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Abstract. In this report we present two unconditionally stable, second order, decoupled ensemble schemes for comput-
ing evolutionary Boussinesq equations: the stabilized scalar auxiliary variable Crank-Nicolson leap-frog ensemble scheme
(Stab-SAV-CNLF-En) and the stabilized scalar auxiliary variable BDF2 ensemble scheme (Stab-SAV-BDF2-En). The two
ensemble schemes adopt the recently developed stabilized scalar auxiliary variable (SAV) idea and ensemble timestepping to
achieve both high efficiency and unconditional stability. Specifically, the stabilized SAV approach makes it possible to devise
unconditionally long time stable schemes for which the nonlinear terms and coupling terms in the Boussinesq equations
are made fully explicit, leading to linear systems with constant coefficient matrices to be solved after spatial discretization.
The ensemble timestepping further improves the efficiency by making the coefficient matrices of all realizations the same,
so that efficient block solvers can be applied to solve the corresponding one linear system with multiple right hand sides
and thus greatly reduce the computational cost. We prove the proposed schemes are unconditionally stable and present
implementation details. Ample numerical tests are performed to show the efficiency and effectiveness of the combined
approach.

Key words. Boussinesq equations, ensemble algorithm, SAV, uncertainty quantification

1. Introduction. Computing an ensemble of fluid flow equations with different initial conditions,
boundary conditions or other model parameters are commonly seen in many scientific and engineering ap-
plications. For example, ensemble weather forecasting is made daily in Europe and US where an ensemble
of flow simulations were run simultaneously with different initial conditions; uncertainty quantification
(UQ) in many engineering and geophysical applications requires sampling an uncertain parameter and
repeatedly simulating the governing partial differential equations (PDEs) with different sampled param-
eters. The main challenge in these ensemble simulations is the excessive computational cost, as many
realistic flow problems are modeled by complex nonlinear PDEs which already pose great challenge to
obtain an accurate numerical solution for just one model run. It is then highly desirable to have an
efficient numerical scheme that can compute PDE ensembles with greatly reduced computational cost.
To overcome this challenge, Jiang and Layton proposed an ensemble timestepping scheme [14] that runs
all the simulations simultaneously and leads to one linear system with multiple right hands instead of
multiple linear systems with multiple right hand sides. For such linear systems, block solvers, such as
block CG, block GMRES, can be used to significantly reduce the computational cost. This ensemble
timestepping idea has been further developed and tested for different flow problems including both non-
linear PDE problems, e.g., Navier-Stokes equations [10, 11, 12, 17, 14, 16, 37, 38, 23, 26, 27], MHD flows
[3, 4, 22, 34], natural convection [6, 8, 15], and linear PDE problems, e.g., heat equation [7, 31, 32],
Stokes-Darcy equations [13, 20, 21, 18, 19, 25], which have demonstrated that it is highly efficient and
suitable for predictive flow simulations and many UQ applications.

In this report we propose and study two unconditionally stable, second order, decoupled ensemble
schemes for computing the evolutionary Boussinesq equations. We will incorporate a recently developed
scalar auxiliary variable (SAV) approach to treat the nonlinear terms and coupling terms fully explicit
with the ensemble timesteping, leading to more efficient ensemble algorithms than the ones in [6, 8, 15],
since the coefficient matrices of the corresponding linear systems after full discretization is both sample-
index independent and time independent. The SAV approach was first studied in [35, 36] for gradient
flows and later adapted to compute other PDE models, e.g., the Navier-Stokes equations [28, 29], natural
convection [33]. It introduces extra SAVs and associated differential equations and reformulates the
governing PDE system to facilitate the design of numerical schemes that maintain both unconditional
stability and computational efficiency. We will prove our proposed ensemble algorithms are long time
stable without any time step constraints and demonstrate their efficiency in the numerical tests.
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2. Ensemble Algorithms. Let u(x, t), p(x, t), and θ(x, t) denote the fluid velocity, pressure, and
temperature respectively. We consider the context in which uncertainties may exist for the initial velocity,
initial temperature, boundary conditions for velocity and temperature, forcing function and heat source,
and J sample points (u0

j , θ
0
j , aj , bj , fj , gj), j = 1, ..., J , have been drawn from respective stochastic spaces

for each model parameter. The next step is to compute J corresponding solutions (uj , pj , θj) that satisfy
the two-dimensional incompressible Boussinesq equations in an open bounded domain Ω ⊂ R

2 given by






























∂tuj + uj · ∇uj −
1
Re

∆uj +∇pj = Ri · θj ·

(

0
1

)

+ fj(x, t) in Ω× (0, T ],

∇ · uj = 0 in Ω× (0, T ],
∂tθj + uj · ∇θj −

1
RePr

∆θj = gj(x, t) in Ω× (0, T ],
uj = aj(x, t) and θj = bj(x, t) on ∂Ω× (0, T ],

uj = u0
j (x) and θj = θ0j (x) in Ω× {0}.

(2.1)

Here Re is the Reynolds number, Pr is the Prandtl number, which represents the ratio of kinematic
viscosity to the heat conductivity, and Ri is the Richardson number that accounts for gravitational force
and the thermal expansion of the flow.

We now introduce the SAVs which will be added to the Boussinesq equations to form a new equivalent
governing PDE system. Define the scalar auxiliary variables qj(t) and rj(t) by

qj(t) = exp(−
t

T
), rj(t) = exp(−

t

T
), j = 1, · · · , J. (2.2)

Note that the true solutions of these SAVs are the same for all ensemble members, but the numerical
solutions will be different for each j. Using the equalities

∫

Ω
(uj · ∇)uj · uj dx =

∫

∂Ω
(~n · uj)

1
2 |uj |

2 dσ and
∫

Ω
(uj · ∇)θj · θj dx =

∫

∂Ω
(~n · uj)

1
2 |θj |

2 dσ, these SAVs satisfy the following differential equations.

dqj
dt

= −
1

T
qj +

1

exp(− t
T
)

∫

Ω

(uj · ∇)uj · uj dx−
1

qj

∫

∂Ω

(~n · uj)
1
2 |uj |

2 dσ, (2.3)

drj
dt

= −
1

T
rj +

1

exp(− t
T
)

∫

Ω

(uj · ∇)θj · θj dx−
1

rj

∫

∂Ω

(~n · uj)
1
2 |θj |

2 dσ. (2.4)

Adding these two differential equations to the original Boussinesq equations and using
qj(t)

exp(− t
T
)
= 1

and
rj(t)

exp(− t
T
)
= 1 as the coefficients for the nonlinear terms, we have a new governing system that is

equivalent to (2.1).






































∂tuj +
qj(t)

exp(− t
T
)
uj · ∇uj −

1
Re

∆uj +∇pj = Ri · θj ·

(

0
1

)

+ fj(x, t) in Ω× (0, T ],

∇ · uj = 0 in Ω× (0, T ],

∂tθj +
rj(t)

exp(− t
T
)
uj · ∇θj −

1
RePr

∆θj = gj(x, t) in Ω× (0, T ],
dqj
dt

= − 1
T
qj +

1
exp(− t

T
)

∫

Ω
(uj · ∇)uj · uj dx− 1

qj

∫

∂Ω
(~n · aj)

1
2 |aj |

2 dσ in (0, T ],
drj
dt

= − 1
T
rj +

1
exp(− t

T
)

∫

Ω
(uj · ∇)θj · θj dx− 1

rj

∫

∂Ω
(~n · aj)

1
2 |bj |

2 dσ in (0, T ].

(2.5)

For this equivalent governing system we propose two unconditionally stable, second order ensemble
schemes for fast computation of Boussinesq flow ensembles. The SAV schemes are known to have relatively
low accuracy for complex nonlinear flow problems, so we incorporate a stabilization technique from [24]
in the proposed schemes to stabilize the flows and increase the accuracy of the schemes.

Let tn = n∆t, n = 0, 1, 2, · · · , N , where N = T/∆t, denote a uniform partition of the interval [0, T ],
and h the mesh size of the chosen spatial discretization. The stabilized SAV ensemble scheme based on
Crank–Nicolson leap-frog (CNLF) that we propose is then given by

Algorithm 2.1 (Stab-SAV-CNLF-En).
(Sub-problem 1) Given un−1

j , un
j , and θnj , find the velocity un+1

j such that

un+1
j − un−1

j

2∆t
+

qn+1
j + qn−1

j

2exp(− tn

T
)
(un

j · ∇)un
j −

1

Re
∆
un+1
j + un−1

j

2
+∇

pn+1
j + pn−1

j

2
(2.6)
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− αh∆(un+1
j − un−1

j ) = Ri · θnj ·

(

0
1

)

+ fn
j ,

∇ · un+1
j = 0, (2.7)

qn+1
j − qn−1

j

2∆t
= −

1

T

qn+1
j + qn−1

j

2
+

1

exp(− tn

T
)

∫

Ω

(un
j · ∇)un

j ·
un+1
j + un−1

j

2
dx−

2cnj

qn+1
j + qn−1

j

, (2.8)

where cnj =
∫

∂Ω
(~n · anj )

1
2 |a

n
j |

2 dσ, and α > 0 is a tuning stabilization parameter.

