = η is constant, then
the system is asymptotically stable4 around x%.

As explained in Sec. II A, the gradient flow (2) corresponds
to a large friction limit of the accelerated gradient flow (3). It
is straightforward to show that the gradient flow is asymptoti-
cally stable on x%.5 Thus, its trajectories converge to x%, and so
do trajectories of (3) with a constant damping. However, when
η(t ) is a decreasing function of time, such as in Eq. (25), we
can only conclude stability in general. This means that trajec-
tories can oscillate around x% without ever converging. This
is intuitive since η(t ) becomes very small for large t and the
system becomes almost conservative—we refer to Ref. [27]
for a more thorough stability analysis of these systems.

Besides stability, it is possible to estimate how fast trajec-
tories approach a minimum of ϕ. This can also be done via a
Lyapunov analysis, under certain convexity assumptions on ϕ.
A function ϕ is said to be convex if its gradient ∇ϕ is maximal
monotone, i.e., it obeys the inequality (6). A function ϕ is
said to be strongly convex with parameter µ > 0 if it obeys
a stronger condition: 〈∇ϕ(y) − ∇ϕ(x)|y − x〉 ! µ‖y − x‖2.
Let us mention some known rates of convergence which fol-
low from our results in Ref. [28]. For the gradient flow (2) we
have

ϕ(x(t )) − ϕ% = O(t−1) (convex), (30a)

‖x(t ) − x%‖2 = O(e−µt ) (strongly convex). (30b)

For the accelerated gradient flow (3) with constant damp-
ing, η(t ) = η = const., we have

ϕ(x(t )) − ϕ% = O(t−1) (convex), (31a)

‖x(t ) − x%‖2 = O(e−√
µt ) (strongly convex). (31b)

For the accelerated gradient flow (3) with decaying damp-
ing, η(t ) = r/t where r ! 3, we have

ϕ[x(t )] − ϕ% = O(t−2) (convex), (32a)

‖x(t ) − x%‖2 = O(t−2r/3) (strongly convex). (32b)

We thus see that the accelerated gradient flow (3) may con-
verge faster than the gradient flow (2) in some situations.
For instance, the bound (31b) has a

√
· improvement in the

exponential compared to (30b), while (32a) is an order of
magnitude faster compared to (30a). Besides these rates, the
stability of the system also plays a role. However, one should
note that these rates are upper bounds, and thus may not
always reflect the actual behavior of the system which may
be faster for a particular ϕ.

3Stability means that the trajectories stay nearby x% for all times.
4This is stronger, i.e., x(t ) → x% as t → ∞. This result can be

derived from LaSalle’s invariance principle.
5Indeed, consider the Lyapunov function E ≡ ϕ(x) − ϕ%. We have

E ! 0 and Ė = −‖∇ϕ‖2 " 0, and note that such inequalities are
strict off a critical point.
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t
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1.0

x(t)
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Eq. (33) Eq. (34) Eq. (35)

(a) (b)

FIG. 1. Solutions of Eqs. (2) and (3) with ϕ = (1/2)ω2x2. For
constant damping (24) we choose η slightly below the critical value,
and for decaying damping (25) we choose r = 3. (a) ω = 1.5.
(b) ω = 0.05.

When ϕ is quadratic we can solve Eqs. (2) and (3) exactly
for some choices of damping η(t ). Recall that this captures
the behavior close to an isolated minimum: ϕ(x) − ϕ(x%) ≈
1
2 (x − x%)T ∇2ϕ(x%)(x − x%). We can change coordinates to a
basis where the Hessian ∇2ϕ(x%) is diagonal so that the com-
ponents of the ODE become decoupled. It is thus sufficient to
consider the one-dimensional case ϕ(x) = ω2x2/2. Thus, the
gradient flow (2) has solution

x(t ) = x0e−ω2t , (33)

which agrees with the rate (30b). The accelerated gradient
flow (3) with constant damping has solution

x(t ) = x0e−ηt/2[cosh (ξ t/2) + (η/ξ ) sinh(ξ t/2)], (34)

where ξ ≡
√

η2 − 4ω2 (we assumed ẋ0 = 0). This solution
shows an exponential decay that agrees with the bound (31b).
Similarly, the accelerated gradient flow (3) with a decaying
damping has solution

x(t ) = x02νω−ν,(ν + 1)t−νJν (ωt ), ν ≡ r − 1
2

, (35)

where Jν is the Bessel function of the first kind (again, ẋ0 =
0). A series expansion of Jν for large t reveals that Jν (t ) ∼
1/

√
t , which implies x(t ) ∼ t−r/2. This is a power law, faster

than the general upper bound (32b), however slower than the
exponential decay in Eq. (34).

We illustrate the above solutions in Fig. 1. Note that when
ω > 1 the gradient flow tends to converge faster to equi-
librium, however, when ω < 1 there is a significant faster
convergence of the accelerated gradient flow in both cases.6

In particular, the oscillations can be better controlled with a
constant damping.

The continuous-time dynamics is often easier to analyze
compared to the potentially complicated recurrence relations
of a discrete-time algorithm. Thus, knowing the behavior of
systems (2) and (3) provide useful insights to understand and
design “good” optimization methods. We expect that rea-
sonable discretizations of these systems will reproduce their
behavior, at least for sufficiently small choices of the step size.

6Most challenging optimization problems in machine learning tend
to have ω < 1 since this comes from a poor condition number of the
objective function.
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FIG. 2. (a) Splitting approach in the flow composition (38). In
one time step the error between the continuous and discrete tra-
jectory is ‖x(tk+1) − xk+1‖ = O(h2). (b) The (re)balanced splitting
introduces ck which forces the discrete-time evolution to converge to
a critical point of the ODE: -̂k

h(x0) = -t (x0 ) → x∞ as k, t → ∞.

More precisely, it is a general result in numerical analysis [29]
that if ∇ϕ is Lipschitz continuous with constant L, a numerical
integrator of order p ! 1 has global error ek ≡ x(tk ) − xk
such that ‖ek‖ " Ct hp, where tk = kh and Ct = C(eLt − 1)
for some constant C > 0. Thus, given a fixed simulation time
t , one can control ek by making the step size h sufficiently
small. For our purposes, the dissipative system presumably
converges to a minimum of ϕ fast enough, thus we expect that
the simulation time will not be excessively large which helps
controlling Ct —this is a better scenario compared to long-
time simulations of conservative systems which are common,
e.g., in molecular dynamics and astrophysics. Moreover, this
estimate on Ct is general and pessimistic; a particular method
may have a much smaller Ct . In the following sections we will
show that several well-known—but also new—optimization
methods are actually discretizations of the gradient flow (2)
or the accelerated gradient flow (3).

IV. ACCELERATED EXTENSIONS OF ADMM

A. Balanced and rebalanced splitting

Before making connections with ADMM we need to in-
troduce some ideas about splitting methods for ODEs. Thus,
consider the dynamical system

ẋ = A(x), A ≡ A1 + A2, (36)

where A1, A2 represent smooth and single-valued vector
fields. Suppose this is an intractable problem, i.e., the structure
of ϕ makes the problem not amenable to a numerical proce-
dure. We denote the flow of Eq. (36) by -t . The idea is to split
the vector field A such that each individual system

ẋ = A1(x), ẋ = A2(x), (37)

is integrable or has a feasible numerical approximation. We
denote their respective flows by -1,t and -2,t . For a step size
h > 0, it can be shown [29] that the simplest composition

-̂h = -2,h ◦ -1,h (38)

yields a first-order approximation, namely, the local error is
‖-h(x) − -̂h(x)‖ = O(h2)—see Fig. 2(a) for an illustration.
However, in general, splittings such as (37) do not preserve
critical points of the original ODE. The proposal of Ref. [26]

is to introduce a balance coefficient, c = c(t ), and replace
Eq. (37) by

ẋ = A1(x) + c, ẋ = A2(x) − c. (39)

By appropriately choosing c we can then preserve critical
points. To see this, first suppose that x∞ is a critical point of
Eq. (36), i.e., A1(x∞) + A2(x∞) = 0. If c∞ obeys

c∞ = 1
2 (A2(x∞) − A1(x∞)), (40)

then x∞ is also a critical point of both individual Eqs. (39).
Conversely, suppose x∞ is a critical point of both individual
Eqs. (39). We then have

c∞ = A2(x∞) = −A1(x∞) = 1
2 (A2(x∞) − A1(x∞)), (41)

implying that x∞ is also a critical point of the original sys-
tem (36). This can be implemented with ck+1 = 1

2 (A2(xk ) −
A1(xk )), together with suitable discretizations of Eqs. (39)—
see Fig. 2(b) for an illustration. However, this approach
requires explicit computation of the vector fields Ai’s. In op-
timization this means computing gradients, which may not
be available. To address this issue we consider a related ap-
proach.

