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We compare Stein fillings and Milnor fibers for rational surface singularities with
reduced fundamental cycle. Deformation theory for this class of singularities was stud-
ied by de Jong and van Straten (1998); they associated a germ of a singular plane curve
to each singularity and described Milnor fibers via deformations of this singular curve.

We consider links of surface singularities, equipped with their canonical contact
structures, and develop a symplectic analog of de Jong and van Straten’s construction.
Using planar open books and Lefschetz fibrations, we describe all Stein fillings of
the links via certain arrangements of symplectic disks, related by a homotopy to the
plane curve germ of the singularity.

As a consequence, we show that many rational singularities in this class admit Stein
fillings that are not strongly diffeomorphic to any Milnor fibers. This contrasts with
previously known cases, such as simple and quotient surface singularities, where
Milnor fibers are known to give rise to all Stein fillings. On the other hand, we show
that if for a singularity with reduced fundamental cycle, the self-intersection of each
exceptional curve is at most �5 in the minimal resolution, then the link has a unique
Stein filling (given by a Milnor fiber).
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1 Introduction

The goal of this paper is to compare and contrast deformation theory and symplectic

topology of certain rational surface singularities. Using topological tools, we examine

symplectic fillings for links of rational surface singularities with reduced fundamental

cycle and compare these fillings to Milnor fibers of the singularities. Each Milnor fiber

carries a Stein structure and thus gives a Stein filling of the link; however, we show that

there is a plethora of Stein fillings that do not arise from Milnor fibers. Milnor fibers

and deformation theory are studied in the work of de Jong and van Straten [27] for

sandwiched surface singularities (this class includes rational singularities with reduced

fundamental cycle). The main feature of their construction is a reduction from surfaces

to curves: deformations of a surface singularity in the given class can be understood

via deformations of the germ of a reducible plane curve associated to the singularity.

To describe Stein fillings, we develop a symplectic analog of de Jong and van Straten’s

constructions, representing the fillings via arrangements of smooth (or symplectic)

disks in C2. Our approach is purely topological and thus different from de Jong and

van Straten’s; their algebrogeometric techniques do not apply in our more general

symplectic setting. We work with Lefschetz fibrations and open books, referring to

algebraic geometry only for motivation and for the description of smoothings from [27].

Let X � CN be a singular complex surface with an isolated singularity at the origin.

For small r > 0, the intersection Y D X \ S2N �1
r with the sphere S2N �1

r D fjz1j2 C
jz2j2 C� � �CjzN j2 D rg is a smooth 3±manifold called the link of the singularity .X; 0/.

The induced contact structure � on Y is the distribution of complex tangencies to Y,

and is referred to as the canonical or Milnor fillable contact structure on the link. The

contact manifold .Y; �/, which we will call the contact link, is independent of the

choice of r , up to contactomorphism.

An important problem concerning the topology of a surface singularity is to compare the

Milnor fibers of smoothings of .X; 0/ to symplectic or Stein fillings of the link .Y; �/.

A smoothing is given by a deformation of X to a surface (the Milnor fiber) that is

no longer singular. (We discuss smoothings in more detail in Section 2.) Milnor

fibers themselves are Stein fillings of .Y; �/, called Milnor fillings. An additional

Stein filling can be produced by deforming the symplectic structure on the minimal

resolution of .X; 0/; see Bogomolov and de Oliveira [10]. For rational singularities, this

filling agrees with the Milnor fiber of the Artin smoothing component and need not be

considered separately; see Section 4. An interesting question is whether the collection

Geometry & Topology, Volume 27 (2023)
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of these expected fillings, taken for all singularities with the same link .Y; �/, gives all

possible Stein fillings of the link. In this article, we will use the term unexpected Stein

filling to refer to any Stein filling which does not arise as a Milnor fiber or the minimal

resolution.

There are very few examples of unexpected Stein fillings in the previously existing

literature, none of which are simply connected. In this article, we show that, in fact,

unexpected Stein fillings are abundant, and in many cases simply connected, even

for the simple class of rational singularities with reduced fundamental cycle. These

singularities, also known as minimal singularities (see Kollár [29]), can be characterized

by the conditions that the dual resolution graph is a tree, where each vertex v corresponds

to a curve of genus 0, and its self-intersection v �v and valency a.v/ satisfy the inequality

�v � v � a.v/. (See Section 2 for more details.) In low-dimensional topology, such

graphs are often referred to as trees with no bad vertices. The corresponding plumbed

3±manifolds are L±spaces, ie they have the simplest possible Heegaard Floer homology;

see Ozsváth and Szabó [51]. In a sense, links of rational singularities with reduced fun-

damental cycle are just slightly more complicated than lens spaces. As another measure

of low complexity, these contact structures admit planar open book decompositions. In

the planar case, the set of Stein fillings satisfies a number of finiteness properties (see

for instance Kaloti [28], Lisi and Wendl [35], Plamenevskaya [54] and Stipsicz [60]),

which makes it rather surprising that these singularities diverge from the expected.

We construct many specific examples of unexpected Stein fillings for rational singulari-

ties with reduced fundamental cycle. Then we show that our examples can be broadly

generalized to apply to a large class of singularities with reduced fundamental cycle:

we only require that the resolution graph of the singularity contain a certain subgraph

to ensure that the link has many unexpected Stein fillings.

Theorem 1.1 For any N > 0, there is a rational singularity with reduced fundamental

cycle whose contact link .YN ; �N / admits at least N pairwise nonhomeomorphic

simply connected Stein fillings , none of which is diffeomorphic to a Milnor filling

(rel certain boundary data). Examples of such .YN ; �N / include Seifert fibered spaces

over S2 corresponding to certain star-shaped resolution graphs.

The statement also holds for any rational singularity with reduced fundamental cycle

whose resolution graph has a star-shaped subgraph as above.

More precise statements are given in Section 7. Our first example which admits

simply connected unexpected Stein fillings corresponds to the singularity with resolution

Geometry & Topology, Volume 27 (2023)



1086 Olga Plamenevskaya and Laura Starkston

�11

Figure 1: A resolution graph for a singularity whose link admits simply con-
nected unexpected fillings. (Unlabeled vertices have self-intersection �2.)
Any graph containing this as a subgraph corresponds to a singularity which
also admits simply connected unexpected fillings.

graph in Figure 1. More generally, for every N > 4 we can find N distinct unexpected

Stein fillings for singularities whose dual resolution graph is star-shaped with at least

2N C 5 sufficiently long legs, the self-intersection of the central vertex is a large

negative number, and the self-intersection of any other vertex is �2.

By contrast, previous results have indicated that for simple classes of singularities,

all Stein fillings come from Milnor fibers or the minimal resolution (there are no

unexpected fillings). This is true for .S3; �std/ by Eliashberg [13], for links of simple

and simple elliptic singularities by Ohta and Ono [49; 50], for lens spaces (links of

cyclic quotient singularities) by Lisca [34] and Némethi and Popescu-Pampu [45], and

in general for quotient singularities by Bhupal and Ono [8] and Park, Park, Shin and

Urzúa [52]. Theorem 1.1 breaks this pattern and provides many unexpected fillings.

However, we are also able to show that certain classes of rational singularities with

reduced fundamental cycle do not admit any unexpected fillings:

Theorem 1.2 Let .X; 0/ be a rational singularity with reduced fundamental cycle with

link .Y; �/, and suppose that each exceptional curve in its minimal resolution has self-

intersection at most �5. Then the resolution of .X; 0/ is the unique weak symplectic

filling of .Y; �/, up to blow-up , symplectomorphism and symplectic deformation.

This theorem proves a symplectic analogue of [27, Theorem 6.21], which establishes a

special case of a conjecture of Kollár, showing that for singularities as in Theorem 1.2,

the base space of a semiuniversal deformation has one component. Thus, they show there

is a unique smoothing, whereas we generalize this to show there is a unique minimal

symplectic filling. To prove Theorem 1.2, we build on the combinatorial argument

of [27] and use mapping class group arguments to establish the symplectic case.

The bound of �5 on the self-intersection of the exceptional curves in Theorem 1.2

cannot generally be improved. Indeed, any singularity whose minimal resolution

Geometry & Topology, Volume 27 (2023)
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contains a sphere of self-intersection �4 has at least two distinct Stein fillings, because

a neighborhood of the .�4/ sphere can be rationally blown down to produce another

filling with smaller Euler characteristic; see Symington [61]. This corresponds to the fact

that the singularity has at least two smoothing components if a .�4/ sphere is present;

see Kollár [30]. While our Theorem 1.1 shows there are unexpected fillings in many ex-

amples, we do not cover all examples which fail the hypotheses of Theorem 1.2; there are

many cases where we cannot determine whether or not the link has unexpected fillings.

Theorem 1.2 extends the list of singularities with no unexpected Stein fillings. However,

when complexity of the singularity increases, one should expect the unexpected: as

predicted in Némethi [43], more complicated singularities are likely to have Stein

fillings that do not arise from Milnor fibers. To our knowledge, the only previous

examples of unexpected Stein fillings in the literature are detected by their first Betti

number. By Greuel and Steenbrink [22], Milnor fibers for normal surface singularities

always have b1 D 0. An infinite family of Stein fillings with b1 ¤ 0 was given in

Akhmedov and Ozbagci [3; 4] for links of certain nonrational singularities; these links

are Seifert fibered spaces over higher genus surfaces. It follows from [3; 4] that most

of these fillings are different from both the Milnor fibers and the resolution of the

singularity. The constructions in these papers use surgeries and produce infinite families

of exotic fillings (which are all homeomorphic but pairwise nondiffeomorphic). Note

that for rational singularities, the first Betti number cannot detect unexpected fillings:

the link is a rational homology sphere, and a homology exact sequence argument shows

that b1 D 0 for any Stein filling; see Remark 6.5.

Note that, in general, known results allow us to find many nonrational singularities

whose links have infinitely many Stein fillings. As an example, consider a normal

surface singularity whose resolution has a unique exceptional curve of genus g � 2 with

self-intersection �d , for d > 0. The resolution is the total space of the complex line

bundle of degree d over the corresponding Riemann surface, and the singularity can be

thought of as cone point. If g D 1
2
.d � 1/.d � 2/, one of the analytic singularities in

this topological type is the hypersurface .Xd ; 0/ in C3, given by xd C yd C zd D 0.

For each d � 5, the results of Baykur, Monden and Van Horn-Morris [7] produce

arbitrarily long positive factorizations of the corresponding open book monodromy,

which in turn yields infinitely many Stein fillings for the link .Yd ; �d /; in particular,

there are Stein fillings with arbitrarily large b2. One might hope that most of these

Stein fillings are unexpected: indeed, a hypersurface singularity has a unique Milnor

fiber, and its topology is well understood; see Milnor [39] and Tyurina [64]. However,

Geometry & Topology, Volume 27 (2023)



1088 Olga Plamenevskaya and Laura Starkston

the question is more subtle: because .Xd ; 0/ is not (pseudo)taut (see Laufer [32]),

there are infinitely many singularities with the same link .Yd ; �d /. Milnor fibers of

these singularities may yield additional Stein fillings. Describing all such Milnor fibers

seems to be out of reach; conceivably, they may produce all the Stein fillings given

by the arbitrarily long factorizations of [7]. We will discuss related questions in more

detail in Section 4, although we do not have any answers for this case.

Our present work gives the first examples of unexpected Stein fillings for rational singu-

larities, and for the case where the link Y is a rational homology sphere. In the case of ra-

tional singularities, the fillings must be differentiated from Milnor fibers by more subtle

means than b1, as all Stein fillings have b1 D0 in this case. For singularities with reduced

fundamental cycle, the contact link admits a planar open book decomposition; see

Némethi and Tosun [46] and Schönenberger [58]. By Kaloti [28], Plamenevskaya [54]

and Stipsicz [60], it follows that the number of Dehn twists in any positive monodromy

factorization, and thus b2 of Stein fillings, is bounded above. This means that we

cannot generate unexpected fillings by arbitrarily long positive factorizations. On the

other hand, even though there is typically an infinite collection of singularities with the

given link, the reduced fundamental cycle hypothesis, together with the de Jong±van

Straten theory, gives us certain control over the topology of all possible Milnor fibers.

In general, comparing Stein fillings to Milnor fillings is a two-fold challenge: clas-

sification is typically out of reach, both on the deformation theory side (smoothings

and Milnor fibers) and on the symplectic side (Stein fillings). In the particular case of

rational singularities with reduced fundamental cycle, two important tools facilitate

the study of fillings. On the algebraic geometry side, de Jong and van Straten reduce

the study of deformations of the surface to certain deformations of a decorated germ

of a reducible singular complex curve C � C2. (The germ C is associated to the

surface as explained in Section 2. For now, we omit the decoration from notation.) The

construction of [27] works for a more general class of sandwiched rational singularities;

in the case of reduced fundamental cycle, the associated plane curve germ has smooth

irreducible components. Thus in this case, C is simply the union of smooth complex

disks C1;C2; : : : ;Cm, all passing through 0. The decoration of the germ is given by

marked points, initially concentrated at the origin. To encode deformations of the surface

singularity, one considers 1±parameter ı±constant deformations of C, where the marked

points are redistributed so that all singularities of the deformed curve Cs are marked

(additional ªfreeº marked points are also allowed). Smoothings of the corresponding

singularities are given by picture deformations, where the only singularities of the
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deformed curve are transverse multiple points. While picture deformations are still

hard to classify directly and thus rarely give explicit classification of smoothings, they

do provide a lot of useful information. In certain examples, they allow us to understand

the topology of Milnor fibers and compute their basic invariants.

The following theorem summarizes the results of de Jong±van Straten that we use.

Detailed definitions and precise statements will be given in Section 2.

Theorem 1.3 [27, Theorem 4.4, Lemma 4.7] Let .X; 0/ be a rational singularity with

reduced fundamental cycle , and C � C2 its decorated germ of a reducible complex

curve such that all the branches C1; : : : ;Cm of C are smooth complex disks. Then

smoothings of .X; 0/ are in one-to-one correspondence with picture deformations of C.

A picture deformation gives an arrangement Cs of the deformed branches C s
1
; : : : ;C s

m,

s ¤ 0, with marked points that include all the intersections of the branches. The Milnor

fiber WCs of the corresponding smoothing can be constructed by blowing up at all

marked points and taking the complement of the proper transforms of C s
1
; : : : ;C s

m.

The Milnor fibers described in Theorem 1.3 are noncompact, but a slight modification

yields compact Milnor fillings of the contact link .Y; �/ of .X; 0/. We consider the

germ C in a small closed ball B � C2 centered at 0, such that all the branches of C, and

thus all the deformed branches for small s, intersect @B transversely, and B contains

all marked points. To obtain a smooth compact 4±manifold whose boundary is the

link Y, we blow up B at the marked points, take the complement of disjoint tubular

neighborhoods of the proper transforms of C s
1
; : : : ;C s

m, and smooth the corners.

In turn, on the symplectic side, contact links of singularities with reduced fundamental

cycle are more accessible because they are supported by planar open books; see Némethi

and Tosun [46] and Schönenberger [58]. By a theorem of Wendl [65], all Stein fillings

of a planar contact manifold are given by Lefschetz fibrations whose fiber is the page of

the open book. In other words, all these Lefschetz fibrations arise from factorizations

of the monodromy of the given open book into a product of positive Dehn twists. In

most cases, such positive factorizations cannot be explicitly classified, but they give a

combinatorial approach to Stein fillings.

To relate the two sides of the story, we generalize the notion of picture deformation and

consider smooth graphical homotopies of the decorated germ C with smooth branches.

A smooth graphical homotopy of C is a real 1±parameter family of embedded disks

C t
1
; : : : ;C t

m such that for t D 0 the disks C 0
1
; : : : ;C 0

m are the branches of C, and
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for t D 1, the intersections between C 1
i and C 1

j are transverse and positive for all i; j .

There is a collection of marked points on C 1
1
; : : : ;C 1

m, coming from a redistribution of

the decoration on C, such that all intersection points are marked. (See Definition 3.1.)

We prove that just as picture deformations yield smoothings in [27], every smooth

graphical homotopy gives rise to a Stein filling naturally supported by a Lefschetz

fibration.

Theorem 1.4 Let .Y; �/ be the contact link of a singularity .X; 0/ with reduced

fundamental cycle , and let C be a decorated plane curve germ representing .X; 0/,

with m smooth components C 0
1
; : : : ;C 0

m. For any smooth graphical homotopy , let W

be the smooth 4±manifold obtained by blowing up at all marked points and taking

the complement of the proper transforms of C 1
1
; : : : ;C 1

m. (In the case of a picture

deformation Cs, W is the Milnor fiber WCs from Theorem 1.3).

Then W carries a planar Lefschetz fibration that supports a Stein filling of .Y; �/. When

W D WCs , the Lefschetz fibration is compatible with the Stein structure on the Milnor

fiber.

The fiber of the Lefschetz fibration on W is a disk with m holes , and the vanishing

cycles can be computed directly from the decorated curve configuration C 1
1
; : : : ;C 1

m.

On .Y; �/, the Lefschetz fibration induces a planar open book decomposition , which is

independent of the smooth graphical homotopy of the given decorated germ C.

Each rational singularity with reduced fundamental cycle has a distinguished Artin

smoothing component, which corresponds to a picture deformation called the Scott

deformation; see Section 4. Applying Theorem 1.4 to the Scott deformation yields

a planar Lefschetz fibration filling .Y; �/ where the vanishing cycles are disjoint; see

Proposition 4.1. This gives a natural model for the planar open book decomposition

on .Y; �/. This open book is closely related to the braid monodromy of the singularity

of C. Note that we need to consider all singularities topologically equivalent to .X; 0/ to

describe all Milnor fillings for .Y; �/, since all such singularities have the same contact

link. However, topologically equivalent singularities can be represented by topologically

equivalent decorated germs and produce the same open book decompositions.

The process of computing the monodromy factorization resembles a known strategy for

monodromy calculation for a plane algebraic curve; see Moishezon and Teicher [40; 41].

The necessary information can be encoded by a braided wiring diagram given by the

intersection of Cs with a suitably chosen copy of C � R � C2.
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A reversal of the above constructions allows us to represent Stein fillings of .Y; �/ via

arrangements of symplectic curves, as follows. Let W be an arbitrary Stein filling of

the link .Y; �/. We fix an open book for .Y; �/ defined by the germ C as above. By

Wendl’s theorem, W can be represented by a Lefschetz fibration with the planar fiber

given by the page. The Lefschetz fibration corresponds to a factorization of the open

book monodromy into a product of positive Dehn twists. We reverse-engineer a braided

wiring diagram producing this factorization, and then use the diagram to construct an

arrangement � of symplectic disks. (In fact, an arrangement of smooth graphical disks

is sufficient for our constructions, but the symplectic condition can be satisfied at no

extra cost.) We require that the disks intersect transversally (multiple intersections are

allowed), and equip � with a collection of marked points that include all intersections

and possibly additional ªfreeº points. We also show that the resulting arrangement

of disks and points is related to the decorated germ C by a smooth homotopy, which

is graphical in suitable coordinates. (The homotopy moves the disks and the marked

points.) This yields a symplectic analog of Theorem 1.3.

Theorem 1.5 Let .Y; �/ be the contact link of a singularity .X; 0/ with reduced

fundamental cycle that corresponds to a decorated plane curve germ C. Then any

Stein filling of .Y; �/ arises from an arrangement � of symplectic graphical disks with

marked points , as in Theorem 1.4. The arrangement � is related to the decorated germ C

by a smooth graphical homotopy.

Theorems 1.3 and 1.5 mean that both Milnor fibers and arbitrary Stein fillings of a given

link of rational singularity with reduced fundamental cycle can be constructed in a

similar way, starting with the decorated plane curve germ C representing the singularity.

Milnor fibers arise from algebraic picture deformations of the branches of C, while

Stein fillings come from smooth graphical homotopies of the branches.

Once the comparison of Milnor fibers and Stein fillings is reduced to comparison

of arrangements of complex curves or smooth disks with certain properties, we can

construct examples of arrangements that generate Stein fillings not diffeomorphic to

Milnor fibers. We need arrangements that are related to a particular plane curve germ

by a smooth graphical homotopy but not by an algebraic picture deformation. We

build unexpected line arrangements satisfying this property in Section 7, using classical

projective geometry and a study of analytic deformations. We use these to construct

unexpected Stein fillings; then we verify that they are not diffeomorphic (relative to

the boundary open book data) to Milnor fillings by an argument based on Némethi
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and Popescu-Pampu [44]. This leads to the proof of Theorem 1.1 and other similar

examples.

At first glance, the difference between algebraic and smooth plane curve arrangements

seems rather obvious. However, because we are in an open situation, working with

germs of curves and smooth disks with boundary as opposed to closed algebraic surfaces,

the question is quite subtle. In particular, we cannot simply use known examples of

topological or symplectic line arrangements in CP2 not realizable by complex lines.

Indeed, in many cases the smooth surfaces can be closely approximated by high-degree

polynomials, so that a Lefschetz fibration on the corresponding Stein filling can be

realized by a Milnor fiber. We discuss the relevant features of the picture deformations

and smooth (or symplectic) graphical homotopies in detail in Section 8, and explain

what makes our examples work.

It is worth stating that while Stein fillings and Milnor fillings are the same for certain

small families of singularities, the two notions are in fact fundamentally different. A

Milnor filling is given by a smoothing of a singular complex surface, so there is a

family of Stein homotopic fillings of .Y; �/ that degenerate to the singular surface. A

Stein filling of the link has no a priori relation to the singular surface and is not part

of any such family. This distinction becomes apparent in our present work, by the

following heuristic reasoning. A picture deformation Cs of the decorated germ C gives,

for any s ¤ 0, a Milnor filling WCs , so that all these fillings are diffeomorphic and

even Stein homotopic. The Milnor fillings look the same for all s ¤ 0 because the

arrangements of deformed branches fC s
1
; : : : ;C s

mg have the same topology. By contrast,

if the germ C is homotoped via a family of smooth disk arrangements � t, the topology

of the arrangement f� t
1
; : : : ; � t

mg may change during the homotopy. Under certain

conditions we can construct a family of Lefschetz fibrations Wt that includes the given

Stein filling and changes its diffeomorphism type at finitely many discrete times as it

connects to the minimal resolution. In other cases, at some time t the homotopy gives

an arrangement � t which produces an achiral Lefschetz fibration, so the 4±manifolds

in the corresponding family do not necessarily carry a Stein structure. We return to

this discussion in Section 8.

One can also ask whether unexpected fillings exist for rational singularities with reduced

fundamental cycle that are not covered by Theorem 1.1 or Theorem 1.2. For certain

additional simple examples, we can use Theorem 1.5 and pseudoholomorphic curve

arguments to verify that there are no unexpected fillings, even though the smoothing
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may not be unique. This approach only works when the germ of the singularity is a

pencil of lines satisfying certain restrictive constraints. Namely, we can consider

(1) arrangements of 6 or fewer symplectic lines, or

(2) arrangements of symplectic lines where one of the lines has at most two marked

points where it meets all the other lines in the arrangement.

Since the boundary behavior of symplectic lines is controlled, we can cap off symplectic

lines in a ball to symplectic projective lines in CP2, together with the line at infinity.

The corresponding arrangements in CP2 are shown to have a unique symplectic isotopy

class and are symplectically isotopic to an actual complex algebraic line arrangement

in CP2; see Starkston [59, Lemma 3.4.5]. It follows that every symplectic arrangement

as above can be obtained as picture deformation of a pencil of complex lines, and

therefore, the corresponding Stein fillings are given by Milnor fibers. The links of the

corresponding singularities are Seifert fibered spaces, for which Stein fillings were

completely classified and presented as planar Lefschetz fibrations in [59, Chapter

4]. The line arrangements appearing in that classification precisely coincide with the

symplectic disk arrangements from the perspective of this article. (Here, gluing in the

deleted neighborhood of the disk provides an embedding of the Stein filling into a

blow-up of C2. In [59], gluing on the cap, which augments the configuration of lines

by the additional line at infinity, provides an embedding of the Stein filling in a blow-up

of CP2.) In general, Theorem 1.5 seems to have limited applications to classification

of fillings, due to complexity of arrangements of curves.

It is interesting to note that while de Jong and van Straten describe deformations

of sandwiched singularities, our constructions only work for the subclass of rational

singularities with reduced fundamental cycle. Indeed, a planar open book decomposition

of the contact link plays a key role in our work because we need Wendl’s theorem

to describe Stein fillings. By Ghiggini, Golla and Plamenevskaya [19] the Milnor

fillable contact structure on the link of a normal surface singularity is planar only if the

singularity is rational and has reduced fundamental cycle. This means that our methods

in the present paper cannot be used for classification for any other surface singularities.

However, for future work, we are investigating extensions of these methods to produce

examples of unexpected fillings for more general surface singularities. Finally, recall

that all weak symplectic fillings of a planar contact 3±manifold are in fact given by planar

Lefschetz fibrations, up to blow-ups and symplectic deformation; see Niederkrüger

and Wendl [48]. It follows that Theorem 1.5 and related results apply to describe all
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minimal weak symplectic fillings. However, we focus on Stein fillings and will give all

statements, with the exception of Theorem 1.2, only for the Stein case.

Organization of the paper

In Section 2 we review the definitions of rational singularities with reduced funda-

mental cycle as well as their deformation theory from [27], and prove some of their

properties from the topological perspective. In Section 3 we prove the first direction

of the symplectic correspondence, namely Theorem 1.4. In Section 4 we explain

the smoothing in the Artin component from the perspective of symplectic topology,

discuss the corresponding open books, and also raise some questions related to open

book factorizations and nonrational singularities. In Section 5 we prove the other half

of the correspondence, establishing Theorem 1.5 using braided wiring diagrams and

Wendl’s theorem [65]. In Section 6 we prove Theorem 1.2 and explain how to calculate

algebraic topological invariants of the fillings, which we will use to distinguish our

examples of unexpected Stein fillings from Milnor fillings. In Section 7 we prove

that there are many examples of unexpected Stein fillings for links of rational surface

singularities with reduced fundamental cycle, establishing Theorem 1.1. Finally, in

Section 8 we explain what key differences between picture deformations and smooth

graphical homotopies contributed to the distinction between expected and unexpected

Stein fillings.
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2 Rational singularities with reduced fundamental cycle, their

decorated curve germs, and relation to deformations

In this section, we collect some facts about rational singularities with reduced fundamen-

tal cycle and state de Jong and van Straten’s results on their smoothings [27]. De Jong

and van Straten’s results are in fact more general: they fully describe deformation

theory for a wider class of sandwiched singularities. We state only the results we need.

Some of our statements are slightly different from [27]: we describe their constructions

from the topological perspective and set the stage for our work. Although we aim for

a mostly self-contained discussion, the reader may find it useful to consult [42] for a

general survey on topology of surface singularities. The survey [56] focuses on the

interplay between singularity theory and contact topology and provides very helpful

background. Additionally, a brief survey of the key results of [27] from the topological

perspective can be found in [44].

2.1 Resolutions and smoothings.

We begin with some general facts about surface singularities. Let .X; 0/ be a normal

surface singularity. Its resolution � W zX ! X is a proper birational morphism such

that zX is smooth. The exceptional divisor ��1.0/ is the inverse image of the singular

point. For a given singularity .X; 0/, the resolution is not unique, as one can always

make additional blow-ups; however, for a surface singularity, there is a unique minimal

resolution [31]. The minimal resolution is characterized by the fact that zX contains no

embedded smooth complex curves of genus 0 and self-intersection �1 (thus it does not

admit a blow-down).

After performing additional blow-ups if necessary, we can assume that the exceptional

divisor ��1.0/ has normal crossings. This means that ��1.0/D
S

v2G Ev , where the

irreducible components Ev are smooth complex curves that intersect transversally at

double points only. A resolution with this property is called a good resolution. For a

surface singularity, a minimal good resolution is also unique [31].

The topology of a good resolution is encoded by the (dual) resolution graph G. The

vertices v 2 G correspond to the exceptional curves Ev and are weighted by the genus

and self-intersection Ev �Ev of the corresponding curve. We will often refer to Ev �Ev

as the self-intersection of the vertex v, and use the notation v � v for brevity. The edges

of G record intersections of different irreducible components. Note that the link of the
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singularity is the boundary of the plumbing of disk bundles over surfaces according

to G. In this paper, we focus on rational singularities; in this case G is always a tree,

and each exceptional curve Ev has genus 0. (Genus 0 curves are also called rational

curves.) Therefore we will typically omit the genus from the markings on the vertices

and only record the self-intersection numbers.