(Sub-problem 2) Given un
j and θn−1

j , θnj , find θn+1
j such that

θn+1
j − θn−1

j

2∆t
−

1

RePr
∆
θn+1
j + θn−1

j

2
+

rn+1
j + rn−1

j

2exp(− tn

T
)
un · ∇θnj − βh∆(θn+1

j − θn−1
j ) = gnj , (2.9)

rn+1
j − rn−1

j

2∆t
= −

1

T

rn+1
j + rn−1

j

2
+

1

exp(− tn

T
)

∫

Ω

(un
j · ∇)θnj ·

θn+1
j + θn−1

j

2
dx−

2dnj

rn+1
j + rn−1

j

, (2.10)

where dnj =
∫

∂Ω
(~n · anj )

1
2 |b

n
j |

2 dσ, and β > 0 is a tuning stabilization parameter.

The stabilized SAV ensemble scheme based on BDF2 that we propose is given by

Algorithm 2.2 (Stab-SAV-BDF2-En).
(Sub-problem 1) Given un−1

j , un
j , and θn−1

j , θnj , find the velocity un+1
j such that

3un+1
j − 4un

j + un−1
j

2∆t
+

qn+1
j

exp(− tn+1

T
)
((2un

j − un−1
j ) · ∇)(2un

j − un−1
j )−

1

Re
∆un+1

j +∇pn+1
j (2.11)

− αh∆(3un+1
j − 4un

j + un−1
j ) = Ri · (2θnj − θn−1

j ) ·

(

0
1

)

+ fn+1
j ,

∇ · un+1
j = 0, (2.12)

3qn+1
j − 4qnj + qn−1

j

2∆t
= −

1

T
qn+1
j +

1

exp(− tn+1

T
)

∫

Ω

((2un
j − un−1

j ) · ∇)(2un
j − un−1

j ) · un+1
j dx−

cn+1
j

qn+1
j

,

(2.13)

where cn+1
j =

∫

∂Ω
(~n · an+1

j ) 12 |a
n+1
j |2 dσ, and α > 0 is a tuning stabilization parameter.

(Sub-problem 2) Given un−1
j , un

j and θn−1
j , θnj , find θn+1

j such that

3θn+1
j − 4θnj + θn−1

j

2∆t
−

1

RePr
∆θn+1

j +
rn+1
j

exp(− tn+1

T
)
(2un

j − un−1
j ) · ∇(2θnj − θn−1

j ) (2.14)

− βh∆(3θn+1
j − 4θnj + θn−1

j ) = gn+1
j ,

3rn+1
j − 4rnj + rn−1

j

2∆t
= −

1

T
rn+1
j +

1

exp(− tn+1

T
)

∫

Ω

((2un
j − un−1

j ) · ∇)(2θnj − θn−1
j ) · θn+1

j dx−
dn+1
j

rn+1
j

,

(2.15)

where dn+1
j =

∫

∂Ω
(~n · an+1

j ) 12 |b
n+1
j |2 dσ, and β > 0 is a tuning stabilization parameter.

One can easily see that all ensemble members share the same constant coefficient matrix in all steps,
and thus efficient direct or iterative solvers [5, 9] can be used for fast computation. In these two schemes,
the SAVs are coupled together with the primary variables. We will present equivalent, fully decoupled
implementation algorithms for both Stab-SAV-CNLF-En and Stab-SAV-BDF2-En in Section 4.
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3. Unconditional Stability. In this section, we prove that Algorithm 2.1 and Algorithm 2.2 are
both unconditionally long time stable.

Theorem 3.1 (Unconditional Stability of Algorithm 2.1). Consider the stabilized SAV-CNLF en-
semble scheme. With homogeneous Dirichlet boundary conditions, Algorithm 2.1 is unconditionally long
time stable, and the following energy inequalities hold. For any N ≥ 2,

‖θNj ‖2 + ‖θN−1
j ‖2 + |rNj |2 + |rN−1

j |2 +∆t

N−1
∑

n=1

2

RePr
‖∇

θn+1
j + θn−1

j

2
‖2 (3.1)

+ 2βh∆t‖∇θNj ‖2 + 2βh∆t‖∇θN−1
j ‖2 +∆t

N−1
∑

n=1

4

T
|
rn+1
j + rn−1

j

2
|2

≤ ‖θ1j‖
2 + ‖θ0j‖

2 + |r1j |
2 + |r0j |

2 + 2βh∆t‖∇θ1j‖
2 + 2βh∆t‖∇θ0j‖

2 +∆t
N−1
∑

n=1

2C2
PRePr‖gnj ‖

2 ,

and

‖uN
j ‖2 + ‖uN−1

j ‖2 + |qNj |2 + |qN−1
j |2 +∆t

N−1
∑

n=1

2

Re
‖∇

un+1
j + un−1

j

2
‖2 (3.2)

+ 2αh∆t‖∇uN
j ‖2 + 2αh∆t‖∇uN−1

j ‖2 +∆t

N−1
∑

n=2

4

T
|
qn+1
j + qn−1

j

2
|2

≤ ‖u1
j‖

2 + ‖u0
j‖

2 + |q1j |
2 + |q0j |

2 + 2αh∆t‖∇u1
j‖

2 + 2αh∆t‖∇u0
j‖

2

+

N−1
∑

n=2

4C2
PRi2Re∆t

(

‖θ1j‖
2 + ‖θ0j‖

2 + |r1j |
2 + |r0j |

2 + 2βh∆t‖∇θ1j‖
2 + 2βh∆t‖∇θ0j‖

2

+∆t

n−1
∑

k=1

2C2
PRePr‖gkj ‖

2

)

+ 4C2
PRi2Re∆t‖θ1j‖

2 +∆t

N−1
∑

n=1

4C2
PRe‖fn

j ‖
2.

Proof. Taking the L2 inner product of (2.6) and (2.9) with
u
n+1

j
+u

n−1

j

2 and
θ
n+1

j
+θ

n−1

j

2 respectively
gives

1

4∆t
‖un+1

j ‖2 −
1

4∆t
‖un−1

j ‖2 +
qn+1
j + qn−1

j

2exp(− tn

T
)
(un

j · ∇un
j ,

un+1
j + un−1

j

2
) +

1

Re
‖∇

un+1
j + un−1

j

2
‖2 (3.3)

−
1

Re

∫

∂Ω

(~n · ∇
un+1
j + un−1

j

2
) ·

un+1
j + un−1

j

2
dσ +

∫

∂Ω

(~n ·
un+1
j + un−1

j

2
)
pn+1
j + pn−1

j

2
dσ

−αh

∫

∂Ω

(~n · (∇un+1
j −∇un−1

j )) ·
un+1
j + un−1

j

2
dσ +

α

2
h
(

‖∇un+1
j ‖2 − ‖∇un−1

j ‖2
)

= Ri · (θnj ·

(

0
1

)

,
un+1
j + un−1

j

2
) + (fn

j ,
un+1
j + un−1

j

2
),

and

1

4∆t
‖θn+1

j ‖2 −
1

4∆t
‖θn−1

j ‖2 +
1

RePr
‖∇

θn+1
j + θn−1

j

2
‖2 +

rn+1
j + rn−1

j

2exp(− tn

T
)
(un

j · ∇θnj ,
θn+1
j + θn−1

j

2
) (3.4)

−
1

RePr

∫

∂Ω

(~n · ∇
θn+1
j + θn−1

j

2
) ·

θn+1
j + θn−1

j

2
dσ − βh

∫

∂Ω

(~n · (∇θn+1
j −∇θn−1

j )) ·
θn+1
j + θn−1

j

2
dσ

+
β

2
h
(

‖∇θn+1
j ‖2 − ‖∇θn−1

j ‖2
)

= (gnj ,
θn+1
j + θn−1

j

2
).

4



The terms on the right hand side can be bounded as follows.