The rebalanced splitting [26] is particularly well-suited for
the implicit discretizations we have in mind. We thus inte-
grate ẋ = A1(x) + ck over the interval [tk, tk + h], with initial
condition x(tk ) = xk , to obtain the intermediate point xk+1/2.
Then we integrate ẋ = A2(x) − ck over the same interval, with
initial condition x(tk ) = xk+1/2, to obtain the endpoint xk+1.
Note that ck is kept fixed during this procedure. Thus,

xk+1/2 = xk +
∫ tk+h

tk
(A1[x(t )] + ck )dt, (42a)

xk+1 = xk+1/2 +
∫ tk+h

tk
(A2[x(t )] − ck )dt . (42b)

In light of Eq. (41), two reasonable ways of computing ck are
given by the average of either 1

2 (A2 − A1) or A2. We choose
the latter—as we will see this allow us to derive ADMM—
which with Eq. (42) yields

ck+1 = 1
h

∫ tk+h

tk
A2[x(t )]dt

= ck + h−1(xk+1 − xk+1/2). (43)

In contrast to the previous case, we now need not compute Ai
explicitly. Our derivation above is slightly different than the
one in Ref. [26].

B. Deriving extensions of ADMM

We are now in a position to show how generalizations of
ADMM emerge from such an approach. We focus on problem

min
x∈Rn

ϕ(x), ϕ = ϕ1 + ϕ2 + ϕ3, (44)

and moreover on discretizations of the accelerated gradient
flow (3) since discretizations of the gradient flow (2) can be
recovered as particular cases; recall the discussion in Sec. II A.
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Algorithm 1: Family of accelerated extensions of ADMM for
solving the problem (44).

Choose step size h and damping function γk

Initialize x0, x̂0 and c0 = 0
for k = 0, 1, . . . do

xk+1/2 = proxhϕ1
(x̂k − h∇ϕ3(x̂k ) + hck )

xk+1 = proxhϕ2
(xk+1/2 − hck )

ck+1 = ck + h−1(xk+1 − xk+1/2)
x̂k+1 = xk+1 + γk+1(xk+1 − xk )

end

With a balance coefficient c = c(t ) we write Eq. (3) as

ẋ = p, (45a)

ṗ = −η(t )p − ∇ϕ1(x) − ∇ϕ3(x)︸ ︷︷ ︸
A1

+c −∇ϕ2(x)︸ ︷︷ ︸
A2

−c. (45b)

Splitting as indicated, and further combining the resulting
equations, we obtain two independent ODEs:

ẍ + η(t )ẋ = −∇ϕ1(x) − ∇ϕ3(x) + c, (46)

ẍ = −∇ϕ2(x) − c. (47)

Using Eq. (21), and redefining the step size h2 ,→ h as dis-
cussed in Eq. (23), a semi-implicit discretization of Eq. (46)
is

xk+1/2 − x̂k

h
= −∇ϕ1(xk+1/2) − ∇ϕ3(x̂k ) + ck . (48)

This can be solved with the resolvent (4) to obtain

xk+1/2 = Jh∂ϕ1 (x̂k − h∇ϕ3(x̂k ) + hck ). (49)

We now discretize Eq. (47) as

x̃k+1 − 2xk+1/2 + x̂k

h
= −∇ϕ2(xk+1) − ck, (50)

where

x̃k+1 ≡ xk+1 + (xk+1/2 − x̂k ). (51)

Note that x̃k+1 is related to xk+1 via the “momentum” term
(xk+1/2 − x̂k ) based on the first splitting.7 With this and the
resolvent we obtain

xk+1 = Jh∂ϕ2 (xk+1/2 − hck ). (52)

The balance coefficient follows readily from Eq. (43):8

ck+1 = ck + h−1(xk+1 − xk+1/2). (53)

7x̃k+1 is slightly further away from xk+1 which makes the algorithm
“look ahead” and implicitly introduces dependency on the curvature
of ϕ2. Although the introduction of x̃k+1 may seem artificial, it will
be justified below when we compute the error in approximating the
continuous trajectory.

8To justify that h2 ,→ h does not change this, note that with A2 =
−∇ϕ2 in Eq. (43) an implicit discretization corresponds to approx-
imating the integral by its upper limit, thus ck+1 = 1

h

∫ tk+h
tk

Bdt ≈
−∇ϕ2(xk+1). Using Eqs. (50) and (51) yields Eq. (53).

Combining the above steps results into a family of accelerated
extensions of ADMM summarized in Algorithm 1.

Let us stress some important aspects of Algorithm 1. The
standard ADMM [3–5] corresponds to the particular case
where ϕ3 = 0 and no acceleration is used, i.e., γk = 0. Thus,
Algorithm 1 not only generalizes ADMM to handle problems
in the form of Eq. (44) but also includes acceleration with
arbitrary damping functions η(t ). The so-called dual vector
in ADMM, originally obtained as a Lagrange multiplier [5],
is here represented by the balance coefficient ck and thus
acquires a new meaning: its role is to preserve critical points
of the ODE.

When decaying damping (25) is chosen and ϕ3 = 0, Algo-
rithm 1 is similar to the so-called “fast ADMM” [30]. They
differ in that the latter also “accelerates” the dual variable ck .
Connections between fast ADMM and ODEs was considered
recently by us in Refs. [27,28] and also corresponds to Eq. (3),
however the discretization is not a rebalanced splitting within
the above framework.

In light of the discussion in Sec. II, it is clear that Algorithm
1 can be generalized to account for monotone operators by the
replacements proxhϕ1

→ JhA1 and proxhϕ2
→ JhA2 .

Finally, although we focused on the accelerated gradient
flow (3), analogous procedure applies to the gradient flow (2)
and leads to Algorithm 1 with γk = 0.9

C. Order of accuracy

Next, we show that the above discretization is justified
since it is a first-order approximation to the continuous tra-
jectory, i.e., ‖-h(x) − -̂h(x)‖ = O(h2). From the definition
of the resolvent (4) we have that y = Jh∇ϕ (x) if and only if
y = x − h∇ϕ(y), thus

y = x − h∇ϕ(x − h∇ϕ(y)) = x − h∇ϕ(x) + O(h2). (54)

This relation implies the following approximations, valid up
to O(h2), for the updates in Algorithm 1:

xk+1/2 ≈ x̂k − h∇ϕ3(x̂k ) + hck − h∇ϕ1(x̂k ), (55)

xk+1 ≈ x̂k − h∇ϕ(x̂k ). (56)

Recall Eq. (20), namely, γk = 1 −
√

hη(tk ), since we rede-
fined h2 ,→ h. Thus,

x̂k = xk + (1 − η(tk )
√

h)
√

hpk, (57)

where

pk ≡ xk − xk−1√
h

. (58)

From Eqs. (57) and (56), and now restoring the original step
size (h ,→ h2), we conclude that

pk+1 ≈ pk − hη(tk )pk − h∇ϕ(xk ), (59)

xk+1 = xk + hpk+1 ≈ xk + hpk . (60)

9We have ẋ = −∇(ϕ1 + ϕ3)(x) + c and ẋ = −∇ϕ2(x) − c. For the
former, xk+1/2 − xk = −h∇ϕ1(xk+1/2) − h∇ϕ3(xk ) + hck , whereas
for latter, xk+1 − xk+1/2 = −h∇ϕ2(xk+1) − hck . Using the resolvent
and Eq. (43) yield Algorithm 1 with γk = 0.
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Finally, the evolution of Eq. (3) in one time step gives

p(t + h) = p(t ) + hṗ(t ) + O(h2)

≈ p(t ) − hη(t )p(t ) − h∇ϕ[x(t )], (61)

x(t + h) = x(t ) + hẋ(t ) + O(h2)

≈ x(t ) + hp(t ). (62)

Comparing with Eqs. (59) and (60) implies that the algo-
rithm’s state simulates the continuous trajectory up to an
error O(h2), therefore the discretization is first-order accurate.
Similar conclusion holds for the nonaccelerated algorithm in
relation to the gradient flow (2).

We mention a subtlety when ϕ is nonsmooth, or when
considering monotone operators more generally. A crucial
step in the above derivation was the Taylor approximation of
the resolvent (54). For a maximal monotone operator A, in
the most general case only a slightly weaker approximation is
available [15, Remark 23.47]:

JhA = I − hA0 + O(h), (63)

where A0x = limµ↓0 Aµx (see Sec. II). The previous argu-
ments still hold true, however, due to Eq. (63), and assuming
that we can expand A0[x + O(h)] = A0(x) + O(h), the local
error is now ′(h) instead of O(h2). It is important to note
that this is a consequence of the nonsmoothness of ϕ, or the
multivaluedness of A, and not of the discretization procedure.
This comment applies to all cases considered in this paper.