It is well known that the dual resolution graph of every normal surface singularity is

negative definite, and conversely, every negative definite connected graph corresponds

to some normal surface singularity; see eg [42]. The link of the singularity deter-

mines the dual graph of the minimal good resolution, and vice versa. By a result of

W Neumann [47], the links of two normal surface singularities have the same oriented

diffeomorphism type if and only if their dual resolution graphs are related by a finite

sequence of blow-ups/blow-downs along rational .�1/ curves. Moreover, the links of

two normal surface singularities are orientation-preserving diffeomorphic if and only if

their minimal good resolutions have the same dual graphs. Minimal good resolutions

are easy to recognize: if a good resolution is not minimal, its graph will have a vertex

representing a genus 0 curve with self-intersection �1. (This follows from [47]; see

also [19, Lemma 5.2] for a direct proof that any possible blow-downs can be seen

directly from the graph.)

The local topological type of the singularity .X; 0/ can be understood from its link Y,

as a cone on the corresponding 3±manifold. We will say that two singularities are

topologically equivalent if they have the same link. It is important to note that the

analytic type of the singularity is not uniquely determined by the link; typically, many

analytically different singularities have diffeomorphic links. It is known that the

canonical contact structures are all isomorphic for different singularities of the same

topological type [11]; thus, the dual resolution graph encodes the canonical contact

structure. Indeed, this contact structure can be recovered as the convex boundary of the

plumbing, according to the graph, of the standard neighborhoods of the corresponding

symplectic surfaces.

We now turn our attention to deformations and Milnor fibers. A deformation of a

surface singularity .X; 0/ is any flat map � W .X ; 0/! .T ; 0/ such that ��1.0/D .X; 0/.

A versal (or semiuniversal) deformation f W .X ; 0/! .B; 0/ parametrizes all possible

deformations of .X; 0/. The base space .B; 0/ generally has multiple irreducible

components, which may have different dimensions. It is generally difficult to understand

the space B, its irreducible components, and the dimensions of these components.
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A deformation � W .X ; 0/! .D; 0/ over the disk in C is called a (1±parameter) smoothing

of .X; 0/ if Xs WD ��1.s/ is smooth for all s ¤ 0. For any smoothing all such Xs are

diffeomorphic, and we call Xs the Milnor fiber of the smoothing. For example, for a

hypersurface X D ff .x;y; z/D0g � C3 with f .0/D 0 and df .0/D 0, a smoothing of

the singularity at 0 can be given by f WC3 !C, with Milnor fiber X� Dff .x;y; z/D�g
for a small �¤ 0. Each Milnor fiber is endowed with a Stein structure, and for different

t0; t1 2 D n 0, Xs0
and Xs1

are Stein homotopic (the Stein homotopy is obtained by

choosing a path from s0 to s1 in D which avoids 0).

We need to work with a compact version of the Milnor fiber. For a sufficiently small

radius r > 0, the surface X � CN is transverse to the sphere SN �1
r . We fix a ball

BN
r � CN centered at 0, sometimes called a Milnor ball, and consider X \ BN

r as

the Milnor representative of X . The boundary @.X \ BN
r / is the link Y of .X; 0/,

and the complex structure on X induces the canonical contact structure � on Y. For

sufficiently small s ¤ 0, we can similarly find a compact version of Xs whose boundary

is contactomorphic to the link .Y; �/, which provides a Stein filling of .Y; �/.

For a semiuniversal deformation f W .X ; 0/! .B; 0/ of the surface singularity .X; 0/, an

irreducible component Bi of B is called a smoothing component of .X; 0/ if the general

fiber over Bi is smooth. We note that Bi may have lower (complex) dimensional strata

where the fibers over these strata are not smooth. For example, these nongeneral strata

could arise from singularities in the component Bi or intersections of Bi with other

irreducible components of B. Nevertheless, these nongeneral strata have positive com-

plex codimension, so the subset of Bi over which the fiber is smooth will be connected.

Any 1±parameter smoothing of .X; 0/ lies in a unique smoothing component Bi .

In general, not every surface singularity admits a smoothing. However, for rational

singularities every irreducible component of B is a smoothing component; see [5] and

also [56, Theorem 4.24]. Moreover, there is one distinguished component, called the

Artin component. This component is associated to the minimal resolution zX of .X; 0/;

see [5] and also [56, Theorem 4.25]. (For rational singularities, deformations of zX
come from deformations of .X; 0/, and these deformations of .X; 0/ form the Artin

component.) We discuss Milnor fibers in this component in greater detail in Section 4.

In this paper, we study Stein fillings for the contact link .Y; �/ of a surface singularity,

and compare them to Milnor fillings. As explained above, in general the link determines

only the topological, but not the analytic, type of the singularity. Normal surface

singularities whose topological type admits a unique analytic type are called taut; if

there are only finitely many analytic types, the singularity is pseudotaut. Taut and
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pseudotaut singularities were classified by Laufer [32]: there are several very restrictive

lists for the dual resolution graphs, in particular, the graphs cannot have any vertices

of valency greater than 3. Thus, most singularities are not (pseudo)taut, even if we

restrict to a very special kind that we consider in this paper, rational singularities with

reduced fundamental cycle. If we are to compare Stein fillings and Milnor fillings

of the link, we need to consider Milnor fibers for all possible singularities of the

given topological type. In principle, it is quite possible that topologically equivalent

singularities have nondiffeomorphic Milnor fibers: for example, the hypersurface

singularities x2 Cy7 Cz14 D 0 and x3 Cy4 Cz12 D 0 have the same topological type,

but their (unique) Milnor fibers have different b2; see [33] and also the discussion in

[56, Section 6.2]. Fortunately, in the case of reduced fundamental cycle we will have

some control over the topology of Milnor fibers for different analytic types, thanks to

the de Jong±van Straten construction.

2.2 Sandwiched singularities, extended graphs, and decorated germs

Definition 2.1 .X; 0/ is a rational singularity with reduced fundamental cycle if it

admits a normal crossing resolution such that all exceptional curves have genus 0, the

dual resolution graph G is a tree, and for each vertex v 2 G, the valency a.v/ of v and

the self-intersection v � v satisfy the inequality

(2-1) a.v/� �v � v:

It follows from (2-1) that the graph as above can only have vertices with self-intersection

�1 as the leaves of the tree. Blowing down all such vertices, we obtain a graph that

still satisfies (2-1) and represents the minimal resolution of .X; 0/.

To explain the terminology of Definition 2.1, we recall the definition of a fundamental

cycle. For a given resolution, consider the set of divisors
�

Z D
X

v2G

mvEv

ˇ

ˇ

ˇ
Z > 0; and Z � Ev � 0 for all Ev

�

:

This set has a partial order, defined by
P

mvEv �
P

nvEv if mv � nv for all v. There

is a minimal element with respect to this partial order, denoted by Zmin and called

Artin’s fundamental cycle. The resolution dual graph is connected, different components

Ev intersect positively, and Z > 0, so any element in the set has mv > 0. Therefore,

Zmin �
P

v2G Ev. It is easy to see that
�
P

v2G Ev

�

� Ev � 0 for all Ev if and only if

condition (2-1) is satisfied. In this case Zmin D
P

v2G Ev , and since each exceptional

curve enters with multiplicity 1, we say that the fundamental cycle Zmin is reduced.
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In [27], de Jong and van Straten work with sandwiched singularities. By definition, a

sandwiched singularity .X; 0/ is analytically isomorphic to the germ of an algebraic

singular surface which admits a birational morphism to .C2; 0/. For a resolution

� W zX ! X , we get a diagram . zX ; ��1.0//Ü .X; 0/Ü .C2; 0/. In particular, X is

sandwiched between two smooth spaces via birational maps. Sandwiched singularities

are rational and can be characterized by their resolution graphs as follows, by translating

the sandwiched condition. The graph G is sandwiched if we can add to it a number

of edges and their end vertices with self-intersections .�1/, so that the resulting

graph G0 gives a plumbing whose boundary represents S3. In other words, G0 gives a

configuration of rational curves that can be blown down to a smooth point. The choice

of the graph G0 is not unique. It is not hard to see that every rational singularity with

reduced fundamental cycle is sandwiched. In Proposition 2.2 below, we discuss in

detail the construction of the possible graphs G0 for this case.

Any sandwiched singularity can be associated to a (germ of a) complex plane curve

singularity, constructed as follows. The choice of the graph G0 corresponds to an

embedding of the tubular neighborhood of the exceptional set of the resolution zX into

some blow-up of C2. This blown-up surface also has a distinguished collection of

.�1/ curves, so that the configuration of these .�1/ together with the exceptional set

can be completely blown down. For each distinguished .�1/ curve, choose a transverse

complex disk (called a curvetta) through a generic point. Now, contract the curve

configuration corresponding to G0. The union of the curvettas becomes a germ of a

reducible curve C in C2, with components passing through 0. Let Ci , i D 1; 2; : : : ;m,

be the irreducible components of C; following [27], we also refer to Ci as curvettas.

We emphasize that only the germ of C at the origin is defined; when we use the notation

C � C2, we only consider a small neighborhood of 0 2 C2. In particular, we are only

interested in the singularity of the reducible curve C at 0. In this paper, we will focus

on the case where the components Ci are smooth at 0, so that locally Ci is a smooth

disk. This suffices to study rational singularities with reduced fundamental cycle, as

we will soon see. This disk may be locally parametrized by a high-degree algebraic

curve in C2, but the global topology of this curve is unimportant to us, because we

only use the part of the curve in a neighborhood of the origin.

Each curvetta Ci comes with a weight wi Dw.Ci/, given by the number of exceptional

spheres that intersect the corresponding curve in the blow-down process from G0 to

the empty graph. In other words, wi is the number of blow-down steps that affect the

corresponding curvetta before it becomes Ci . The weighted curve .C; w/ is called a
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Figure 2: An example of a sandwiched singularity and a choice of corre-
sponding curvettas (green arrows). The first diagram shows the resolution
curves together with extra (red) .�1/ exceptional curves attached. Then
there is a sequence of blow-downs. We keep track of the weights w.Ci/ in
rectangular boxes next to each green curvetta arrow. The multiplicities of
tangencies between bunches are recorded in blue circled numbers.

decorated germ corresponding to .X; 0/. An example of this process, and the resulting

decorated germ for the given singularity, is shown in Figure 2.

It is convenient to start the process with the minimal normal crossings resolution

of .X; 0/. For rational singularities with reduced fundamental cycle, it is easy to

see that the graph of the minimal normal crossings resolution has no .�1/ vertices.

(From (2-1), only vertices of valency 1 can have self-intersection �1 in any resolution

graph, and these can be blown down to get the minimal graph.) If G has no .�1/

vertices, then all the .�1/ vertices of G0 are those that come from the extension: each

.�1/ vertex is a leaf of G0, connected by an edge to a unique vertex of G. The transverse

curvetta slices are added to all these .�1/ vertices.

In what follows, we will only consider decorated germs that arise from the above

construction. (These are called standard decorated germs in [44]. Some statements

in [27] allow for more general decorated germs.)
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The singularity .X; 0/ can be reconstructed from .C; w/. We iteratively blow up points

infinitely near 0 on proper transforms of curvettas C1; : : : ;Ck until we obtain a minimal

embedded resolution of C. Then we perform additional blow-ups at the intersection

of Ci with the corresponding exceptional curve, so that the sum of multiplicities of

proper transforms of Ci at the blow-up points is exactlywi . The union of the exceptional

curves that do not meet the proper transforms of the curvettas is then contracted to

form .X; 0/.

We emphasize that C depends on the choice of the graph G0, ie on the particular

extension of the resolution graph of .X; 0/ by .�1/ curves. Any of these choices can

be used to classify Milnor fillings as in [27]. In general, the branches of C are singular

curves. However, if .X; 0/ is a rational singularity with reduced fundamental cycle, an

appropriate choice of G0 ensures that C has smooth branches. We will always work

in this setting and only consider decorated germs with smooth components. In the

following proposition, we establish a necessary and sufficient condition for smoothness

purely in terms of the graph G0. Although similar questions were studied in [27; 26],

we formulate the condition here in a way that seems simplest from the topological

point of view. In the next section, we will reinterpret the statement for open book

decompositions.

Proposition 2.2 Let the graph G0 be a negative definite plumbing tree , and P 0 the

corresponding plumbing of disk bundles over rational curves. Suppose that the bound-

ary of the plumbing P 0 is S3; equivalently, G0 encodes a configuration of rational

curves that can be blown down to a smooth point. For each .�1/ vertex, let zCj be a

complex disk intersecting the corresponding .�1/ sphere in P 0 transversally once. Let

C1; : : : ;Cm be the images of zC1; : : : ; zCm under blowing down the configuration G0.

Then the following are equivalent :

(1) Each Cj is smooth.

(2) There exists exactly one v0
0

2 G0 such that

v0
0 � v0

0 C a.v0
0/D �1;

v0 � v0 C a.v0/ D 0 for all v0 ¤ v0
0:

(We will often refer to v0
0

as the root.)

As before , v0 � v0 denotes the self-intersection of a vertex v0 2 G0, and a.v0/ its valence.
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Proof Consider C D C1 [ � � � [ Cm with smooth branches Cj . We obtain G0 as

described above, by blowing up repeatedly at intersections of the Cj with each other

and with the exceptional divisors. We stop when the resulting configuration of curves

has the following property: if an exceptional divisor intersects a proper transform zCj

then it is disjoint from all other proper transforms zCj 0 , j 0 ¤ j (in particular, different zCj

are disjoint from each other), and the total number of blow-ups performed on (proper

transforms of) Cj is exactly wj , the weight on Cj .

We will show that G0 has the structure of a rooted tree by repeatedly applying the

following procedure. For the root v0
0
, we will have v0

0
� v0

0
C a.v0

0
/D �1, and for all

other vertices v0 ¤ v0
0
, v0 � v0 C a.v0/D 0. We show that this condition is satisfied at

every stage of the process.

Blow up at the common intersection point of all Cj . The resulting exceptional divisor

(and its future proper transforms) gives the root of the tree. If proper transforms

of all Cj still have a common point, we repeatedly blow up at the same point until

some of the proper transforms zCj become disjoint from each other. (With a slight

abuse of notation, zCj will denote the proper transform of Cj at any stage of the

process.) Additional blow-ups create a chain of exceptional .�2/ spheres with the

root at one end and the most recent exceptional .�1/ sphere at the other end. Up to

relabeling, we can assume there are distinct intersection points zC1 \ � � � \ zCa1
D p1

1
,

zCa1C1\� � �\ zCa2
Dp1

2
; : : : ; zCa1

r1

\� � �\ zCm Dp1
r1

lying on the most recently introduced

exceptional divisor B1.

Assuming m>1, since all the zCj intersect B1, we must blow up exactly once at each p1
i

to make them all disjoint from B1. Here we use smoothness of the curvettas Cj (and

thus of their proper transforms) to ensure that they become disjoint from B1 after a

single blow-up: every point on Cj has multiplicity 1, thus zCj intersects each exceptional

divisor with multiplicity at most 1. Note that once zC1; : : : ; zCm are all disjoint from B1,

we will not blow up at any point on B1 again, therefore at this stage we can already

compute the self-intersection and valency of the corresponding vertex in G0. The self-

intersection of the proper transform of B1 in G0 (which we will also denote by B1) is

�r1 �1. If B1 is not the root, it has valency r1 C1, and if it is the root it has valency r1.

Thus, condition (2) is satisfied for the vertex of G0 given by B1. All the other vertices in

the graph at this stage are either .�2/ spheres in a chain of valency 2 (if not the root) or

valency 1 (if the root), or newly introduced .�1/ vertices of valency 1, so condition (2)

is satisfied at this stage.
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In order to obtain G0 we repeat this process iteratively, replacing the first exceptional

sphere with the exceptional sphere obtained by blowing up at some ps
i . (The points

p1
1
; : : : ;p1

r1
were introduced above; after blowing up at each of these new points,

the new exceptional curves intersect the proper transforms of the curvettas at points

p2
1
; : : : ;p2

r2
; similarly, points ps

i ; : : : ;p
s
rs

are the intersections that appear at step s.)

Each time, condition (2) is preserved, since each curve zCj intersects each exceptional

divisor with multiplicity at most 1. Repeating sufficiently many times, eventually all of

the zCj will intersect only disjoint exceptional spheres. After potentially blowing up

more times at the intersection of zCj with its intersecting exceptional sphere until the

number of blow-ups is wj , we obtain G0. (The additional blow-ups create a chain of

.�2/ vertices connecting to the last .�1/ vertex.) Since condition (2) is preserved at

each step of this procedure, G0 satisfies condition (2).

Conversely, if G0 satisfies condition (2), the only .�1/ vertices are leaves of the rooted

tree (valency 1). Blowing down a leaf preserves condition (2) because it decreases the

valency of the adjacent vertex by 1 and increases the self-intersection by 1. The zCj are

disks which transversally intersect the .�1/ leaves of G0 with multiplicity 1. Therefore

each zCj intersects each exceptional divisor with multiplicity at most 1. This property is

preserved under blowing down a .�1/ leaf, because a multiplicity 1 intersection of zCj

on a .�1/ leaf becomes a multiplicity 1 intersection on the adjacent exceptional divisor

after blowing down. Blowing down an exceptional divisor which intersects zCj with

multiplicity 1 preserves smoothness of zCj . Therefore after blowing down all leaves

of G0 and finally the root, the resulting proper transforms Cj are still smooth.

Remark 2.3 Another way to see that G0 must satisfy condition .2/ is to consider

what happens if G0 has a vertex with a.v0/ > �v0 � v0. After blowing down, eventually

the vertex v0 will correspond to a .�1/ sphere with valency � 2, with at least one zCj

intersecting it with multiplicity at least 1. (The existence of the intersecting zCj comes

from the fact that intersections are transferred under blow-down to the adjacent ver-

tices. Initially, every .�1/ sphere in G0 has an intersecting curvetta. Each time that

a .�1/ sphere is blown down, the curvetta intersection is transferred to the adjacent

vertices, whose self-intersections are correspondingly increased. For v0 to reach self-

intersection �1, one must have blown down .�1/ vertices adjacent to it. Throughout

the process of blowing down, we maintain the condition that .�1/ vertices always have

at least one intersecting curvetta.) After blowing down the .�1/ sphere of valency � 2,

we obtain a point where at least two exceptional divisors intersect at the same point
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Figure 3: Two possible choices to add �1 curves to the same resolution graph,
resulting in different curvettas, one with smooth components and another
with a singular (cuspidal) component.

with a zCj . Eventually one of these exceptional divisors will be blown down, forcing
zCj to intersect the other exceptional divisor with multiplicity � 2. Once this other

exceptional divisor is blown down, the proper transform of zCj becomes singular.

Note that it is possible to have different choices of extension for G, such that one

choice yields smooth curvettas and another yields singular curvettas; see Figure 3 for

an example. In other words, some sandwiched resolution graphs G have extensions

both to a graph which does satisfy condition (2) of Proposition 2.2 and to a graph which

does not. For our classifications, we will always work with a choice of extension of G

which does satisfy condition (2) and the corresponding smooth curvettas.

We can also deduce some basic numerical properties from Proposition 2.2. It turns out

that for a rational singularity .X; 0/ with reduced fundamental cycle, the multiplicity

of the singular point determines the number of choices for the defining plane curve

germ C with smooth branches, as well as the number of curvetta branches in each such

germ. Assuming that .X; 0/� .CN ; 0/ for some large N , recall that the multiplicity

mult X can be defined geometrically as the number of intersections #X \ L of X with

a generic complex .N �2/±dimensional affine subspace L � C, passing close to the

origin. For rational singularities, multiplicity is a topological invariant, which can be
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computed from the resolution graph by the formula mult X D �Z2
min; see eg [42]. The

two statements below are also discussed in [27] from the algebrogeometric perspective,

but they follow easily from the combinatorics of the resolution graph.

Proposition 2.4 Let .X; 0/ be a rational singularity with reduced fundamental cycle ,

and C a plane curve germ corresponding to .X; 0/. If C has smooth branches , the

number of branches is given by mult X � 1.

Proof The minimal normal crossings resolution graph G for .X; 0/ has no .�1/

vertices. Then G is obtained from (any choice of) the graph G0 by deleting all vertices

v0 2 G0 with v0 � v0 D �1. The curvetta branches are obtained by putting transverse

slices on each .�1/ sphere v0 2 G0, thus the number m of curvetta branches is given

by the number of the .�1/ vertices in G0. By condition (2) of Proposition 2.2,
X

v02G0

.v0 � v0 C a.v0//D �1:

Again by condition (2), each .�1/ vertex has valency 1 in G0, so each addition of a

.�1/ vertex to G increases the sum
P

v2G.v � vC a.v// by 1, thus we have
X

v2G

.v � vC a.v//D
X

v02G0

.v0 � v0 C a.v0//� m D �1 � m:

Finally, we relate this quantity to the fundamental cycle Zmin, which is the sum of

homology classes of the exceptional divisors, Zmin D
P

v2G Ev:
X

v2G

.v � vC a.v//D
X

v

E2
v C

X

v¤u

Ev � Eu D Z2
min:

So m D �1 � Z2
min D mult X � 1.

Decorated germs representing a given .X; 0/ are obtained from extensions G0 of the

resolution graph G as above. These can be thought of as combinatorial choices for

the decorated germ; in the next lemma, we compute the number of such extensions.

Then, we show that the combinatorial choice, namely the choice of vertices of G on

which the additional .�1/ vertices are placed to form G0, determines the topological

type of the resulting decorated germ. By definition, the topological type of a germ

of a singular curve C � C2 is given by its link, which is the intersection of C with a

sufficiently small 3±sphere S3 � C2 centered at the origin. For a decorated germ, we

additionally record the weights of the curvetta components. Later on, we will see that

the different choices of G0 correspond to natural different choices of data on the open

book decomposition we construct in Section 4.
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Lemma 2.5 Up to topological equivalence , there are at most mult X choices of plane

curve germs with smooth branches representing .X; 0/.

Proof We first show that there are at most mult X D �Z2
min possible combinatorial

choices for germs with smooth components representing .X; 0/. These correspond

to choices of extensions of G to G0 by adding .�1/ vertices. If we have a minimal

graph G with an extension G0 satisfying condition (2) of Proposition 2.2, then we can

add another .�1/ sphere leaf adjacent to the root to get a new graph G00 so that the

valency of each vertex of G00 equals its negative self-intersection. All the other possible

extensions of G to a graph satisfying condition (2) can be obtained by deleting one

of the .�1/ vertices of G00. (Indeed, adding a .�1/ vertex to any other position in G

would violate condition (2).) Since G0 has .mult X �1/ vertices of self-intersection �1,

we know that G00 has exactly mult X vertices with this property, one of which must

be deleted. Note that because of potential symmetries in the graph G00, some of the

choices of G0 will result in isomorphic germs C , but mult X gives an upper bound on

the number of combinatorially different curvetta configurations.

Once the choice of the extension G0 of the graph G is made, the topological type of

the decorated germ C can be read off directly from G0. In particular, we can compute

the relevant numerical invariants, such as linking numbers between the components of

C � C2. As before, we assume that G0 satisfies condition (2) of Proposition 2.2, so that

C has smooth branches.

Following [27, Definition 4.14], we define the length and overlap functions on the

vertices of the graph G. For v0; vi 2 G, let the length l.v0; vi/ be the number of vertices

in the path from vi to v0 in the tree G (including endpoints). For v0; vi ; vj 2 G, let the

overlap �.vi ; vj I v0/ be the number of common vertices in the paths from vi to v0 and

vj to v0.

Let v0 2 G � G0 be the root. Now, if the curvetta Ci comes from the transverse slice

on a .�1/ sphere corresponding to a leaf of G0, and this leaf is attached to the vertex

vi 2 G, then the blow-down process gives w.Ci/D 1 C l.v0; vi/. If Ci and Cj are the

curvettas at the .�1/ vertices attached to vi and vj , the order of tangency tang.Ci ;Cj /

between the corresponding branches of C is given by tang.Ci ;Cj /D �.vi ; vj I v0/.

The topological type of C � C2 is described via its link, given by the intersection C\S3,

where S3 is a small sphere centered at the origin. As each of the curvettas C1; : : : ;Cm

is a smooth disk, the intersection of Ci with S3 is an unknot; C \ S3 is a link with

m components C1 \ S3; : : : ;Cm \ S3, each of them unknotted. The components of
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Ci \ S3 are oriented as boundaries of Ci \ B4. Then, the linking number between two

link components equals the order of tangency between the corresponding curvettas,

lk.Ci \ S3;Cj \ S3/D tang.Ci ;Cj /:

The topological equivalence of germs follows from the above calculations, by con-

struction of the links of the germs that we consider; it can also be seen more directly.

Any decorated germ for .X; 0/ comes, after a blow-down, from a particular placement

of the transverse curvetta slices on the .�1/ curves corresponding to vertices that we

added to G to from the graph G0. This gives a configuration of curvetta slices together

with the curve configuration corresponding to the graph G0, embedded in a blow-up

of C2. Clearly, for two different choices of the generic curvetta slices for the same

graph G0, the two configurations of curvettas+curves can be identified by an ambient

homeomorphism (in the blown-up C2). After the blow-down, the induced ambient

homeomorphism will identify the links of the resulting germs, showing that the germs

are topologically equivalent. We already know that the weights will be same, so the

decorated germs have the same topological type.

The following observation will also be useful later. Let t.Ci/D maxj tang.Ci ;Cj / be

the maximal order or tangency between Ci and another branch of C. Then it follows that

(2-2) t.Ci/ < w.Ci/

for all curvettas Ci .

Remark 2.6 De Jong and van Straten [27] study deformation theory of the surface

singularity .X; 0/; in particular, they are interested in the analytic type of the singularity

and its deformations. To encode the analytic type of .X; 0/, one needs the analytic

type of the corresponding decorated germ C. By contrast, our focus is on the contact

link .Y; �/ of .X; 0/ and its Stein fillings. A priori there may be another surface

singularity .X 0; 0/ whose link is Y, and by [11], the singularities .X; 0/ and (X 0; 0/

have contactomorphic links. By Neumann’s results [47], all singularities with the

same link have the same dual graph of minimal resolution, so both .X; 0/ and .X 0; 0/

correspond to the same minimal graph G. (Note that by [32], if G has any vertices of

valency greater than 3, the analytic type of the singularity is not uniquely determined,

so indeed .X; 0/ and .X 0; 0/ may be analytically different in the above scenario.) We

can compare the decorated germs that describe singularities .X; 0/ and .X 0; 0/: any

choice of the decorated germ for .X; 0/ arises from an extension G0 of the graph G and
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the corresponding placement of the curvettas. Although analytically the exceptional

divisors of resolutions of .X; 0/ and .X 0; 0/ may be different, topologically they look

the same, and we can choose the same extension G0 and the corresponding placement

of curvettas for .X 0; 0/. By the argument above, the resulting germ for .X 0; 0/ will

be topologically equivalent to the germ for .X; 0/, even if the two germs may be

analytically different. This fact will play an important role in the proof of Theorem 7.8.

In particular, the two germs will have the same number of branches, the same weights

and the same pairwise orders of tangency for the branches.

Of course, if we only know the combinatorics of the graph G, we lose analytic in-

formation on the plane curve germ C (such as, for example, the angles between its

transverse branches), but we will never need the analytic information. The contact

3±manifold .Y; �/ is fully determined by the weights and pairwise orders of tangency

of the branches of the decorated germ C.

2.3 De Jong±van Straten theory: Milnor fibers from germ deformations

The main result of [27] says that deformations of the sandwiched singularity can be

encoded via deformations of the germ .C; 0/ satisfying certain hypotheses. We will

state a special case of their theorem that will be relevant to us, but first we introduce

some notation.

We have defined the weights as positive integers wi associated to the irreducible

components (curvettas) Ci of C. It will be convenient to interpret the weight wi as a

collection of wi marked points concentrated at 0 2 Ci . More formally, we consider a

subscheme w.i/ of length wi at 0 in Ci . The normalization zC of the reducible curve C

with smooth components is given by the disjoint union of the components Ci ; thus

we can think of the decoration w D .w1; w2; : : : ; wm/ as a subscheme of zC, with

components w.i/� Ci as above. (We use the notation zC for normalization here and in

the discussion below. Similar notation zCj had a different meaning in Proposition 2.2,

though in a sense, both uses refer to resolutions of the curve Cj � C. This should not

lead to confusion as normalization is only mentioned in the next few paragraphs.)

De Jong and van Straten prove that for sandwiched singularities, 1±parameter smooth-

ings correspond to picture deformations, which are 1±parameter deformations of the

germ C together with the subscheme w. In fact, de Jong and van Straten describe all

deformations of .X; 0/, but in this paper we are only interested in smoothings. Since

we do not use their results in full generality, we omit some technical points and give

simpler versions of the definitions and statements from [27].