Ri · (θnj ·

(

0
1

)

,
un+1
j + un−1

j

2
) ≤ CPRi‖θnj ‖‖∇

un+1
j + un−1

j

2
‖ (3.5)

≤
1

4Re
‖∇

un+1
j + un−1

j

2
‖2 + C2

PRi2Re‖θnj ‖
2

(fn
j ,

un+1
j + un−1

j

2
) ≤ CP ‖f

n
j ‖‖∇

un+1
j + un−1

j

2
‖ ≤

1

4Re
‖∇

un+1
j + un−1

j

2
‖2 + C2

PRe‖fn
j ‖

2, (3.6)

(gnj ,
θn+1
j + θn−1

j

2
) ≤ CP ‖g

n
j ‖‖∇

θn+1
j + θn−1

j

2
‖ ≤

1

2RePr
‖∇

θn+1
j + θn−1

j

2
‖2 +

1

2
C2

PRePr‖gnj ‖
2. (3.7)

Multiplying (2.8) with
q
n+1

j
+q

n−1

j

2 and (2.10) with
r
n+1

j
+r

n−1

j

2 gives

1

4∆t

(

|qn+1
j |2 − |qn−1

j |2
)

= −
1

T
|
qn+1
j + qn−1

j

2
|2 +

qn+1
j + qn−1

j

2exp(− tn

T
)
(un

j · ∇un
j ,

un+1
j + un−1

j

2
)− cnj , (3.8)

and

1

4∆t

(

|rn+1
j |2 − |rn−1

j |2
)

= −
1

T
|
rn+1
j + rn−1

j

2
|2 +

rn+1
j + rn−1

j

2exp(− tn

T
)
(un

j · ∇θnj ,
θn+1
j + θn−1

j

2
)− dnj . (3.9)

For simplicity of presentation, we now assume homogeneous Dirichlet boundary conditions. With the
bounds (3.5)-(3.7), adding (3.3) and (3.8), (3.4) and (3.9) gives

1

4∆t
‖un+1

j ‖2 −
1

4∆t
‖un−1

j ‖2 +
1

4∆t

(

|qn+1
j |2 − |qn−1

j |2
)

+
1

2Re
‖∇

un+1
j + un−1

j

2
‖2 (3.10)

+
α

2
h
(

‖∇un+1
j ‖2 − ‖∇un−1

j ‖2
)

+
1

T
|
qn+1
j + qn−1

j

2
|2 ≤ C2

PRi2Re‖θnj ‖
2 + C2

PRe∆t‖fn
j ‖

2 ,

and

1

4∆t
‖θn+1

j ‖2 −
1

4∆t
‖θn−1

j ‖2 +
1

4∆t

(

|rn+1
j |2 − |rn−1

j |2
)

+
1

2RePr
‖∇

θn+1
j + θn−1

j

2
‖2 (3.11)

+
β

2
h
(

‖∇θn+1
j ‖2 − ‖∇θn−1

j ‖2
)

+
1

T
|
rn+1
j + rn−1

j

2
|2 ≤

1

2
C2

PRePr‖gnj ‖
2 .

Summing up (3.11) from n = 1 to n = N − 1 and multiplying through by 4∆t gives

‖θNj ‖2 + ‖θN−1
j ‖2 + |rNj |2 + |rN−1

j |2 +∆t

N−1
∑

n=1

2

RePr
‖∇

θn+1
j + θn−1

j

2
‖2 (3.12)

+ 2βh∆t‖∇θNj ‖2 + 2βh∆t‖∇θN−1
j ‖2 +∆t

N−1
∑

n=1

4

T
|
rn+1
j + rn−1

j

2
|2

≤ ‖θ1j‖
2 + ‖θ0j‖

2 + |r1j |
2 + |r0j |

2 + 2βh∆t‖∇θ1j‖
2 + 2βh∆t‖∇θ0j‖

2 +∆t

N−1
∑

n=1

2C2
PRePr‖gnj ‖

2 .

Summing up (3.10) from n = 1 to n = N − 1, multiplying through by 4∆t, and using the stability result
for the temperature from (3.12) yields

‖uN
j ‖2 + ‖uN−1

j ‖2 + |qNj |2 + |qN−1
j |2 +∆t

N−1
∑

n=1

2

Re
‖∇

un+1
j + un−1

j

2
‖2 (3.13)

5



+ 2αh∆t‖∇uN
j ‖2 + 2αh∆t‖∇uN−1

j ‖2 +∆t

N−1
∑

n=2

4

T
|
qn+1
j + qn−1

j

2
|2

≤ ‖u1
j‖

2 + ‖u0
j‖

2 + |q1j |
2 + |q0j |

2 + 2αh∆t‖∇u1
j‖

2 + 2αh∆t‖∇u0
j‖

2 +∆t

N−1
∑

n=1

4C2
PRi2Re‖θnj ‖

2

+∆t

N−1
∑

n=1

4C2
PRe‖fn

j ‖
2

≤ ‖u1
j‖

2 + ‖u0
j‖

2 + |q1j |
2 + |q0j |

2 + 2αh∆t‖∇u1
j‖

2 + 2αh∆t‖∇u0
j‖

2

+

N−1
∑

n=2

4C2
PRi2Re∆t‖θnj ‖

2 + 4C2
PRi2Re∆t‖θ1j‖

2 +∆t

N−1
∑

n=1

4C2
PRe‖fn

j ‖
2

≤ ‖u1
j‖

2 + ‖u0
j‖

2 + |q1j |
2 + |q0j |

2 + 2αh∆t‖∇u1
j‖

2 + 2αh∆t‖∇u0
j‖

2

+

N−1
∑

n=2

4C2
PRi2Re∆t

(

‖θ1j‖
2 + ‖θ0j‖

2 + |r1j |
2 + |r0j |

2 + 2βh∆t‖∇θ1j‖
2 + 2βh∆t‖∇θ0j‖

2

+∆t
n−1
∑

k=1

2C2
PRePr‖gkj ‖

2

)

+ 4C2
PRi2Re∆t‖θ1j‖

2 +∆t

N−1
∑

n=1

4C2
PRe‖fn

j ‖
2.

With homogeneous Dirichlet boundary conditions, qnj , r
n
j are real and thus |qnj |, |r

n
j | are positive (see

Theorem 4.1 and Theorem 4.2).
This concludes the proof.
Next we prove that Algorithm 2.2 is unconditionally long time stable.
Theorem 3.2 (Unconditional Stability of Algorithm 2.2). Consider the stabilized SAV-BDF2 en-

semble scheme. With homogeneous Dirichlet boundary conditions, Algorithm 2.2 is unconditionally long
time stable, and the following energy inequalities hold. For any N ≥ 2,

‖θNj ‖2 + ‖2θNj − θN−1
j ‖2 +

N−1
∑

n=1

‖θn+1
j − 2θnj + θn−1

j ‖2 + |rNj |2 + |2rNj − rN−1
j |2 (3.14)

+

N−1
∑

n=1

‖rn+1
j − 2rnj + rn−1

j ‖2 +∆t

N−1
∑

n=1

2

RePr
‖∇θn+1

j ‖2 +∆t

N−1
∑

n=1

4

T
|rn+1

j |2

+ 2βh∆t‖∇θNj ‖2 + 2βh∆t‖2∇θNj −∇θN−1
j ‖2 +∆t

N−1
∑

n=1

2βh‖∇θn+1
j − 2∇θnj +∇θn−1

j ‖2

≤ ‖θ1j‖
2 + ‖2θ1j − θ0j‖

2 + |r1j |
2 + |2r1j − r0j |

2 + 2βh∆t‖∇θ1j‖
2 + 2βh∆t‖∇2θ1j − θ0j‖

2

+∆t

N−1
∑

n=1

2C2
PRePr‖gn+1

j ‖2 ,

and

‖uN
j ‖2 + ‖2uN

j − uN−1
j ‖2 +

N−1
∑

n=1

‖un+1
j − 2un

j + un−1
j ‖2 + |qNj |2 + |2qNj − qN−1

j |2 (3.15)

+

N−1
∑

n=1

‖qn+1
j − 2qnj + qn−1

j ‖2 +∆t

N−1
∑

n=1

2

Re
‖∇un+1

j ‖2 +∆t
N−1
∑

n=2

4

T
|qn+1

j |2

+ 2αh∆t‖∇uN
j ‖2 + 2αh∆t‖2∇uN

j −∇uN−1
j ‖2 +∆t

N−1
∑

n=1

2αh‖∇un+1
j − 2∇un

j +∇un−1
j ‖2
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≤ ‖u1
j‖

2 + ‖2u1
j − u0

j‖
2 + |q1j |

2 + |2q1j − q0j |
2 + 2αh∆t‖∇u1

j‖
2 + 2αh∆t‖2∇u1

j −∇u0
j‖

2

+

N−1
∑

n=2

36C2
PRi2Re∆t

(

‖θ1j‖
2 + ‖2θ1j − θ0j‖

2 + |r1j |
2 + |2r1j − r0j |

2 + 2βh∆t‖∇θ1j‖
2

+ 2βh∆t‖∇2θ1j − θ0j‖
2 +∆t

n−1
∑

k=1

2C2
PRePr‖gk+1

j ‖2

)

+ 36C2
PRi2Re∆t‖θ1j‖

2 + 12C2
PRi2Re∆t‖θ0j‖

2

+∆t

N−1
∑

n=1

4C2
PRe‖fn+1

j ‖2.