V. ACCELERATED EXTENSIONS OF DAVIS-YIN

A. Discretization

We now introduce accelerated extensions of Davis-Yin [8].
This time we split the system (3) without a balance coefficient,
namely, we choose vector fields

A1(x) = −η(t )ẋ − ∇ϕ1(x), (64)

A2(x) = −∇ϕ2(x) − ∇ϕ3(x). (65)

Instead of Eqs. (46) and (47) we now obtain

ẍ + η(t )ẋ = −∇ϕ1(x), (66)

ẍ = −∇ϕ2(x) − ∇ϕ3(x). (67)

Using Eq. (21) (and redefining h2 ,→ h), an implicit dis-
cretization of Eq. (66) is

xk+1/4 − x̂k

h
= −∇ϕ1(xk+1/4), (68)

which with the resolvent (4) gives

xk+1/4 ≡ -1,h(x̂k ) = Jh∂ϕ1 (x̂k ). (69)

Next, to “inject momentum” in the direction of ∇ϕ1, we define
the “translation operator”

Th(z) ≡ z − h∇ϕ1(xk+1/4). (70)

The next point is thus obtained as

xk+1/2 ≡ Th(xk+1/4) = 2xk+1/4 − x̂k . (71)

Algorithm 2: Family of accelerated extensions of Davis-Yin
(DY) for problem (44).

Choose step size h and damping function γk

Initialize x0 and x̂0

for k = 0, 1, . . . do
xk+1/4 = proxhϕ1

(x̂k )
xk+1/2 = 2xk+1/4 − x̂k

xk+3/4 = proxhϕ2
(xk+1/2 − h∇ϕ3(xk+1/4))

xk+1 = x̂k + xk+3/4 − xk+1/4

x̂k+1 = xk+1 + γk+1(xk+1 − xk )
end

A semi-implicit discretization of Eq. (67) is

xk+3/4 − 2xk+1/4 + x̂k

h
= −∇ϕ2(xk+3/4) − ∇ϕ3(xk+1/4),

(72)
which can again be solved with the resolvent (4) to obtain

xk+3/4 ≡ -2,h(x̂k )

= Jh∂ϕ2 (xk+1/2 − h∇ϕ3(xk+1/4)). (73)

Finally, applying the inverse T −1
h (z) ≡ z + h∇ϕ1(xk+1/4) and

using Eq. (68) we obtain

xk+1 ≡ T −1
h (xk+3/4) = xk+3/4 − (xk+1/4 − x̂k ). (74)

We collect the above steps into Algorithm 2. The original
Davis-Yin method [8] is recovered by setting γk = 0. Such
a case corresponds to an overdamped limit—recall the dis-
cussion of Sec. II A—which is indeed a discretization of the
gradient flow (2), as can also be easily verified by repeating
the above procedure to this simpler case.

Algorithm 2 is equivalent to the fixed point iteration xk+1 =
-̂h(x̂k ) with

-̂h ≡ T −1
h ◦ -2,h ◦ Th ◦ -1,h, (75)

where these individual maps are defined in Eqs. (69), (70),
and (73). Thus, the translation operator Th is actually a “pre-
processor map,” which is a common technique in numerical
analysis [29]. The discretization associated to Davis-Yin can
be summarized diagrammatically:

x̂k xk+1/4 xk+1/2

xk+1 xk+3/4

Φ1,h Th

Φ2,h

T −1
h

(76)

B. Order of accuracy

Using the expansion (54) we can approximate the updates
of Algorithm 2 up to O(h2):

xk+1/4 ≈ x̂k − h∇ϕ1(x̂k ), (77a)

xk+1/2 ≈ x̂k − 2h∇ϕ1(x̂k ), (77b)

xk+3/4 ≈ x̂k − 2h∇ϕ(x̂k ), (77c)

xk+1 ≈ x̂k − h∇ϕ(x̂k ). (77d)
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But Eq. (77d) is exactly the same as Eq. (56), thus the re-
maining steps of the argument follow as before, implying that
Algorithm 2 is also a first-order integrator to the accelerated
gradient flow Eq. (3). The same holds true for standard Davis-
Yin (γk = 0) in relation to the gradient flow (2).

C. Preserving critical points

Since Algorithm 2 arises from a splitting that is not bal-
anced, it is not a priori obvious if critical points of the
underlying ODE are preserved. We now show that this is
indeed the case. We can write the operator (75) as

-̂h = I + Jh∂ϕ2 ◦
(
2Jh∂ϕ1 − I − h∇ϕ3 ◦ Jh∂ϕ1

)
− Jh∂ϕ1 . (78)

Assuming the algorithm converges, we must have a fixed
point equation x∞ = -̂h(x∞). We thus need to show that this
equation generates critical points of the ODE. To this end, let
x% be such a critical point, i.e.,

(∇ϕ1 + ∇ϕ2 + ∇ϕ3)(x%) = 0. (79)

This is equivalent to (I + h∇ϕ2)(x%) = (I − h∇ϕ1 −
h∇ϕ3)(x%), and with the aid of the resolvent (4) it can
be written as

x% = Jh∂ϕ2 ◦ (I − h∇ϕ1 − h∇ϕ3)(x%). (80)

Using the identity

(2Jh∂ϕ − I ) ◦ (I + h∇ϕ) = I − h∇ϕ, (81)

we thus have

x% = Jh∂ϕ2 ◦
[(

2Jh∂ϕ1 − I
)
◦ (I + h∇ϕ1) − h∇ϕ3

]
(x%). (82)

Define x∞ ≡ (I + h∇ϕ1)(x%), i.e., x% = Jh∂ϕ1 (x∞). The above
equation then yields

Jh∂ϕ1 (x∞) = Jh∂ϕ2 ◦
[
2Jh∂ϕ1 − I − h∇ϕ3 ◦ Jh∂ϕ1

]
(x∞), (83)

which is equivalent to x∞ = -̂h(x∞) according to Eq. (78).
Therefore, critical points of Eq. (79) yield fixed points of the
operator (78) and vice versa. This shows that Algorithm 2
preserves critical points of the underlying ODE.

D. Accelerated extensions of Douglas-Rachford

Douglas-Rachford (DR) [2,6] is recovered from Algorithm
2 in the particular case where γk = 0 and ϕ3 = 0. Therefore,
in the case where ϕ3 = 0 but γk (= 0, Algorithm 2 contains
accelerated extensions of Douglas-Rachford—the case with
decaying damping was considered in Ref. [31]. From the
previous arguments, we know that such methods are dis-
cretizations of the accelerated gradient flow (3), whereas the
standard Douglas-Rachford is a discretization of the gradi-
ent flow (2). Moreover, such discretizations preserve critical
points and are first-order integrators.

E. Accelerated extensions of forward-backward

The forward-backward method [6] is recovered from Al-
gorithm 2 when γk = 0 and ϕ1 = 0. Thus, when ϕ1 = 0 but
γk (= 0, Algorithm 2 reduces to

xk+1 = proxhϕ2
(x̂k − h∇ϕ3(x̂k )),

x̂k+1 = xk+1 + γk+1(xk+1 − xk ). (84)

Algorithm 3: Family of accelerated extensions of Tseng’s
method.

Choose step size h and damping function γk

Initialize x0 and x̂0

for k = 0, 1, . . . do
xk+1/2 = proxhϕ2

(x̂k − h∇ϕ3(x̂k ))
xk+1 = xk+1/2 − h(∇ϕ3(xk+1/2) − ∇ϕ3(x̂k ))
x̂k+1 = xk+1 + γk+1(xk+1 − xk )

end

The decaying damping case (25) was considered in Ref. [32].
From an ODE perspective, the above discretization is not a
splitting method but rather a direct semi-implicit discretiza-
tion of Eq. (3). Anyhow, our previous arguments show that
such accelerated variants of forward-backward are first-order
integrators of this ODE and preserve critical points—the same
holds true for the standard forward-backward (γk = 0) in re-
lation to the gradient flow (2).

VI. ACCELERATED EXTENSIONS OF TSENG’S
SPLITTING

The last proximal method remaining to be considered is
the forward-backward-forward or Tseng’s splitting [7]. Thus,
consider Eq. (3) with ϕ1 = 0 and written as

ṗ = −η(t )p − ∇ϕ2(x) − ∇ϕ3(x)︸ ︷︷ ︸
A1

+∇ϕ3(x) − ∇ϕ3(x)︸ ︷︷ ︸
A2

.

(85)

Note that A2 = 0, however in a discretization there might be
numerical inaccuracies which introduces a kind of “perturba-
tion” on top of the forward-backward method, which arises
from the first component of this system. Splitting as indicated
yields

ẍ + η(t )ẋ = −∇ϕ2(x) − ∇ϕ3(x), (86)

ẍ = ∇ϕ3(x) − ∇ϕ3(x). (87)

A semi-implicit discretization of the first equation yields

xk+1/2 = Jh∂ϕ2 [x̂k − h∇ϕ3(x̂k )], (88)

which is the forward-backward method (84). Eq. (87)
can be discretized as x̃k+1 − 2xk+1/2 + x̂k = h∇ϕ3(x̂k ) −
h∇ϕ3(xk+1/2), where x̃k+1 is given by (51). Thus,

xk+1 = xk+1/2 − h(∇ϕ3(xk+1/2) − ∇ϕ3(x̂k )). (89)

Therefore, we derived Algorithm 3.
The original Tseng’s splitting is recovered with γk = 0, in

which case it is a discretization of the gradient flow (2). Due to
Eq. (87) we expect to have a “contraction” on the acceleration
which indicates that Algorithm 3 may be slower than (84) (this
was actually observed in our experiments and this method
tends to be slower than forward-backward).