Geometry & Topology, Volume 27 (2023)



Unexpected Stein fillings and plane curve arrangements 1109

Informally, picture deformations look as follows. The deformation Cs is given by

individual deformations C s
i of the curvetta components, so that the deformed germ Cs

is reduced and has irreducible smooth components C s
i corresponding to the original

curvettas. (In the case of plane curves, any deformation is given by unfolding, ie by

deforming the defining equation of the curve.) The deformation is required to eliminate

tangencies between the curvettas, so that for s ¤ 0 all deformed curvettas C s
i intersect

transversally. Thus, the only singularities of the deformed germ Cs D
S

i C s
i for

s ¤ 0 are transverse multiple points. For s D 0, the decoration w consists of wi

marked points on the curvetta Ci for each i D 1; : : : ;m, concentrated at 0. During

the deformation, these marked points move along the curvettas, so that for s ¤ 0, the

deformed curvetta C s
i contains exactly wi distinct marked points, and all intersection

points C s
i \ C s

j for j ¤ i are marked.

More formally, deforming the curvettas Ci individually means that we consider ı±

constant deformations of the reducible germ C D
S

i Ci . Intersection points between

deformed curvettas define the total multiplicity scheme ms on the normalization zCs for

s ¤ 0; if all intersections are transverse, the corresponding divisor is reduced, ie each

point enters with multiplicity one. The requirement that all intersection points are

marked means that the deformation wS � zC � S of the decoration w must satisfy the

condition ms � ws . The requirement that all marked points be distinct on each C s
i

for s ¤ 0 is the same as saying that the divisor given by ws
i is reduced for s ¤ 0. The

condition ms � ws then implies automatically that all singularities of the deformed

germ Cs are ordinary multiple points, ie the deformed curvettas intersect transversally.

Definition 2.7 A picture deformation CS of the decorated germ .C; w/ with smooth

components C1; : : : ;Cm over a germ of a smooth curve .S; 0/ is given by a ı±constant

deformation CS ! S of C and a flat deformation wS � zCS D zC � S of the scheme w

such that for s ¤ 0, the divisor ws is reduced, the only singularities of Cs are ordinary

multiple points, and ms � ws .

Strictly speaking, wS lives in the normalization, but for s ¤ 0 we can think of ws as

the set of marked points fp1;p2; : : : ;png �
Sm

iD1 C s
i such that all intersection points

C s
i \ C s

j are marked. We say that pi is a free marked point if it lies on a single C s
i

(away from the intersections). (Note that these points, and the number of such points n,

can generally be different for different picture deformations.)

With these definitions in place, de Jong and van Straten’s results on smoothings are as

stated in Theorem 1.3: every picture deformation of .C; w/ gives rise to a smoothing

Geometry & Topology, Volume 27 (2023)



1110 Olga Plamenevskaya and Laura Starkston

of the corresponding surface singularity .X; 0/, and every smoothing arises in this

way. Specifically, the Milnor fiber of the smoothing that corresponds to the picture

deformation Cs D
Sm

iD1 C s
i � C2 with marked points fp1;p2; : : : ;png is obtained by

blowing up C2 at all points p1;p2; : : : ;pn and taking the complement of the proper

transforms of C s
1
; : : : ;C s

m in C # #n
jD1 CP2. Picture deformations of C generate all

Milnor fibers, that is, each Milnor fiber of .X; 0/ arises from some picture deformation

of .X; 0/ via this construction. Note that Theorem 1.3 makes no claim of a precise

one-to-one correspondence between picture deformations and smoothings: one expects

that isomorphic smoothings only come from isomorphic picture deformations (in the

appropriate sense), but this has not been established. In certain cases, one can distinguish

Milnor fibers by their topological invariants, or by comparing incidence matrices of the

corresponding curvetta arrangements; see [27, Section 5] or [44]. We discuss this in

Section 6 and use a similar technique to distinguish Stein fillings.

Remark 2.8 To be more precise, we need to consider the compact version of the

construction of Milnor fibers, as follows. Fix a closed Milnor ball B �C2 for the germ C.

For sufficiently small s ¤0, the deformed arrangement Cs will have a representative in B

which meets @B D S3 transversally, and all marked points p1; : : : ;pn are contained

in the interior of B. Let zB be the blow-up of B at p1; : : : ;pn. Because in the picture

deformation all the intersections between deformed curvettas are transverse, the proper

transforms of C s
1
; : : : ;C s

m in zB will be disjoint smooth disks. Let T1; : : : ;Tm be

pairwise disjoint tubular neighborhoods of these proper transforms. As a compact

4±manifold with boundary, the Milnor fiber that corresponds to Cs is given by W D
zB n

Sm
iD1 Ti , after corners are smoothed, and the Stein structure is homotopic to the

complex structure induced from the blow-up.

3 Graphical deformations of curvettas yield fillings

Let .X; 0/ be a rational surface singularity with reduced fundamental cycle, and consider

the associated decorated germ .C; w/ of a reducible plane curve as in the previous

section, with smooth branches C1;C2; : : : ;Cm equipped with weights. Our goal is to

build an analog of [27] in the symplectic category: it turns out that Stein fillings of the

link of .X; 0/ can be obtained from certain smooth homotopies of the branches of the

decorated germ C. We will restrict to graphical homotopies to streamline our definition

and constructions. (In our setting, one can always choose an appropriate coordinate

system, so the graphical hypothesis leads to no loss of generality.)
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Fix a closed Milnor ball B for C as in Remark 2.8, so that each branch Ci intersects @B

transversally. If B is small enough, the complex coordinates .x;y/ in C2 can be chosen

so that all branches C1;C2; : : : ;Cm are graphical in B: Ci D fy Dfi.x/g. We will

consider smooth graphical arrangements � D f�1; �2; : : : ; �mg such that each �i is

a smooth graphical disk, so that �i D fy Dgi.x/g for a smooth function gi , and �i

intersects @B transversally.

The following definition is given for homotopies of the branches defined for a real

parameter t 2 Œ0; 1�. Sometimes we will use the same notion for homotopies defined

in a parameter interval t 2 Œ0; � �, with obvious notational changes. We assume that

coordinates .x;y/ are chosen as above.

Definition 3.1 Let .C; w/ be a decorated plane curve germ, with weights wi D w.Ci/

of its smooth graphical branches C1;C2; : : : ;Cm. A smooth graphical homotopy of

.C; w/ is a smooth homotopy C t
i of the branches of C, so that C D

Sm
iD1 C 0

i , together

with distinct marked points pk , k D 1; : : : ; n (for some n), on
Sm

iD1 C 1
i . We assume

that in a Milnor ball B the following conditions are satisfied:

(1) Each branch is given by C t
i D fy Df t

i .x/g for a function f t
i .x/ D fi.x; t/

smooth in .x; t/, and C t
i intersects @B transversally for all t .

(2) Intersections between the branches remain in the interior of B during the homo-

topy.

(3) At t D 1, all intersections of any two branches C 1
i and C 1

j are positive and

transverse.

(4) At t D 1, all intersection points on each branch C 1
i are marked, and there may

be additional free marked points. Each free point lies in the interior of B on a

unique branch C 1
i . The total number of marked points on C 1

i is wi .

The choice of Milnor ball B is unimportant as all our considerations are local. For

brevity, we will often omit B from notation and talk about decorated germs and their

homotopies in C2. In that case, we implicitly work in a fixed neighborhood of the origin,

and assume that all intersections between branches which begin in this neighborhood

remain in this neighborhood during the homotopy, and thus the components of the

arrangement have controlled behavior near the boundary of the neighborhood.

Conditions (1) and (2) are automatically satisfied for ªsmallº homotopies. Indeed, if

t is close to 0, C t
i is C 1±close to Ci . The reducible curve C with smooth branches has a
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finite set of tangent directions at the origin, and the branches C t
i will have tangent spaces

lying in a small neighborhood of these directions in the Grassmannian of symplectic

planes in C2. Therefore we can choose coordinates so that the fiber of the projection

avoids these directions. We only include the intersection of the branches of C at 0 in

the Milnor ball B, so for small t , intersections will remain in B. For larger homotopies,

we require these conditions nontrivially.

Picture deformations satisfy all of the conditions (1)±(4), so a picture deformation is a

special case of a smooth graphical homotopy of the germ (in appropriate coordinates).

In contrast to picture deformations of [27], condition (4) on the marked points and

the weight restrictions is only required at t D 1 for homotopies. For a closer analogy

with Definition 2.7, we can consider marked points fpj
i .t/gj2f1;:::;wi g on C t

i for all

0 � t � 1. For t D 0, the marked points are concentrated at the origin on each branch,

giving the decoration of .C; w/. Suppose that p
j
i .t/, 0 � t � 1, are smooth functions

describing the motion of marked points during homotopy, so that p
j
i .t/ 2 C t

i for all t .

For t D 1, the points p
j
i .1/D p

j
i satisfy condition (4) above. This implies, in particular,

that at t D 1, the branch C t
i has no more than wi intersection points with other branches.

However, for 0< t < 1, the marked points p
j
i .t/ are not subject to any restrictions and

have little significance. The homotoped curvettas C t
i can have an arbitrary number of

intersections, and intersections may be positive or negative. By contrast, for picture

deformations, the weights control the number of intersection points between deformed

curvettas at all times, the intersections between branches are always marked during

deformation, and all intersections are positive because curvettas are deformed through

complex curves.

Let .Y; �/ be the link of the singularity .X; 0/ with the decorated germ .C; w/. We will

show that every smooth graphical homotopy of the germ C gives rise to a Stein filling

of .Y; �/.

First, we focus on the curvetta arrangement fC 1
1
;C 1

2
; : : : ;C 1

mg with marked points,

produced at the end of homotopy at the time t D 1. Lemma 3.2 below produces a certain

Lefschetz fibration from this input. The lemma applies to any arrangement of smooth

graphical disks f�1; �2; : : : ; �mg satisfying the stated hypotheses; the homotopy is not

used at this stage. We use different notation to emphasize that f�ig need not be related

to C. Then, Lemma 3.4 uses the homotopy between the decorated germ .C; w/ and

the curvetta arrangement fC 1
1
;C 1

2
; : : : ;C 1

mg with its marked points p1;p2; : : : ;pn to

show that the open book on the boundary of the Lefschetz fibration supports .Y; �/. It

follows that our construction produces a Stein filling of .Y; �/.
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As a smooth 4±manifold, the filling produced by Lemma 3.2 is constructed similarly

to the Milnor fibers in Theorem 1.3. Namely, we blow up at each of the intersection

points of the homotoped curvettas, as well as at the free marked points, and then take

the complement of the proper transforms of the curvettas. Even though C 1
i are smooth

disks (rather than complex curves), we will assume that they are locally modeled on

complex curves near the intersection point, so the blow-up and the proper transforms

can be understood in the usual sense. Alternatively, one could also think about the

proper transform in the smooth sense, as the closure of the complement of the blown-up

point; see [20, Definitions 2.2.7 and 2.2.9]. To obtain a 4±manifold with given boundary,

we consider a compact version of the construction in a Milnor ball, as explained in

Remark 2.8. It is convenient to consider the Milnor ball of the form B D Dx �Dy � C2,

with corners smoothed, where Dx and Dy are disks in the coordinate planes Cx and Cy .

For every x0 2 Dx , the graphical disks �i intersect fx0g � Dy transversally, and the

intersection with @.Dx � Dy/ lies as a braid in @Dx � Dy . To simplify notation, we do

not mention the Milnor ball B explicitly in the first part of the lemma.

Lemma 3.2 Let �1; : : : ; �m be smooth disks in C2 which are graphical with respect

to the projection �x , that is , �i D fy Dfi.x/g. Assume that at each intersection point

of two or more �i , there exists a neighborhood U of the intersection such that
S

i �i

is cut out by complex linear equations inside U. (Up to graphical isotopy, this only

requires the �i to intersect transversally and positively with respect to the orientation

on the graph �i induced from the natural orientation on C.) Let p1; : : : ;pn be points

on the disks �i which include all intersection points , and let ˛ W C2 # nCP2 ! C2 be

the blow-up at the points p1; : : : ;pn. Let z�1; : : : ; z�m denote the proper transforms

of �1; : : : ; �m. Then �x ı ˛ W .C2 # nCP2/ n .z�1 [ � � � [ z�m/ ! C is a Lefschetz

fibration whose regular fibers are punctured planes , where each puncture corresponds to

a component z�i . There is one vanishing cycle for each point pj , which is a curve in the

fiber enclosing the punctures that correspond to the components �i passing through pj .

Similarly, if B D Dx � Dy is a Milnor ball that contains all the points pi ; : : : ;pn

and contains .Dx � C/\
�
S

i �i

�

, and Ti is a small tubular neighborhood of z�i , then

�x ı˛ W .˛�1.Dx �Dy//n .T1 [� � �[Tm/! Dx is a Lefschetz fibration with compact

fiber. The fiber is a disk with holes corresponding to the components �i . The vanishing

cycles correspond to the points pj in the same way.

If the curvettas C s
1
; : : : ;C s

m with marked points are the result of picture deformation

of the germ .C; w/ associated to a surface singularity , then the Lefschetz fibration
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constructed as above is compatible with the complex structure on the Milnor fiber of

the corresponding smoothing.

Proof Before blowing up, the projection �x W C2 ! C is clearly a fibration, and

the smooth disks �i are sections of this fibration. If they were disjoint sections, then

their complement would be a fibration whose fiber is C with m punctures. Since the

sections intersect, we blow up at each of the intersection points, along with blow-ups

at other chosen points on the curves. For each fiber containing one of the pj where

we blow up, the corresponding fiber in the blow-up is the total transform, which is a

nodal curve containing the exceptional sphere and the proper transform of the fiber.

More specifically, translating the coordinates .x;y/ on C2 to be centered at pj , the

coordinates on the blow-up are

C2 # CP2
pi

D f..x;y/; Œu W v�/ j xv D yug:

The singular fiber is the total transform of F D fxD0g, which has two irreducible

components:
�

E D f..0; 0/; Œu W v�/g
�

[
� zF D f..0;y/; Œ0 W 1�/g

�

:

The node occurs at the intersection of these two components at ..0; 0/; Œ0 W 1�/. Therefore

in a neighborhood of the node we can take v D 1, so we have local coordinates on the

blow-up given by .y;u/ 2 C2 where x D yu. The projection �x ı˛ is given in these

coordinates by

�x ı˛.y;u/D yu;

which is exactly the model for a Lefschetz singularity at .y;u/D .0; 0/.

In the coordinate chart on C2 centered at pj , let �i D f.x; fi.x//g. The total transforms

of the curves �i which pass through pj Ð ie which have fi.0/D 0 Ð are given by

�

E D f..0; 0/; Œu W v�/g
�

[
�

z�i D
��

.x; fi.x//;

�

1 W lim
a!x

fi.a/

a

����

;

and those which do not pass through pj Ð ie which have fi.0/¤0 Ð lift isomorphically

to the blow-up
˚�

.x; fi.x//; Œx W fi.x/�
�	

:

Note that the proper transforms do not pass through the node ..0; 0/; Œ0 W 1�/. Moreover,

since the intersections between the �i were assumed to be transverse, lima!0 fi.a/=a

have different values for different values of i where fi.0/ D 0. Therefore, the z�i
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are disjoint sections of the Lefschetz fibration from the blow-up of C2 to C, so their

complement gives a Lefschetz fibration with punctured fibers. Moreover, in the singular

fibers, the sections which intersect the exceptional sphere part of the fiber are precisely

the proper transforms z�i such that �i passed through pj .

Regular neighborhoods Ti of the z�i can be chosen sufficiently small to be disjoint

from each other and the Lefschetz singular points, thus yielding the compact Lefschetz

fibration. This changes the fiber (converting the punctures into holes) but does not

change the fibration structure and the vanishing cycles. The total space of a Lefschetz

fibration over a disk is a compact 4±manifold with boundary; the fibration induces a

planar open book decomposition on the boundary.

In the case of a picture deformation of the germ .C; w/, the deformed curvettas

C s
1
;C s

2
; : : : ;C s

m are smooth complex disks with marked points satisfying the hypotheses

of the lemma. The Stein structure induced by the Lefschetz fibration is compatible

with the complex structure on the Milnor fiber, because �x ı˛ is holomorphic.

Consider a smooth graphical arrangement � D f�1; : : : ; �mg in a Milnor ball B D
Dx � Dy , such that each �i transversally intersects the vertical part @Dx � Dy of @B

and is disjoint from Dx � @Dy . Taking the boundaries of the graphical disks, we have

an m±braid @� D @�1 [ @�2 [ � � � [ @�m � @B D S3. (Each component @�i is an

unknot, but the components are linked.) The monodromy of this braid is called the

monodromy of the arrangement � . We can interpret the braid group on m strands as

the mapping class group MCG.Cm/ of the m±punctured plane. Then the braid @� is

identified with the monodromy �� of the Cm±bundle over S1, given by the projection

�x W C2 n
Sm

iD1 �i ! C restricted to the preimage ��1
x .@Dx/ of the circle @Dx � C.

To construct the Lefschetz fibration corresponding to � in Lemma 3.2, we perform

blow-ups at points pi that project to the interior of Dx . These blow-ups do not affect

the bundle over @Dx . Therefore, the noncompact version of the Lefschetz fibration

(with fiber Cm) has the monodromy �� given by the braid @� .

For the compact version of the Lefschetz fibration from Lemma 3.2, the general fiber Pm

is the disk Dy with m holes. The fibration induces an open book on its boundary,

with page Pm. The boundary of the total space of the fibration Ls is the union of two

parts: the horizontal boundary @Pm � D, which forms the binding of the open book,

and the vertical boundary, a fiber bundle over S1 D @Dx with fiber Pm, which forms
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the mapping torus for the open book. This fiber bundle is given by the projection

.�x ı˛/�1.@Dx/! Dx , which is the same as the projection �x W B n
Sm

iD1 �i ! Dx

restricted to ��1
x .@Dx/, because the blow-up map ˛ is the identity over @Dx . Let

� W Pm ! Pm denote the monodromy of this fiber bundle, ie the monodromy of the

open book. We then have a commutative diagram

Pm
�

//

��

Pm

��

Cm
��

// Cm

where the vertical maps are inclusions. This proves:

Lemma 3.3 Let � D f�1; : : : ; �mg be a smooth graphical arrangement with marked

points fpj g, and B D Dx �Dy a Milnor ball whose interior contains all marked points ,

such that �i \ .Dx � C/� B and �i is transverse to @B for all i D 1; : : : ;m. Let ��

be the monodromy of the braid @� D @�1 [ � � � [ @�m � @B D S3.

Let � W Pm ! Pm be the monodromy of the open book induced by the Lefschetz

fibration constructed for .�; fpj g/ in Lemma 3.2. Then �� is the image of � under the

projection

� W MCG.Pm/! MCG.Cm/

induced by the inclusion Pm ,! Cm of the compact disk with m holes into the m±

punctured plane.

When the arrangement .�; fpj g/ is related to the decorated germ .C; w/ by a smooth

graphical homotopy, the monodromy �� of the braid @� is the same as the monodromy

of the braid @C D @C1 [ � � � [ @Cm, because the homotopy between disks gives an

isotopy of the two boundary braids. By definition, the braid monodromy of @C is the

monodromy ' of the singular point of C.

We next examine the monodromy of the open book corresponding to � in the case of

the compact fiber, and find its relation to the monodromy of the singular curve C.

Lemma 3.4 Let f�1; : : : ; �mg and f� 0
1
; : : : ; � 0

mg be two smooth graphical arrange-

ments , such that the boundary braid of are braid-isotopic (respecting labels) and the

weights on the corresponding components agree. Let L and L0 be the corresponding

Lefschetz fibrations constructed in Lemma 3.2. Then the induced open book decompo-

sitions on the boundary have the same page and same monodromy.
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We will prove the lemma after pointing out its consequences. Since the plane curve

arrangements at either end of a smooth graphical homotopy have braid-isotopic bound-

aries, and the weights on the components remain constant during the smooth graphical

homotopy, it follows that the open book decomposition induced on the boundary for

any Lefschetz fibration arising in this way is independent of the choice of smooth

graphical homotopy.

For the case where .�;w/ is the end point of a picture deformation of a plane curve germ

.C; w/, L0 is a Lefschetz fibration on the (compactified) Milnor fiber of the associated

smoothing of the surface singularity .X; 0/, as in Theorem 1.3. In this case the boundary

of the Milnor fiber is the link Y of the singularity .X; 0/, and the Milnor fiber gives a

Stein filling of the canonical contact structure � on the link, so the open book supports � .

Because every rational singularity has a picture deformation yielding a Milnor fiber

arising in such a manner (see Section 4 in our case), the open book on the boundary of

any Lefschetz fibration arising from the endpoint of a smooth graphical homotopy of the

same germ must support the canonical contact structure on the link of the singularity.

Combining Lemmas 3.2 and 3.4 with this discussion completes the proof of Theorem 1.4,

which we summarize in the following corollary.

Corollary 3.5 A smooth graphical homotopy of the decorated germ .C; w/ gives rise

to a Stein filling of the link .Y; �/ of the corresponding singularity.

Proof of Lemma 3.4 Applying the previous discussion and Lemma 3.3 to the ar-

rangement � D f�1; �2; : : : ; �mg, we see that the homomorphism � W MCG.Pm/ !
MCG.Cm/ sends the open book monodromies � and �0 to the same braid monodromy

' 2 MCG.Cm/. The kernel of the map � W MCG.Pm/ ! MCG.Cm/ is generated

by the boundary-parallel Dehn twists around the holes in the fiber Pm. (Recall that

the monodromy of an open book is considered rel boundary of the page, so while

the twists around individual strands are trivial in the braid case, the boundary twists

become nontrivial for open books.) It follows that the monodromies � and �0 of the

open books on the boundaries of L and L0 can differ only by boundary twists, since

�.�/D �.�0/D '.

Let Ti denote a positive Dehn twist around the i th hole. Then we have

(3-1) �0 D � ı T
˛1

1
ı T

˛2

2
ı � � � ı T ˛m

m

for some integers ˛1; ˛2; : : : ; ˛m. The order is unimportant since the boundary twists

are in the center of MCG.Pm/.
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It remains to pin down the boundary twists around each hole, ie to show that ˛i D 0

for every i D 1; : : : ;m. To do so, we need to take into account the blow-ups at

the free marked points pi (the marked points that lie on the branches away from

the intersections). These correspond to boundary twists. Recall a basic fact about

diffeomorphisms of a planar surface rel boundary: for any two factorizations ‰ and ‰0

of  W Pm ! Pm, the number of Dehn twists that enclose a given hole h is the same

for ‰ and ‰0. (Here, we count all twists, not only the boundary ones.) The above

statement easily follows from the fact that lantern relations generate all relations in the

mapping class group of a planar surface [36], and the number of Dehn twists enclosing

a given hole is unchanged under a lantern relation. This implies that the number of

Dehn twists enclosing the i th hole is well defined for a monodromy  W Pm ! Pm; let

ni D ni. / denote this number. If two monodromies � and �0 are related by (3-1), we

have

(3-2) ni.�
0/D ni.�/C˛i :

On the other hand, the number ni is determined by the vanishing cycles of the Lefschetz

fibration. By construction of the fibration L1 associated to the homotopy Ct , the number

of Dehn twists enclosing the i th hole is given by the number of blow-ups at the marked

points on C 1
i , which in turn equals the weight wi of the component Ci of the original

germ C. So ni.�/D wi D ni.�
0/, and ˛i D 0 from (3-2).

Remark 3.6 Our description of the open book monodromy for an arrangement is

somewhat similar to E Hironaka’s results [24] on the monodromy of complexified real

line arrangements in C2. An important difference is that we consider Lefschetz fibrations

on the complement of the proper transform of the curves in a blow-up of C2, while

Hironaka computes the monodromy of the fiber bundle over S1 obtained by projecting

the complement of the complex lines in C2 to a circle of large radius; compare with the

proof of Lemma 3.4. She also considers the setting with compactified fibers, by taking

the complement of tubular neighborhoods of the lines, and computes the monodromy

of line arrangements as an element of MCG.Pm/. It is important to note that even

in the compactified setting, her answers are different from the monodromy of the

corresponding Lefschetz fibrations that we consider. (The difference is given by some

boundary twists.) The discrepancy appears because when the tubular neighborhoods

of the C 1
i are removed from C2, their parametrization is induced from C2. When we

blow up and take proper transforms of C 1
i , the parametrization of tubular neighborhoods

is induced by the Lefschetz fibration structure on the blown-up manifold. These two
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parametrizations are different in the two settings, affecting the choice of the meridian of

the tubular neighborhood of a line and the framing of the boundary of the corresponding

hole.

4 The Lefschetz fibration for the Artin smoothing

4.1 The Scott deformation

We can now use a specific deformation to describe the monodromy of the open book

decomposition of .Y; �/. We will use a canonical deformation, called the Scott deforma-

tion in [27], which yields a smoothing in the Artin component. This deformation yields

a particularly nice arrangement of curvettas where the associated Lefschetz vanishing

cycles are disjoint. This in turn yields a model factorization for the monodromy of

the boundary open book decomposition. In Proposition 6.7, we will show that the

corresponding Stein filling is uniquely recognizable from its combinatorics. Recall that

tang.Ci ;Cj / stands for the order of tangency between branches Ci and Cj of C, and

t.Ci/D maxj tang.Ci ;Cj /.

Proposition 4.1 Let .X; 0/ be a rational surface singularity with reduced fundamental

cycle , and .C; w/ one of its decorated reducible plane curve germs with m smooth

irreducible components. Let .Y; �/ be the contact link of .X; 0/. Then .Y; �/ has

a planar open book decomposition whose page is a disk with m holes h1; : : : ; hm,

corresponding to the branches of C. The open book monodromy admits a factorization

into disjoint positive Dehn twists with the following properties:

(1) For any two branches Ci and Cj , the corresponding holes hi and hj are enclosed

by exactly tang.Ci ;Cj / of these Dehn twists.

(2) There are w.Ci/� t.Ci/ > 0 boundary Dehn twists around the hole hi .

(3) There is at least one positive Dehn twist about the outer boundary component of

the page.

Proof We use the picture deformation of .C; w/ referred to as the Scott deformation in

[27, Proposition 1.10]. This deformation arises from iteratively applying the following

procedure. (We refer the reader to [27; 1] for details, including the explanation why

the procedure below can be actually realized by a 1±parameter deformation.)

The input of the procedure is an isolated singular point p of a plane curve C with

multiplicity m. In our case C is a union of smooth components, and the multiplicity m
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is the number of components through the point p. The output of the procedure is a

deformation C 0 whose singularities are

(I) one m±fold point where m branches intersect transversally, and

(II) the collection of singularities occurring on the proper transform of C in the

blow-up of C2 at p.

The idea of the deformation is to blow up at p, perform a small deformation of the curves

so that the singularities of the proper transform become disjoint from the exceptional

divisor, and then blow down the exceptional divisor to return to the plane and obtain

the curve C 0.

We demonstrate this process in an example in Figure 4. The initial configuration in the

bottom left consists of five curves. The curves C1 and C2 are tangent with multiplicity 3,

and these two curves are tangent to C3 with multiplicity 2. The curves C4 and C5

are transverse to C1, C2 and C3 but tangent to each other with multiplicity 4. After

blowing up at the common intersection point, we obtain the proper transforms together

with an exceptional divisor as shown in the top left of Figure 4. Now C1 and C2 are

tangent with multiplicity 2 and transversally intersect C3 at the same point on the

exceptional divisor. The curves C4 and C5 become disjoint from C1, C2 and C3, and

they are tangent to each other with multiplicity 3 at another point on the exceptional

divisor. Next we perform the deformation of the curves, fixing the exceptional divisor,

but translating the proper transforms zC1; zC2; : : : ; zC5 of the curvettas slightly so that

the intersection of the exceptional divisor with the proper transforms now occurs away

from the intersections of the proper transforms with each other, as shown in the top

right of Figure 4. Finally, we blow down the exceptional divisor, which results in

a transverse intersection of the resulting curvettas C s
1
;C s

2
; : : : ;C s

5
together with the

singularities (intersections) of the proper transforms, as required.