Proof. Taking the L2 inner product of (2.11) and (2.14) with un+1
j and θn+1

j respectively gives

1

4∆t

(

‖un+1
j ‖2 + ‖2un+1

j − un
j ‖

2
)

−
1

4∆t

(

‖un
j ‖

2 + ‖2un
j − un−1

j ‖2
)

+
1

4∆t
‖un+1

j − 2un
j + un−1

j ‖2 (3.16)

+
qn+1
j

exp(− tn+1

T
)
((2un

j − un−1
j ) · ∇(2un

j − un−1
j ), un+1

j ) +
1

Re
‖∇un+1

j ‖2 −
1

Re

∫

∂Ω

(~n · ∇un+1
j ) · un+1

j dσ

+

∫

∂Ω

(~n · un+1
j )pn+1

j dσ − αh

∫

∂Ω

(~n · (3∇un+1
j − 4∇un

j +∇un−1
j )) · un+1

j dσ

+
α

2
h

(

‖∇un+1
j ‖2 + ‖2∇un+1

j −∇un
j ‖

2 − ‖∇un
j ‖

2 − ‖2∇un
j −∇un−1

j ‖2 + ‖∇un+1
j − 2∇un

j +∇un−1
j ‖2

)

= Ri · ((2θnj − θn−1
j ) ·

(

0
1

)

, un+1
j ) + (fn+1

j , un+1
j ),

and

1

4∆t

(

‖θn+1
j ‖2 + ‖2θn+1

j − θnj ‖
2
)

−
1

4∆t

(

‖θnj ‖
2 + ‖2θnj − θn−1

j ‖2
)

+
1

4∆t
‖θn+1

j − 2θnj + θn−1
j ‖2 (3.17)

+
1

RePr
‖∇θn+1

j ‖2 +
rn+1
j

exp(− tn+1

T
)
((2un

j − un−1
j ) · ∇(2θnj − θn−1

j ), θn+1
j )−

1

RePr

∫

∂Ω

(~n · ∇θn+1
j ) · θn+1

j dσ

−βh

∫

∂Ω

(~n · (∇3θn+1
j − 4∇θnj +∇θn−1

j )) · θn+1
j dσ +

β

2
h

(

‖∇θn+1
j ‖2 + ‖∇(2θn+1

j − θnj )‖
2

−‖∇θnj ‖
2 − ‖∇(2θnj − θn−1

j )‖2 + ‖∇(θn+1
j − 2θnj + θn−1

j )‖2

)

= (gn+1
j , θn+1

j ).

The terms on the right hand side can be bounded as follows.

Ri · (2θnj − θn−1
j ·

(

0
1

)

, un+1
j ) ≤ CPRi‖2θnj − θn−1

j ‖‖∇un+1
j ‖ (3.18)

≤
1

4Re
‖∇un+1

j ‖2 + C2
PRi2Re‖2θnj − θn−1

j ‖2 ≤
1

4Re
‖∇un+1

j ‖2 + 6C2
PRi2Re‖θnj ‖

2 + 3C2
PRi2Re‖θn−1

j ‖2,

(fn+1
j , un+1

j ) ≤ CP ‖f
n+1
j ‖‖∇un+1

j ‖ ≤
1

4Re
‖∇un+1

j ‖2 + C2
PRe‖fn+1

j ‖2, (3.19)

(gn+1
j , θn+1

j ) ≤ CP ‖g
n+1
j ‖‖∇θn+1

j ‖ ≤
1

2RePr
‖∇θn+1

j ‖2 +
1

2
C2

PRePr‖gn+1
j ‖2. (3.20)

Multiplying (2.13) with qn+1
j and (2.15) with rn+1

j gives

1

4∆t

(

|qn+1
j |2 + |2qn+1

j − qnj |
2 − |qnj |

2 − |2qnj − qn−1
j |2 + |qn+1

j − 2qnj + qn−1
j |2

)

(3.21)
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= −
1

T
|qn+1

j |2 +
qn+1
j

exp(− tn+1

T
)
((2un

j − un−1
j ) · ∇(2un

j − un−1
j ), un+1

j )− cn+1
j ,

and

1

4∆t

(

|rn+1
j |2 + |2rn+1

j − rnj |
2 − |rnj |

2 − |2rnj − rn−1
j |2 + |rn+1

j − 2rnj + rn−1
j |2

)

(3.22)

= −
1

T
|rn+1

j |2 +
rn+1
j

exp(− tn+1

T
)
((2un

j − un−1
j ) · ∇(2θnj − θn−1

j ), θn+1
j )− dn+1

j .

Assuming homogeneous Dirichlet boundary conditions, with the bounds (3.18)-(3.20), adding (3.16) and
(3.21), (3.17) and (3.22) gives

1

4∆t

(

‖un+1
j ‖2 + ‖2un+1

j − un
j ‖

2
)

−
1

4∆t

(

‖un
j ‖

2 + ‖2un
j − un−1

j ‖2
)

+
1

4∆t
‖un+1

j − 2un
j + un−1

j ‖2 (3.23)

+
1

4∆t

(

|qn+1
j |2 + |2qn+1

j − qnj |
2 − |qnj |

2 − |2qnj − qn−1
j |2 + |qn+1

j − 2qnj + qn−1
j |2

)

+
1

2Re
‖∇un+1

j ‖2

+
α

2
h

(

‖∇un+1
j ‖2 + ‖2∇un+1

j −∇un
j ‖

2 − ‖∇un
j ‖

2 − ‖2∇un
j −∇un−1

j ‖2 + ‖∇un+1
j − 2∇un

j +∇un−1
j ‖2

)

+
1

T
|qn+1

j |2 ≤ 6C2
PRi2Re‖θnj ‖

2 + 3C2
PRi2Re‖θn−1

j ‖2 + C2
PRe‖fn+1

j ‖2 ,

and

1

4∆t

(

‖θn+1
j ‖2 + ‖2θn+1

j − θnj ‖
2
)

−
1

4∆t

(

‖θnj ‖
2 + ‖2θnj − θn−1

j ‖2
)

+
1

4∆t
‖θn+1

j − 2θnj + θn−1
j ‖2 (3.24)

+
1

4∆t

(

|rn+1
j |2 + |2rn+1

j − rnj |
2 − |rnj |

2 − |2rnj − rn−1
j |2 + |rn+1

j − 2rnj + rn−1
j |2

)

+
1

2RePr
‖∇θn+1

j ‖2

+
β

2
h

(

‖∇θn+1
j ‖2 + ‖∇(2θn+1

j − θnj )‖
2 − ‖∇θnj ‖

2 − ‖∇(2θnj − θn−1
j )‖2 + ‖∇(θn+1

j − 2θnj + θn−1
j )‖2

)

+
1

T
|rn+1

j |2 ≤
1

2
C2

PRePr‖gn+1
j ‖2 .

Summing up (3.24) from n = 1 to n = N − 1 and multiplying through by 4∆t gives

‖θNj ‖2 + ‖2θNj − θN−1
j ‖2 +

N−1
∑

n=1

‖θn+1
j − 2θnj + θn−1

j ‖2 + |rNj |2 + |2rNj − rN−1
j |2 (3.25)

+

N−1
∑

n=1

‖rn+1
j − 2rnj + rn−1

j ‖2 +∆t

N−1
∑

n=1

2

RePr
‖∇θn+1

j ‖2 +∆t

N−1
∑

n=1

4

T
|rn+1

j |2

+ 2βh∆t‖∇θNj ‖2 + 2βh∆t‖2∇θNj −∇θN−1
j ‖2 +∆t

N−1
∑

n=1

2βh‖∇θn+1
j − 2∇θnj +∇θn−1

j ‖2

≤ ‖θ1j‖
2 + ‖2θ1j − θ0j‖

2 + |r1j |
2 + |2r1j − r0j |

2 + 2βh∆t‖∇θ1j‖
2 + 2βh∆t‖∇2θ1j − θ0j‖

2

+∆t

N−1
∑

n=1

2C2
PRePr‖gn+1

j ‖2 .