In a similar way as already done in Secs. IV and V, through
Taylor expansions it is straightforward to show that the above
discretization is first-order accurate.

We can also show that the above discretization preserves
critical points. Indeed, Algorithm 3 is equivalent to iterations
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optimization methods
gradient descent, proximal

gradient, forward-backward,
Tseng, ADMM, Douglas-
Rachford, Davis-Yin, . . .

Newton’s equation
with dissipation

ẍ + η(t)ẋ = −∇ϕ(x)

gradient flow

ẋ = −∇ϕ(x)

η → ∞

discretizationdiscretization

nonaccelerated accelerated

FIG. 3. Several well-known optimization methods arise as di-
cretizations of the gradient flow. Moreover, “accelerated extensions”
of these methods arise as discretizations of Newton’s equation with
a dissipative term; the gradient flow corresponds to a large friction
limit of the latter. Therefore, these optimization methods consist of
actual simulations of a classical dissipative physical system.

xk+1 = -̂h(x̂k ) with

-̂h = (I − h∇ϕ3) ◦ Jh∂ϕ2 ◦ (I − h∇ϕ3) + h∇ϕ3. (90)

Assuming the algorithm converges, x∞ = -̂h(x∞), i.e.,

(I − h∇ϕ3)(x∞) = (I − h∇ϕ3) ◦ Jh∂ϕ2 ◦ (I − h∇ϕ3)(x∞).
(91)

Moreover, assuming that h is sufficiently small so that the
inverse (I − h∇ϕ3)−1 exists, the above yields x∞ = Jh∂ϕ2 ◦
(I − h∇ϕ3)(x∞). By the definition of resolvent in Eq. (4) this
is equivalent to ∇(ϕ2 + ϕ3)(x∞) = 0. Thus, the iterates of this
algorithm generates critical points of the underlying ODE.

VII. A CLASSICAL VIEW ON DETERMINISTIC
OPTIMIZATION

At this stage, let us summarize and interpret the previous
results from a physics perspective. They can be summarized
by Fig. 3. Several well-known optimization methods—
including gradient- or proximal-based—are simply different
discretizations of the gradient flow. This includes gradient
descent (see the Appendix), forward-backward, Tseng’s split-
ting, ADMM, Douglas-Rachford, Davis-Yin, and potentially
many other methods. However, accelerated extensions of
these methods arise as discretizations of Newton’s equation
with a dissipative term. Besides the accelerated proximal
methods we introduced, we also have Nesterov and heavy
ball (see the Appendix and Ref. [21]), and potentially many
others as well. All these methods are provably first-order
integrators, i.e., they have a local error O(h2), and preserve
critical points of the associated ODE. In addition, let us men-
tion that we have recently generalized symplectic integrators
to general dissipative Hamiltonian systems [33], which may
offer a systematic approach to construct gradient-based opti-
mization methods. Therefore, all these optimization methods
can be seen as actual simulations of a classical dissipa-

tive system; when someone solves an optimization problem
by implementing one of these methods in a—presumably
classical—computer, there is a simulation of one classical sys-
tem, i.e., dissipative Newton’s equation, by another classical
system, i.e., the computer.

There are many interesting open questions even at this
classical level. For instance, given a potential ϕ : Rn → R
where certain properties of its landscape are known, is there
a lower bound on how fast a dissipative system can approach
the ground state? If so, which specific system would achieve
such rate of convergence? Given ϕ, what is the best way
to dissipate energy, i.e., the best damping η(t )? What is the
tradeoff between energy dissipation and stability? Answering
these type of questions would allow us to design “optimal”
optimization algorithms through suitable discretizations of
dissipative physical systems.

A dissipative Newtonian system is deterministic, and so are
the optimization methods obtained as its discretizations. Such
a deterministic approach is suited to convex problems which
have a unique global minimum, or to obtain local minima in
the neighborhood of the initial state. However, to escape poor
local minima in more complex landscapes, i.e., to solve more
challenging nonconvex problems, we need to introduce some
sort of perturbation or noise. Thus, in the next section, we will
generalize these methods to stochastic optimization settings.
This will allow us to make connections with Langevin and
Fokker-Planck equations which are ubiquitous in nonequilib-
rium statistical mechanics. It is worth noticing that such an
approach is in some sense more closely related to sampling
than to pure or deterministic optimization.

VIII. STOCHASTIC OPTIMIZATION

A. Stochastic gradient

One of the motivations behind stochastic optimization
is to lighten the computational burden in computing full
gradients over entire datasets, which is a bottleneck for high-
dimensional problems with large data. The basic idea dates
back to Robbins and Monro [34] and nowadays is widely
used in machine learning, especially in training neural net-
works. Consider replacing the deterministic problem (1) by
its stochastic counterpart

min
x∈Rn

Eω[.(x; ω)], (92)

where ω is a random variable from a sample space /. Specif-
ically, suppose we have training data {ω1, . . . ,ωN } so that
.i(x) ≡ .(x; ωi ) is a random variable. Numerically, the above
expectation is approximated by the empirical mean,

.(x) ≡ 1
N

N∑

i=1

.i(x), (93)

which is exact when N → ∞. Thus, instead of computing
∇.(x) = 1

N

∑N
i=1 ∇.i(x) that may not be feasible, at each

iteration of the algorithm we sample a “minibatch” B, of size
S, drawn uniformly at random—without replacement—from
an index set {1, . . . , N} and compute the so-called stochastic
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gradient

∇̃.(x) ≡ 1
S

∑

i∈B
∇.i(x). (94)

Note that when S = N this becomes the true gradient of the
empirical loss (93). Importantly, when the dataset is very
large, i.e., S 4 N and N → ∞, the central limit theorem
comes into play and

∇̃.(x) = ∇.(x) + ξ (x), (95)

where ξ (x) ∼ N (0,0(x)). Thus, the stochastic gradient is an
unbiased estimator of the true gradient of the empirical loss.
It is reasonable to assume that the covariance matrix takes the
form

0(x) = 1
S

C(x)CT (x) (96)

for some matrix C(x). We do not know the specific form of
C(x), which is data dependent; however, in principle, it can be
estimated. When N, S → ∞, but with the ratio S/N 4 1 kept
fixed, we have 0 → 0 and the stochastic gradient becomes
the gradient of the expectation in Eq. (92)—this can be seen
as a thermodynamic limit.

The stochastic gradient (94) can be implemented into the
previous algorithms quite easily. Since ϕ3 is the only function
assumed to be differentiable in problem (44), we consider

min
x∈Rn

ϕ1(x) + ϕ2(x) + Eω[ϕ3(x; ω)]. (97)

The entire family of Algorithms 1, 2, and 3 can be adapted to
such case by adding two simple steps at each iteration, i.e., in
the very first line of the “for” loop:

(1) Sample a minibatch B ⊂ {1, . . . , N} of size S uni-
formly at random and without replacement;

(2) Replace ∇ϕ3 → ∇̃ϕ3 in the subsequent updates.

B. Stochastic proximal operator

We can use similar ideas for proximal operators. As before,
in each iteration of the algorithm we sample a minibatch B and
define

.̃(x) ≡ 1
S

∑

i∈B
.i(x), .i ≡ .(x,ωi ). (98)

Thus, at each iteration, the algorithm has access to a random
function .̃(x) that presumably “mimics” Eω[.(x; ω)]. We re-
place the proximal operator of the empirical loss, proxh.(x),
by its stochastic counterpart

p̃roxh.(x) ≡ proxh.̃(x)

= arg min
y

(
.̃(y) − 1

2h
‖y − x‖2

)
.

(99)

Suppose we introduce stochasticity through ϕ2 in problem
(44), i.e.,

min
x∈Rn

ϕ1(x) + Eω[ϕ2(x; ω)] + ϕ3(x). (100)

Then the family of Algorithms 1, 2, and 3 are adapted by
adding the following instructions at each iteration:

(1) Sample a minibatch B ⊂ {1, . . . , S} of size S uni-
formly at random and without replacement;

(2) Replace proxhϕ2
→ p̃roxhϕ2

in the next updates.