Since the multiplicity of the orders of tangency between components decreases each time

we take the proper transform, applying this procedure iteratively to the singularities

of type (II) eventually yields a deformation to a plane curve with only transverse

intersections. See Figure 5 for the iterations of the Scott deformation in our example,

until all of the singularities are transverse intersection points. When working with a

decorated germ .C; w/, with the marked points of w initially concentrated at 0, the

same blow-up procedure will separate the marked points. Indeed, if there are additional

marked points which increase the weight, they can be separated by additional iterations
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C1

C2

C3

C4 C5

zC2

zC3

zC1

zC5

zC4

C s
1

C s
2

C s
3

C s
4

C s
5

Figure 4: One iteration of the Scott deformation in an example.

of the blow-ups and translations, so that at the end all marked points are disjoint.

(In this sense the scheme ws is reduced.) Note that the total weight w.Ci/ of each

component is equal to the total number of marked points on that component (including

the intersection points).

When the components of C are smooth, the result of this deformation is as follows. If

some components of C were tangent to order r1 before the deformation, they will all

Figure 5: A Scott deformation applied iteratively until all intersections are transverse.
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pass through the same r1 transverse multipoints pi1
; : : : ;pir1

. If another component

of C intersects these components with multiplicity r2 < r1 before the deformation, this

component will pass through r2 of these points afterwards. The total number of inter-

section points appearing on the Scott deformation of a component Ci is precisely t.Ci/,

the highest possible order of tangency between Ci and another branch in the original

germ C. In this sense, the intersection points are used as efficiently as possible. The

number of additional marked points on Ci is w.Ci/� t.Ci/.

Now, consider the Lefschetz fibration constructed from the Scott deformation via

Lemma 3.2. We claim that up to a curve isotopy, the vanishing cycles of this fibration

are disjoint curves on the planar page. The reason for this is built into the iterative

nature of the Scott deformation, which results in a nesting of the vanishing cycles as

follows.

Consider the equivalence relations on the components C1; : : : ;Cm of the germ C defined

by Ci �l Cj if Ci and Cj intersect at 0 with multiplicity at least l . The transitivity of

this relation comes from the fact that if C1 intersects C2 with multiplicity r at 0 and

C2 intersects C3 with multiplicity s at 0, then C1 must intersect C3 with multiplicity at

least minfr; sg. These equivalence relations induce partitions of the components of C,

and �l refines �l 0 for l > l 0.

If we apply the Scott deformation procedure iteratively, on the first iteration, we obtain

one transverse intersection of all of the branches (the singularity of type (I)), which

groups the components of C according to the (unique) block of the partition induced

from �1. Applying the Scott deformation procedure to all the singularities of type (II)

generates a transverse multipoint of type (I) for every block in the partition induced

by �2. Iterating this procedure, for l � 1 we obtain a transverse intersection for every

block of each partition Pl induced by �l . For sufficiently large l , each block will

consist of a single smooth component, and thus no new transverse intersections of

type (I) will result from the procedure. When a block contains a single element, there

may or may not be additional marked points placed. Instead of using the partition and

Scott deformation to place additional marked points, we can simply use the formula

that Ci must have w.Ci/� t.Ci/ total additional marked points.

Recall that there is one vanishing cycle in the Lefschetz fibration for each marked point

of the Scott deformed curve, and this vanishing cycle encircles the punctures/holes

corresponding to the components of curves which pass through the given marked

point. Because the equivalence relations �l refine each other as l increases, the subsets
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of Ci which intersect at the .lC1/st iteration are nested within the subsets of Ci which

intersect at the l th iteration. Moreover, because the isotopy in the blow-up procedure can

be made arbitrarily small, we can assume that there is no braiding of the components Ci

between the l th and .lC1/st iterations; see Section 5 for more details on how braiding

of the curves can occur and be understood in general. More specifically, observe that in

the Scott deformation procedure, as in Figure 4, the deformation from right to left in the

blow-up (at the top of the figure) can be performed by an arbitrarily small translation

of the exceptional divisor. By making the translation sufficiently small, we can ensure

that in each subset intersecting at the .lC1/st iteration, the curves stay close together

and do not interact with another such subset. (In the language of Section 5, nontrivial

braiding would correspond to a crossing of the wires, and a small translation ensures

that the wires cannot cross in between the singularities produced iteratively by the Scott

deformation.) Then, the vanishing cycles corresponding to the intersections of type (I)

which are introduced at the .lC1/st iteration will be nested inside (and thus disjoint

from) the vanishing cycles corresponding to the intersections of type (I) introduced

at the l th iteration. We can also assume that any two vanishing cycles introduced in

this way at the l th iteration are disjoint, because the application of Lemma 3.2 to the

Scott deformation actually realizes these Lefschetz singularities simultaneously in the

same fiber (we can later perturb so they arise in different fibers if desired). Finally, the

additional marked points at smooth points of the Ci correspond to vanishing cycles

which are boundary parallel to the i th hole, and thus can be realized disjointly from each

other and all other vanishing cycles. Thus we conclude that the Scott deformation yields

a Lefschetz fibration with disjoint vanishing cycles. This means that the compatible

planar open book for the link .Y; �/ has monodromy which is a product of positive

Dehn twists about the disjoint curves described above. Because at the first step we get

a transverse intersection of all deformed curvettas, the corresponding vanishing cycle

encloses all holes, ie we have a Dehn twist about the outer boundary component of the

page.

4.2 Symplectic resolution and Lefschetz fibrations

It is noted in [27] that the Scott deformation corresponds to the Artin smoothing,

which in this situation is diffeomorphic to the resolution of the singularity. In fact,

we can see more directly, through symplectic topological means, that the Lefschetz

fibration corresponding to this Scott deformation gives a plumbing which necessarily

corresponds to the resolution of the singularity.
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We recall the procedure of [18, Theorem 1.1]. Starting with the plumbing graph G,

this procedure produces a planar Lefschetz fibration compatible with the symplectic

resolution of a rational singularity with reduced fundamental cycle. (The symplectic

structure on the plumbing can be deformed to the corresponding Stein structure.) In

fact, [18, Theorem 1.1] applies to a wider class of singularities (see Section 4.3 below),

but we first describe it for this particular case. To construct the fiber of the Lefschetz

fibration, take a sphere Sv for each vertex v 2 G and cut �a.v/� v � v � 0 disks out

of this sphere. (As before, a.v/ is the valency of the vertex v; the number of disks

is nonnegative by (2-1).) Next, make a connected sum of these spheres with holes

by adding a connected sum neck for each edge of G. For a sphere Sv corresponding

to the vertex v, the number of necks equals the number of edges adjacent to v, ie its

valency a.v/. The resulting surface S has genus 0 because G is a tree. See the top of

Figure 6 for an example.

Proposition 4.2 [18, Theorem 1.1] The surface S constructed above is the fiber of a

Lefschetz fibration on a symplectic neighborhood of symplectic surfaces intersecting

!±orthogonally according to the graph G. The vanishing cycles are given by the curves

parallel to the boundaries of the holes (one curve for each hole) and the cores of the

necks of the connected sums.

Let zX be the Milnor fiber of the Artin smoothing component for a rational .X; 0/ with

reduced fundamental cycle; zX is a Stein filling for the contact link .Y; �/. We now have

several different Lefschetz fibration structures on zX . First, because zX is diffeomorphic

to the minimal resolution of .X; 0/, a Lefschetz fibration is produced by the Gay±Mark

construction of Proposition 4.2. Second, for each choice of the decorated germ .C; w/

with smooth branches, the proof of Proposition 4.1 also gives a Lefschetz fibration

on zX . All these Lefschetz fibrations have planar fibers. In our construction of the

Lefschetz fibration from the curvetta arrangement, the general fiber has a distinguished

ªouterº boundary component coming from the fibration � W B ! C on the Milnor ball

B D Dx � Dy � C2. In the Gay±Mark construction, there is no distinguished boundary

component of the fiber. On the other hand, the decorated germ is not uniquely defined:

recall from Proposition 2.4 that there are mult X choices of decorated germs with smooth

branches representing .X; 0/, where some of these germs may coincide due to symme-

tries in the extension of the resolution graph. Of course, since the link of the singularity

is independent of the choice of curvetta germs, the Stein filling arising from the Artin

smoothing should not depend on these choices. We now show that the choice of curvettas
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Figure 6: An example demonstrating different choices of curvettas corre-
spond to different choices of outer boundary component for the fiber of
the Lefschetz fibration. At the top we have the resolution configuration
and the corresponding Gay±Mark Lefschetz fiber with vanishing cycles. The
resolution configuration is augmented with red .�1/ curves and blue curvettas.
For each choice of curvettas we delete exactly one of these red .�1/ curves
and the corresponding curvetta. We show the resulting curvettas, their Scott
deformation, and the corresponding planar Lefschetz fibration obtained from
Lemma 3.2 in the cases of excluding the .�1/ curves labeled 2, 3, and 5.
Note that because of symmetries in the graph, the exclusion of 1 or 2 yield
very similar looking cases, and similarly with the exclusion of 4 or 5.

corresponds precisely to the choice of the outer boundary component, so this choice

only affects the presentation of the Lefschetz fibration. See Figure 6 for an example.

Lemma 4.3 Let L be the planar Lefschetz fibration on zX provided by Proposition 4.2.

Then the mult X different choices of smooth curvetta germs for .X; 0/ produce , via

the Scott deformation , planar Lefschetz fibrations on zX with a distinguished boundary

component of the fiber. The choices of smooth curvetta germs are in one-to-one

correspondence with the different choices of outer boundary component of the general

fiber of L.
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Proof As before, we associate to each vertex of the resolution graph G for the singular-

ity the quantities v �v for the self-intersection and a.v/ for the valency. In the Gay±Mark

Lefschetz fibration L, each vertex v 2 G contributes �v �v�a.v/ boundary components

to the fiber. On the other hand, recall from the proof of Propositions 2.2 and 2.4

that the germ C of smooth curvettas is obtained from an extension of the resolution

graph G to a graph G0. We attach �v � v � a.v/ vertices with self-intersection �1

and valency 1 to each vertex v to obtain a graph G00, and then delete exactly one of

these .�1/ vertices to get the graph G0. This shows that the number of choices for

the germ matches the number of boundary components of the fiber of L, and this

number is exactly mult X D �
P

.v � vC a.v//. The curvetta branches of the germ C

are obtained by taking disks dual to the remaining .�1/ vertices and considering their

proper transform after blowing down all exceptional divisors; thus the curvettas are

in one-to-one correspondence with the .�1/ vertices of G0. In turn, in the Lefschetz

fibration constructed by Lemma 3.2, the ªinnerº boundary components of the fiber

are in one-to-one correspondence with the curvettas. The deleted .�1/ vertex in G00

still corresponds to a boundary component in the fiber of the Gay±Mark Lefschetz

fibration L, thus we can say that it corresponds to the outer boundary component of

the fiber of the planar Lefschetz fibration produced by Lemma 3.2. Note also that if we

enumerate the .�1/ vertices of the graph G0 by 1; 2; : : : ;m D mult X � 1, we get an

enumeration of the components of C, which in turn gives an enumeration of the holes

of the fiber.

Recall from Remark 2.6 that there may be different analytic types of singularities with

the same link .Y; �/. These singularities are all topologically equivalent and have the

same graph G, so that decorated germs for each of these singularities are obtained

from extensions of G. A particular choice of extension gives topologically equivalent

decorated germs for all singularities with link Y. Topologically equivalent germs yield

the same open book decompositions of .Y; �/ as in Proposition 4.1, since the weights

and the orders of tangency between branches are encoded by the topological type.

Together with the previous proposition, this gives:

Corollary 4.4 Let .Y; �/ be a link of surface singularity with reduced fundamental

cycle. Then for any singularity .X; 0/ whose link is Y, and any choice of the decorated

germ C for .X; 0/with smooth branches , the open book decomposition of .Y; �/ defined

by C is the same; namely, the open book induced by the Gay±Mark Lefschetz fibration.

Different extensions G0 of the resolution graph G used to construct C correspond to
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different choices of the outer boundary of the page of the open book. Enumeration of the

branches of C (or equivalently, of the .�1/ vertices of G0) corresponds to enumeration

of the holes in the page.

It is interesting to note that the Milnor fiber of the Artin smoothing is the only Stein

filling with disjoint vanishing cycles in its Lefschetz fibration.

Proposition 4.5 Suppose a planar Lefschetz fibration has disjoint vanishing cycles ,

with at least one boundary parallel vanishing cycle for each boundary component.

Then this is a Lefschetz fibration for the Artin smoothing of a rational singularity with

reduced fundamental cycle. In particular , the induced open book decomposition on the

boundary supports the contact link of a rational singularity with reduced fundamental

cycle.

Proof As in [18], if the vanishing cycles are disjoint, we can realize all Lefschetz

singularities simultaneously in the same fiber. The unique singular fiber is thus a

configuration of spheres intersecting transversally according to a graph. Note that the

boundary parallel twists are important to ensure that the only nonclosed components of

the singular fiber are disks which retract to a point. (These disks come from the small

annuli around the holes.) The nonsingular fibers provide a regular neighborhood for

the configuration, so the entire 4±manifold is a symplectic plumbing. This 4±manifold

gives a symplectic filling for a contact structure supported by a planar open book, thus

by [15] its intersection form is negative definite, ie the plumbing graph G is negative

definite. Thus, the graph can be thought of as the resolution graph of a normal surface

singularity .X; 0/.

As in [18], �v � v � a.v/ for each vertex v 2 G, so .X; 0/ is a rational singularity with

reduced fundamental cycle. To see this, observe that each vertex v 2 G corresponds to

a closed component ySv of the singular fiber. Alternatively, ySv can be viewed as the

union of a component Sv of the complement of the vanishing cycles in a regular fiber

capped off by thimbles for each of its boundary vanishing cycles. Then, v � v D ySv � ySv

equals the negative number of thimbles in ySv, or equivalently the negative number of

vanishing cycles on the boundary of Sv; see [19, Proposition 2.1]. The valency a.v/ is

the number of other spheres in the singular fiber intersecting ySv . Put differently, a.v/ is

the number of closed surfaces ySv0 , v0 ¤ v, such that Sv and Sv0 share a vanishing cycle

in their boundaries; thus a.v/ is the number of the vanishing cycles in @Sv that are not

adjacent to a boundary component in the fiber. Then �v � v � a.v/ is the number of
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vanishing cycles adjacent to a boundary component in @Sv, so �v � v � a.v/ � 0, as

required. Note also that v � v � �2, as each Sv has at least 2 vanishing cycles on the

boundary, so G is the graph of the minimal resolution.

The above discussion implies that if we run the construction of Proposition 4.2 for

the graph G, we recover the given Lefschetz fibration. It follows that our Lefschetz

fibration is compatible with the symplectic structure on the minimal resolution. For

a rational singularity, the resolution is diffeomorphic to the Milnor fiber of the Artin

smoothing (and the symplectic structure on the symplectic plumbing deforms to the

corresponding Stein structure). This shows that the Lefschetz fibration produces the

same filling as the Artin smoothing.

4.3 A digression: some nonrational singularities and potential unexpected

fillings

Although we stated Proposition 4.2 for rational singularities, Theorem 1.1 of [18] is

more general: the same construction works when the normal crossings resolution has

exceptional curves of higher genus, as long as condition (2-1) is satisfied. The fiber of

the corresponding Lefschetz fibration is formed by taking the connected sum of surfaces

given by the exceptional curves and cutting �v � v � a.v/ � 0 holes in the surface

corresponding to v 2 G. As before, the vanishing cycles are given by the boundary

parallel curves around the holes and the curves around the connected sum necks. We

can use this construction together with monodromy factorizations of [7] to construct

infinite collections of Stein fillings for links of certain nonrational singularities.

Indeed, suppose that a normal surface singularity .X; 0/ has a good resolution such that

one of the exceptional curves has genus g � 2 and self-intersection �d , with d � 2g�4.

As before, we assume that the resolution graph has no bad vertices, ie satisfies (2-1).

Then the fiber of the Lefschetz fibration from [18, Theorem 1.1] has a subsurface of

genus g with some necks and holes, and a vanishing cycle around each neck and each

hole. (See Figure 7.) The total number of these vanishing cycles is d . We can cut

out this subsurface along the curves parallel to the vanishing cycles to get a surface

of genus g with d holes, so that the product of the Dehn twists around the vanishing

cycles is the boundary multitwist. For d � 2g � 4, [7, Theorem A] establishes that the

boundary multitwist has infinitely many positive factorizations as products of Dehn

twists about nonseparating curves. These factorizations can consist of arbitrarily many

Dehn twists. It follows that the monodromy of the corresponding open book on the
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Figure 7: The Gay±Mark Lefschetz fibration for the resolution of a non-
rational singularity which admits infinitely many unexpected fillings. The
subsurface of genus 4 with d D 4 used to produce infinitely many monodromy
factorizations is shaded. Vanishing cycles are drawn in blue.

link .Y; �/ has infinitely many positive factorizations, each of which produces a positive

allowable Lefschetz fibration (see [2]) and thus a Stein filling; these Stein fillings can

have arbitrarily high Euler characteristic. We ask:

Question 4.6 Does the above construction produce any unexpected Stein fillings?

To answer this question, one would need to contrast these Stein fillings and the Milnor

fibers of all surface singularities with the given link. Each fixed singularity can only have

finitely many Milnor fibers. (Indeed, the Milnor fibers correspond to the components

of the base of miniversal deformation; the base is a germ of an analytic space, and as

such it can only have finitely many components; see eg [56, Theorem 4.10 and the

discussion in Section 7].) However, because of the presence of a higher-genus surface

in the resolution, every singularity as above is not (pseudo)taut [32], which means that

there exist infinitely many analytic types of singularities with the same dual resolution

graph, and thus the same contact link. We are interested in the Stein topology of the

Milnor fibers, which is more coarse than the analytic type; in principle, it is possible

that the infinite collection of analytic types of the singularity would only give rise to

finitely many Stein homotopy types for the Milnor fibers. Thus, we have the following

dichotomy: either

(1) there are only finitely many Stein homotopy types (or diffeomorphism types) of

the Milnor fibers, which would imply existence of unexpected fillings, or

(2) an infinite collection of possible analytic types gives rise to an infinite collection

of pairwise distinct Stein fillings.
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Establishing either outcome would be extremely interesting, even for a single example.

It should also be noted that in the nonrational case, one should in principle consider

nonnormal singularities as well, as these might generate additional Stein fillings;

see [55] for a detailed discussion of this issue (which doesn’t arise in the rational case).

Remark 4.7 In a related direction, it is interesting to take a closer look at a family of

examples given by cones over curves. Consider a normal surface singularity whose

resolution has a unique exceptional curve of genus g � 2 with self-intersection �d

for d > 0. The resolution is the total space of the complex line bundle of degree d

over the corresponding Riemann surface, and the singularity can be thought of as cone

point. The link is a circle bundle over the genus g surface, with Euler number �d .

The canonical contact structure is the Boothby±Wang structure, which has an open

book decomposition as described above: the page is a genus g surface with d boundary

components, and the monodromy is the boundary multitwist.

As explained above, for d � 2g � 4 we have an infinite collection of Stein fillings,

produced by factorizations of the multitwist. Interestingly, this method no longer

applies when d > 4g C 4: in that range, the boundary multitwist admits no nontrivial

positive factorizations, again by [7, Theorem A]. The singularity given by a cone over

a projective curve is nonsmoothable when d > 4g C 4 by [62]; in fact, it is also known

that the resolution gives the unique Stein filling in this case [49, Proposition 8.2].

Similarly, for cones over elliptic curves, ie g D 1, the singularity is nonsmoothable for

d > 9 [53], and the only Stein filling is indeed given by the resolution, while for d � 9,

all Stein fillings are given by smoothings and resolutions [50].

5 Every symplectic filling comes from a symplectic

deformation of curvettas

5.1 Braided wiring diagrams

A braided wiring diagram is a generalization of a braid in R � C (where the braid

condition means that the curves should be transverse to each ftg � C). In a wiring

diagram, instead of only looking at smooth braids, we allow the strands to intersect.

Let �R W R � C ! R denote the projection to the first coordinate. We will also use the

natural projection from C to R sending a complex number to its real part.
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Definition 5.1 A braided wiring diagram is a union of curves 
j W R ! R � C,

j D 1; : : : ; n, each of which is a section of the projection �R W R � C ! R, ie each

ªwireº is given by 
j .t/D .t; hj .t/C iwj .t//. Different wires 
j may intersect; in this

article we will assume that they are not tangent at intersections.

We say a braided wiring diagram is in standard form if there are disjoint intervals

I1; : : : ; IN � R such that I` � C contains a unique intersection point of some subcol-

lection of the curves 
j , and in I` �C, the wires are given as 
j .t/D .t; kj t Caj Cibj /.

If 
j does not pass through the intersection point, we require kj D 0.

Note that any braided wiring diagram can be isotoped through braided wiring diagrams

to be in standard form.

We can encode a braided wiring diagram by projecting the union of the images of

the 
j to R � R and denoting the crossings of the projection as in a knot diagram.

A braided wiring diagram can be encoded by a sequence

.ˇ0;J1; ˇ1;J2; : : : ; ˇm�1;Jm; ˇm/;

where each ˇi is a braid and Ji D fki ; ki C 1; : : : ; ki C `ig is a consecutive sequence

of integers indicating the local indices of the strands involved in the i th intersection

point. For brevity, we will say that Ji is a consecutive set.

Conventions Strands in a wiring diagram are numbered from bottom to top. The

convention in [12] is to draw this sequence of braids and intersections from right to

left. If one thinks of composing words in the braid group using group notation (left to

right) instead of functional notation (right to left), then one will need to read off the

braid words from left to right Ð this is the convention used in [12]. However, in our

case since we are always thinking of braids as diffeomorphisms of the punctured plane,

we will use functional notation to compose braid words, and thus read everything Ð

the intersections and the braid words Ð from right to left.

Example 5.2 The braided wiring diagram shown in Figure 8 corresponds to the

sequence

.id; f2; 3g; id; f3; 4g; ��1
1 ı ��1

2 ; f3; 4g/:

Braided wiring diagrams were introduced in [12] (inspired by foundational work of [40]

and generalized from diagrams of [21]) to study configurations of complex curves,
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Figure 8: Braided wiring diagram.

particularly line arrangements, and the fundamental groups of their complements. The

definition works just as well to study configurations of smooth graphical disks in C2.

As in Section 3, let .x;y/ be complex coordinates on C2, and let �x be the projection

to the first coordinate. Let �1; : : : ; �m be smooth disks in C2 which are graphical with

respect to the projection to x, so �i D fy Dfi.x/g. Assume that all the intersections

between the �i are transverse and positive (with respect to the natural orientation on

the graphical disks projecting to C).

Definition 5.3 For a graphical configuration � D f�1; �2; : : : ; �ng of smooth disks

in C2, a braided wiring diagram is obtained as follows. Choose a (real) embedded

curve � W Œ0; 1�! C which passes once through the projection of each singular point

of the configuration and whose real part Re � is nonincreasing. The preimage of the

curve � under �x in C2 is diffeomorphic to Œ0; 1�� C, and the intersection of this copy

of Œ0; 1�� C with the configuration � is the braided wiring diagram.

The transversality of each smooth disk �j to the projection �x ensures that the wiring

diagram curves are transverse to the projection �R W R � C ! R. Note that different

choices of � may result in different braided wiring diagrams, which are related by

certain generalized Markov moves. See for example [12] for more details. We will show

in Section 5.3 that one can always construct a configuration � with a given braided

wiring diagram; moreover, the components �j of � can be chosen to be symplectic.

5.2 Braided wiring diagrams to vanishing cycles

Given a configuration � D f�1; �2; : : : ; �mg in C2 as above, Lemma 3.2 produces

an associated Lefschetz fibration. Recall that a Lefschetz fibration is completely

determined by its fiber and an ordered list of vanishing cycles. (Critical points are

assumed to have distinct critical values.) The fiber in this situation is planar with

m boundary components, where m is the number of curves in the configuration. If we

are given a braided wiring diagram of � , we can explicitly determine the vanishing

cycles, as follows.
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To describe the vanishing cycles of a Lefschetz fibration L W M ! C, we first need

to fix certain data. Choose a regular fiber F0 WD L�1.p0/ as the reference fiber. Let

p1; : : : ;pn denote the critical values of L. Choose paths �j connecting p0 to pj in

the complement of the pj , such that the paths �j are ordered counterclockwise from

1 to n locally around p0. Then the j th vanishing cycle Vj is the simple closed curve

in F0 which collapses to a point under parallel transport along the path �j .

When given a braided wiring diagram, we can construct the paths �j in a systematic

manner and compute the vanishing cycles Vj in terms of the braided wiring data. The

wiring diagram lies over a curve � W Œ0; 1�! C whose real part Re � is always decreasing.

The Lefschetz fibration from Lemma 3.2 comes from the composition L WD � ı˛ of

the blow-down map ˛ W C2 #n CP2 ! C2 with the projection map �x W C2 ! C. One

then takes the complement of the sections given by proper transforms of the curves

�1; �2; : : : ; �m in C2 #n CP2, so that each �j corresponds to a hole in the planar fiber.

Thus the j th hole corresponds to the wire 
j in the diagram, and in the standard form

the holes are arranged vertically in the fiber, labeled 1; : : : ;m, consecutively. Each

consecutive set Ji corresponds to a subcollection of holes contained in a convex subset

of C. The Lefschetz critical points occur in C2 #n CP2 above the intersection points

of the braided wiring diagram. Let 0 < t1 < � � � < tn < 1 denote the times at which

the j th intersection point of the wiring diagram lies over �.tj /. We will choose our

reference fiber to lie over the right endpoint p0 D �.0/ of the curve � in C. Strictly

speaking, we need a compact version of this construction, which is obtained by working

in a closed Milnor ball and taking complements of tubular neighborhoods of the � i ,

but for simplicity we omit the Milnor ball from the notation.

We will choose paths �j W Œ0; tj �!C given by �j .t/D�.t/�"j�j .t/i , where �j W Œ0; tj �!
Œ0; 1� is a bump function which is 0 near t D 0 and t D tj , and 1 outside a small

neighborhood of 0 and tj , and 0< "1 < "2 < � � �< "n < ". See Figure 9.

Figure 9: The vanishing paths �j chosen to identify the vanishing cycles in
the fiber over p0 relative to the wiring diagram path �.
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Our local model for the Lefschetz fibration in Lemma 3.2 shows that the curve which

collapses to a point in the fiber L�1.�j .tj � ı// (for small ı > 0) is a convex curve

enclosing the holes in the set Jj . To determine the vanishing cycle in our reference fiber

F0 D L�1.p0/, we need to track the monodromy over the path �j for t 2 Œ0; tj � ı�.
This is the monodromy of the braid given by the intersection of the configuration

with the slice of C2 which projects to �j . (Note that this intersection is indeed a

braid over the interior of �j , because each curve �j is disjoint from the critical points

away from its endpoints.) By assuming " to be sufficiently small, we see that this

braid agrees with corresponding portion of the braided wiring diagram, except when

passing near an intersection point. When �j passes an interval near tk for k < j , the

braid resolves the intersection by separating the strands. The strands are ordered from

bottom to top in decreasing order by slope in the projection R � C ! R � R (the most

positive slope is the lowest strand in the crossing). This can be verified by checking

the local model for the complexification of real lines because all of our intersections

are positive and transverse; see [40]. After resolving an intersection of the strands in

the set Jk D fik ; ik C 1; : : : ; ik C lkg, the element of the mapping class group which

corresponds to this portion of the braid from right to left is��1, where� is the positive

half-twist of the strands ik ; ik C1; : : : ; ik Clk . (In terms of the standard generators of the

braid group, �Jk
D .�ik

� � � �ikClk�1/.�ik
� � � �ikClk�2/.�ik

�ikC1/.�ik
/.) Therefore,

the braid lying above �j is given by

�j D ǰ�1 ı��1
j�1 ı � � � ıˇ1 ı��1

1 ıˇ0;

where �k denotes the positive half-twist of the strands in the set Jk . Namely, �k is the

diffeomorphism supported in a neighborhood of the disk convexly enclosing the holes

in the set Jk , which acts by rotating the disk by � counterclockwise. The j th vanishing

cycle is the curve which is taken to the convex curve Aj enclosing the holes in the

set Jj under the braid lying above �j . Therefore, Vj D ��1
j .Aj /.

Remark 5.4 We can encode blow-ups at ªfreeº points (as is allowed by Lemma 3.2)

by adding marked points in our braided wiring diagram indicating ªintersection pointsº

that involve only a single strand (so the corresponding J will have jJ j D 1).

The total monodromy of the curve configuration around a circle enclosing all of the

critical points can now be calculated in two different ways:

(1) Using the total monodromy of the curve configuration encoded by the braided

wiring diagram.