Summing up (3.23) from n = 1 to n = N − 1, multiplying through by 4∆t, and using the stability result
for the temperature from (3.25) yields

‖uN
j ‖2 + ‖2uN

j − uN−1
j ‖2 +

N−1
∑

n=1

‖un+1
j − 2un

j + un−1
j ‖2 + |qNj |2 + |2qNj − qN−1

j |2 (3.26)
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+

N−1
∑

n=1

‖qn+1
j − 2qnj + qn−1

j ‖2 +∆t

N−1
∑

n=1

2

Re
‖∇un+1

j ‖2 +∆t

N−1
∑

n=2

4

T
|qn+1

j |2

+ 2αh∆t‖∇uN
j ‖2 + 2αh∆t‖2∇uN

j −∇uN−1
j ‖2 +∆t

N−1
∑

n=1

2αh‖∇un+1
j − 2∇un

j +∇un−1
j ‖2

≤ ‖u1
j‖

2 + ‖2u1
j − u0

j‖
2 + |q1j |

2 + |2q1j − q0j |
2 + 2αh∆t‖∇u1

j‖
2 + 2αh∆t‖2∇u1

j −∇u0
j‖

2

+∆t
N−1
∑

n=1

(

24C2
PRi2Re‖θnj ‖

2 + 12C2
PRi2Re‖θn−1

j ‖2
)

+∆t

N−1
∑

n=1

4C2
PRe‖fn+1

j ‖2

≤ ‖u1
j‖

2 + ‖2u1
j − u0

j‖
2 + |q1j |

2 + |2q1j − q0j |
2 + 2αh∆t‖∇u1

j‖
2 + 2αh∆t‖2∇u1

j −∇u0
j‖

2

+

N−1
∑

n=2

36C2
PRi2Re∆t‖θnj ‖

2 + 36C2
PRi2Re∆t‖θ1j‖

2 + 12C2
PRi2Re∆t‖θ0j‖

2 +∆t

N−1
∑

n=1

4C2
PRe‖fn+1

j ‖2

≤ ‖u1
j‖

2 + ‖2u1
j − u0

j‖
2 + |q1j |

2 + |2q1j − q0j |
2 + 2αh∆t‖∇u1

j‖
2 + 2αh∆t‖2∇u1

j −∇u0
j‖

2

+

N−1
∑

n=2

36C2
PRi2Re∆t

(

‖θ1j‖
2 + ‖2θ1j − θ0j‖

2 + |r1j |
2 + |2r1j − r0j |

2 + 2βh∆t‖∇θ1j‖
2

+ 2βh∆t‖∇2θ1j − θ0j‖
2 +∆t

n−1
∑

k=1

2C2
PRePr‖gk+1

j ‖2

)

+ 36C2
PRi2Re∆t‖θ1j‖

2 + 12C2
PRi2Re∆t‖θ0j‖

2

+∆t

N−1
∑

n=1

4C2
PRe‖fn+1

j ‖2.

4. Implementation Algorithms. In this section we present the fully decoupled implementation
algorithms for Algorithm 2.1 and Algorithm 2.2 respectively, and it will be easier to see the efficiency of
the ensemble schemes from here.

We first derive the implementation algorithm for the Stab-SAV-CNLF-En scheme. Let

Sn+1
j =

qn+1
j + qn−1

j

2exp(− tn

T
)
, un+1

j = ûn+1
j + Sn+1

j ŭn+1
j , pn+1

j = p̂n+1
j + Sn+1

j p̆n+1
j , (4.1)

V n+1
j =

rn+1
j + rn−1

j

2exp(− tn

T
)
, θn+1

j = θ̂n+1
j + V n+1

j θ̆n+1
j . (4.2)

Then instead of solving (2.6)-(2.10), we solve the following two subproblems for (ûn+1
j , p̂n+1

j , θ̂n+1
j ),

(ŭn+1
j , p̆n+1

j , θ̆n+1
j ) respectively.



































1

2∆t
ûn+1
j −

1

2Re
∆ûn+1

j − αh∆ûn+1
j +

1

2
∇p̂n+1

j

= fn
j +Ri · θnj ·

(

0
1

)

+
1

2∆t
un−1
j +

1

2Re
∆un−1

j − αh∆un−1
j −

1

2
∇pn−1

j , in Ω

∇ · ûn+1
j = 0, in Ω

ûn+1
j = an+1

j , on ∂Ω.

(CNLF sub-problem 1)



















1

2∆t
ŭn+1
j −

1

2Re
∆ŭn+1

j − αh∆ŭn+1
j +

1

2
∇p̆n+1

j = −(un
j · ∇)un

j , in Ω

∇ · ŭn+1
j = 0, in Ω

ŭn+1
j = 0, on ∂Ω.

(CNLF sub-problem 2)
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





















1

2∆t
θ̂n+1
j −

1

2RePr
∆θ̂n+1

j − βh∆θ̂n+1
j

= gnj +
1

2∆t
θn−1
j +

1

2RePr
∆θn−1

j − βh∆θn−1
j in Ω

θ̂n+1
j = bn+1

j , on ∂Ω.

(CNLF sub-problem 3)







1

2∆t
θ̆n+1
j −

1

2RePr
∆θ̆n+1

j − βh∆θ̆n+1
j = −(un

j · ∇)θnj , in Ω

θ̆n+1
j = 0, on ∂Ω.

(CNLF sub-problem 4)

Now we need to derive an equation for Sn+1
j .

Sn+1
j =

qn+1
j + qn−1

j

2exp(− tn

T
)

=⇒ qn+1
j = 2exp(−

tn

T
)Sn+1

j − qn−1
j . (4.3)

Plugging this expression of qn+1
j into (3.8) gives

1

4∆t

(

4exp(−
2tn

T
)(Sn+1

j )2 − 4qn−1
j exp(−

tn

T
)Sn+1

j

)

(4.4)

= −
1

T
exp(−

2tn

T
)(Sn+1

j )2 + Sn+1
j

∫

Ω

(un
j · ∇)un

j ·
ûn+1
j + Sn+1

j ŭn+1
j + un−1

j

2
)dx− cnj .

We then obtain the equation for Sn+1
j as

An+1
j (Sn+1

j )2 +Bn+1
j Sn+1

j + Cn+1
j = 0, (CNLF sub-problem 5)

where

An+1
j = (

1

∆t
+

1

T
)exp(−

2tn

T
)−

1

2

∫

Ω

(un
j · ∇)un

j · ŭn+1
j dx,

Bn+1
j = −

qn−1
j

∆t
exp(−

tn

T
)−

1

2

∫

Ω

(un
j · ∇)un

j · (ûn+1
j + un−1

j )dx,

Cn+1
j = cnj .

This is a scalar quadratic equation with two roots. By the definition of Sn+1
j , we should pick the root

that is close to 1. In solving sub-problems 1, 2, 3 and 4, all realizations share a constant coefficient matrix
that is both time independent and ensemble index independent so that block solvers, such as block CG,
block GMRES, can be used to solve the corresponding linear systems fast and efficiently. Sub-problem 5
can be solved quickly since it is a scalar quadratic equations.

After getting ûn+1
j , ŭn+1

j , and Sn+1
j , we have un+1

j = ûn+1
j + Sn+1

j ŭn+1
j . Similarly, we can derive an

equation for V n+1
j .

Ãn+1
j (V n+1

j )2 + B̃n+1
j V n+1

j + C̃n+1
j = 0, (CNLF sub-problem 6)

where

Ãn+1
j = (

1

∆t
+

1

T
)exp(−

2tn

T
)−

1

2

∫

Ω

(un
j · ∇θnj )θ̆

n+1
j dx,

B̃n+1
j = −

rn−1
j

∆t
exp(−

tn

T
)−

1

2

∫

Ω

(un
j · ∇θnj )(θ̂

n+1
j + θn−1

j )dx,
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C̃n+1
j = dnj .

Theorem 4.1. With homogeneous Dirichlet boundary conditions, there exists a unique solution,
which is real, for CNLF sub-problem 5 and 6 respectively. Thus qnj and rnj are guaranteed to be real for
any n = 0, · · · , N , j = 1, · · · , J .

Proof. With homogeneous Dirichlet boundary conditions, we have Cn+1
j = 0. So CNLF sub-problem

5 has a unique real solution if An+1
j 6= 0. Testing CNLF sub-problem 2 with ŭn+1

j we have

1

2∆t
‖ŭn+1

j ‖2 + (
1

2Re
+ αh)‖∇ŭn+1

j ‖2 = −

∫

Ω

(un
j · ∇)un

j · ŭn+1
j dx.