Note that, also in this case, a similar relation to (95) holds.
Indeed, from Eq. (54) we get

p̃roxh.(x) ≈ x − h∇̃.(x)

= x − h∇.(x) + hξ (x)

≈ proxh.(x) + hξ (x). (101)

C. Langevin and Fokker-Planck equations

In the deterministic case we have the situation depicted
in Fig. 3. In light of the discussion above, introducing a
stochastic gradient or a stochastic proximal operator into these
methods is equivalent to introducing a random perturbation in
the associated ODEs. Thus, the only difference compared to
the deterministic case is that ∇ϕ(x) is replaced by a “stochas-
tic gradient,” ∇̃ϕ(x), during a time interval of one step size h.
As a consequence of Eqs. (95) and (101), we can describe this
process by a Brownian motion provided we account for the
correct power of the step size h when discretizing the noise
term. Therefore, we must choose

√
h
S

C(x)dW →
√

h
S

C(xk )
√

h εk ≡ hξ (xk ), (102)

where W is a standard Wiener process, εk ∼ N (0, I ), and ξ (x)
is the noise of the stochastic gradient (95), or the noise of the
stochastic proximal operator (101). The gradient flow (2) is
thus replaced by the overdamped Langevin equation

dx = −∇ϕ(x)dt +
√

h
S

C(x)dW. (103)

Similarly, the accelerated gradient flow (3) is replaced by the
underdamped Langevin equation

dx = pdt, (104a)

d p = −∇ϕ(x)dt − η(t )pdt +
√

h
S

C(x)dW. (104b)

There is one subtle point about these SDEs. They have
a multiplicative white noise which is often ambiguous, e.g.,
the Itô-Stratonovich dilemma. In our context, it should be
noted that the stochastic versions of the proximal methods
previously discussed can be obtained from these SDEs as long
as we discretize the noise consistently with the gradient of
either ∇ϕ3 or ∇ϕ2, i.e., the previous splitting schemes must be
followed carefully by discretizing C(x) appropriately so that
we can combine the noise into the stochastic gradient ∇̃ϕ3—in
the case of problem (97)—or the stochastic proximal operator
p̃roxhϕ2

—in the case of problem (100). Naturally, there is no
ambiguity if we assume additive noise, i.e., constant C, which
should already provide insights into these methods, at least
qualitatively.

We should also point out that stochastic versions of gra-
dient descent, Polyak’s heavy ball, and Nesterov—which
are gradient-based methods and widely used in machine
learning—also follow from this approach. In these cases the
discretization is explicit, i.e., one has a single gradient, no
splitting, and no proximal operators. Moreover, the noise term
is discretized in the Itô sense. For instance, stochastic gra-
dient descent is simply an Euler-Maruyama discretization of
Eq. (103). The stochastic version of Nesterov arises similarly
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FIG. 4. Different optimization algorithms arise from different discretizations (dashed lines) of the same physical system. The left column
of the diagram represents stochastic processes described by a Langevin equation, while the right column represents deterministic processes
from (dissipative) classical mechanics—the transition between these phases is controlled by the “temperature” T ∼ 1/S where S is the batch
size. The upper row of the diagram corresponds to an underdamped or accelerated regime, while the lower row corresponds to an overdamped
regime where acceleration is negligible—the transition is controlled by the damping coefficient η. Discretizations from each colored quadrant
yield (variants of) optimization algorithms in these “different phases.”

from Eq. (104) by using Eq. (21). For heavy ball, one should
use a “conformal symplectic integrator” for the deterministic
part of Eq. (104)—see Ref. [21]—and compose with an Itô
discretization of the noise; we provide these derivations in the
Appendix for completeness.

An interesting aspect of the above SDEs is that the ratio
h/S plays the role of an “effective temperature” T . This is
intuitive: small S means more noise in the stochastic gradient
approximation, which is equivalent to raising the temperature
of the “heat bath,” while increasing the step size simply ampli-
fies the noise. The limit S → ∞—which presumes N → ∞
and S/N 4 1—corresponds to removing the heat bath so that
the previous SDEs together with their discretizations become
deterministic. In similar vein as discussed in Sec. II A, the
Langevin Eq. (103) can be recovered from Eq. (104) in the
large friction limit. Therefore, the overall picture relating all
possible variants of these optimization methods is depicted
in Fig. 4; depending from which “quadrant” one chooses
to discretize, and depending which discretization scheme is
chosen, one can obtain an optimization algorithm with quali-
fiers such as “accelerated,” “stochastic,” or both, or none. The
underdamped Langevin (top left quadrant) is the most general
model that unifies all methods.

Now, we can readily write down the Fokker-Planck equa-
tion associated to the above SDEs, which describe the
probability density P(x, t )—or P(x, p, t ) for the accelerated
methods—of the stochastic process. From the Chapman-
Kolmogorov equation, through a standard derivation, we find
that in the case of Eq. (103) we have

∂P
∂t

= ∇ · [P∇ϕ(x)] + 2DP, (105)

where we defined the diffusion matrix and the “stochastic
Laplacian” as

D ≡ h
2S

C(x)C(x)T , 2DP ≡
∑

i, j

∂2

∂xi∂x j
(Di jP). (106)

Similarly, the Fokker-Planck equation associated to the under-
damped Langevin Eq. (104) is given by

∂P
∂t

= −∇x · (pP) + ∇p · [P∇ϕ(x) + η(t )pP] + 2DP.

(107)

However, here 2DP =
∑

i j Di j (x)∂pi∂p j P since the noise is
coupled only to the momenta.

In Eqs. (103) and (104) the Brownian motion arises from
a stochastic gradient or stochastic proximal operator approxi-
mation, hence the diffusion dependence on the minibatch and
step sizes. Alternatively, one can directly perturb the deter-
ministic optimization methods with a Gaussian noise. Both
situations are conceptually similar except that in the latter case
we have discretizations of the usual Langevin dynamics where
the Brownian motion is controlled independently by a heat
bath. The noise term of Eq. (104) is thus replaced by the stan-
dard

√
2DdW , which obeys Einstein’s fluctuation-dissipation

relation D = η kBT , assuming η = const. The overdamped
limit yields Eq. (103) with the same term but D = kBT . In
this setting, we have “sampling methods” where the dynamics
first relax to equilibrium and then perform random excursions
around a local minimum of ϕ. From this perspective, the
stochastic optimization methods are conceptually closer to a
sampling approach, however with smaller and limited control
over the noise.
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FIG. 5. Comparison of the discretization provided by Algorithms
1 and 2 versus the exact solution of the second-order gradient flow
(3) with Eq. (108). (a) Constant damping with η = 0.2. (b) Decaying
damping with r = 3. In both cases we chose step size h = 0.01.

IX. NUMERICAL EXPERIMENTS

A. Order of accuracy

We start by illustrating how accurate the previous opti-
mization methods approximate the gradient flow ODEs. We
consider Algorithms 1 and 2—recall that the latter reduces
to (accelerated versions of) Douglas-Rachford and forward-
backward as particular cases, so we are indirectly testing them
as well. We compare these methods with the exact solutions
(34) and (35). To this end, we choose a composite function:

ϕ = ϕ1 + ϕ2 + ϕ3, ϕi(x) = ω2
i x2/2, (108)

with ω1 = 1/2, ω2 = 1/3, and ω3 = 1/5—recall that there
is splitting of these individual functions in the algorithms.
As we can see in Fig. 5, these methods closely match the
exact solutions. Naturally, for large step sizes there might
be significant deviations. However, since these methods were
proven to be first-order integrators, they are accurate up to a
global error O(h). To verify this, for a given step size h we
compute

max
k∈[0,K]

|x(tk ) − xk| (109)

for K = tmax/h, where tmax is a fixed simulation time (we
choose tmax = 25 as in Fig. 5). We thus compare this maxi-
mum error over the entire history of the system against a range
of step sizes. Results for the constant damping case are shown
in Fig. 6—we performed the same simulation with decaying
damping but the plot is nearly indistinguishable from this one.

In these experiments there is no visible difference
between—accelerated—Davis-Yin and ADMM. This is also
explained by our theoretical results since both methods consist
of numerical integrators of the same order of accuracy and to
the same physical system.

B. Langevin approximation

We now wish to verify the Langevin approximation to the
stochastic variants of the optimization methods introduced in
the previous section. Consider thus a quadratic function as in
Eq. (108), again with ω1 = 1/2 and ω2 = 1/3, but now ϕ3 is
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FIG. 6. Maximum error (109) over a range of step sizes. We
consider constant damping under the setting of Fig. 5(a); similar
results hold for decaying damping.

generated randomly so as to obtain a problem in the form of
Eq. (97). We set

ϕ3(x) = 1
2N

N∑

i=1

θ2
i x2, (110)

with θi sampled uniformly from the interval [0,1]. We set
N = 1000 and ϕ3 is kept fixed in all simulations, i.e., we
have an “empirical mean” as in Eq. (93). To obtain stochas-
tic gradients (94), at each iteration of Algorithms 1 and 2
we sample a minibatch of θi’s of size S = 1—this is the
only source of stochasticity. For simplicity, we focus on
the nonaccelerated methods (γk = 0) which are modelled by
the overdamped Langevin Eq. (103). Since the function is
quadratic, if we assume a constant D into Eq. (105)—which
we know is not the case but it should already capture the
qualitative behavior—we then have an Ornstein-Uhlenbeck
process whose probability density, P(x, t |x0, t0 = 0), is given
by

√
λ

2πD(1 − e−2λt )
exp

{

−λ(x − x0e−λt )2

2D(1 − e−2λt )