(2) Taking the product of positive Dehn twists about the induced vanishing cycles.
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Figure 10: Vanishing cycles corresponding to the braided wiring diagram
of Figure 8. The circled crossings correspond to intersections in the wiring
diagram. Uncircled crossings come from braiding between intersections.

To reassure the reader that our formulas and conventions are consistent, we verify that

these two different ways of calculating the monodromy agree.

The total monodromy encircling a braided wiring diagram

.ˇ0;J1; ˇ1; : : : ; ˇn�1;Jn; ˇn/

is given by following the diffeomorphisms induced by a counterclockwise rotation

around the wiring interval. Such a counterclockwise circle is obtained by connecting

an upward push-off of the wire interval oriented right to left with a downward push-off

oriented left to right as in Figure 11. The intersections between the strands of Jj are

resolved as the positive half-twist �j in the upward push-off (right to left). In the

downward push-off the intersection is resolved as the negative half-twist ��1
j right

to left, but since we pass through the downward push-off from left to right, each such

segment contributes �j to the monodromy. The braids contribute ǰ when traversed

right to left, and ˇ�1
j when traversed left to right. See Figure 11. The total monodromy

is therefore

ˇ�1
0 ı�1 ıˇ�1

1 ı�2 ıˇ�1
2 ı � � � ıˇ�1

n�2 ı�n�1 ıˇ�1
n�1 ı�2

n ıˇn�1 ı�n�1 ıˇn�2

ı � � � ıˇ2 ı�2 ıˇ1 ı�1 ıˇ0:

ˇn �n ˇn�1 �n�2 ˇn�2 ˇ2 �2 ˇ1 �1 ˇ0

ˇ�1
0

�1ˇ�1
1

�2ˇ�1
2

ˇ�1
n�2

�n�1ˇ�1
n�1

�nˇ�1
n

Figure 11: The total monodromy about a braided wiring diagram.
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On the other hand, each vanishing cycle is given as

Vj D ��1
j .Aj /D . ǰ�1 ı��1

j�1 ı � � � ıˇ1 ı��1
1 ıˇ0/

�1.Aj /:

Therefore a Dehn twist �Vj
about Vj is equal to

�Vj
D ��1

j ı�2
j ı�j

because �Aj
D�2

j and in general ��.C / D � ı �C ı��1. Thus, the total monodromy of

the Lefschetz fibration given by the product of positive Dehn twists about the vanishing

cycles is

��1
n ı�2

n ı�n ı��1
n�1 ı�2

n�1 ı�n�1 ı � � � ı��1
1 ı�2

1 ı�1:

We can simplify �j ı��1
j�1

as

. ǰ�1ı��1
j�1ı� � �ıˇ1ı��1

1 ıˇ0/ı.ˇ�1
0 ı�1ıˇ�1

1 ı� � �ı�j�2ıˇ�1
j�2/D ǰ�1ı��1

j�1:

Therefore �Vn
ı � � � ı �V1

is equal to

��1
n ı�2

n ı .ˇn�1 ı��1
n�1/ ı�2

n�1 ı � � � ı .ˇ1 ı��1
1 / ı�2

1 ıˇ0;

which equals

ˇ�1
0 ı�1 ıˇ�1

1 ı � � � ı�n�1 ıˇ�1
n�1 ı�2

n ıˇn�1 ı�n�1 ı � � � ıˇ1 ı�1 ıˇ0:

This coincides with the total monodromy of the braided wiring diagram given above,

as required.

5.3 Wiring diagrams to symplectic configurations

Given any braided wiring diagram, we interpret it as a collection of intersecting curves

in R � C. We will extend each of these curves to a symplectic surface in C � C.

Proposition 5.5 Given a braided wiring diagram
S

j 
j �R�C in standard form , there

exists a configuration of symplectic surfaces
S

j �j in C � C such that �j extends 
j ,

that is ,
�

[

j

�j

�

\ .R � f0g � C/D
[

j


j ;

and all intersections �j \�k lie in the original wiring diagram in .R � f0g � C/ and

are transverse and positive.
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Figure 12: The graph of � W R ! Œ0; 1�. The marked points on R are the ti .

Proof Let t1 D�R.p1/; : : : ; tn D�R.pn/ denote the R coordinates of the intersection

points p1; : : : ;pn in the wiring diagram. Braid crossings in the wiring diagram can be

viewed as additional intersections that appear in the image of the diagram under the

projection R � C ! R � R. Choose ı > 0 sufficiently small that there are no crossings

in the braided wiring diagram in ��1
R
.Œti � 4ı; ti C 4ı�/ (except the intersection at pn).

Let �i W R ! Œ0; 1� be a smooth bump function such that

�i.t/D
�

1 for t 2 Œti � ı; ti C ı�;

0 for t 62 .ti � 2ı; ti C 2ı/:

Let �D
Pn

iD1 �i . See Figure 12.

Let � > 0. Let � W R ! Œ��; �� be a smooth function such that

�.s/D

8

<

:

�� for s � �2�;

s for � 1
2
�� s � 1

2
�;

� for s � 2�;

�0.s/� 0 for all s 2 R:

See Figure 13.

For each wire, we will define its extension to a symplectic surface. Suppose the wire is

parametrized as


j .t/D .t; hj .t/C iwj .t// 2 R � C:

Define �j .t; s/ W R2 ! C2 by

�j .t; s/D
�

t C is; hj .t/C i.wj .t/C �.t/�.s/h0
j .t//

�

:

Figure 13: The graph of � W R ! Œ��; ��.
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The tangent space of the image of �j is spanned by

@�j

@t
D d�j

�

@

@t

�

and
@�j

@s
D d�j

�

@

@s

�

:

The previous formulas use complex coordinates .x;y/ on C2; now we pass to real

coordinates .x1;x2;y1;y2/, so that x D x1 C ix2, y D y1 C iy2. In these coordinates,

the standard symplectic form is given by ! D dx1 ^ dx2 C dy1 ^ dy2. We have

@�

@t
D @

@x1
C h0

j .t/
@

@y1
C

�

w0.t/C �0.t/�.s/h0
j .t/C �.t/�.s/h00

j .t/
� @

@y2
;

@�j

@s
D @

@x2
C �.t/�0.s/h0

j .t/
@

@y2
:

Evaluating the symplectic form gives

!

�

@�j

@t
;
@�j

@s

�

D 1 C �.t/�0.s/.h0
j .t//

2 > 0;

so the image of �j is a symplectic surface.

To verify that these extensions do not intersect outside of the original intersections of

the wiring diagram, we observe that any intersection between �j and �k would occur

at the same parameters .t0; s0/ and must have

hj .t0/D hk.t0/ and wj .t0/C �.t0/�.s0/h
0
j .t0/D wk.t0/C �.t0/�.s0/h

0
k.t0/:

If hj .t0/D hk.t0/, this means that the wires 
j and 
k project to the same point under

the projection R � C ! R � R. This means there is either a crossing or an intersection

between wires 
j and 
k at t0.

If t0 is an intersection point of the wires, wj .t0/ D wk.t0/. Additionally, at t0, the

projections of the wires have different slopes, so h0
j .t0/¤ h0

k
.t0/. We also have �.t/� 1

near t0. Using this, the intersection assumption that

wj .t0/C �.t0/�.s0/h
0
j .t0/D wk.t0/C �.t0/�.s0/h

0
k.t0/

implies that
�.s0/.h

0
k.t0/� h0

j .t0//D wj .t0/�wk.t0/D 0:

Therefore, �.s0/D 0, so s0 D 0 by definition of �.

If t0 is a crossing between wires, wj .t0/¤wk.t0/. Because � is supported only near the

intersection times, and we assume the crossings occur outside of these intervals, �� 0.

Therefore, the assumption that wj .t0/C�.t0/�.s0/h
0
j .t0/Dwk.t0/C�.t0/�.s0/h

0
k
.t0/

gives a contradiction.
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Finally, we check that �j and �k intersect positively. If we assume that the wiring

diagram is in standard form near the intersection points hj .t/D kj t C aj and constant

coordinate wj .t/� bj , then near .ti ; 0/ where �.t/� 1 and �.s/� s, we have that

�j .t; s/D .t C is; kj t C aj C i.bj C kj s//;

so the image of �j agrees with the complex line y D kj xCaj Cbj i , and the intersection

of �j and �k locally agrees with an intersection of complex lines.

5.4 Stein fillings correspond to symplectic configurations

Given a contact structure supported by a planar open book, a theorem of Wendl [65] says

that every Stein filling is symplectic deformation equivalent to a Lefschetz fibration with

the same planar fiber; Niederkrüger and Wendl [48] extend this result to minimal weak

symplectic fillings. Thus, Stein fillings are essentially in one-to-one correspondence

with positive factorizations of the monodromy of the given planar open book (and the

same is true even for weak symplectic fillings, up to blow-up). The following statement

is equivalent to Theorem 1.5.

Proposition 5.6 Let .Y; �/ be the link of a rational singularity .X; 0/ with reduced

fundamental cycle. Fix a decorated germ .C; w/ for .X; 0/, with smooth branches

C1;C2; : : : ;Cm.

Then every Stein filling of .Y; �/ is supported by a Lefschetz fibration built from a

configuration of m symplectic disks f�1; �2; : : : ; �mg in C2 with marked points , via

Lemma 3.2.

Proof Because the contact manifold is planar, any Stein filling is supported by a

planar Lefschetz fibration with the same fiber. We will reverse-engineer the required

configuration of symplectic disks. Let F0 be a fixed identification of the planar fiber,

where the holes are lined up vertically and labeled by numbers 1; 2; : : : ;m. Let

V1; : : : ;Vn be the ordered list of vanishing cycles for the Lefschetz fibration. We

begin by producing a collection . 0; : : : ;  n�1/ of diffeomorphisms  i W F0 ! F0 and

.J1; : : : ;Jn/ of consecutive subsets of f1; : : : ;mg. Here, ªconsecutiveº means that

Jj D fi; i C 1; : : : ; i C kg for some i and k.

Choose a diffeomorphism ˇ0 W F0 ! F0 so that ˇ0.V1/ is isotopic to a curve convexly

enclosing a consecutive collection of holes; let J1 be the corresponding consecutive

subset. Let �1 be the counterclockwise half-twist of the convex disk that contains
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precisely the holes indexed by J1. Recursively, choose a diffeomorphism ǰ W F0 ! F0

such that ǰ ı��1
j ı � � �ıˇ1 ı��1

1
ıˇ0.VjC1/ is isotopic to a curve convexly enclosing

a consecutive collection of holes that corresponds to the set JjC1, and let �jC1 denote

the corresponding half-twist.

Consider the braided wiring diagram determined by .ˇ0;J1; ˇ1;J2; : : : ; ˇn�1;Jn/. By

Proposition 5.5, we can construct a configuration of symplectic surfaces �1; : : : ; �m

in C2 extending this diagram. Using Lemma 3.2, we obtain a planar Lefschetz fibration.

We need to use the compact version of the construction to get a fibration whose general

fiber is a disk with m holes; for this, we start with a Milnor ball of the form B DDx�Dy ,

such that Dx is a neighborhood of �, and Dy is a disk of sufficiently large radius to

include the wires above Dx .

As explained in Section 5.2, the vanishing cycles of this Lefschetz fibration will be

given by

V 0
j D . ǰ�1 ı��1

j�1 ı � � � ıˇ1 ı��1
1 ıˇ0/

�1.Aj /

for j D 1; : : : ; n, where Aj is a convex curve enclosing the consecutive holes in the

set Jj . The choice of the ǰ ensures that these vanishing cycles are identical to our

original ones: V 0
j D Vj .

Along with the symplectic disk configuration f�1; : : : ; �mg, we also obtain a collection

of marked points on these disks. The marked points include all the intersections as

well as additional free marked points, as in Remark 5.4. Each free marked point

can be chosen anywhere on the corresponding disk, as long as all marked points are

distinct. As in Lemma 3.4, counting multiplicities of pairwise Dehn twists in the

monodromy shows that the number of marked points on each disk �j is the same as the

weight w.Cj / of the corresponding curvetta Cj of the defining decorated germ .C; w/

of the singularity.

Remark 5.7 The diffeomorphisms ǰ are not unique. Any choice will suffice to

produce an appropriate braided wiring diagram and corresponding symplectic configu-

ration.

To show that every Stein filling is generated by a symplectic analog of the de Jong±

van Straten theorem, it remains to prove that different symplectic configurations with

the same monodromy are related by deformations. The role of de Jong and van Straten’s

picture deformations is played by graphical homotopies.
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Proposition 5.8 Let .X; 0/ be a rational singularity with reduced fundamental cycle ,

and .C; w/ its decorated plane curve germ with smooth branches C1; : : : ;Cm. Let

.Y; �/ be the contact link of .X; 0/. Suppose that � D f�1; �2; : : : ; �mg is a configura-

tion of symplectic disks with marked points p1; : : : ;pn, constructed for a given Stein

filling of .Y; �/ as in Proposition 5.6. Then .�; fpj g/ can be connected to .C; w/ by a

smooth graphical homotopy.

Lemma 5.9 Suppose C 0
1
; : : : ;C 0

m and C 1
1
; : : : ;C 1

m are two configurations of graph-

ical disks in a Milnor ball B D Dx � Dy , such that @C 0
j D @C 1

j for j D 1; : : : ;m.

Then there is a family of graphical disks C t
1
; : : : ;C t

m (potentially with negative in-

tersections) interpolating between these two configurations with fixed boundary link

@C t
1

[ � � � [ @C t
m � @B. Here , @C t

j D C t
j \ @B D C t

j \ .@Dx � Dy/.

Proof Because we are not limiting the behavior of the intersections of the components,

it suffices to check that there is a family C t
j interpolating between C 0

j and C 1
j for

one component. For simplicity of notation we will drop the j . For this, because

both C 0 and C 1 are graphical, we can write them as C s D f.x; f s.x//g for s D 0; 1.

Then since @C 0 D @C 1, we have that f 0.x/ D f 1.x/ for x 2 @Dx . Let C t D
f.x; tf 1.z/C .1 � t/f 0.x/g. Then C t interpolates smoothly between C 0 and C 1, and

its boundary is fixed.

Lemma 5.10 Suppose C1 [ � � � [ Cm is a configuration of graphical disks , so its

boundary @C1 [ � � � [ @Cm is a braid. Let L1; : : : ;Lm be the components of a braid

L1 [� � �[Lm which is braid isotopic (with corresponding indices) to @C1 [� � �[@Cm.

Then there is a homotopy of graphical disks C t
1
; : : : ;C t

m such that C 0
j D Cj and

@C 1
j D Lj .

Proof If C1; : : : ;Cm are graphical over a disk Dx , choose a larger disk D0
x contain-

ing Dx . Then we can extend C1; : : : ;Cm to graphical disks C 0
1
; : : : ;C 0

m over D0
x so

that @C 0
1
; : : : ; @C 0

m is the braid Lj , by realizing the trace of the braid isotopy over

the annulus D0
x n Dx . Next, we can shrink D0

x to Dx continuously via a family of

embeddings �t W D0
x ! D0

x where �0 D id, �1.D
0
x/ D Dx , and �1 identifies points

in @D0
x with points in @Dx according to the same identification used to realize the trace.

Then if C 0
j D f.x; fj .x//g for x 2 D0

x , we can let

C t
j D f.�t .x/; fj .x/ j x 2 D0

xg \ .Dx � C/:

Then C 0
j D Cj and @C 1

j D Lj , as required.
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Proof of Proposition 5.8 When we fix the germ .C; w/ and apply the method of

Proposition 5.6 to a given Stein filling for .Y; �/, we first consider the open book

on .Y; �/ induced by the decorated germ as in Proposition 4.1. The Stein filling

then carries a Lefschetz fibration that induces the same open book on the boundary,

and the arrangement .�; fpj g/ is constructed from the monodromy of this Lefschetz

fibration. The smooth disks �1; : : : ; �m are contained in the Milnor ball B for C and are

transverse to its boundary S3, so that S3 \ .�1 [ � � � [�m/ is a braid. By Lemma 3.3,

the monodromy of this braid is the image of the monodromy of the open book under the

projection MCG.Pm/! MCG.Cm/ of the mapping class group of the compact disk

with holes to the mapping class group of the punctured plane, so the two braids are braid-

isotopic. Therefore, we can apply Lemma 5.10 to perform a graphical homotopy to

�1; : : : ; �m so that its boundary agrees with that of C1; : : : ;Cm. Next, apply Lemma 5.9

to continue the graphical homotopy from C1; : : : ;Cm to �1; : : : ; �m.

Remark 5.11 For our construction of a Lefschetz fibration, it is not important that the

C t
i are symplectic disks, we only care that they are graphical. However, by performing a

rescaling in the y direction, we can ensure that all of the graphical disks are symplectic

if the partial derivatives of the function f are sufficiently small. More specifically, if

C D f.x; f .x//g, where x D x1 C ix2 and
ˇ

ˇ

ˇ

ˇ

@f

@x1

ˇ

ˇ

ˇ

ˇ

;

ˇ

ˇ

ˇ

ˇ

@f

@x2

ˇ

ˇ

ˇ

ˇ

<

p
2

2
;

then C will be symplectic. This bound is sufficient although not necessary; it can be

achieved by rescaling f , which itself is a graphical homotopy. Moreover, if f 0 and

f 1 both satisfy these bounds, then their convex combination tf 0 C .1 � t/f 1 also

satisfies the bound for all t 2 Œ0; 1�, so the interpolation between the two disks will also

be symplectic.

6 Incidence matrix and topology of fillings

6.1 Basic topological invariants

It is shown in [27] that the basic topological invariants of the Milnor fibers obtained

from the picture deformations can be easily computed from the deformed curvetta

arrangement. Moreover, the incidence matrix of the arrangement can be reconstructed

from the Milnor fiber [44]. We now review these facts briefly and adapt and generalize
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them in our context: the goal is to show that exactly the same results hold for more

general Stein fillings, constructed from smooth disk arrangements as in Section 5.

As we have shown in Section 5, every Stein filling W can be described by an ar-

rangement � D f�ig of symplectic curvettas with marked points fpj gn
jD1

, related

to the plane curve germ C D C1 [ � � � [ Cm by a smooth graphical homotopy. We

always assume that curvettas intersect positively. We also treat the components of

C as labeled, so the ordering of components C1; : : : ;Cm is fixed. The set of marked

points fpj gn
jD1

contains all intersection points between the �i and possibly a number

of free points. The incidence matrix I.�; fpj g/ has m rows and n columns, defined

so that its entry aij at the intersection of the i th row and the j th column equals 1 if

pj 2 �i , and 0 otherwise. Note that there is no canonical labeling of the points pj ,

so the incidence matrix is defined only up to permutation of columns. We will say

that two arrangements .�; fpj g/ and .� 0; fp0
j g/ are combinatorially equivalent if their

incidence matrices coincide (up to permutation of columns, ie up to relabeling of the

marked points).

Let L be the Lefschetz fibration constructed for the arrangement .�; fpj g/ as in

Lemma 3.2. Its general fiber is a disk with m holes that correspond to the curvettas

�1; : : : ; �m of �; in particular, the number of holes equals the number of rows in the

matrix I.�; fpj g/. The vanishing cycles of L correspond to the marked points fpj gn
jD1

and enclose sets of holes that correspond to curvettas passing through that point: if

�i1
; : : : ; �ik

are all curvettas that intersect at pj , the vanishing cycle Vj encloses the

holes hi1
; : : : ; hik

. It follows that homology classes of the vanishing cycles of L can

be determined from the incidence matrix I.�; fpj g/, and we have:

Proposition 6.1 Let L be the Lefschetz fibration for the arrangement .�; fpj g/ with in-

cidence matrix I.�; fpj g/. If the j th column of I.�; fpj g/ has 1s in rows i1; i2; : : : ; ik ,

the corresponding vanishing cycle Vj of L encloses the holes hi1
; : : : ; hik

in the fiber.

Corollary 6.2 Let .�; fpj g/ and .� 0; fp0
j g/ be two combinatorially equivalent arrange-

ments , and L and L0 the corresponding Lefschetz fibrations. Then the vanishing cycles

of L and L0 are in one-to-one correspondence , so that the two vanishing cycles that

correspond to one another are given by homologous curves in the fiber.

Because smooth graphical homotopies do not allow intersections to escape through the

boundary, the number of pairwise intersections of �i and �j is given by tang.Ci ;Cj /D
�.vi ; vj I v0/; see Remark 2.6. The weight of �i (the total number of intersection points

and the free marked points on �i) is given by w.Ci/D 1 C l.v0; vi/. The intersections
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between �i and �j correspond to the points among p1;p2; : : : ;pn contained in both

lines, and each such point gives a 1 in the same column for the i th row and the j th row

of the incidence matrix. Therefore we have:

Lemma 6.3 Let .C; w/ be a decorated germ corresponding to .X; 0/, with branches

C1;C2; : : : ;Cm. Consider any arrangement f�igm
iD1

of smooth curvettas encoding a

Stein filling of the link of .X; 0/. The incidence matrix I.�; fpj g/ has the following

properties:

(i) The number of 1s in the i th row of I.�; fpj g/ is w.Ci/D 1 C l.v0; vi/.

(ii) The number of 1s which appear in the same columns for the i th row and the

j th row is tang.Ci ;Cj /D �.vi ; vj I v0/.

Here , l.v0; vi/ and �.vi ; vj I v0/ are the length and overlap functions on the resolution

graph G, defined in Remark 2.6, and v0 is the choice of root.

We now describe how the incidence matrix I.�; fpj g/ determines basic algebraic

topology of the filling W , namely H1.W /, H2.W /, the intersection form of W , and

the first Chern class c1.J / of the Stein structure. (Homology is taken with Z coefficients

throughout.) The statements about the homology and the intersection form of W are

proved in [27, Section 5] for the algebraic case, but the proofs are entirely topological

and apply in the more general settings as well. Alternatively, the same invariants can

be computed from the vanishing cycles of the Lefschetz fibration [6, Lemma 16]. For

Lefschetz fibrations with planar fiber, detailed proofs for the intersection form and c1.J /

calculations are given in [19]. We write Zhfpj gi for the free abelian group generated

by fpj gn
jD1

, and Zhf�igi is defined similarly. The incidence matrix I.�; fpj g/ defines

a map between the corresponding lattices.

Proposition 6.4 There is a short exact sequence

0 ! H2.W /! Zhfpj gi I�! Zhf�igi ! H1.W /! 0:

Proof Let W be the total space of a Lefschetz fibration over a disk D, with planar

fiber P . (We always assume that W , P and D are compatibly oriented.) If D0 � D

is a small disk that contains no critical points, then W is obtained from P � D0 by

attaching 2±handles to copies of the vanishing cycles contained in the vertical boundary

P � @D0, so that distinct handles are attached along knots contained in distinct fibers.
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We use the exact sequence of the pair .W;P � D0/; since P � D0 retracts onto P , we

can replace the former with the latter. Notice also that H1.W;P /D 0, so we get

0 ! H2.W /
j�! H2.W;P /

@��! H1.P /! H1.W /! 0:

The group H2.W;P / is freely generated by the cores of the attached 2±handles;

we can identify these generators with the vanishing cycles. By construction of the

Lefschetz fibration, each vanishing cycle corresponds to a blow-up at some marked

point, so we can identify the vanishing cycles with the set fpj g. The free abelian

group H2.W;P / is then identified with the lattice Zhfpj gi. The generators for the

free abelian group H1.P / can be given by loops around the holes in the planar fiber.

The holes correspond to the branches of C, thus H1.P / can be identified with the

lattice Zhf�igi. The map @� is evaluated as follows: to compute @�.pj /, we take the

boundary of the core of the corresponding 2±handle, given by the vanishing cycle

associated with pj , and express this vanishing cycle in terms of the generators of

H1.P /D Zhf�igi. Since the vanishing cycle is a simple closed curve on the planar

page, its first homology class equals the sum of the boundaries of the holes it encloses,

which in turn correspond to the branches �i passing through pj . Therefore, @�.pj / is

given precisely by the j th column of the incidence matrix I.�; fpj g/, as required.

Remark 6.5 Since the link Y of a rational singularity .X; 0/ is always a rational

homology 3±sphere, a standard argument shows that b1.W /D 0 for any Stein filling

W of Y. Indeed, W has no 3±handles, so H 3.W I Q/D 0; then for the pair .W;Y /D
.W; @W / we have

0 D H1.@W I Q/! H1.W I Q/! H1.W; @W I Q/Š H 3.W I Q/D 0:

It follows that the matrix I.�; fpj g/ always has full rank.

Note that H2.W / is isomorphic to Im j�, which in turn equals ker @�. So H2.W / can

be identified with null-homologous linear combinations of vanishing cycles (thought

of as 1±chains in P ). One can explicitly describe an oriented embedded surface in W

representing a given second homology class, as follows [19, Section 2]. First, one

constructs an oriented embedded surface in P � D0 whose boundary is the given

null-homologous linear combination of the vanishing cycles, and then the vanishing

cycles are capped off in W. A similar construction is given in [27] without Lefschetz

fibrations, for Milnor fibers obtained by blowing up the 4±ball at the marked points

and taking the complement of the proper transforms of curvettas; exactly the same

Geometry & Topology, Volume 27 (2023)



1146 Olga Plamenevskaya and Laura Starkston

argument works for a smooth curvetta arrangement .�; fpj g/. After blowing up the

4±ball B at the points p1;p2; : : : ;pn, we have the 4±manifold zB, the blow-up of B,

with generators of H2. zB/ given by the fundamental classes Epi
of the exceptional

divisors. We identify H2. zB/ D Zhfpj gi. The intersection form of zB is standard

negative definite in the given basis, as Ep � Ep D �1. The manifold W is obtained

from zB by removing the tubular neighborhoods Ti of the proper transforms z�i of

the curvettas �i . The inclusion induces a map H2.W / ! H2. zB/, which is in fact

the same map as j� above, under obvious identifications. Every homology class in

H2.W / is represented by an embedded oriented surface which can be constructed by

taking the collection of the corresponding exceptional spheres Epi
, punctured at their

intersections with z�j , and connected by tubes running inside the cylinders Ti . The

intersection of two such surfaces can be computed by taking the intersections of the

corresponding collections of exceptional spheres, as the tubes can be arranged to be

disjoint. For the Stein structure J on W associated to the given Lefschetz fibration,

we can compute c1.J / using the same inclusion H2.W / ! H2. zB/. Indeed, J is

homotopic to the restriction of the complex structure j on zB, and c1.j /ŒEpi
�D 1 for

every Epi
. Therefore we have:

Proposition 6.6 The intersection form on H2.W /� Zhfpj gi is the restriction of the

standard negative definite form given by pi � pj D �ıij for i; j D 1; : : : ; n. The first

Chern class c1.J / of the Stein structure is the restriction of the linear form on Zhfpj gi
given by c1Œpi �D 1 for i D 1; : : : ; n.

See also [19, Propositions 2.1 and 2.4] for a detailed calculation (in terms of the

vanishing cycles) of the intersection form and c1.J / for an arbitrary Lefschetz fibration

.W;J / with planar fiber.

6.2 Uniqueness of the Artin filling and proof of Theorem 1.2

In general, the topology of the filling might not be fully determined by the incidence

matrix of the corresponding curvettas arrangement; Proposition 6.1 gives the homology

classes of the vanishing cycles but not their isotopy classes. However, it turns out that

the incidence matrix completely determines the smoothing for picture deformations

that are combinatorially equivalent to the Scott deformation, so that one gets the Artin

smoothing component [27, Cases 4.13]. We prove that an analogous result holds for

Stein fillings as well. Note that the argument in [27] uses simultaneous resolutions and
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only works in the algebraic setting, while we work with mapping class groups instead.

Our argument works because the Artin filling has a Lefschetz fibration with disjoint

vanishing cycles in the fiber.

Proposition 6.7 Let .X; 0/ be a rational surface singularity with reduced fundamental

cycle , with contact link .Y; �/ and decorated germ .C; w/. Let � be an arrangement of

smooth graphical curves with positive intersections and marked points fpj g, related to

the germ .C; w/ by a smooth graphical homotopy, so that .�; fpj g/ gives rise to a Stein

filling W of .Y; �/.

Suppose that .�; fpj g/ is combinatorially equivalent to the Scott deformation .Cs; ws/

of .C; w/. Then the Stein filling given by .�; fpj g/ is Stein deformation-equivalent to

the Artin filling of .Y; �/.

Proof Let L be the Lefschetz fibration for .�; fpj g/, constructed as in Lemma 3.2,

and let LA be the Lefschetz fibration for the Artin smoothing, given in Proposition 4.2.

We know that LA is given by the monodromy factorization as in Proposition 4.1; let �

denote the monodromy of the open book as in the lemma.