Thus

An+1
j = (

1

∆t
+

1

T
)exp(−

2tn

T
) +

1

4∆t
‖ŭn+1

j ‖2 + (
1

4Re
+

1

2
αh)‖∇ŭn+1

j ‖2 > 0.

Similarly, we have

Ãn+1
j = (

1

∆t
+

1

T
)exp(−

2tn

T
) +

1

4∆t
‖θ̆n+1

j ‖2 + (
1

4RePr
+

1

2
βh)‖∇θ̆n+1

j ‖2 > 0.

Since C̃n+1
j = 0, CNLF sub-problem 6 also has a unique solution and it is real.

By the expressions of qn+1
j (4.3), and rn+1

j = 2exp(− tn

T
)V n+1

j − rn−1
j , we can conclude by indution

that qnj and rnj are real for any n = 0, · · · , N , j = 1, · · · , J .

We next present the implementation algorithm for the Stab-SAV-BDF2-En scheme. Let

Sn+1
j =

qn+1
j

exp(− tn+1

T
)
, un+1

j = ûn+1
j + Sn+1

j ŭn+1
j , pn+1

j = p̂n+1
j + Sn+1

j p̆n+1
j , (4.5)

V n+1
j =

rn+1
j

exp(− tn+1

T
)
, θn+1

j = θ̂n+1
j + V n+1

j θ̆n+1
j . (4.6)

Then instead of solving (2.11)-(2.15), we solve the following two subproblems for (ûn+1
j , p̂n+1

j , θ̂n+1
j ),

(ŭn+1
j , p̆n+1

j , θ̆n+1
j ) respectively.



































3

2∆t
ûn+1
j −

1

Re
∆ûn+1

j − 3αh∆ûn+1
j +∇p̂n+1

j

= fn+1
j +Ri · (2θnj − θn−1

j ) ·

(

0
1

)

+
2

∆t
un
j −

1

2∆t
un−1
j − 4αh∆un

j + αh∆un−1
j , in Ω

∇ · ûn+1
j = 0, in Ω

ûn+1
j = an+1

j , on ∂Ω.

(BDF2 sub-problem 1)



























3

2∆t
ŭn+1
j −

1

Re
∆ŭn+1

j − 3αh∆ŭn+1
j +∇p̆n+1

j

= −((2un
j − un−1

j ) · ∇)(2un
j − un−1

j ), in Ω

∇ · ŭn+1
j = 0, in Ω

ŭn+1
j = 0, on ∂Ω.

(BDF2 sub-problem 2)























3

2∆t
θ̂n+1
j −

1

RePr
∆θ̂n+1

j − 3βh∆θ̂n+1
j

= gn+1
j +

2

∆t
θnj −

1

2∆t
θn−1
j − 4βh∆θnj + βh∆θn−1

j , in Ω

θ̂n+1
j = bn+1

j , on ∂Ω.

(BDF2 sub-problem 3)
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

















3

2∆t
θ̆n+1
j −

1

RePr
∆θ̆n+1

j − 3βh∆θ̆n+1
j

= −((2un
j − un−1

j ) · ∇)(2θnj − θn−1
j ), in Ω

θ̆n+1
j = 0, on ∂Ω.

(BDF2 sub-problem 4)

Now we need to derive an equation for Sn+1
j .

Sn+1
j =

qn+1
j

exp(− tn+1

T
)

=⇒ qn+1
j = exp(−

tn+1

T
)Sn+1

j . (4.7)

Multiplying (2.13) by qn+1
j gives

(
3

2∆t
+

1

T
)(qn+1

j )2 +
−4qnj + qn−1

j

2∆t
qn+1
j − Sn+1

j

∫

Ω

((2un
j − un−1

j ) · ∇)(2un
j − un−1

j ) · un+1
j dx+ cn+1

j = 0

=⇒ (
3

2∆t
+

1

T
)exp(−

2tn+1

T
) (Sn+1

j )2 +
−4qnj + qn−1

j

2∆t
exp(−

tn+1

T
)Sn+1

j

− Sn+1
j

∫

Ω

((2un
j − un−1

j ) · ∇)(2un
j − un−1

j ) · (ûn+1
j + Sn+1

j ŭn+1
j ) dx+ cn+1

j = 0.

At last, we obtain the equation for Sn+1
j as

An+1
j (Sn+1

j )2 +Bn+1
j Sn+1

j + Cn+1
j = 0, (BDF2 sub-problem 5)

where

An+1
j = (

3

2∆t
+

1

T
)exp(−

2tn+1

T
)−

∫

Ω

((2un
j − un−1

j ) · ∇)(2un
j − un−1

j ) · ŭn+1
j dx,

Bn+1
j =

−4qnj + qn−1
j

2∆t
exp(−

tn+1

T
)−

∫

Ω

((2un
j − un−1

j ) · ∇)(2un
j − un−1

j ) · ûn+1
j dx,

Cn+1
j = cn+1

j .

Similarly, we can derive an equation for V n+1
j .

Ãn+1
j (V n+1

j )2 + B̃n+1
j V n+1

j + C̃n+1
j = 0, (BDF2 sub-problem 6)

where

Ãn+1
j = (

3

2∆t
+

1

T
)exp(−

2tn+1

T
)−

∫

Ω

((2un
j − un−1

j ) · ∇)(2θnj − θn−1
j ) · θ̆n+1

j dx,

B̃n+1
j =

−4rnj + rn−1
j

2∆t
exp(−

tn+1

T
)−

∫

Ω

((2un
j − un−1

j ) · ∇)(2θnj − θn−1
j ) · θ̂n+1

j dx,

C̃n+1
j = dn+1

j .

We can also prove

Theorem 4.2. With homogeneous Dirichlet boundary conditions, there exists a unique solution,
which is real, for BDF2 sub-problem 5 and 6 respectively. Thus qnj and rnj are guaranteed to be real for
any n = 0, · · · , N , j = 1, · · · , J .
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5. Algebraic Systems. Let {χuu
j }Nu

j=1, {χ
p
j}

Np

j=1, and {χθ
j}

Nθ

j=1 be the basis functions of finite element
spaces for approximating the velocity u, pressure p, and temperature θ, respectively. The approximated
solutions will be represented by vectors of nodal values, denoted in bold. When a superscript n is applied
to a bold vector, it represents the value at time tn = n∆t, and a subscript j will be applied to represent
the solution for the j-th sample. Let Muu and Suu denote the velocity mass matrice and velocity stiffness
matrice respectively. Similarly Mθ and Sθ for temperature. We also define matrices Dup, Nuu(u), Cuθ,
and Nuθ(u) whose entries are given as follows

[Dup]kl =

∫

Ω

χp
l (∇ · χuu

k ), [Nuu(u)]kl =

∫

Ω

(u · ∇)χuu
l · χuu

k ,

[Cuθ]kl =

∫

Ω

χθ
l

(

0
1

)

· χuu
k , [Nuθ(u)]kl =

∫

Ω

(u · ∇χθ
l )χ

θ
k.

The proposed schemes will be compared to the standard BDF2 scheme:
Algorithm 5.1 (BDF2).



























3un+1
j − 4un

j + un−1
j

2∆t
+ ((2un

j − un−1
j ) · ∇)un+1

j −
1

Re
∆un+1

j +∇pn+1
j = Ri(2θnj − θn−1

j )

(

0
1

)

+ fn+1
j ,

∇ · un+1
j = 0,

3θn+1
j − 4θnj + θn−1

j

2∆t
+ (2un

j − un−1
j ) · ∇θn+1

j −
1

RePr
∆θn+1

j = gn+1
j

Below we list the forms of algebraic systems of the Stab-SAV-BDF2-En scheme and the BDF2 scheme,
for sample j = 1, · · · , J .

• Stab-SAV-BDF2-En:

Asavbdf2

(

ûn+1
j

p̂n+1
j

)

=

(

b̂n+1
j

0

)

, Asavbdf2

(

ŭn+1
j

p̆n+1
j

)

=

(

b̆n+1
j

0

)

, (5.1)

Bsavbdf2θ̂
n+1
j = ĉn+1

j , Bsavbdf2θ̆
n+1
j = c̆n+1

j (5.2)

with

Asavbdf2 =

(

3
2∆t

Muu + ( 1
Re

+ 3αh)Suu −Dup

−DT
up 0

)

,

Bsavbdf2 =
3

2∆t
Mθ + (

1

RePr
+ 3βh)Sθ,

b̂n+1
j = fn+1

j +Muu(
2
∆t

un
j − 1

2∆t
un−1
j ) + Suu(4αhu

n
j − αhun−1

j ) +RiCuθ(2θ
n
j − θ

n−1
j ),

b̆n+1
j = −Nuu(2u

n
j − un−1

j ) · (2un
j − un−1

j ),

ĉn+1
j = gn+1

j +Mθ(
2
∆t

θ
n
j − 1

2∆t
θ
n−1
j ) + Sθ(4βhθ

n
j − βhθn−1

j ),

c̆n+1
j = −Nuθ(2u

n
j − un−1

j ) · (2θn
j − θ

n−1
j ).