}

, (111)

with λ = ω2
1 + ω2

2 + 1
2N

∑N
i θ2

i . In our simulations we choose
a step size h = 0.1, maximum time tmax = 10, and initial po-
sition x0 = 10. We consider 2000 Monte Carlo runs, with ϕ3
fixed so that only the minibatch changes in each simulation. In
Fig. 7 we show histograms for stochastic ADMM and Davis-
Yin for a single time instant (t = 2). We can see that both
methods give essentially the same results and agree with the
out-of-equilibrium Gaussian prediction (111). Similar results
hold for other time instants, as illustrated in Fig. 8. Here we
set D = 4 to obtain the shaded gray area—this value was esti-
mated with the simulation for t = 1, and we picked this time
since the variance was sufficiently large. We also indicate the
standard deviation of both methods (vertical red lines) which
actually vary with x, however everything is well-described by
Eq. (111), in agreement with the Langevin approximation.
We mention that simulations with other values of the batch
and step sizes were also considered, verifying similar results
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FIG. 7. Histogram of stochastic variants of Algorithms 1 and
2 (with γk = 0) for a quadratic problem which is modelled by an
Ornstein-Uhlenbeck process; we considered Eq. (110) with N =
1000, minibatch of size S = 1, step size h = 0.1, initial position
x0 = 10, and 2000 Monte Carlo runs. We show the simulation for
t = 2. The Gaussian fit has mean µ = 2.52 and variance σ = 0.35.
The theoretical prediction from Eq. (111) is µ = 2.51, in close
agreement.

but where the Gaussian approximation is more or less peaked
according to the the scaling h/S from Eq. (106).

C. Machine learning experiments

We now wish to verify whether the accelerated methods we
introduced are able to achieve faster convergence compared
to the base methods, which are the actual known methods
in the literature. According to the discussion in Sec. III, we
expect that this might be the case. We focus on two types of
damping: constant (24) and decaying (25). When nothing is
specified it means that no acceleration is used, i.e., γk = 0 in
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FIG. 8. Same simulation as in Fig. 7 for t ∈ [0, 10]. The dashed
line is the mean of the Ornstein-Uhlenbeck process Eq. (111), and
the shaded area indicates the standard deviation with D = 4. The
markers are the means of ADMM and Davis-Yin, and the vertical
red lines are standard deviations for both methods, which are very
close. The inset is exactly the same plot but with markers omitted
and the y axis on log scale.
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FIG. 9. Performance of several methods on problem (112). We
perform 10 Monte Carlo runs and show the mean and standard
deviation (error bars) of the error |ϕ(xk ) − ϕ%|/ϕ% versus the iteration
k. The accelerated variants have faster convergence.

Eq. (20), which yields the base methods. We consider ADMM
(Algorithm 1), DY (Algorithm 2), and Tseng (Algorithm
3). Forward-backward (FB) is Algorithm 2 with ϕ1 = 0 and
Douglas-Rachford (DR) with ϕ3 = 0.

Consider a LASSO regression problem that is of fundamen-
tal importance to machine learning and statistics:

min
x∈Rn

ϕ(x), ϕ(x) ≡ 1
2‖Ax − b‖2 + α‖x‖1, (112)

where A ∈ Rm×n is a given matrix, b ∈ Rm is a given signal,
and α > 0 is a coupling constant. Here ‖ · ‖1 denotes the
.1-norm, known to induce “sparsity”—this function is not dif-
ferentiable although its proximal operator has a well-known
closed form solution called soft thresholding. Following Ref.
[10, Sec. 7.1.3], we generate data by sampling Ai j ∼ N (0, 1)
and then normalize its columns to have unit norm. We sample
x• ∈ Rn ∼ N (0, 1) with sparsity level 95% (only 5% of its
entries are nonzero) and then add noise to obtain the observed
signal b = Ax• + e, where e ∼ N (0, 10−3). We choose di-
mensions m = 500 and n = 2500—the signal-to-noise ratio
is ≈250, and x• has 125 nonzero entries. We set α = 0.1αmax
where αmax = ‖AT b‖∞ is the largest value such that prob-
lem (112) admits a nontrivial solution—the factor 0.1 was
verified to yield good results after few trials. We evaluate the
algorithms by computing the relative error |ϕ(xk ) − ϕ%|/ϕ%

where ϕ% is the solution obtained with an independent and re-
liable solver—we use the default implementation of CVXPY
which is a standard optimization library in the Python lan-
guage. For all algorithms, we choose step size h = 0.08,
which is the largest choice such that all algorithms converge.
For decaying damping we choose r = 3 in Eq. (25)—this
choice is standard but we verified that other values did not
improve—and for constant damping we choose η = 0.5 in
Eq. (24)—this value was tuned with a rough grid search.
In Fig. 9 we report the mean and standard deviation (small
error bars) across 10 randomly generated instances of prob-
lem (112). The figure shows that the accelerated variants of
each method improve over the base method. In particular, the
constant damping variants are the fastest.

Next, we consider a matrix completion problem which is
also of fundamental importance in machine learning. The goal
is to reconstruct a low-rank matrix where we are only allowed
to observe a few of its entries. Moreover, we assume these
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entries are constrained to specified range. More precisely,
suppose that for a low-rank matrix M ∈ Rn×m we observe
entries (i, j) that are collected in a set /: let P/ : Rn×m →
Rn×m be the projection onto the support of observed entries.
The observable data matrix is thus Mobs = P/(M ), where
P/(M )i j = Mi j if (i, j) ∈ / and P/(M )i j = 0 otherwise. The
goal is to estimate the missing entries of M. This can be
done [35] by solving the convex problem minX ‖X‖∗ such
that P/(X ) = P/(M )—here ‖X‖∗ denotes the nuclear norm.
We consider a modification of this approach by imposing con-
straints a " Xi j " b for given constants a and b. Specifically,

min
X∈Rn×m

α‖X‖∗︸ ︷︷ ︸
ϕ1

+ I[a,b](X )︸ ︷︷ ︸
ϕ2

+ 1
2‖P/(X ) − P/(M )‖2

F︸ ︷︷ ︸
ϕ3

, (113)

where ‖ · ‖F denotes the Frobenius norm, I[a,b](X ) = 0 if a "
Xi j " b and ∞ otherwise. A higher α > 0 induces lower rank
solutions. This problem can be solved with Algorithms 1 and
2 with the proximal operator

proxh‖·‖∗
(X ) = UDh(0)V T , (114)

where X = U0V T is the singular value decomposition of
X and Dh(0)ii = max{0ii − h, 0} (see [35] for details). The
proximal operator of ϕ2 is just the projection

proxhI[a,b]
(X )i j = max{a, min(Xi j, b)}. (115)

Moreover, ∇ϕ3(X ) = P/(X − M ). In our methods we choose
the following stopping criterion:

‖Xk+1 − Xk‖F
/
‖Xk‖F " ε (116)

where ε is a small tolerance. To evaluate performance we
report the relative error

‖Xk − M‖F
/
‖M‖F . (117)

Following Ref. [35], we generate a low-rank matrix as M =
L1LT

2 where L1, L2 ∈ R100×5 with entries sampled i.i.d. from
N (3, 1). Thus, M has rank 5 (with probability one) and each
entry is positive with high probability (each test instance was
checked to have positive entries). We sample sn2 entries of M
uniformly, with a sampling ratio s = 0.4 (i.e., only 40% of the
matrix M is observed). We choose

a = min{(Mobs)i j} − σ/2,

b = max{(Mobs)i j} + σ/2,
(118)

where σ is the standard deviation of all entries of Mobs. In
terms of algorithm’s parameters, we choose a step size h = 1
for all methods, r = 3 for decaying damping (25), and η = 0.1
for constant damping (24)—the choice of step size is standard
for this type of problem with proximal methods, while the
choice of damping was obtained with a rough grid search
and provided good results. In the stopping criterion (116) we
choose ε = 10−10. In Fig. 10 we report the mean and standard
deviation (error bars) across 10 randomly generated instances
of problem (113) with α = 3.5; all methods terminate suc-
cessfully and recover a matrix with the correct rank (for this
choice of α) and a final relative error of ≈5 × 10−3. The
number of iterations of each method to achieve the tolerance
error are reported in Fig. 11.
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FIG. 10. Convergence of different algorithms on problem (113).
We perform 10 Monte Carlo runs and indicate the mean and standard
deviation (error bars) for the relative error (117) versus iteration k.
Note the improvement of the accelerated methods.