Both fibrations L and LA have the same fiber S , and the fibration L corresponds to some

factorization of the same monodromy �. By Corollary 6.2, the vanishing cycles fVj g
and fV A

j g of the two fibrations are in one-to-one correspondence, so that the curves Vj

and V A
j are homologous in the fiber. We need to show that Vj and V A

j are isotopic.

There are two types of vanishing cycle in the fibration LA: (1) boundary-parallel

curves that enclose a single hole each, and (2) the curves that go around the necks

connecting the spheres, as shown at the top of Figure 6. The isotopy class of a boundary-

parallel curve in the fiber is uniquely determined by its homology class, so if V A
j is

boundary-parallel, then Vj D V A
j . Now, because the total monodromy of L and LA is

the same, and the Dehn twists around the boundary-parallel curves are in the center

of the mapping class group of the fiber, we see that the products of the Dehn twists

around the vanishing cycles homologous to necks are the same for both L and LA. In

other words, if N denotes the set of vanishing cycles homologous to necks, we have

(6-1)
Y

Vj 2N

�Vj
D

Y

V A

j
2N

�V A

j
:

Let  denote the diffeomorphism of the fiber given by the product (6-1).
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To prove that each vanishing cycle Vj is indeed isotopic to the vanishing class V A
j

homologous to Vj , we proceed by induction on the number of necks in the fiber S (this

is the same as the number of edges in the dual resolution graph G). Equivalently, we

can induct on the number of vertices, since G is a tree. When G has only one vertex,

there are no necks, so all the vanishing cycles are boundary-parallel, and Vj D V A
j for

all pairs of vanishing cycles. Assume that the claim is established for all graphs with

k vertices or fewer. Consider a graph G with k C 1 vertices and pick a leaf vertex v

of G. We will be able to remove v to reduce the question to a graph G0 with k vertices.

In the Lefschetz fibration of Proposition 4.2, the leaf v corresponds to the sphere Sv

with holes, connected to the rest of the fiber S by a single neck. The fibration LA has

a vanishing cycle V A that goes around this neck, and L has a vanishing cycle V in the

same homology class. Since v is a leaf, Sv is separated from its complement S nSv by

the curve V A. Observe that all the other nonboundary parallel vanishing cycles of LA

lie outside Sv. A priori, nonboundary parallel vanishing cycles of L may belong to

different isotopy classes and intersect Sv; we want to show that they can be isotoped to

lie outside Sv.

If the self-intersection v � v D �2, then in fact V A encloses only one hole, so it is

boundary-parallel, and we can immediately conclude that V and V A are isotopic, and

Sv is a boundary-parallel annulus disjoint from all the other vanishing cycles.

Suppose now that v � v � �3, so that V A encloses r D �1 � v � v > 1 holes. Connect

these holes by r � 1 disjoint arcs ˛1; : : : ; ˛r�1 in the sphere Sv, so that if the fiber S

is cut along these arcs, the r holes will become a single hole; see Figure 14.

By construction, the arcs ˛1; : : : ; ˛r�1 are disjoint from all nonboundary parallel

vanishing cycles V A
j of LA. It follows that each ˛i is fixed by the diffeomorphism  .

As in [7, Proposition 3] and [17, Section 2], we now make the following key observation:

after an isotopy removing nonessential intersections, all arcs ˛1; : : : ; ˛r�1 must be also

disjoint from all non-boundary-parallel vanishing cycles Vj of L. To see this, we recall

that each right-handed Dehn twist is a right-veering diffeomorphism of the oriented

surface S [25]. If ˛ and ˇ are two arcs with the same endpoint x 2 @S , we say that

ˇ lies to the right of ˛ if the pair of tangent vectors . P̌; P̨ / at x gives the orientation

of S . The right-veering property of a boundary-fixing map � W S ! S means that for

every simple arc ˛ with endpoints on @S , the image �.˛/ is either isotopic to ˛ or

lies to the right of ˛ at both endpoints, once all nonessential intersections between

˛ and �.˛/ are removed. Now, suppose that L has a vanishing cycle Vj 2 N that
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S

V A

˛1

˛2

˛3

Sv
cut

S 0

V A

V AS 0

G0G

�n

�5
v �n

Figure 14: After cutting the fiber S , the vanishing cycle V A becomes
boundary-parallel in S 0.

essentially intersects one of the arcs, say ˛1. Then the curve �Vj
.˛1/ is not isotopic to ˛

(see eg [16, Proposition 3.2]), so �Vj
.˛1/ lies to the right of ˛1. Since the composition

of right-veering maps is right-veering, we can only get curves that lie further to the

right of ˛ after composing with the other nonboundary parallel vanishing cycles of L.

However, the composition  D
Q

Vj 2N �Vj
fixes ˛1, a contradiction.

Once we know that no vanishing cycles of L or LA intersect any of the arcs ˛1; : : : ; ˛r�1,

we can cut the fiber S along these arcs, and consider the image of the relation (6-1)

in the resulting cut-up surface S 0. In S 0, V A becomes a boundary-parallel curve, and

since V lies in the same homology class, we see that V and V A are isotopic in S 0 (and

therefore in S ). We then have
Y

Vj 2N; Vj ¤V

�Vj
D

Y

V A

j
2N; V A

j
¤V A

�V A

j
:

Now observe that cutting up S along the arcs as above has the same effect as remov-

ing the sphere Sv with its neck from the set of subsurfaces forming the fiber S in

Proposition 4.2. Then the cut-up fiber S 0 with its non-boundary-parallel vanishing

cycles fVj g and fV A
j g corresponds to the fibrations for the graph G0 obtained by deleting

the leaf v and its outgoing edge from the graph G. By the induction hypothesis, we can

conclude that all pairs of homologous vanishing cycles Vj ;V
A

j are isotopic in S 0, and
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thus in S . It follows that the Lefschetz fibrations L and LA are equivalent, and therefore

the Stein filling given by L is Stein deformation equivalent to the Artin filling.

The above results have the following interesting application, related to conjectures of

Kollár on deformations of rational surface singularities. Suppose that a rational singular-

ity .X; 0/ has a dual resolution graph G such that v � v � �5 for every vertex v 2 G. In

this case, Kollár’s conjecture asserts that the base space of a semiuniversal deformation

of X has just one component, the Artin component; in particular, there is a unique

smoothing, up to diffeomorphism. In the special case of reduced fundamental cycle,

this conjecture was proved by de Jong and van Straten via their picture deformations

method. We establish the symplectic version of this result, proving Theorem 1.2.

Proof of Theorem 1.2 We can focus on Stein fillings: by [65] and [48], every weak

symplectic filling of a planar contact manifold is a blow-up of a Stein filling, up to

symplectic deformation. By Section 5, Stein fillings are given by arrangements of

symplectic curvettas. The argument in [27, Theorem 6.23] shows that under the given

hypotheses on the resolution of .X; 0/, there is a unique combinatorial solution to

the smoothing problem, namely, any arrangement of curvettas must have the same

incidence matrix as the Artin incidence matrix given by the Scott deformation. The

argument of De Jong and van Straten is somewhat involved, so we will not summarize it

here, but we emphasize that the proof of this fact is completely combinatorial and does

not use the algebraic nature of arrangements. The same claim holds for an arbitrary

smooth arrangement subject to the same hypotheses. The only input used in [27] is the

properties of the incidence matrix determined by the resolution graph as in Lemma 6.3,

together with the following observation: if all vertices of the resolution graph G have

self-intersection �5 or lower, each end vertex of G (except the root) gets at least

three .�1/ vertices attached in the augmented graph G0, so that there are at least three

corresponding curvettas. An important step in the inductive proof is that the matrix

must have a column where all entries are 1, ie all the �i must have a common point.

Once we know that all arrangements corresponding to possible Stein fillings are combi-

natorially equivalent to the arrangement given by the Scott deformation, Theorem 1.2

follows from Proposition 6.7.

In the case where, additionally, the graph G is star-shaped with three legs, uniqueness

of minimal symplectic filling (up to symplectomorphism and symplectic deformation)

was proved by Bhupal and Stipsicz [9]. (They give a detailed proof under the hypothesis
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that the self-intersection of the central vertex is at most �10, but mention that one can

go up to �5 with similar techniques.) Their method relies on McDuff’s theorem [38]

and was previously used by Lisca [34]: one finds a concave symplectic cap which is

a plumbing of spheres that completes an arbitrary filling to a rational surface, which

must be a blow-up of CP2, analyzes possible configurations of .�1/ curves, and then

verifies that the configurations in the image of the cap plumbing under the blow-down

is a pencil of symplectic lines which has a unique symplectic isotopy class. To our

knowledge, this strategy has not been applied to non-star-shaped graphs in the existing

literature. The difficulty in the non-star-shaped case is that there is not an obvious

concave symplectic plumbing which can serve as a cap. Our proof works for completely

arbitrary trees.

6.3 Distinguishing Stein fillings

We now turn to constructions that will be needed in the next section, and explain

how to use incidence matrices to distinguish Stein fillings, at least relative to certain

boundary data. Indeed, as shown by Némethi and Popescu-Pampu [44], the incidence

matrix is ªrememberedº by the Milnor fiber of the corresponding smoothing, which

allows us to show that certain Milnor fibers are not diffeomorphic (in the strong sense,

ie relative to a boundary marking). The argument in [44] is purely topological, so

we can generalize it to arbitrary Stein fillings. While [44] applies more generally to

sandwiched singularities, we only consider the case of reduced fundamental cycle.

Instead of the boundary marking used in [44], we will keep track of the boundary data

via a choice of a compatible embedded open book for .Y; �/. As in Section 2, we fix a

choice of extension G0 of the dual resolution graph G of a singularity with link .Y; �/, to

fix the topological type of the associated decorated germ .C; w/ with labeled branches

C1; : : : ;Cm. Each branch Cj corresponds to a hole hj of the open book as, explained

in Section 4; fixing the embedded open book, up to isotopy, is equivalent to fixing the

topological type of the decorated germ. In fact, this open book decomposition provides

the data of the ªmarkingsº of [44], where the solid tori components of the binding

correspond to ªpiecesº of the marking data which allow one to fix the gluing of the

smooth cap of [44] to the filling using the open book instead of the markings.

By Wendl’s theorem [65], all Stein fillings of a planar contact 3±manifold are given, up to

symplectic deformation, by Lefschetz fibrations with same fiber, so that these fibrations

are encoded by monodromy factorizations of the fixed open book as above. Suppose
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that Stein fillings W and W 0 arise from symplectic curvetta arrangements .�; fpj g/
and .� 0; fp0

j g/ as in Propositions 5.6 and 5.8. On the boundaries @W and @W 0, these

arrangements induce open books which are isomorphic, because both are isomorphic

to the open book induced by the germ .C; w/. Fix these two open books, OB on @W

and OB0 on @W 0, defined up to isotopy; as part of the open book data, we also label

the binding components (with the exception of the outer boundary of the disk, the

boundary components of the page correspond to the branches of the decorated germ).

We will say that W and W 0 are strongly diffeomorphic if there is an orientation-

preserving diffeomorphism W ! W 0 whose restriction to @W maps the open book OB

on @W to an open book on @W 0 which is isotopic to the given one, OB0. If the open

book on @W 0 is isotopic to the image of the open book on @W, we can compose the

diffeomorphism W ! W 0 with a self-diffeomorphism of W 0 which extends the isotopy

of @W 0 to obtain a diffeomorphism matching the open books. Therefore, we can

equivalently say that W and W 0 are strongly diffeomorphic if there is an orientation-

preserving diffeomorphism W ! W 0 that identifies the open books OB on @W and

OB0 on @W 0. This identification is required to preserve the labeling of the binding

components. (We will discuss a slightly weaker condition in Remark 6.9.)

Rephrasing the theorem of [44] in our context, we have:

Proposition 6.8 [44, Theorem 4.3.3] Let .Y; �/ be the contact link of a rational

singularity with reduced fundamental cycle , and fix the isotopy class of an embedded

open book as above. Let two strongly diffeomorphic Stein fillings W and W 0 arise from

arrangements .�; fpj g/ and .� 0; fp0
j g/ of symplectic curvettas with marked points , as

in Section 5. Then the incidence matrices I.�; fpj g/ and I.� 0; fp0
j g/ are equal , up to

permutation of columns.

Proof We outline the proof briefly, referring the reader to [44] for details, as we use

exactly the same topological argument in a slightly different (in fact, simpler) context.

Let .C; w/ be the decorated germ with labeled smooth branches C1; : : : ;Cm, determined

up to topological equivalence by the open book data for .Y; �/. Unlike [44], we only

work with the case of smooth components of C; therefore, all ı±invariants of the

branches Ci are 0, and the formulas of [44] become simpler.

As in [44], we construct a cap U, which is a smooth manifold with boundary that

can be attached to any Stein filling W of .Y; �/, so that W [ U is a blow-up of a

4±sphere. To construct U, let B � C2 be a closed Milnor ball as in Section 3, so that
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B contains both the branches of the germ C and the arrangement � together with all

intersection points between curvettas �i . Let .B0; C0/ be another copy of this ball with

the germ C inside, with reversed orientation. After an isotopy of the boundaries of the

curvettas �i to match @Ci , we can glue .B; �/ and .B0; C0/ so that the boundary of �i

is glued to the boundary of the corresponding germ branch C 0
i . Each disk �i is oriented

as a graph over C, so the result of gluing is a smooth 4±sphere B [ B0 containing

the embedded smooth 2±spheres †i D �i [ C 0
i . Blowing up at the points p1; : : : ;pn,

we get #n
iD1 CP2, represented as the blow-up zB of the ball B glued to B0. Let Ti be a

thin tubular neighborhood of the proper transform of �i in zB. By Lemmas 3.2 and 3.4,

we have W D zBn
Sm

iD1 Ti . Set U D B0
Sm

iD1 Ti , so that we have U [W D #n
iD1 CP2.

As in [44, Lemma 4.2.4], the cap U is independent of W and is determined by the

boundary data. Indeed, to form U , we attach 2±handles to the 4±ball B0. The attaching

circles are given by the boundaries of the �i , and the link
S

i @�i is isotopic to the link

given by the boundaries of the branches of the original decorated germ. The framing for

@�i is �wi , the negative weight on the branch Ci of the decorated germ. The proof of

Lemma 3.4 shows that the weight wi is given by the number of Dehn twists enclosing

the i th hole in (any decomposition of) the monodromy of the open book. Thus, the

cap U and the way it is glued to W is determined by the decorated germ defining the

singularity, together with the fixed open book data of .Y; �/. Finally, as in [44], we

see that there is a unique basis fej gn
jD1

for H2

�

#n
iD1 CP2

�

of classes of square �1

such that the intersection numbers †i � ej are all positive. It follows that these numbers

depend only on W and the open book data. On the other hand, the numbers†i �ej form

the incidence matrix I.�; fpj g/, as †i � ej D 1 if pj 2 �i , and 0 otherwise. It follows

that the incidence matrices I.�; fpj g/ and I.� 0; fp0
j g/ are the same, up to relabeling

the marked points, which amounts to permutation of columns.

Remark 6.9 Our definition of a strong diffeomorphism and the above proof assumes

that the binding components of the open book are labeled, and that the diffeomorphism

preserves this labeling. In other words, we think of the page of the open book(s)

as a disk with holes, where each hole hi corresponds to the i th branch of the fixed

decorated germ; the diffeomorphism matches the i th hole of the page for @W to the

i th hole for @W 0. It is in fact possible to consider a less restrictive definition of strong

diffeomorphism, by allowing permutations of binding components, and to prove a

sightly stronger version of Proposition 6.8 and Theorem 7.8. More precisely, the

proposition still holds if there is a diffeomorphism f W W ! W 0 that sends the chosen

open book OB on @W to an open book on @W 0 which is isotopic to OB0, in the sense
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of isotoping the binding and the pages, but the isotopy matches the binding components

in a wrong order. Moreover, it is plausible that the proposition still holds if we only

have a diffeomorphism W ! W 0 whose restriction to @W takes the binding of the

open book OB to an oriented link which is isotopic to the binding of OB0 on @W 0 Ð

because @W D Y is a link of rational singularity, and thus a rational homology sphere,

it seems possible to use [63] to construct an isotopy of pages of the open books if

their bindings are isotopic, perhaps under some mild additional hypotheses. We leave

most of the details to the motivated reader, only indicating below why the proposition

should hold if the identification of the open books permutes the binding components.

It should be emphasized that these arguments would yield only a mild generalization

of Proposition 6.8: fixing appropriate boundary data is crucial for our proof. Note that

by Wendl’s theorem, all Stein fillings of a planar contact manifold fill the same open

book; so in this sense, it is reasonable to think of the boundary open book as fixed.

To consider the case where the diffeomorphism between the fillings permutes the

binding components of the open book, assume that there is an orientation-preserving

self-diffeomorphism � of the page of the open book that commutes with the monodromy.

We do not assume that � fixes the boundary of the page; in particular, we are interested

in the case where � permutes the boundary components. It can be shown that if � acts

nontrivially on the set of boundary components, then the decorated germ and/or the

resolution graph of the singularity has the corresponding symmetry. For example, if �

exchanges holes h1 and h2, these holes must be enclosed by the same number of Dehn

twists (in any positive factorizations of the open book); this implies, in particular, the

equality of weights for the corresponding curvetta branches,

w1 D w.C1/D w.C2/D w2:

Additionally, for any other hole hi , the number of Dehn twists enclosing the pair h1; hi

must be the same as the number of Dehn twists enclosing the pair h2; hi . Because

the Artin factorization is determined by combinatorial data (see Proposition 6.7), it

follows that the Artin factorization admits a symmetry interchanging holes h1 and h2.

Then, we can argue as in Proposition 4.5 to reconstruct the resolution graph of the

singularity, and to see that the graph must have a symmetry, and the corresponding

curvetta arrangement must admit a symmetry interchanging curvettas C1 and C2 (up

to a topological equivalence). Similar reasoning would work for a more general

self-diffeomorphism � ; we do not give the complete argument to avoid setting up

complicated notation. If � exchanges the boundary of a hole with the outer boundary of
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the page (thought of as a disk with holes), there must be a symmetry of the resolution

graphs and the corresponding extended graphs; see Section 2.

Since the self-diffeomorphism � of the page commutes with the monodromy, it induces a

self-diffeomorphism of the supporting 3±manifold Y, which is not necessarily isotopic

to the identity. We will use the same notation for this self-diffeomorphism of Y,

� W Y ! Y.

Now, suppose that fillings W and W 0 are as in Proposition 6.8, and that there is an

orientation-preserving diffeomorphism f W W ! W 0 that maps the open book OB

on W to the open book f .OB/ on W 0 that is isotopic to �.OB0/ rather than to OB0.

As explained above, the decorated germ admits a symmetry induced by � ; in turn, it

follows that the cap U admits a self-diffeomorphism that restricts to the map � W Y ! Y

on the boundary, after an orientation reversal. Using this self-diffeomorphism to glue

the cap to W 0, and comparing W [idU and W 0[� U , we can argue as in Proposition 6.8

to conclude that the incidence matrices I.�; fpj g/ and I.� 0; fp0
j g/ are the same.

7 Milnor fibers and unexpected Stein fillings: examples

We now construct examples where the link of a rational singularity with reduced

fundamental cycle has Stein fillings that are not realized by Milnor fibers of any

smoothing.

Our examples build on results of the previous sections: by [27], Milnor fibers of

smoothings correspond to (algebraic) picture deformations of the decorated germ,

while Stein fillings of the link can be constructed from arbitrary smooth graphical

homotopies of the curvettas. During the picture deformation, the decorated germ C is

immediately deformed into an arrangement of curvettas yielding a Milnor fiber, so that

the arrangement appears as the deformation Cs for small s (and for a given deformation,

all values of s close to 0 produce diffeomorphic Milnor fibers and equivalent Lefschetz

fibrations). Indeed, for an algebrogeometric 1±parameter deformation of the germ C,

the general fibers of the deformation all ªlook the sameº (up to diffeomorphism).

By contrast, during the course of a smooth graphical homotopy, we are allowed to

change the topology of the arrangement of curvettas, and thus will produce Stein

fillings whose topology varies during the homotopy. We emphasize that immediate

deformation vs long-term homotopy of the branches of C makes the key difference

between Milnor fillings and Stein fillings of links of rational singularities with reduced
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fundamental cycle. In Section 8, we explain why this is the key aspect and compare

picture deformations and smooth graphical homotopies in more detail. In this section,

we exploit the difference between immediate deformations and long-term homotopies

to produce examples of Stein fillings that are not diffeomorphic (rel boundary) to any

Milnor fibers.

7.1 Arrangements of symplectic lines and pseudolines

To construct links of singularities that admit unexpected Stein fillings, we first consider

decorated germs given by pencils of lines (with weights) and focus on their associated

singularities. In this section, we will use the following terminology: several points

are collinear if they all lie on the same line, and several lines are concurrent if they

all pass through the same point. Concurrent lines form a pencil; we will refer to an

arrangement of concurrent lines as a pencil of lines. We will also talk about concurrent

pseudolines or concurrent smooth disks, with the same meaning.

Note that any two pencils of complex lines in C2 are isotopic through pencils, therefore

the corresponding singularities are topologically equivalent and have contactomorphic

links. Let C D fC1;C2; : : : ;Cmg be a pencil of m complex lines, with each line Ck

decorated by a weight wk D w.Ck/. Consider the surface singularity that corresponds

to the decorated germ .C; w/, and let Y .m; w/ D Y .mIw1; : : : ; wm/ denote its link

with the canonical contact structure �. Note that Y .m; w/ is a Seifert fibered space

over S2 with at most m singular fibers. Indeed, consider the dual resolution graph of

the singularity; the graph gives a surgery diagram for the link. This graph has m legs

emanating from the central vertex. Legs correspond to the lines of the pencil, so that

the k th leg has wk � 1 vertices (including the central vertex).

Note that legs of length 1 consist only of the central vertex and thus will appear

invisible. However, in the examples we focus on, every leg will have length greater

than 1. The central vertex has self-intersection �m � 1, all the other vertices have

self-intersection �2. See Figure 16 for an example. The decorated pencil C can be

recovered from the graph as in Section 2: we add .�1/ vertices at the end of each leg,

take the corresponding collection of curvettas, and blow down the augmented graph.

To construct Stein fillings of Y .m; w/, we will use curvetta homotopies taking the

pencil of complex lines to a symplectic line arrangement in C2. We define these

arrangements as follows.
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Definition 7.1 A symplectic line arrangement in C2 is a collection of m symplectic

graphical disks �1; : : : ; �m in C2 with respect to a projection � W C2 ! C such that

(i) for every pair i; j 2 f1; : : : ;mg with i ¤ j , �i intersects �j positively transver-

sally exactly once, and

(ii) for R sufficiently large, .�1 [� � �[�m/\��1.SR/ is isotopic to the braid given

by one full twist on m strands in the solid torus ��1.SR/, where SR � C is the

circle of radius R.

Equivalently, we can view the symplectic line arrangement in a Milnor ball B D
Dx � Dy � C2 containing all intersections. The intersection of the arrangement

with @B is then the braid of one full twist in @Dx �Dy . A symplectic line arrangement

in the closed ball B can always be extended to an arrangement in C2, so we will give

all statements about symplectic line arrangements in C2.

Example 7.2 A pencil of complex lines intersecting at the origin in C2 is a symplectic

line arrangement. Clearly every pair of lines intersects at a single point (the origin)

transversally (and positively because they are complex). That the monodromy in

��1.SR/ is one full twist on m strands can be computed directly from a model as in [40].

More generally, any complex line arrangement of m lines in C2 such that no intersec-

tions between lines occur at infinity (ie every complex line has a different complex

slope) gives a symplectic line arrangement. This can be seen by compactifying the line

arrangement in CP2 and looking at the intersection of the lines with the boundary of a

regular neighborhood of the CP1 at infinity. These intersections form an m component

link with one component for each line, such that the link components are isotopic to

disjoint fibers of the "±neighborhood (which can be identified with a subset of the

normal bundle) of the CP1 at infinity. After changing coordinates from the perspective

of the CP1 at infinity to the perspective of the complementary ball, the components of

the link obtain one full twist. From the Kirby calculus perspective, the boundary of the

"±neighborhood of CP1 is presented as .C1/ surgery on the unknot, and the link is m

parallel meridians of this surgery curve. After reversing orientation to get the boundary

of the complementary ball, the surgery coefficient on the unknot becomes a .�1/ surgery,

and blowing down this surgery curve induces one full twist in the m unknotted meridians.

Since any symplectic line arrangement has the same monodromy as the pencil of

complex lines, Lemmas 5.9 and 5.10 imply they are related to the pencil by a smooth

graphical homotopy.
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Our primary source of examples of noncomplex symplectic line arrangements is given

by pseudoline arrangements as described below. However, symplectic line arrangements

are more general and can include braiding in the associated wiring diagram.

Example 7.3 A pseudoline arrangement is a collection `1; : : : ; `m of smooth graphical

curves in R2 where for every pair i; j , the curves `i and j̀ intersect transversally at

exactly one point. Such a pseudoline arrangement can be considered a braided wiring

diagram as in Definition 5.1, but in the particular case where there is no braiding.

In particular, we can apply Proposition 5.5 to extend the pseudoline arrangement to

an arrangement of symplectic graphical disks �1; : : : ; �m; the extension produces a

symplectic line arrangement. Indeed, condition (i) in the definition of a symplectic

line arrangement is satisfied because any two pseudolines intersect transversally at one

point, and their extensions intersect positively by construction. Condition (ii) follows

from the calculation of the total monodromy as in Section 5.2 and a classical theorem of

Matsumoto and Tits [37] about uniqueness of reduced factorizations in the braid group.

Alternatively, we can refer to the results of [57, Section 6], where pseudoline ar-

rangements in RP2 are extended to symplectic line arrangements in CP2 (extensions

in CP2 are strictly harder to construct than extensions in C2). Additionally, using the

same theorem of Matsumoto and Tits, [57, Proposition 6.4] provides a homotopy of

pseudoline arrangements connecting the given arrangement to the pencil. After applying

Proposition 5.5, we get a homotopy of the corresponding symplectic line arrangements.

Note that by construction, this homotopy of symplectic line arrangements keeps all

intersections positive at all times, whereas the smooth graphical homotopy given by

Lemmas 5.9 and 5.10 may introduce negative intersections.

We use symplectic line and pseudoline arrangements to construct Stein fillings of Seifert

fibered spaces .Y .mIw/; �/ via Lemmas 3.2 and 3.4.

Proposition 7.4 Let .C; w/ be a decorated pencil of m lines. Suppose that � D
f�1; : : : ; �mg is a symplectic line arrangement such that each disk �i has at most wi

distinct intersection points with the other disks of the arrangement. Then , .�; fpj g/
yields a Stein filling of .Y .mIw1; w2; : : : ; wm/; �/.

In particular , a pseudoline arrangement ƒ D f`1; : : : ; `mg gives a Stein filling of

.Y .mIw1; w2; : : : ; wm/; �/ via an extension to a symplectic line arrangement , provided

that `i has at most wi distinct intersection points with the other pseudolines.
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7.2 Unexpected line arrangements yield unexpected fillings

Now we will show that some of the Stein fillings as above do not arise as Milnor fibers.

In the next lemma, we consider analytic deformations of reducible plane curve germs,

associated to a singularity by the de Jong±van Straten theory, and establish a property

that will play a key role in our construction of unexpected arrangements.

The term ı±constant deformation in the next lemma refers to an algebrogeometric

property: the deformation is required to preserve the ı±invariant of a singular plane

curve. We keep this terminology since it is used in [27] and [44]; however, under the

hypothesis that the germ has smooth branches, the ı±constant condition simply means

that the deformation changes the germ componentwise, without merging different com-

ponents. Intuitively, the ı±invariant counts the number of double points ªconcentratedº

in each singular point [39, Section 10]; for example, an ordinary d±tuple point (where

d smooth components meet transversely) contributes ı D 1
2
d.d � 1/, since it can be

perturbed to 1
2
d.d � 1/ double points. Thus, we can deform a triple point to three

double points by a ı±constant deformation, but we are not allowed to deform two

transversely intersecting lines into a smooth conic (such a deformation would kill a

double point).

Lemma 7.5 Consider the germ of a reducible plane curve C in C2 with m smooth

graphical branches C1;C2; : : : ;Cm passing through 0, and let Cs D
Sm

kD1 C s
k

be a

ı±constant deformation of C. (Here, ı±constant means that each branch of the germ is

deformed individually, ie the deformation is not allowed to merge different branches.)