• BDF2:

A
(n),j
bdf2

(

un+1
j

pn+1
j

)

=

(

hn+1
j

0

)

, (5.3)

B
(n),j
bdf2 θ

n+1
j = mn+1

j (5.4)
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with

A
(n),j
bdf2 =

(

3
2∆t

Muu +Nuu(2u
n
j − un−1

j ) + 1
Re

Suu −Dup

−DT
up 0

)

,

B
(n),j
bdf2 =

3

2∆t
Mθ +Nuθ(2u

n
j − un−1

j ) +
1

RePr
Sθ,

hn+1
j = fn+1

j +Muu(
2
∆t

un
j − 1

2∆t
un−1
j ) +RiCuθ(2θ

n
j − θ

n−1
j ),

mn+1
j = gn+1

j +Mθ(
2
∆t

θ
n
j − 1

2∆t
θ
n−1
j ).

Note that the matrix Asavbdf2 in the Stab-SAV-BDF2-En scheme is fixed at different time steps. If
a direct linear solver is taken, then LU decomposition is needed only once. If an iterative linear solver is
taken, then a fixed preconditioner can be applied in all time steps. The matrix Asavbdf2 is also fixed for
different samples, so we can simultaneously solves a single linear system with multiple right hand sides

corresponding to different samples. In contrast, the matrix A
(n),j
bdf2 in the BDF2 scheme changes over j

and over time. We need to simulate J different samples one by one, and no common LU decomposition or
preconditioner can be used. The advantage of getting matrix Bsavbdf2 is similar. The Stab-SAV-BDF2-
En scheme posses an extra superiority: its discretized linear systems are symmetric, whereas the linear
systems for the BDF2 scheme are non-symmetric. To be specific, system (5.2) can be solved efficiently by
a block conjugate gradient method, but a block GMRES method should be resorted to for solving (5.4).

6. Numerical Experiments. We will perform numerical experiments to demonstrate the effec-
tiveness and efficiency of the proposed algorithms. To make the presentation short, we only focus on
the Stab-SAV-BDF2-En scheme except for the convergence test. In all simulations, the finite element
method is used for spatial discretization, and the finite element spaces are (P2, P1, P2) for the veloc-
ity/pressure/temperature, respectively. Both algorithms are implemented in Matlab with a data structure
based on the iFEM matlab package.

6.1. Convergence test. In this section, we test the convergence rate of the Stab-SAV-CNLF-En
and Stab-SAV-BDF2-En algorithms by computing the numerical error between the numerical solution
and a given exact solution. Specifically, we consider the Boussinesq equations on Ω = (0, 1)2 and set the
model parameters as Ri = 10, P r = 1. A manufactured analytical solution is constructed as in [15]:

u(x1, x2, t) = (π sin(t) sin(2πx2) sin
2(πx1),−π sin(t) sin(2πx1) sin

2(πx2))
T ,

p(x1, x2, t) = sin(t) cos(πx1) sin(πx2),

θ(x1, x2, t) = π sin(t) sin(2πx2) sin
2(πx1)− π sin(t) sin(2πx1) sin

2(πx2).

We will consider an ensemble of J = 2 simulations, whose exact solutions are given by

uj(x1, x2, t) = (1 + εj)u(x1, x2, t),

pj(x1, x2, t) = (1 + εj)p(x1, x2, t),

θj(x1, x2, t) = (1 + εj)θ(x1, x2, t),

where j = 1, 2, ε1 = 0.01, ε2 = −0.01. Dirichlet boundary conditions are imposed on ∂Ω; the boundary
conditions, initial conditions, forcing function and heat source are selected to match the prescribed
analytical solution.

To examine the temporal convergence rate of each algorithm, we compute approximated solutions
five times with four successive mesh refinements and timestep reductions. In particular, we test two
typical cases. In the first test, we set Re = 100 so that the Reynolds number is relatively small and no
stabilization is needed, i.e. α = 0, β = 0. The initial mesh size is h = 1/10 and the relation ∆t = h is fixed.
The solution errors at T = 0.5 for j = 1, computed by Stab-SAV-CNLF-En and Stab-SAV-BDF2-En,
are reported in Table 6.1 and 6.2 respectively. These results confirm that the proposed algorithms are
second order in time convergent.
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Table 6.1: Errors at T = 0.5 and convergence rates of the Stab-SAV-CNLF-En algorithm (J = 2, j = 1)
with ∆t = h, α = 0, β = 0, Re = 100.

∆t ‖u1,h − u1‖H1 Rate ‖p1,h − p1‖L2 Rate ‖θ1,h − θ1‖H1 Rate

1/10 2.655× 10−1 - 3.042× 10−2 - 1.748× 10−1 -
1/20 4.482× 10−2 2.57 7.977× 10−3 1.93 3.628× 10−2 2.27
1/40 8.354× 10−3 2.42 2.022× 10−3 1.98 8.355× 10−3 2.12
1/80 1.827× 10−3 2.19 5.073× 10−4 1.99 2.026× 10−3 2.04
1/160 4.380× 10−4 2.06 1.270× 10−4 2.00 5.016× 10−4 2.01

Table 6.2: Errors at T = 0.5 and convergence rates of the Stab-SAV-BDF2-En algorithm (J = 2, j = 1)
with ∆t = h, α = 0.0, β = 0.0, Re = 100.

∆t ‖u1,h − u1‖H1 Rate ‖p1,h − p1‖L2 Rate ‖θ1,h − θ1‖H1 Rate

1/10 2.315× 10−1 - 1.512× 10−2 - 1.357× 10−1 -
1/20 3.942× 10−2 2.55 4.869× 10−3 1.63 2.472× 10−2 2.46
1/40 6.799× 10−3 2.54 1.341× 10−3 1.86 5.396× 10−3 2.20
1/80 1.419× 10−3 2.26 3.490× 10−4 1.94 1.316× 10−3 2.04
1/160 3.378× 10−4 2.07 8.894× 10−4 1.97 3.305× 10−4 1.99

In the second test, we take Re = 1000, which is relatively large and stabilization is necessary to
guarantee convergence according to our experiments. In this case, we set α = 0.1, β = 0.1, and fix
∆t = 0.2 ∗ h. The solution errors at T = 0.5 for j = 1, computed by Stab-SAV-CNLF-En and Stab-SAV-
BDF2-En, are reported in Table 6.3 and 6.4 respectively. As one can see, both schemes have second order
convergence rate as predicted.

6.2. Marsigli flow. Inspired by the numerical experiments in [30, 1], we check the effectiveness
of the Stab-SAV-BDF2-En scheme on simulating the Marsigli flow, which has been known since the
observation of Marsigli in 1681. The physical phenomenon is that when two fluids with different densities
are separated by a vertical plan, once the partition is removed a motion driven by the gravity will create
two currents with opposite moving directions. The flow with lighter density becomes a surface flow,
while the other becomes the undercurrent. Because the fluid density difference can be converted into
temperature difference with the reverse ratio by the Boussinesq assumption, this physical process can be
modelled by the incompressible Boussinesq equations (2.1).

Following [30], we set the domain as Ω = (0, 8)× (0, 1) to represent an insulated box with a partition
located at x1 = 4. Initially, the temperature is set to be 1.5 in the left half of the box, indicating the
lower density flow, and 1 in the right half of the box, indicating the higher density flow. The temperature
is subject to an adiabatic boundary condition. The Boussinesq flow is initially at rest, and subject to a
no-slip boundary condition. The forcing function f = 0 and heat source g = 0 are used. The Richardson
number and Prandtl number are set to be Ri = 4, P r = 1.

To compare with results in [30], we set Re = 5000 and report the corresponding numerical solutions
at t = 2, 4, 6, 8 in Fig. 6.1. Here the resolution is taken as h = 1/64,∆t = 0.001. The simulation shows
almost idential temperature distributions and flow patterns as given in [30]. The appearance of a surface
flow and undercurrent is observed clearly at the right time.