To obtain more accurate solutions we consider “annealing”
the parameter α. We wish to verify if the accelerated methods
can still speedup convergence in this scenario. We follow the
procedure of Ref. [36] which is as follows. Given a sequence
α1 > α2 > · · · > αL = ᾱ > 0 for some ᾱ, we run each algo-
rithm with α j and then use its solution as a warm start for the
solution to the next run with α j+1 (all other parameters are
kept fixed). Starting with α0 = δ‖Mobs‖F for some δ ∈ (0, 1)
we use the schedule

α j+1 = max{δα j, ᾱ} (119)

until reaching ᾱ. In our tests we choose δ = 0.25 and ᾱ =
10−8—these parameters were tuned with a few trials and
proved to yield good results. The remaining parameters are
the same as those used in creating Fig. 10, except that for the
constant damping variants we now use η = 0.5—in this exam-
ple, overdamping the system yield better results. We report the
convergence of different methods in Fig. 12. All methods suc-
cessfully reach the termination tolerance, as for the previous
test, but now achieve a better reconstruction accuracy. The to-
tal number of iterations in this case are shown in Fig. 13. Note
that, in this experiment, the decaying damping variants did
not improve over the nonaccelerated method, but the constant
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FIG. 11. Number of iterations needed to reach the termination
tolerance for the problem in Fig. 10.
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FIG. 12. Performance of different algorithms on problem (113)
with annealing on α.

damping variants still provided a significant improvement.
This has to do with the “hardness” of the problem, i.e., due
to the choice of rank and sampling ratio the objective function
should have high curvature and this is why the overdamped
case is faster (recall Fig. 1).

We now provide a real world example where the goal is to
reconstruct a partially observed image. We pick a gray scale
image, and by a singular value decomposition we truncate its
first 70 eigenvalues. The end result is the image shown in
Fig. 14(a), represented by a 974 × 1194 matrix with entries
between 0 and 1 and of low rank r = 70— this image will
not be used as input data but will serve as the ground truth M.
Then, we sample some of its entries uniformly with sampling
ratio s = 0.3, obtaining the image shown in Fig. 14(b)—this
is the input data Mobs and has only 30% of the original entries.
This problem is actually hard, e.g., the number of effective de-
grees of freedom is r(n + m − r)/(snm) ≈ 0.42 (see Ref. [35]
for details).

By solving the nonnegative matrix completion prob-
lem (113)—with a = 0 and b = 1—our goal is to recover M
from Mobs. As before, by running the previous algorithms a
single time we recover the image shown in Fig. 14(c). The
convergence rates of different methods are shown in Fig. 15—
in this case we choose α = 1, η = 0.1 for constant damping
(24), r = 3 for decaying damping (25), step size h = 1, and
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FIG. 13. Number of iterations needed to reach the termination
tolerance for the problem in Fig. 12.
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recovered (single) recovered (annealing)
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FIG. 14. (a) Image of 974 × 1194 pixels with rank r = 70.
(b) Observed data with sampling ratio s = 0.3. (c) Reconstructed
image by running the previous algorithms a single time. The relative
error is 8 × 10−2— see Fig. 15 for convergence rates. (d) Recon-
structed image with annealing. The relative error is 1.6 × 10−4—see
Fig. 16 for convergence rates. The correct rank is also recovered by
all methods.

tolerance ε = 10−6 in (116). Note how the accelerated vari-
ants achieve faster convergence. In this example, all methods
were able to recover the correct rank.

To obtain more accurate results, we again consider an-
nealing α according to Eq. (119)—we choose δ = 0.25 and
ᾱ = 10−4, which was the smallest feasible value we found
through several trials. An example of the recovered image—
with the accelerated variants since the base methods were
unable to achieve such a low error—is shown in Fig. 14(d).
By a closer inspection one can verify that Fig. 14(d) is ac-
tually better than Fig. 14(c), e.g., has a better resolution. The
convergence rates of each method under this setting are shown
in Fig. 16. In this example, both accelerated variants—i.e.,
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FIG. 15. Convergence rates of different methods when re-
constructing the observed image in Fig. 14(b) by solving the
optimization problem (113). An example of the recovered image is
in Fig. 14(c).
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FIG. 16. Convergence rates for the same problem as in Fig. 15
but with annealing on α. An example of the recovered image with
the accelerated methods is shown in Fig. 14(d)—note that the nonac-
celerated methods were unable to achieve such a small error.

constant and decaying damping—were able to significantly
improve over the base methods. Since this is a harder problem
compared to the case of Fig. 12, the objective function should
have less curvature thus underdamping the system yield better
results.

X. DISCUSSION AND OUTLOOK

The main goal of this paper was to provide a unified
perspective on standard optimization methods from a physics
standpoint; these results are summarized in Fig. 4. We showed
that there is indeed a unifying principle behind several well-
known, but also new, optimization methods. The most general
situation can be described by an underdamped Langevin equa-
tion, which accounts for accelerated methods in a stochastic
setting. The randomness comes from a stochastic approxima-
tion to gradients or proximal operators—this has similarities
to a Gaussian perturbation from a heat bath in standard
Langevin dynamics. When the minibatch is sufficiently large,
i.e., the “temperature” T ∼ S−1 → 0, we recover the deter-
ministic setting that is described by a dissipative form of
Newton’s equation. In addition, in the high friction limit η →
∞, the dynamics becomes nonaccelerated and thus described
by an overdamped Langevin or by a first-order gradient flow,
in the stochastic and deterministic regimes, respectively. All
the optimization methods we discussed arise as discretizations
of such systems. Thus, the fact that many seemingly unrelated
optimization algorithms consist of actual simulations of the
same dissipative physical system is quite surprising given that
most of these methods were originally introduced from a com-
pletely independent approach, and without any connection to
physics.

Using ODE splitting ideas and implicit discretizations, we
introduced several accelerated and stochastic generalizations
of the most important proximal algorithms in the literature.
Moreover, important gradient-based methods, such as gradi-
ent descent, heavy ball, and Nesterov, also fit our framework.
In these cases there is no splitting of the objective function
and they correspond to explicit discretizations (see the Ap-
pendix). Interestingly, the heavy ball method turns out to be
a structure-preserving (i.e., conformal symplectic) integrator,
while Nesterov introduces a spurious dissipation; see Ref. [21]

for details. Let us also point out that recently we generalized
symplectic integrators to general dissipative Hamiltonian sys-
tems [33], which may offer a systematic approach to construct
new gradient-based optimization methods based on simula-
tions of physical systems.

The results of this paper explain why some different op-
timization methods may actually behave quite similarly in
practice; the reason is because they are numerical integrators
to the same physical system and have the same order of accu-
racy. Therefore, at this level, it is not possible to distinguish
between different methods. However, the connections we es-
tablished allow one to perform backward error analysis, which
would result into modified ODEs that capture how a partic-
ular discretization perturbs the original system—we carried
out such an analysis in the case of heavy ball and Nesterov
[21]. It would thus be interesting to consider a similar anal-
ysis to some of the proximal methods previously discussed.
This would bring refined insights and a better understanding
of these methods. Another interesting question concerns the
choice of damping. We considered constant and decaying
damping since these cases are well-understood, e.g., we know
some convergence rates and exact solutions in the quadratic
case, as described in Sec. III. However, other choices are
possible and establishing the “optimal” damping strategy
for a given problem class is an interesting and nontrivial
problem.

It is worth mentioning that the connections between
stochastic optimization and Langevin dynamics offers an
interesting opportunity for bringing techniques from pertur-
bation theory and nonequilibrium statistical mechanics into
machine learning. For instance, any Fokker-Planck equation is
equivalent to a path integral through the Martin-Siggia-Rose
formalism [37]; this is a good starting point to apply field the-
ory techniques to such problems. However, the optimization
methods we considered may be applied to numerical problems
in physics. For instance, there is a close connection between
statistical mechanics and combinatorial optimization prob-
lems, such as finding ground states of spin glasses [38,39].
The proximal methods considered in this paper can be adapted
to tackle combinatorial problems such as max-cut and graph
partitioning, which are somehow equivalent. Notably, in the
context of machine learning and signal processing, proximal
methods have been applied to large-scale problems with great
success and proved to be quite efficient. It seems interesting
to consider whether such an approach can lead to scalable and
cheaper methods for disordered systems compared to standard
Monte Carlo approaches.

Finally, it is thus clear that standard optimization methods
are nothing but simulations of classical dissipative systems.
A natural question concerns extending this perspective to
the quantum level. Can we construct quantum optimization
algorithms by simulating dissipative quantum systems? Open
quantum systems is still a controversial topic, but they may of-
fer an alternative to quantum annealing, whose discretizations
may yield general quantum optimization algorithms. Thus, in
the same way that a classical computer is employed to im-
plement standard—i.e., classical—optimization algorithms,
or equivalently to simulate a classical dissipative systems,
perhaps a quantum computer may be necessary to simulate
a dissipative quantum system [40].
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APPENDIX: STOCHASTIC GRADIENT DESCENT,
HEAVY BALL, AND NESTEROV

Since stochastic versions of gradient descent, heavy ball,
and Nesterov’s method are widely used in machine learning,
here we show how these methods arise from the previous
physical systems.