Suppose that all the branches C1; : : : ;Cm have distinct tangent lines at 0, and that not

all deformed branches C s
1
; : : : ;C s

m are concurrent for s ¤ 0.

Then there exists a complex line arrangement A D fL1; : : : ;Lmg in C2 such that not

all lines in A are concurrent , no two lines are equal , and A satisfies all the incidence

relations of Cs . Namely, for any collection of the deformed branches C s
i1

, C s
i2

, . . . , C s
ik

that intersect at one point , the corresponding lines Li1
;Li2

; : : : ;Lik
also intersect , ie

(7-1) C s
i1

\ C s
i2

\ � � � \ C s
ik

¤ ∅ D) Li1
\ Li2

\ � � � \ Lik
¤ ∅:

Note that the incidence pattern for branches of Cs is the same for all s ¤ 0, because

the definition of a 1±parameter deformation implies that all nearby fibers ªlook the

sameº. It is important to keep in mind that the complex line arrangement A may satisfy

additional incidences, so that certain intersection points coincide in A but are distinct
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for the arrangement fC s
1
;C s

2
; : : : ;C s

mg. In particular, a pencil of lines would satisfy

incidence relations of any other arrangement, but we postulate that A cannot be a pencil

(the lines in A are not all concurrent).

Proof of Lemma 7.5 Since any two curvettas intersect positively in the original

germ C, any two deformed branches C s
i , C s

j intersect for s ¤ 0. We can make an

s±dependent translation to ensure that the first two branches always intersect at the

origin, C s
1

\ C s
2

D f0g; strictly speaking, this means passing to a slightly different

deformation of the germ C.

All components of the reducible curve C pass through 0 and are graphical analytic disks

with respect to the projection to the x±coordinate. Thus we can define the germ of C

near 0 by an equation of the form

m
Y

iD1

.aix C ci.x/� y/D 0;

where ci.x/D
P

k�2 ci;kxk are analytic functions in x with ordx ci > 1 at 0. We can

also assume that ai ¤ 0 for all i D 1; : : : ;m.

The 1±parameter deformation Cs is then given, for s close to 0, by an equation of the

form
m

Y

iD1

.ai.s/x C bi.s/C ci.x; s/� y/D 0:

Here ai and bi are analytic functions in s, and at the origin .0; 0/we have ords ai D0 and

ords bi > 0; additionally, ci.x; s/ is analytic in x and s, and ordx ci > 1. The i th com-

ponent C s
i of the deformed curve at time s is given by ai.s/xCbi.s/Cci.x; s/�y D 0.

Because the branches C s
1

and C s
2

pass through 0 for all s, we have b1 � b2 � 0. At

s D 0 all components pass through the origin, so bi.0/D 0 for all i .

Let r D mini.ords bi/, where the order is always taken at the origin. Because bi.0/D 0

for all i , we have r > 0, and r D ords bi0
for some 3 � i0 � m. Notice also that

r <C1, since otherwise all the components C s
i would pass through 0 for all s ¤ 0.

We write bi.s/D sr xbi.s/; then xbi0
.0/¤ 0.

Now make a change of variables for s ¤ 0,

x D sr x0 and y D sr y0:
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Since ordx ci.x; s/� 2, we have ci.x; s/D s2r xci.x
0; s/ for some analytic function xci .

Thus, the equation for the deformation becomes
m

Y

iD0

�

ai.s/s
r x0 C sr xbi.s/C s2r xci.x

0; s/� sr y0
�

D 0:

Equivalently, for s ¤ 0 and i D 1; : : : ;m, the deformed components C s
i are given by

the equations
ai.s/x

0 C xbi.s/C sr xci.x
0; s/� y0 D 0:

When we pass to the limit as s ! 0, the equations become

ai.0/x
0 C xbi.0/� y0 D 0;

so in the limit we obtain an arrangement of straight lines in C2. Not all of these lines

are concurrent, since xbi0
.0/¤ 0 while xb1.0/D xb2.0/D 0.

The curves C s
i satisfy the same incidence relations for all s ¤0. Since intersection points

between curves vary continuously with s, the incidence relations must be preserved in

the limit, so (7-1) holds.

Our examples of unexpected Stein fillings are given by pseudoline arrangements with

the following special property.

Definition 7.6 Let ƒD f�1; : : : �mg � R2 be a symplectic line arrangement where

not all lines are concurrent. We say that ƒ is unexpected if the only complex line

arrangements that satisfy all the incidence relations of ƒ are pencils of lines. Namely,

whenever a complex line arrangement A D fL1;L2; : : : ;Lmg � C2 has the property

�i1
\�i2

\ � � � \�ik
¤ ∅ D) Li1

\ Li2
\ � � � \ Lik

¤ ∅;

all the lines L1;L2; : : : ;Lm of A must be concurrent.

If an unexpected symplectic line arrangement comes from a pseudoline arrangement,

we will say that the pseudoline arrangement is unexpected.

Remark 7.7 It is important to note that unexpected symplectic line arrangements

are not the same as symplectic line arrangements not realizable by complex lines.

Being an unexpected arrangement is a stronger condition: we want to rule out not only

complex line arrangements with the same incidence relations as those of ƒ, but also

complex line arrangements that satisfy all the incidence relations of ƒ and possibly

additional incidence relations (without being a pencil). For instance, the pseudo-Pappus
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arrangement (Example 8.1 in the next section) is not realizable by complex lines but

it is not unexpected, because the classical Pappus arrangement has all of the same

incidences and an additional one.

Theorem 7.8 Suppose that � D f�1; : : : ; �mg is an arrangement of smooth graphical

disks with marked points fpj g, related by a smooth graphical homotopy to a decorated

germ .C; w/. Let .Y; �/ be the link of the surface singularity that corresponds to .C; w/.

Suppose that a subcollection of disks f�1; �2; : : : ; �r g of � forms an unexpected

symplectic line arrangement.

Then the Stein filling W given by .�; fpj g/ is not strongly diffeomorphic to any Milnor

filling of .Y; �/. If the weights on C are large enough , W is simply connected.

By Proposition 7.4, unexpected line arrangements yield unexpected fillings of Seifert

fibered spaces of the form Y .m; w/.

Corollary 7.9 Let � D f�1; : : : ; �mg be an unexpected symplectic line arrangement ,

and for k D 1; : : : ;m, let w.�k/ denote the number of intersection points of �k with

the disks �i , i ¤ k. Then for every weight w D .w1; w2; : : : ; wm/ with wk � w.�k/

for k D 1; : : : ;m, the Seifert fibered space .Y .m; w/; �/ has a Stein filling not strongly

diffeomorphic to any Milnor filling. This Stein filling is given by a Lefschetz fibration

constructed from the arrangement � with the appropriate choice of marked points. When

strict inequalities wk > w.�k/ hold for all k, we get a simply connected unexpected

Stein filling.

Proof of Theorem 7.8 Observe that when the number of intersection points on each

�i is smaller than the weight of the corresponding branch of the decorated germ, each

�i has a free marked point. Then the Lefschetz fibration constructed from .�; fpj g/
has a boundary-parallel vanishing cycle around every hole in the disk fiber, so that

the corresponding thimbles kill all generators of �1.fiber/, and therefore, in this case

�1.W /D 0.

Let WM be a Milnor filling that arises from a smoothing of some surface singularity

with the link Y. By Theorem 1.3, WM corresponds to a picture deformation C0s of a

decorated germ C0 D
Sm

iD1 C 0
i with weight w, topologically equivalent to .C; w/.

Although the germs C and C0 may differ analytically, they are topologically equivalent

and thus have isotopic boundary braids. Therefore by Lemma 3.4 the open book

decomposition naturally induced by the Lefschetz fibration in Lemma 3.2 for W agrees

with that for WM , so comparing them via strong diffeomorphism makes sense.
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By Proposition 6.8, if W is strongly diffeomorphic to WM , the incidence matrix of

the deformed curvetta arrangement fC 0s
1
; : : : ;C 0s

mg, s ¤ 0, with its marked points must

be the same as the incidence matrix for the arrangement .�; fpj g/, up to permutation

of columns. In particular, we see that the subarrangement f�1; : : : ; �r g of symplectic

lines satisfies the same incidence relations as the subarrangement fC 0s
1
; : : : ;C 0s

r g of the

deformed curvettas of C0. By assumption, in each of these arrangements not all curvettas

are concurrent. Because pairs of curves �1; : : : ; �r intersect algebraically positively

once, C 0
1
; : : : ;C 0

r have distinct tangent lines. Now by Lemma 7.5, there exists a complex

line arrangement A that satisfies all the incidence relations of fC 0s
1
; : : : ;C 0s

r g, and thus

all the incidence relations of � . This is a contradiction because � is an unexpected

arrangement.

7.3 Constructing unexpected pseudoline arrangements

We now give examples of unexpected pseudoline arrangements; these will yield concrete

examples of unexpected Stein fillings. We start with classical projective geometry

constructions.

Example 7.10 Recall that the classical Pappus arrangement in R2 is constructed as

follows. Take two lines, `1 and `2, and mark three distinct points a; b; c on L1 and

three distinct points A;B;C on `2, avoiding the intersection `1 \ `2. Consider the

following lines through pairs of marked points:

`3 D aB; `4 D aC; `5 D bA; `6 D bC; `7 D cA; `8 D cB:

The Pappus theorem asserts that the three intersection points `3 \ `5, `4 \ `7, and

`6 \ `8 are collinear; the classical Pappus arrangement consists of the lines `1; : : : ; `8,

together with the line through these three points. We modify this last line to make an

unexpected pseudoline arrangement, as follows. Let `9 be a line through C , distinct

from `4 and `6. Consider the intersection point `8 \ `9 and let `10 be a pseudoline

passing through points `3 \ `5, `4 \ `7 and `8 \ `9, as shown in Figure 15. Let

P D f`1; `2; : : : ; `10g.

Notice that in this case, it is clear that the pseudoline `10 can be homotoped to the

classical Pappus line through the points `3 \ `5, `4 \ `7 and `6 \ `8. The resulting

arrangement of straight lines in R2 can be homotoped to a pencil by linear homotopy.

(We already know from discussion in Example 7.3 that P is homotopic to the pencil,

but here we have a very simple explicit homotopy.)

Geometry & Topology, Volume 27 (2023)



1164 Olga Plamenevskaya and Laura Starkston

`1

`2

`4 `3
`6 `5

`8 `7
`9

`10

a
b

c

A
B

C

Figure 15: The pseudoline arrangement P D f`1; `2; : : : ; `10g is given by
the black lines, the blue line, and the red line in the figure. The dotted line
in the middle is not included. The dotted line and the eight black lines give
the classical Pappus arrangement. The intersection points `1 \ `2, `3 \ `6,
`3 \ `9, `5 \ `8 and `5 \ `9 are not shown in the figure.

Proposition 7.11 The arrangement P is unexpected.

Proof As already stated, the classical Pappus theorem asserts that for the given arrange-

ment, the intersection points `3 \ `5, `4 \ `7, and `6 \ `8 are collinear. Collinearity

holds both in the real and in the complex projective geometry settings, so that if

L1;L2; : : : ;L7;L8 � C2 are complex lines with given incidences, then L3 \ L5,

L4 \ L7, and L6 \ L8 are collinear. From this, we can immediately see that the

arrangement P is not realizable by complex lines fL1;L2; : : : ;L10g: since L6 \ L8

and L8 \ L9 are distinct points on L8, the points L3 \ L5, L4 \ L7 and L8 \ L9

cannot be collinear.

To show that P is unexpected, we need to prove that no complex line arrangement satis-

fies all the incidence relations of P even if some (but not all) of the intersection points

coincide. Indeed, we show that if a complex line arrangement A D fL1;L2; : : : ;L10g
satisfies the incidence relations of P and two of the intersection points coincide, then A

must be a pencil. Remember that we always assume that all the lines in the arrangement

are distinct.

The following trivial fact, applied systematically, greatly simplifies the analysis of cases:
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Observation 7.12 Let L1;L2;L3;L4 be four lines in C2, which are not necessarily

distinct. Suppose that two of the pairwise intersection points coincide: L1 \ L2 D
L3 \L4. Then L1, L2, L3 and L4 are concurrent , so that they all intersect at the point

L1 \ L2 D L1 \ L3 D L1 \ L4 D L2 \ L3 D L2 \ L4 D L3 \ L4.

In the case of three lines , if L1 \L2 D L3 \L1, then L2 \L3 D L1 \L2 D L3 \L1.

Visually , if two vertices of a triangle coincide , the third vertex of the triangle coincides

with the first two.

Assuming that some of the intersection points in Figure 15 coincide, we mark these

points by ªOº, and then use Observation 7.12 to chase vertices that coincide: starting

with two marked vertices, we look for additional vertices that coincide with the first

two, further mark these by ªOº, and continue. When every line contains a marked

intersection point, we know that all lines in the arrangement are concurrent: they form

a pencil though O.

We begin this process. First, assume that the intersection points L3 \ L5 \ L10

and L4 \ L7 \ L10 are distinct. By the Pappus theorem, the complex line arrange-

ment A D fL1;L2; : : : ;L10g can satisfy all the incidence relations of P only if

L6\L8 D L8\L9\L10. Setting O D L6\L8 D L8\L9\L10, by Observation 7.12

we have O D C D L4 \ L6 \ L9 \ L2, then O D B D L8 \ L2 \ L3, then

O D a D L3 \ L4 \ L1, then O D b D L5 \ L6 \ L1 and O D c D L7 \ L8 \ L1.

Now, O appears on every line at least once, so the arrangement degenerates to a pencil.

(This can be seen quickly if in the above diagram, you highlight the lines passing

through intersection points marked by O, in order. You can mark a new intersection

by O if it contains at least two highlighted lines, and then highlight all the lines through

that point O. When all the lines are highlighted, you have a pencil.)

For the second case, assume that the intersection points L3\L5\L10 and L4\L7\L10

coincide. Set ODL3\L5\L10 DL4\L7\L10. Then ODaDL3\L4\L1 and OD
ADL5\L7\L2. Then ODc DL7\L8\L1 and ODC DL4\L6\L2\L9. Again,

every line contains a point marked O, so the arrangement degenerates to a pencil.

Corollary 7.13 Let Y D Y .10Iw/ be a Seifert fibered space given by a star-shaped

plumbing graph with 10 legs , as in Figure 16, such that eight of the legs of the graph

have at least 5 vertices each , including the central vertex, and two remaining legs have

at least 4 vertices each. (Equivalently , two components of w are 5 or greater , and the
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w1 � 6

w2 � 5

w3 � 6

w4 � 5

w5 � 6

w6 � 6

w7 � 6

w8 � 6

w9 � 6

w10 � 6

�11

Figure 16: Left, a pencil of 10 lines decorated with weights. Right, the
plumbing graph for Y: the central vertex has self-intersection �11, all the
rest have self-intersection �2. Eight of the legs have at least 5 vertices each
(including the central vertex), and two remaining legs have at least 4 vertices

each.

rest are 6 or greater.) Observe that Y is the link of a rational singularity, and let � be

the Milnor fillable contact structure on Y. Then .Y; �/ admits a Stein filling which is

not strongly diffeomorphic to any Milnor filling.

Proof We count the intersection points on each line in the arrangement P: w.`2/D
w.`4/D 5, w.`k/D 6 for k ¤ 2; 4. Then for any collection of integersw1; w2; : : : ; w10

such that w2 � 5, w4 � 5 and wk � 6 for k ¤ 2; 4, we can mark the lines of the

arrangement P as required in Corollary 7.9. The corresponding singularity has the dual

resolution graph as shown in Figure 16, with one leg of length wk � 1 for each line Lk

in the arrangement, so the link is the Seifert fibered space Y .10; w/. The result now

follows from Corollary 7.9 and Proposition 7.11.

A different example comes from a version of the Desargues theorem; we use complete

quadrangles and harmonic conjugates. The example in Figure 17 was pointed out to us

by Stepan Orevkov. He suggested an approach to proving that this arrangement cannot

appear as an algebraic deformation of a pencil. We are grateful for his input, which

inspired us to define unexpected line arrangements and prove Lemma 7.5.

Example 7.14 In the standard R2 � RP2, we take four vertical lines `1; `2; `3; `4,

three horizontal lines `5; `6; `7, the two parallel diagonal lines `8; `9, and a ªbentº
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V

H

P

`1 `2 `3 `4

`0

`6

`5

`7

`8

`9

`10

a

b

c

a0

Figure 17: An arrangement of real pseudolines. The intersection of `0 and
`10 is not shown.

pseudoline `10, as shown in Figure 17. Let `0 be the line at infinity. Note that because

`1; `2; `3; `4 are all parallel in R2, they intersect at a point V on `0. Similarly, the

lines `5; `6; `7 have a common intersection with `0 at a point H , and the lines `8 and

`9 intersect on `0 at a point P. Removing from RP2 a line which is different from all

the `i and intersects them generically, we can consider Q D f`ig10
iD0

as a pseudoline

arrangement in R2. (See Figure 18 for a version where `0 is no longer the line at infinity.)

Proposition 7.15 The pseudoline arrangement Q is unexpected.

Proof Suppose that a complex line arrangement A D L0;L1; : : : ;L10 satisfies all the

incidence relations of Q. This means that for all intersections between the pseudolines in

Figure 17, the corresponding lines of A intersect. We claim that unless A is a pencil, all

of these intersection points must be distinct Ð that is, no two distinct intersection points

in Figure 17 can coincide for the arrangement A. To see this, we use Observation 7.12

repeatedly, as in Proposition 7.11. Recall that V D L1 \ L2 \ L3 \ L4 \ L0 and

H D L5 \ L6 \ L7 \ L0.

If H D V D O, then we have Li \ Lj D O for all 1 � i � 4 and 5 � j � 7, so A is a

pencil.
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If one of the intersection points Li \ Lj with 1 � i � 4 and 5 � j � 7 coincides with

V or H , then we have two intersection points marked with O on a vertical or horizontal

line in Figure 17; then O D V D H , and all lines are concurrent.

If any two intersection points Li \ Lj with 1 � i � 4 and 5 � j � 7 coincide,

Observation 7.12 implies that they will both coincide with at least one of V or H , so

we revert to the previous case.

Finally, if all the points V , H and Li \Lj with 1 � i � 4 and 5 � j � 7 are distinct, all

remaining intersection points which do not coincide with one of these are necessarily

generic double points (otherwise we would have a pair of lines intersecting more than

once).

Once we know that all the distinct intersections for Q are distinct for A, it remains to

show that Q cannot be realized as a complex line arrangement A D fLig10
iD0

. Suppose

that it is, for the sake of contradiction.

We will show that the intersection points

a D L2 \ L5; b D L3 \ L6 and c D L4 \ L7

are collinear. (See Figure 18.) Then we can conclude that the points a0 D L1 \ L5,

b and c cannot be collinear. Indeed, a ¤ a0, since all intersection points in the diagram

are distinct. If all four points a, a0, b and c were collinear, then the line L5 through a

and a0 would coincide with the line L10 through a0, b and c, but we assume that L5

and L10 are distinct.

To see that the points a, b and c are collinear, we will use some notions of classical

projective geometry, namely complete quadrangles and harmonic conjugates. (In

Remark 7.16 below, we also indicate an alternative proof, in the more familiar Euclidean

terms.) Observe that the lines L5, L6, L2, L3, L8 and the line L through a and b

form the four sides and the two diagonals of a complete quadrangle. Then the point

Q D L \ L0 is the harmonic conjugate of the point P D L8 \ L0 with respect to the

points V D L2 \ L3 and H D L5 \ L6. Now, consider the lines L2, L4, L5, L7, L9

and the line L0 through a and c. Again these form a complete quadrangle, so that the

point Q0 D L0 \ L0 is the harmonic conjugate of the point P D L9 \ L0 with respect

to V D L2 \ L4 and H D L5 \ L7. Since the harmonic conjugate of P with respect

to V and H is unique, it follows that Q D Q0. Since the lines L and L0 both pass

through Q D Q0 and a, we must have L D L0, and so all three points a, b and c lie on

this line.
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Q D Q0

L0

VL D L0L10

L5

L6

a0 a

b

c

L7

L8 L1
L9 L2

L3 L4

H

P

Figure 18: An arrangement of lines L0;L1; : : : ;L9 and pseudoline L10 with
incidences as in Figure 17. We show that the line L through a and b and the
line L0 through a and c coincide (with the dotted line shown), so the points a,
b and c are collinear. Therefore a0, b and c cannot be collinear.

Remark 7.16 The above statement also has an easy Euclidean geometry proof, after

some projective transformations. Indeed, we can find an automorphism of CP2 such that

L1 \ L5 7! .0 W 0 W 1/; L1 \ L6 7! .1 W 0 W 1/;

L2 \ L5 7! .0 W 1 W 1/; L2 \ L6 7! .1 W 1 W 1/:

Then H 7! .1 W 0 W 0/ and V 7! .0 W 1 W 0/, and it is not hard to see that all the lines in

the figure must be complexifications of real lines. The line L0 is the line at infinity;

the remaining lines are (complexifications of) the corresponding real lines in R2. We

use the same notation for the real lines. Now we see that L1;L2;L3;L4 are parallel
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vertical lines, L5;L6;L7 are parallel horizontal lines, etc. So the arrangement looks

like Figure 17. The lines in the figure form a number of triangles that are similar to the

shaded triangle; it then follows that the points a; b; c are collinear, so a0; b; c are not.

Note, however, that the above proof is somewhat incomplete: Figure 17 assumes a

particular position of the lines L3;L4;L7 relative to L1;L2;L5;L6. For a complete

proof, an additional analysis of cases is required, with slightly different figures for

other possible relative positions of the lines. Our projective argument with harmonic

conjugates allows us to avoid this analysis, and also to emphasize the projective nature

of the statement and the proof.

Corollary 7.17 Let Y D Y .11Iw/ be the Seifert fibered space given by a star-shaped

plumbing graph with 11 legs such that two legs have at least 5 vertices each , two legs

have at least 3 vertices , and the remaining 7 legs have at least 4 vertices each (including

the central vertex). In other words , two components of the multiweight w are 4 or

greater , two are 6 or greater , and the remaining seven are 5 or greater. Let � be the

Milnor fillable contact structure on Y. Then .Y; �/ admits a Stein filling which is not

strongly diffeomorphic to any Milnor filling.

Proof Exactly as in Corollary 7.13, this follows from Corollary 7.9 and Proposition

7.15. The picture is similar to Figure 16, with the obvious minor changes. Indeed, the

pseudoline arrangement of Proposition 7.15 has two lines `0 and `3 with weight 4, two

lines `9 and `10 with weight 6, and seven remaining lines with weight 5. Note that

a permutation of the components of w does not change the contact manifold, so we

avoided labeling the components of w in the statement of the corollary.

It is easy to generalize the above examples to star-shaped graphs with higher negative

self-intersection values of the central vertex. Indeed, by Theorem 7.8, we can construct

unexpected Stein fillings from an arbitrary arrangement of smooth graphical disks that

contains an unexpected symplectic line arrangement. We turn to the general case later

in this section; for now, we create more unexpected pseudoline arrangements simply

by adding extra lines.

Lemma 7.18 Suppose that ƒ is an unexpected symplectic line arrangement. Let ` be

a symplectic line that passes through at least one intersection point of two or more lines

in ƒ. Then the pseudoline arrangement ƒ[ f`g is also unexpected.
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Proof If there exists a complex line arrangement A[fLg that satisfies all the incidence

relations of ƒ[ f`g, and L corresponds to `, then A satisfies all incidences of ƒ, and

so A is a pencil. The line L must pass through the intersection of two or more lines

of A, so A[ fLg is also a pencil.

Theorem 7.19 For any m � 10, consider the Seifert fibered space Ym D Y .m; w/ with

m � 10, with weights w D .w1; : : : ; wm/ such that wi � m � 1 for all i D 1; : : : ;m.

The space Ym is given by a star-shaped graph with m � 10 legs , such that the length of

each leg is at least m � 1. The central vertex has self-intersection �m � 1, and all other

vertices have self-intersection �2. Let � be the Milnor fillable contact structure on Y.

Then .Y; �/ admits a simply connected Stein filling not strongly diffeomorphic to any

Milnor fiber.

Proof We can add lines to the arrangement P to form unexpected arrangements of

m � 10 pseudolines. Since any pseudolines intersect at most once, each pseudoline

has at most m � 1 intersections with other lines. By Corollary 7.9, Y D Y .n; w/ is an

unexpected Stein filling if wi � m � 1 for all i D 1; : : : ;m, which is simply connected

if all inequalities are strict.

Varying the positions of the additional lines and/or applying a similar procedure to

different arrangements such as P and Q, it is possible to construct a variety of pairwise

nonhomeomorphic Stein fillings of the same link, so that none of the Stein fillings

is strongly diffeomorphic to a Milnor filling. We give one such construction below

to prove the first part of Theorem 1.1. The second part of Theorem 1.1 follows from

the discussion at the end of this section, where we extend star-shaped graphs that

correspond to unexpected arrangements to a much wider collection of graphs of rational

singularities with reduced fundamental cycle.

Theorem 7.20 For every N > 0 there exists a rational singularity with reduced

fundamental cycle whose link .Y; �/ admits at least N pairwise nonhomeomorphic

simply connected Stein fillings , none of which is strongly diffeomorphic to any Milnor

fiber. The link Y is given by a Seifert fibered space Y D Y .2N C5; w/ with sufficiently

large weights w.

Proof We will start with the arrangement Q of Figure 17 and augment it to other unex-

pected arrangements, using Lemma 7.18. First, we add more ªverticalº and ªhorizontalº

lines to the arrangement, so that it has N vertical and N horizontal lines, creating a
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V

H

P

V

H

P

�0 �3

Figure 19: Pseudoline arrangements and fillings with different topology.

grid as shown in Figure 19. (We assume N � 4 as the N D 4 case fulfills the statement

for lower values of N.) All ªverticalº lines intersect at the point V, all horizontal lines

intersect at the point H . The two diagonal lines `8 and `9 intersecting at P, the bent

pseudoline `10, and the line at infinity `0 are present as in the arrangement Q. Let

Q0 denote this arrangement. We will now produce N C 1 unexpected arrangements

Q0
k

D Q0 [ �k for k D 0; 1; : : : ;N, by adding to Q0 different additional ªdiagonalº

pseudolines �0; �1; : : : ; �N passing through P ; see Figure 19. Each arrangement Q0
k

consists of 2N C 5 pseudolines. The pseudoline �0 is taken to be the main diagonal of

the grid formed by the vertical and horizontal lines; it is a straight line in RP2 passing

through the point P. The pseudoline �1 differs from �0 in a small neighborhood

of a single grid intersection: while �0 passes through the chosen intersection point

of a vertical and a horizontal line, �1 intersects these two lines at distinct points.

Similarly, �k differs from �0 in neighborhoods of k grid intersections and meets the

corresponding vertical and horizontal lines at distinct points. Figure 19 shows the

arrangements Q0
0

D Q0 [�0 and Q0
3

D Q0 [�3.

Now, consider the decorated germ given by a pencil of 2N C 5 lines, each with a

weight greater than 2N C 4. We choose the weights to be greater than the number

of intersection points on each line in any of the arrangements Q0
k

; obviously, taking

weights greater than 2N C4 suffices because each line intersects the other 2N C4 lines

once (in fact, w � 2N C 2 suffices for this arrangement). Let .YN ; �/ be the contact

link of the corresponding singularity. Similarly to the previous examples, YN is the

Geometry & Topology, Volume 27 (2023)



Unexpected Stein fillings and plane curve arrangements 1173

Seifert fibered space given by a star-shaped plumbing graph with 2N C 5 sufficiently

long legs, with the central vertex having the self-intersection �2N �6 and all the other

vertices self-intersection �2. By Corollary 7.9, each arrangement Q0
k

yields a Stein

filling Wk of .YN ; �/ which is not strongly diffeomorphic to any Milnor filling.

Finally, we argue that all fillings W0;W1; : : : ;WN have different Euler characteristic.

Each Wk has the structure of a Lefschetz fibration with the same planar fiber (a disk

with 2N C 5 holes), but these Lefschetz fibrations have different numbers of vanishing

cycles. Every time we replace a triple intersection of pseudolines in the arrangement

by three double points (and arrange the marked points on the lines accordingly), the

number of vanishing cycles decreases by 1. Indeed, three double points correspond

to three vanishing cycles in the Lefschetz fibration (each enclosing two holes), while

a triple intersection together with an additional free marked point on each of three

lines corresponds to four vanishing cycles (one vanishing cycle enclosing three holes,

the remaining three enclosing a single hole each). Thus, replacing a triple point

by three double points corresponds to a lantern relation monodromy substitution,

which in turn corresponds to a rational blow-down of a .�4/ sphere. Therefore,

�.W0/ > �.W1/ > � � �> �.WN /, as required.