We would also like to show the importance of adding the stabilization term in the SAV approach.
For this purpose, we firstly run the simulation with ∆t = 0.01, α = 0, β = 0 (i.e. no stabilization), and
then compare the results with those obtained by choosing α = 0.5, β = 0.5. Here we consider Re = 1000
which was used for study in [1]. The non-stabilized results are presented in Fig. 6.2, and the stabilized
ones are given in Fig. 6.3. As one can see, the non-stabilized solution does not indicate the generation of
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Table 6.3: Errors at T = 0.5 and convergence rates of the Stab-SAV-CNLF-En algorithm (J = 2, j = 1)
with ∆t = 0.2 ∗ h, α = 0.1, β = 0.1, Re = 1000.

∆t ‖u1,h − u1‖H1 Rate ‖p1,h − p1‖L2 Rate ‖θ1,h − θ1‖H1 Rate

1/10 8.094× 10−1 - 1.290× 10−1 - 5.259× 10−1 -
1/20 2.202× 10−1 1.88 3.497× 10−2 1.88 1.542× 10−1 1.78
1/40 5.312× 10−2 2.05 8.944× 10−3 1.97 3.726× 10−2 2.05
1/80 1.165× 10−2 2.19 2.256× 10−3 1.99 8.549× 10−3 2.12
1/160 2.689× 10−3 2.12 5.679× 10−4 1.99 2.058× 10−3 2.05

Table 6.4: Errors at T = 0.5 and convergence rates of the Stab-SAV-BDF2-En algorithm (J = 2, j = 1)
with ∆t = 0.2 ∗ h, α = 0.1, β = 0.1, Re = 1000.

∆t ‖u1,h − u1‖H1 Rate ‖p1,h − p1‖L2 Rate ‖θ1,h − θ1‖H1 Rate

1/10 7.668× 10−1 - 1.188× 10−1 - 4.967× 10−1 -
1/20 2.154× 10−1 1.83 3.369× 10−2 1.82 1.505× 10−1 1.72
1/40 5.251× 10−2 2.04 8.802× 10−3 1.94 3.680× 10−2 2.03
1/80 1.155× 10−2 2.18 2.241× 10−3 1.97 8.504× 10−3 2.11
1/160 2.675× 10−3 2.11 5.649× 10−4 1.99 2.057× 10−3 2.05

surface or undercurrent flow as time progresses. In contrast, the stabilized solution catches very well the
temperture distribution and flow pattern reported in [1] at each time level. The generation of a surface
flow and a undercurrent is clearly observed.

6.3. Efficiency tests. In this section we show the computational efficiency of Stab-SAV-BDF2-En
by two numerical experiments, and compare its performance with the standard BDF2 scheme.

In the first experiment, we investigate the ensemble efficiency with the number J of samples varying
from 1 to 100. Analytic solutions are given as in Sec. 6.1 with εj being random numbers uniformly
distributed in [−0.01, 0.01]. The physical parameters are set to be Pr = 1, Ri = 1, Re = 100. For
both the Stab-SAV-BDF2-En and BDF2 schemes, we take h = 1/64,∆t = 0.002 and run the simulation
until T = 0.5. For accuracy comparison, we set α = 0, β = 0 in the Stab-SAV-BDF2-En scheme. In
this particular test, we use the block GMRES iterative linear solver [2] to solve for the velocity and
pressure, and apply the least-squares commutator preconditioner to speed up convergence. Efficiency
of this preconditioned iterative solver has been reported in [24]. We then use the block CG iterative
linear solver for the temperature in the Stab-SAV-BDF2-En scheme, whereas block GRMRES for the
temperature in the BDF2 scheme. Note that the latter involves non-symmetric linear systems.

Table 6.5 reports the comparison of CPU time and numerical errors computed by the Stab-SAV-
BDF2-En and BDF2 schemes with J = 1, 10, 100. One can observe that the Stab-SAV-BDF2-En algo-
rithm outperforms the BDF2 scheme as it takes less CPU times while having the same accuracy. The
advantage of the Stab-SAV-BDF2-En algorithm becomes more apparent as the ensemble size increases.

The second experiment is to observe efficiency by simulating the differentially heated cavity flow,
studied in [30, 15]. This is a realistic problem having many important industrial applications including
solar collector, room ventilation, and cooling of electronics chips. Similar to [15], we simulate the differ-
entially heated cavity flow in a rectangular domain Ω = (0, 1)× (0, 4) with zero forcing function and heat
source. A no-slip boundary condition is imposed for the velocity and adiabatic boundary condition is
imposed for the temperature on the horizontal wall. The temperature on the left wall is fixed as constant
θ = 0.5, while on the right wall the temperature is always θ = −0.5. In our simulation, the Prandtl
number is chosen to be 0.71, the Richardson number is Ri = 1, and the Reynolds number is given by
Re =

√

Ra/(PrRi). We consider J = 1 and set initial conditions to be zero.
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Fig. 6.1: Marsigli flow with Re = 5000 simulated by the Stab-SAV-BDF2-En scheme. From top to
bottom: temperature at t = 2, 4, 6, 8, streamline at t = 2, 4, 6, 8.

For both the Stab-SAV-BDF2-En and BDF2 schemes, we take h = 1/64,∆t = 0.002 and run the
simulation until T = 10. We still set α = 0, β = 0 in the Stab-SAV-BDF2-En scheme. Simulations are
performed by using both a direct linear solver (LU decomposition) and the preconditioned block GMRES
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Table 6.5: CPU time and errors of the solution expectation at T = 0.5 with h = 1/64,∆t = 0.002 and
different values of J .

Stab-SAV-BDF2-En BDF2

J = 1 J = 10 J = 100 J = 1 J = 10 J = 100

‖E[uh − u]‖H1 5.70× 10−4 5.68× 10−4 5.71× 10−4 5.70× 10−4 5.68× 10−4 5.71× 10−4

‖E[ph − p]‖L2 1.07× 10−4 1.07× 10−4 1.08× 10−4 1.07× 10−4 1.07× 10−4 1.08× 10−4

‖E[θh − θ]‖H1 2.89× 10−4 2.88× 10−4 2.90× 10−4 2.89× 10−4 2.88× 10−4 2.90× 10−4

CPU time 530 s 3468 s 28423 s 631 s 6507 s 49003 s

Table 6.6: CPU time for simulating the differentially heated cavity flow with T = 10, h = 1/64,∆t =
0.002.

Stab-SAV-BDF2-En BDF2

CPU time (direct linear solver) 10401 s 97132 s
CPU time (iterative linear solver) 12584 s 44602 s

iterative solver mentioned above. The execution times are reported in Table 6.6. The temperature
distributions and streamlines at t = 5, 10 are plotted in Fig. 6.4. Form the table and the figure we can
see that no matter a direct linear solver or an iterative linear solver is used, the Stab-SAV-BDF2-En
algorithm outperforms the BDF2 scheme since it takes much less CPU times while providing almost
identical numerical solutions. The patterns in Fig. 6.4 also match well with the results in [15].

7. Conclusions. We proposed two second order ensemble schemes for fast computation of the
Boussinesq flow ensembles combining the ensemble timestepping and the SAV approach. Both of the
schemes are proved to be unconditionally long time stable without any time step constraints. These
ensemble schemes are highly efficient as the coefficient matrices of the linear systems after spatial dis-
cretization are both time independent and ensemble index independent, for which special efficient block
linear solvers can be used to significantly reduce the computational cost and CPU time. We also presented
fully decoupled implementation algorithms for these schemes and explanations on the corresponding al-
gebraic systems. Numerical experiments are performed to demonstrate that our schemes are second order
convergent, and have comparable accuracy to standard non-ensemble methods while taking significantly
less CPU time. The added stabilization term is very effective in increasing the schemes’ accuracy and
stability. We have focused on time discretization in this paper. The proposed ensemble algorithms can
also be easily combined with nonforming mixed elements and other spatial discretization methods.
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Fig. 6.2: Marsigli flow with Re = 1000 simulated by the Stab-SAV-BDF2-En scheme (α = 0, β = 0).
From top to bottom: temperature at t = 2, 4, 6, 8, streamline at t = 2, 4, 6, 8.
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Fig. 6.3: Marsigli flow with Re = 1000 simulated by the Stab-SAV-BDF2-En scheme (α = 0.5, β = 0.5).
From top to bottom: temperature at t = 2, 4, 6, 8, streamline at t = 2, 4, 6, 8.
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Fig. 6.4: Differentially heated cavity flow simulated by the Stab-SAV-BDF2-En scheme (top) and the
BDF2 scheme (bottom). From left to right: temperature at t = 5, 10, streamline at t = 5, 10.
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