Let us start with gradient descent. An explicit Euler-
Maruyama discretization of the Langevin Eq. (103) yields

xk+1 = xk − h∇ϕ(xk ) + h√
S

C(xk )εk

= xk − h∇̃ϕ(xk ), (A1)

where in the last passage we used Eqs. (102) and (95). This is
nothing but the well-known stochastic gradient descent (SGD)
method, widely used in training neural networks. When S →
∞, i.e., the stochastic gradient becomes the true gradient,
∇̃ϕ → ∇ϕ, we recover the deterministic gradient descent.

Let us now consider Nesterov’s method. Writing the under-
damped Langevin Eq. (104) as

ẍ = −∇ϕ(x) − η(t )ẋ +
√

h
S

C(x)Ẇ , (A2)

where this should be understood in the Itô sense, we discretize
it with the help of Eqs. (21), (102), and (95) to obtain

xk+1 − x̂k

h2
= −∇ϕ(x̂k ) + 1√

S
C(x̂k )εk

= −∇̃ϕ(x̂k ). (A3)

Recalling the definition Eq. (20), and redefining the step size
as usual, h2 ,→ h, we obtain

xk+1 = x̂k − h∇̃ϕ(x̂k ), (A4a)

x̂k+1 = xk+1 + γk+1(xk+1 − xk ). (A4b)

This is a stochastic version of Nesterov’s method—the origi-
nal method is recovered in the deterministic case where S →
∞.

Let us now consider Polyak’s heavy ball method. From a
physics point of view this case is more interesting since the
deterministic method was recently shown by us [33] to be a
conformal symplectic integrator. Consider the underdamped
Langevin Eq. (104). We write the second equation as

d
dt

(
eθ (t ) p

)
= −eθ (t )∇ϕ(x) + eθ (t )

√
h
S

C(x)Ẇ , (A5)

where θ̇ (t ) ≡ η(t ). Integrating this from tk to tk+1 = tk + h,
and keeping terms up to O(h2), we get

pk+1 = e−hηk pk − h∇ϕ(xk ) + h√
S

C(xk )εk

= e−hηk pk − h∇̃ϕ(xk ). (A6)

The first equation in Eq. (104) gives

xk+1 = xk + hpk+1 + O(h2). (A7)

Now we define the following variables:

µk ≡ e−hηk , vk ≡ hpk, h2 ,→ h. (A8)

This allows us to write Eqs. (A6) and (A7) as

vk+1 = µkvk − h∇̃ϕ(xk ), (A9a)

xk+1 = xk + vk+1. (A9b)

This is precisely a stochastic version of the heavy ball method,
often referred to as momentum method, or SGD with mo-
mentum, in deep learning literature. Usually this method is
used with a constant ηk = η, in which case µ ≡ e−hη ∈ (0, 1]
is known as the “momentum factor.” When S → ∞, i.e., the
stochastic gradient becomes the true gradient, the above re-
covers the deterministic heavy ball method. Therefore, once
again, the scheme of Fig. 4 also apply to gradient-based meth-
ods. Compared to the proximal methods previously discussed,
the difference in these cases is that the gradient is always
computed explicitly as opposed to implicitly.

[1] A. Cauchy, C. R. Hebd. Seances Acad. Sci. 25, 536 (1847).
[2] J. Douglas and H. H. Rachford, Trans. Am. Math. Soc. 82, 421

(1956).
[3] R. Glowinski and A. Marroco, ESAIM: Math. Model. Numer.

Anal. 9, 41 (1975).
[4] D. Gabay and B. Mercier, Comput. Math. Appl. 2, 17 (1976).
[5] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, Found.

Trends Mach. Learn. 3, 1 (2011).
[6] P. L. Lions and B. Mercier, SIAM J. Numer. Anal. 16, 964

(1979).
[7] P. Tseng, SIAM J. Control Optim. 38, 431 (2000).

[8] D. Davis and W. Yin, Set-Valued Variation. Anal. 25, 829
(2017).

[9] E. K. Ryu and S. Boyd, Appl. Comput. Math. 15, 3 (2016).
[10] N. Parikh and S. Boyd, Found. Trends Optim. 1, 127 (2014).
[11] F. E. Browder, Bull. Amer. Math. Soc. 69, 862 (1963).
[12] F. E. Browder, Duke Math J. 30, 557 (1963).
[13] F. E. Browder, Proc. Nat. Acad. Sci. USA 50, 31 (1963).
[14] G. J. Minty, Duke Math. J. 29, 341 (1962).
[15] H. H. Bauschke and P. L. Combettes, Convex Analysis and

Monotone Operator Theory in Hilbert Spaces (Springer Inter-
national Publishing, Berlin, 2017).

053304-18

https://doi.org/10.1090/S0002-9947-1956-0084194-4
https://doi.org/10.1016/0898-1221(76)90003-1
https://doi.org/10.1561/2200000016
https://doi.org/10.1137/0716071
https://doi.org/10.1137/S0363012998338806
https://doi.org/10.1007/s11228-017-0421-z
https://doi.org/10.1561/2400000003
https://doi.org/10.1090/S0002-9904-1963-11068-X
https://doi.org/10.1215/S0012-7094-63-03061-8
https://doi.org/10.1073/pnas.50.1.31
https://doi.org/10.1215/S0012-7094-62-02933-2


GRADIENT FLOWS AND PROXIMAL SPLITTING … PHYSICAL REVIEW E 103, 053304 (2021)

[16] E. Zeidler, Nonlinear Functional Analysis and Its Applications,
II/B: Nonlinear Monotone Operators (Springer-Verlag, Berlin,
1990).

[17] B. T. Polyak, USSR Comp. Math. Math. Phys. 4, 1
(1964).

[18] Y. Nesterov, Sov. Math. Doklady 27, 372 (1983).
[19] W. Su, S. Boyd, and E. J. Candès, J. Mach. Learn. Res. 17, 1

(2016).
[20] A. Wibisono, A. C. Wilson, and M. I. Jordan, Proc. Nat. Acad.

Sci. USA 113, E7351 (2016).
[21] G. França, J. Sulam, D. P. Robinson, and R. Vidal, J. Stat. Mech.

(2020) 124008.
[22] P. Caldirola, Nuovo Cim. 18, 393 (1941).
[23] E. Kanai, Prog. Theor. Phys. 3, 440 (1948).
[24] A. O. Caldeira and A. J. Leggett, Phys. Rev. Lett. 46, 211

(1981).
[25] R. I. McLachlan and G. R. W. Quispel, Acta Numerica 11, 341

(2002).
[26] R. L. Speth, W. H. Green, S. MacNamara, and G. Strang, SIAM

J. Numer. Anal. 51, 3084 (2013).
[27] G. França, D. P. Robinson, and R. Vidal, Proceedings of the

International Conference on Machine Learning (ACM, New
York, NY, 2018).

[28] G. França, D. P. Robinson, and R. Vidal, arXiv:1808.04048.
[29] E. Hairer, C. Lubich, and G. Wanner, Geometric Numerical

Integration (Springer, Berlin, 2006).
[30] T. Goldstein, B. O’Donoghue, S. Setzer, and R. Baraniuk,

SIAM J. Imag. Sci. 7, 1588 (2014).
[31] P. Patrinos, L. Stella, and A. Bemporad, in Proceedings of the

53rd IEEE Conference on Decision and Control (IEEE, 2014),
pp. 4234–4239.

[32] A. Beck and M. Teboulle, SIAM J. Imag. Sci. 2, 183 (2009).
[33] G. França, M. I. Jordan, and R. Vidal, J. Stat. Mech. (2021)

043402.
[34] H. Robbins and S. Monro, Ann. Math. Stat. 22, 400 (1951).
[35] J. Cai, E. Candès, and Z. Shen, SIAM J. Optim. 20, 1956

(2010).
[36] S. Ma, D. Goldfarb, and L. Chen, Math. Prog. 128, 321 (2011).
[37] J. Zinn-Justin, Quantum Field Theory and Critical Phenomena

(Clarendon Press, Oxford, UK, 2002).
[38] M. Mezard, G. Parisi, and M. A. Virasoro, Spin Glass Theory

and Beyond (World Scientific, Singapore, 1987).
[39] H. Nishimori, Statistical Physics of Spin Glasses and Informa-

tion Processing: An Introduction (Clarendon Press, Oxford, UK,
2001).

[40] R. P. Feynman, Int. J. Theor. Phys. 21, 467 (1982).

053304-19

https://doi.org/10.1016/0041-5553(64)90137-5
https://doi.org/10.1073/pnas.1614734113
https://doi.org/10.1088/1742-5468/abcaee
https://doi.org/10.1007/BF02960144
https://doi.org/10.1143/ptp/3.4.440
https://doi.org/10.1103/PhysRevLett.46.211
https://doi.org/10.1017/S0962492902000053
https://doi.org/10.1137/120878641
http://arxiv.org/abs/arXiv:1808.04048
https://doi.org/10.1137/120896219
https://doi.org/10.1137/080716542
https://doi.org/10.1088/1742-5468/abf5d4
https://doi.org/10.1214/aoms/1177729586
https://doi.org/10.1137/080738970
https://doi.org/10.1007/s10107-009-0306-5
https://doi.org/10.1007/BF02650179