7.4 Generalizations

All our previous examples were given by singularities with star-shaped graphs where

most vertices have self-intersection �2. It is not hard to obtain examples with much

more general graphs, using the full power of Theorem 7.8: we add more smooth disks

to an unexpected symplectic line arrangement.

Example 7.21 In the arrangement Q of Figure 17, replace the line `3 by several

pseudolines that all pass through the same four intersection points. Note that because of

multiple intersections, the result is no longer a pseudoline arrangement, but we still have

a braided wiring diagram and can apply Proposition 5.5 to extend it to an arrangement

of symplectic disks. In Figure 20, we take three curves replacing `3. In the decorated

germ, the complex line corresponding to `3 will be replaced by 3 curvettas that are

tangent to order 4 (and transverse to the other 10 branches of the germ). By (2-2),

the weight of each new curvetta must be 5 or greater. We take the weights to be

exactly 5 for the three new curvettas. Consider the symplectic curve arrangement given

by the extension of the diagram in Figure 20, with marked points at all intersections

and one additional free marked point on each of the three new curves (to account

for higher weights). The resolution graph for Q is star-shaped with 11 legs. The
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�12

�4

�12

�4

Figure 20: The pseudoline arrangement Q of Figure 17 is modified: the
pseudoline `3 is replaced by three smooth curves with 4 intersections, as
shown. There are 3 free marked points, one on each of the new curves;
the rest of the marked points are the intersections in the diagram. The
germ of the corresponding singularity has three curvettas tangent to order 4,
each of weight 5, replacing one of the lines. The resolution graph of the
corresponding singularity is shown in the middle of the figure. If the weights
of the three tangent curvettas are taken to be higher, the graph will have
additional branching as shown on the right. All unlabeled vertices have self-
intersection �2.

self-intersection of the central vertex is �12 and all other self-intersections are �2.

The legs of the resolution graph for Q with minimal weights had two legs of length 3,

two of length 5, and seven of length 4. For this revised arrangement, the corresponding

singularity has an augmented graph. Specifically, one of the legs of length 3 (which

corresponded to `3) gains an additional vertex of self-intersection �4. If the three

tangent curvettas have higher weights, so they have additional free marked points in the

deformed arrangement, the �4 vertex becomes a branching point with 3 additional legs

(each vertex on these legs has self-intersection �2). See Figure 20. By Theorem 7.8,

the links of the corresponding singularities have unexpected Stein fillings.

In general, if we replace `3 with k curves commonly intersecting at the four points

where `3 intersected other pseudolines as above, the additional vertex will have self-

intersection �k�1 and increased weights will yield k additional legs with .�2/ vertices.

Further, we can replace each of the k pseudolines by a bundle of curves that go through

the same intersections.
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�12

�4

�5

�3

�3
�3`5

`6

`7

Figure 21: In the pseudoline arrangement Q of Figure 17, we replace `3 with a
bundle of curves passing through the existing intersections of `3 with `5, `6, `7

and `0. (Only part of the arrangement is shown.) The additional curves create
no extra intersections with the pseudolines of Q. All the intersection points are
marked, and there are additional free marked points that correspond to higher
weights. In the resolution graph of the singularity, the leg corresponding to `3 is
replaced by a tree with additional branching, as shown. All unlabeled vertices
have self-intersection �2.

Example 7.22 Figure 21 shows a possible bundle replacing `3, instead of the bundle

of three curves in the previous arrangement of Figure 20. All the new curves run

C 1±close to and are isotopic to the original pseudoline, and they pass through the

same intersection points with the other pseudolines. Within each bundle, the curves

may have additional intersections, which lead to higher-order tangencies between the

corresponding curvettas in the decorated germ. In particular, for the arrangement in

Figure 21, the bundle of curves replacing `3 will have three subbundles of curves

intersecting each other 4 times, and intersecting each of the other pseudolines once.

One of these subbundles has four curves which intersect each other a total of 5 times,

another has two curves which intersect a total of 7 times, and the third has two curves

intersecting each other a total of 6 times, with an additional curve intersecting these

two 5 times.

The corresponding decorated germ (with the weights given by the number of intersection

points in the disk arrangement) encodes the singularity whose graph has more branching

and some vertices with higher negative self-intersections, as shown in Figure 21. If we

vary the incidence pattern of the additional curves (subject to the weight restrictions),

we can obtain a number of unexpected Stein fillings with different topology.
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Example 7.22 demonstrates how, once we have an unexpected symplectic line ar-

rangement � D f�ig, the star-shaped graph G of the corresponding singularity can

be extended to arbitrarily complicated graphs of rational singularities with reduced

fundamental cycle. The following proposition explains how to form these bundles in

general from a given extension of the graph, completing the proof of Theorem 1.1. It

is not hard to see that under the hypotheses of the proposition, the extended graph H

corresponds to a singularity with reduced fundamental cycle.

Proposition 7.23 Let G be the star-shaped resolution graph corresponding to the

surface singularity associated to an unexpected symplectic line arrangement with

minimal possible weights. Let I be the set of leaves of G, and let fGigi2I be a

collection of (possibly empty) negative definite rooted trees; assume that G and Gi

have no .�1/ vertices.

Consider a graph H constructed by attaching to G the rooted trees Gi , i 2 I , so that

the root of Gi is connected to the leaf ui by a single edge. Assume that the resulting

graph H satisfies condition (2-1). Let .Y; �/ be the link of a rational surface singularity

with reduced fundamental cycle whose dual resolution graph is H .

Then .Y; �/ admits a Stein filling which is not strongly diffeomorphic to any Milnor

filling.

Remark 7.24 Proposition 7.23 provides a fairly general class of rational surface

singularities with reduced fundamental cycle which admit unexpected fillings. The

construction can be further generalized to include variations in the bundling structure

and to apply to more general graphs G as the input. Despite all variations, getting

rid of the .�2/ vertices in the resolution graph seems difficult. Indeed, we could

add a curve intersecting `3 only twice in Example 7.22, which would lower the self-

intersection to .�3/ for one of the vertices on the leg of the star-shaped graph G.

However, such a curve would intersect the other pseudolines in the arrangement Q at

new points. This would increase the weights on the curvettas corresponding to these

other pseudolines, producing free marked points and yielding additional .�2/ vertices

elsewhere in the graph. In fact, we already know from Theorem 1.2 that our strategy

must have limitations, as there are no unexpected fillings when each vertex of the

resolution graph has self-intersection �5 or lower.

Proof of Proposition 7.23 The initial unexpected symplectic line arrangement fLig
consists of symplectic lines associated to the legs of the star-shaped graph G. As above,
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let ui denote the valency 1 vertex of the leg that corresponds to Li . Choose a braided

wiring diagram for the symplectic line arrangement such that a symplectic line Li

corresponds to the wire 
i . The braided wiring diagram should be chosen so that 
i

contains all the marked points of Li (including free points). We will replace each wire 
i

with a bundle of curves (with intersections but no braiding between the components of

the bundle) constructed according to the tree Gi , as follows.

All curves in the i th bundle must intersect at all marked points on 
i . We will specify

the additional intersections and explain how to determine the number of curves and

free marked points in the bundle. The bundle will be described recursively, via its

subbundles and iterative (sub/k±bundles, which we determine by moving through the

graph Gi . We start at the root and move upward in the graph Gi with respect to the

partial order induced by the root, stopping when we either reach either a vertex v0 of

self-intersection number �s0 for s0 � 3, or exhaust the graph Gi .

By condition (2-1), .�2/ vertices can only occur in a linear chain. Thus, if we never

reach a vertex with self-intersection �s0 for s0 � 3, then all vertices of Gi have self-

intersection �2 (and Gi is a linear chain). Suppose there are r0 � 0 such .�2/ vertices.

In that case, the bundle for Gi should consist of only a single curve, but with r0 � 0

additional free points. (The weights of the decorated germ increase accordingly.)

If there exists a vertex v0 of self-intersection �s0 for s0 � 3 after passing through a

linear chain of r0 vertices of self-intersection �2, then the bundle will consist of exactly

s0 � 1 nonempty subbundles. The subbundles will be described as we travel further

along Gi . We require that all curves in the bundle intersect exactly r0 additional times

(where each of these r0 intersection points gets marked) and increase the weight of

each curve by r0 C 1, yielding one additional free marked point on each curve. Two

curves in different subbundles will not intersect at any additional points beyond those

specified so far.

Note that v0 can have at most s0 � 1 vertices directly above it in Gi , since its valency

is at most s0. In particular, Gi itself is built by attaching s0 � 1 (potentially empty)

trees onto the subgraph fv � v0g � Gi . We associate the s0 � 1 subbundles to these

s0 � 1 rooted trees G1
1
; : : : ;G1

s0�1
, which may be empty or nonempty. (The partial

order on G induced by its root induces a partial order and root on each G1
j .)

Now we will create subbundles and their subsubbundles by iteratively repeating a slight

modification of the process above. For each tree G1
j , we construct a subbundle as

follows. Starting at the root of G1
j , we again have a linear chain of r1 � 0 vertices
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with self-intersection �2, which either exhausts the graph G1
j or ends in a vertex v1

of self-intersection number �s1 for s1 � 3. (Note that r1 and s1 depend on j , but we

drop this index to avoid further notational clutter.) If we are in the first case, where

there is no such vertex v1, the subbundle associated to G1
j will consist of a single curve

with r1 additional free marked points. If we are in the second case, where the chain of

length r1 of .�2/ vertices ends at a vertex v1 with self-intersection �s1 with s1 � 3,

the subbundle itself will be a union of s1 � 1 nonempty subsubbundles, intersecting at

r1 C 1 additional points. (Accordingly, the weights increase by r1 C 1, but no new free

marked points are added.) Two curves in different subsubbundles will not intersect at

any additional points beyond those previously specified.

The s1�1 subsubbundles correspond to the s1�1 potentially empty trees G2
1
; : : : ;G2

s1�1

attached above v1. We determine these subsubbundles by iteratively repeating this

process, where G2
l

takes the role of G1
j and the subsubbundle takes the role of the

subbundle. The (sub/k±bundles will generally have (sub/kC1±bundles, leading to

additional iterations of the procedure. The situation where a (sub/k±bundle does not

have a (sub/kC1±bundle is when the (sub/k±bundle consists of a single component

(as in the first case of the procedure). Since the graph is finite, there will be a finite

number of iterations, so this process will eventually describe the bundle completely.

Having constructed such bundles individually for each Gi , we now superimpose them

onto the wires 
i as satellites to get a new braided wiring diagram by inserting them

into a small neighborhood of 
i so that each wire of the bundle is C 1±close to the

original wire 
i . Recall that all intersection points between wires are marked in the

original diagram, and all curves from the i th±bundle are required to intersect at all

marked points. It follows that curves from the different bundles are allowed to intersect

only at the marked points of the original diagram.

We can apply Proposition 5.5 to extend the new braided wiring diagram to an arrange-

ment � of symplectic disks. We claim that via Lemma 3.2, the resulting arrangement �

provides a Stein filling for the link of the singularity with the resolution graph H . To

check the claim, we need to show that the open book decomposition on the boundary

of the Lefschetz fibration constructed from � supports the canonical contact structure

for the link associated to H . Recall that H is associated to a decorated germ CH

with smooth branches, by attaching .�1/ vertices and curvettas and blowing down.

We will show that � is related by a smooth graphical homotopy to another decorated

germ C, which is topologically equivalent to CH. The topological type of C will be

determined by the intersections and marked points in �: the order of tangency between
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two components in C is equal to the number of intersections between the corresponding

components of � . The weight on each curve is the total number of marked points on

the corresponding disk of � , including intersections and free marked points. After

showing that � and C are related by a smooth graphical homotopy, we will verify that

C and CH are topologically equivalent (with corresponding weights), to conclude that

the open book decompositions are equivalent.

To relate � and C, we first construct a smooth graphical homotopy from � to a ªpencil

of the bundlesº. In the pencil of the bundles, all curves will intersect at one point, and

curves from different bundles do not intersect anywhere else, but curves from the same

bundle may intersect at other points along the corresponding line. We can use a smooth

graphical homotopy of the original symplectic line arrangement fLig to a pencil as a

guide to build the required homotopy of � , because each bundle is C 1±close to the

corresponding symplectic line inside the chosen Milnor ball. Essentially, at this step

we treat each bundle as a whole, bringing different bundles together without perturbing

curves inside each bundle. More precisely, we satellite the bundle onto the family of

wiring diagrams corresponding to the smooth graphical homotopy of the symplectic

lines to the pencil. The intersection points within a bundle will remain distinct in this

smooth graphical homotopy. At intermediate times during the homotopy, we allow

many additional intersection points in the arrangement, as curves from different bundles

will intersect outside the common marked intersections.

Next, we show that each bundle can be homotoped so that all the intersections come

together to high-order tangencies. Let � i denote the i th bundle constructed above, and

let Ci denote the curves in the germ C corresponding to those in � i . To show that � i

and Ci are related by a smooth graphical homotopy, it suffices to check that they have

the same boundary braid. To verify this, we observe that the subbundling structure

looks like the nested structure produced by the Scott deformation of Ci as in the proof

of Proposition 4.1. The bundle, as drawn in R2, provides a wiring diagram which is

planar isotopic to the wiring diagram of the Scott deformation, and thus their braid

monodromy is the same. As a consequence, each bundle � i is related by a smooth

graphical homotopy to Ci. Applying these homotopies to all bundles, we see that � is

related to C by a smooth graphical homotopy, and their induced open books agree.

Now, we need to check that C and CH are topologically equivalent. To this end, we

will compare the weights and the pairwise orders of tangency between curvettas in the

two germs. For C, these quantities are computed from the intersections and marked

points in � , while Remark 2.6 shows how to compute them from the graph H .
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First, we make a few observations to relate the curvettas on the graph H to the bundling

construction above. Before the star-shaped graph G is extended, the lines Li correspond

to the legs of the graph. For each i , the i th leg is a chain of .�2/ vertices, with an end

vertex ui . We attach a single .�1/ vertex to ui and put a curvetta on this vertex; this

curvetta gives rise to the line Li . By Remark 2.6, the weight of Li is 1 C l.u0;ui/,

where u0 is the root of G. In this case, the root has been chosen to be the center of the

star-shaped graph.

When Gi is nonempty, the symplectic line Li is replaced by a collection of mi curves

(we compute mi below) in the germ associated to H . These new curves come from

curvettas on the additional .�1/ vertices attached to Gi . For each v 2 Gi , .v �vCa.v//

additional .�1/ vertices are attached to v, and each .�1/ vertex has a curvetta attached,

thus

mi D �
X

v2Gi

.v � vC a.v//;

as in Proposition 2.4. Note that mi agrees with the number of curves in the bundle �i

constructed above for the graph Gi . This is because the subbundling process terminates

when you reach a (sub/k±bundle which is a single component. This occurs when

the (sub/k±bundle corresponds to a (sub/k±tree consisting of only r � 0 vertices of

self-intersection �2. When r > 0, this means that there is a .�2/ vertex leaf which

contributes one to mi , and when r D 0, this means there is a .�s/ vertex v with fewer

than .s �1/ branches above it, and there are correspondingly �.v �vCa.v//D s �a.v/

such (sub/k±bundles, each consisting of a single curve.

Now, let Cx be one of the curvettas for the graph H , and let zvx be a vertex of G such

that Cx intersects a .�1/ vertex attached to zvx . According to Remark 2.6, the weight

of Cx according to the graph H is 1C l.zvx;u0/, where l.zvx;u0/ counts the number of

vertices in the path from the root u0 of G to the vertex zvx . This path consists of several

parts. From the original graph G, the path contains the l.ui ;u0/ vertices connecting

the root u0 to the vertex ui where Gi is attached. Next, there are vertices from Gi ,

which can be organized into .K C1/ chains as shown in Figure 22. For 0 � k � K �1,

the k th chain consists of rk � 0 vertices of self-intersection .�2/, followed by a vertex

of self-intersection �sk < �2. Finally, there may be a last chain of .�2/ vertices, of

length rK � 0, such that zvx is its last vertex. (If zvx � zvx <�2, then rK D 0.) Therefore,

1 C l.zvx;u0/D 1 C l.ui ;u0/C rK C
K�1
X

kD0

.rk C 1/:
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G

w0

�m � 1

wi

r0

�s0

v0

r1

v1

�s1

rK�1

vK�1

�sK�1

zvx

�1
rK

Figure 22: How to compute the weights from the graph G following the
proof of Proposition 7.23.

On the other hand, in the construction of the bundle, the initial weight on each curve

begins at 1 C l.ui ;u0/. For each iterative (sub/k±bundle it is included in, the weight

is increased by rk C 1, until we reach a stage K where the (sub/K graph consists of

rK � 0 vertices, all of self-intersection �2. For this Kth stage, the weight is increased

by rK (the increase is associated to free marked points). Therefore, the total weight

on Cx will be

w.Cx/D 1 C l.ui ;u0/C rK C
K�1
X

kD0

.rk C 1/;

which agrees with 1 C l.zvx;u0/, as required.

Next, we compare the orders of tangency between the curves. According to Remark 2.6,

the order of tangency between two components Cx and Cy is �.zvx; zvy I u0/, the number

of common vertices in the path from zvx to u0 with the path from zvy to u0. By

condition (2-1), the vertex vL where these two paths diverge has self-intersection

�sL for s � 3. See Figure 23. The path from u0 to vL includes the path from u0

to ui in G. This contributes l.ui ;u0/ vertices. The path continues into Gi , with

sequential chains of rk vertices of self-intersection .�2/, each ending in a vertex vk of

self-intersection �sk < �2, for 0 � k � L. Therefore,

�.zvx; zvy I v0/D l.ui ;u0/C
L

X

kD0

.rk C 1/:

On the other hand, in the bundle construction, the curves Cx and Cy lie in two distinct

(sub/LC1±bundles created for two of the distinct trees lying above vertex vL. No

intersections between Cx and Cy will be created after the Lth stage. At the beginning

of the bundle construction, all curves are required to intersect 1 C l.ui ;u0/ times. All

other intersections between Cx and Cy are created in the procedure above at some
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G
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v0

r1

�s1
v1

rL
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�sL
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�1

Figure 23: How to compute the tangencies from the graph G following the
proof of Proposition 7.23.

iteration k, 0 � k � L. At the k D 0 stage, we add r0 intersections between Cx and Cy .

At stage k for 1 � k � L, we add additional rk C 1 intersections between Cx and Cy .

Therefore the total number of intersections between Cx and Cy is

1 C l.u0;ui/C r0 C
L

X

kD1

.rk C 1/;

which agrees with �.zvx; zvy I vr /.

To complete the proof, observe that the arrangement � contains the original unexpected

symplectic line arrangement as a subarrangement (choose a single component of each

bundle). By Theorem 7.8, we obtain unexpected Stein fillings of the link of the

singularity corresponding to the graph H .

8 Further comments and questions on curvetta homotopies

In the previous section we showed that Stein fillings of the link of a singularity do not

always arise from the Milnor fibers, even for the simple class of rational singularities

with reduced fundamental cycle. Our examples of unexpected Stein fillings come

from curvetta arrangements that do not arise as picture deformations of the decorated

germ representing the singularity, although these arrangements are still related to the

decorated germ through a smooth graphical homotopy. In this section, we make a

detailed comparison of de Jong and van Straten’s picture deformations (Definition 2.7)

with smooth graphical homotopies (Definition 3.1). Observe that the two notions differ

in several essential ways. Indeed, the curvetta branches are required to be algebraic in

the former, and just smooth in the latter; positivity of all intersections and the weight

restrictions must hold at all times during a picture deformation but only at the end of a

graphical homotopy; the topology of the arrangement may change at nonzero times
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smooth graphical homotopy picture deformation

type of curvetta branch C t
j smooth graphical disk disk given by (germ of)

algebraic curve

topology of curvetta
arrangement

may change with time remains the same

weight restrictions: C t
j has

at most wj intersections

only hold for final arrangement,
may be violated during homotopy

hold at all times

positivity of intersection
points: C t

i � C t
j > 0

only hold for the final arrangement,
may be violated during homotopy

hold at all times

Table 1

during graphical homotopy but not during a picture deformation. This is summarized

in Table 1. We will explore each of these aspects and their role in differentiating Stein

fillings from Milnor fibers. The most important aspect seems to be the topology of the

curvetta arrangement, and whether it is allowed to vary during the homotopy.

8.1 Algebraic versus smooth

The first difference between picture deformations and homotopies is that a smooth

graphical homotopy includes curvettas which need not be complex algebraic curves,

either during the course of the homotopy or at the end of the homotopy. It turns out

that this is not the key aspect contributing to the difference between Milnor fillings

and Stein fillings in our examples. Indeed, adding higher-order terms, one can produce

some surprising curvetta arrangements. Because the curvettas are open algebraic disks,

possibly given by high-degree algebraic equations, curvetta arrangements can be more

general than arrangements of complex lines or global algebraic curves. To illustrate,

we recall the example of the pseudo-Pappus arrangement from [27]; see Figure 24.

p
q r

Figure 24: The pseudo-Pappus arrangement.
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Example 8.1 [23; 27] The classical Pappus arrangement consists of 9 lines; we have

already discussed this arrangement in Example 7.10. By the Pappus theorem, the points

p, q, r in the middle of Figure 24 are collinear. In the pseudo-Pappus arrangement, the

line through these three points is replaced by a bent pseudoline that passes through two

points but not through the third. The pseudo-Pappus arrangement cannot be realized by

complex lines. However, the bent pseudoline can be given by a graph of a high-degree

polynomial whose additional intersections with the other lines occur sufficiently far

outside the ball we restrict to. Thus, the pseudo-Pappus arrangement can be realized by

higher-degree open algebraic curves. In fact, as mentioned in [27], the pseudo-Pappus

arrangement arises as a picture deformation of the pencil of 9 lines, with the weights

of each line given by the number of intersection points on the corresponding line in the

arrangement. The picture deformation can be obtained by adding small higher-order

terms to the linear deformation of the pencil to the classical Pappus arrangement.

Thus, the pseudo-Pappus arrangement gives rise to Milnor fibers of smoothings of the

singularities given by the corresponding decorated pencil of 9 lines.

In fact, all of the fillings produced via arrangements of real pseudolines can be obtained

from an algebraic curvetta arrangement which can be deformed by a polynomial

homotopy (through algebraic curves) to a pencil of lines. (However, this family does

not constitute a picture deformation because the topology may vary at different t ¤ 0,

and the weight constraints may fail at intermediate times.) Note that we only consider

a portion of the algebraic curves in a chosen ball surrounding the origin. In particular,

the algebraic curves may intersect additional times outside of this ball, but we do not

need to count such intersections in the incidence data of our arrangement.

Proposition 8.2 Let ƒD f`1; : : : ; `mg be an arrangement of real pseudolines in R2.

Then there exists a family of complex algebraic curves f� t
1
; : : : ; � t

mg, given by polyno-

mial equations

� t
i D fy Dp.x; t/g

and a smoothly embedded closed 4±ball B �C2, such that f� t
1
; : : : ; � t

mg is a symplectic

line arrangement in B (with intersections in the interior of B) for every t 2 Œ0; 1�, where

� B \ .�0
1

[ � � � [�0
m/ has the incidences of a pencil of lines , and

� B \.�1
1

[� � �[�1
m/ is isotopic in B to the symplectic extension of the pseudoline

arrangement `1 [ � � � [ `m given by Proposition 5.5.

Before proving the proposition, we discuss its consequences.
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Remark 8.3 Consider an arbitrary pseudoline arrangement `1; : : : ; `m and the corre-

sponding symplectic line arrangement f�1; : : : ; �mg. By Proposition 7.4, this arrange-

ment gives Stein fillings of the spaces .Y .mIw1; : : : ; wk/; �/ whenever the weights

satisfy inequalities wk � w.�k/ for k D 1; : : : ;m. Let � t D f� t
1
; : : : ; � t

mg be a

polynomial homotopy between a pencil of lines and the arrangement f�1; : : : ; �mg;

such a homotopy always exists by Proposition 8.2. A priori, the homotopy may

violate the weight constraints: at some moment t , the number of intersections may

increase, so that w.� t
k
/ > wk . (In fact, the homotopy constructed in Proposition 8.2

converts all multiple intersections into double points and thus creates a lot of additional

intersections.) However, since � t
k

intersects each of the other m�1 components exactly

once, w.� t
k
/ will never exceed m � 1. Thus, if wk � m � 1 for all k, any homotopy as

above will satisfy the weight constraints. By construction, intersections between any

two components � t
i and � t

j remain positive for all t . Thus, the homotopy � t satisfies

the requirements of the first, third and fourth lines in Table 1, sharing these properties

with picture deformations, but it changes the topology of the arrangement. Accordingly,

the arrangement f� t
1
; : : : ; � t

mg gives a Stein filling Wt of .Y .mIw1; : : : ; wk/; �/ for

every t , and Wt carries a Lefschetz fibration as in Lemma 3.2, but the topology of the

fillings Wt changes with t . Note also that for small t > 0, the defining polynomials

for � t
k

give an unfolding, and thus a 1±parameter deformation of C. Equipped with

marked points, this gives a picture deformation. Therefore, for small t > 0 the Stein

filling Wt is given by a Milnor fiber. As t increases and the topology of the arrangement

changes, we obtain new fillings Wt , which may not be realizable by Milnor fibers. We

will consider a specific example of such a topology change in Section 8.3.

The conclusion we wish to draw here is that the difference between algebraic curves

and smooth curves is not essential to our counterexamples, as we can realize the

corresponding symplectic line arrangements by complex algebraic curves and construct

polynomial homotopies. The positivity of intersections and the weight constraints can

often be trivially satisfied, although we further discuss the role of weights in Section 8.4.

In fact, the important difference comes from the second aspect in Table 1, namely

smooth graphical homotopies can vary their topology and singularities in various

different ways during the homotopy, whereas picture deformations must maintain the

same topology for all nonzero parameters t .

We now turn to the proof of Proposition 8.2. Given any pseudoline arrangement, it

can be isotoped in R2 to be in a standard wiring diagram form, with the following

properties. Each pseudoline is graphical, `i D fy Dfi.x/g. Away from intersection
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points, each pseudoline is horizontal with fi.x/D 2ın for some integer 1 � n � m and

a fixed constant ı > 0. There are disjoint intervals .a1; b1/; : : : ; .ar ; br / at which fi.x/

is nonconstant, such that there is a unique point in each interval .ak ; bk/ at which `i

intersects other pseudolines. Furthermore, we ask that fi and fj are linear whenever

jfi.x/� fj .x/j < ı, and each fi.x/ is monotonic in each interval .ak ; bk/. We will

assume after a planar isotopy of ƒ that our pseudoline arrangement is initially given

in this form. To construct our algebraic family, we first require a smooth family of

pseudolines connecting this given pseudoline arrangement in standard wiring diagram

form to a pencil, and satisfying a quantitative transversality property, as follows.

Lemma 8.4 Let ƒ D f`1; : : : ; `mg be an arrangement of real pseudolines in R2 in

standard wiring diagram form with constant ı, such that all intersections occur in

Œ�M;M �� R. Then there exist smooth functions fi W Œ�M;M �� Œ0; 1�! R with the

following properties:

(1) `i D fy Dfi.x; 1/g, ie at time 1 the graphs of the functions give the chosen

pseudoline arrangement.

(2) fi.x; 0/D cix, ie at time 0 the graphs of the functions give a linear pencil.

(3) For any t0 2 Œ0; 1� and any i ¤ j , there is a unique point xx 2 Œ�M;M � such that

fi.xx; t0/D fj .xx; t0/ and an interval .a; b/ � Œ�M;M � containing xx such that

jfi.x; t0/�fj .x; t0/j< ı if and only if x 2 .a; b/, ie the pseudolines remain at

least distance ı apart except in a neighborhood of their unique intersection.

(4) For any t0 2 Œ0; 1� and any x0 2 Œ�M;M � such that jfi.x0; t0/�fj .x0; t0/j< ı,
we have that

ˇ

ˇ

ˇ

ˇ

@fi

@x
.x0; t0/� @fj

@x
.x0; t0/

ˇ

ˇ

ˇ

ˇ

> � WD ı

2M
;

ie whenever the pseudolines become close enough to intersect , their slopes are

quantitatively far enough from each other to ensure isolated transverse intersec-

tions.

Proof Note that when the original pseudoline arrangement f`ig is in standard wiring

diagram form, it does satisfy property (4) of the lemma when t0 D 1. This is because

whenever jfi.x; 1/� fj .x; 1/j< ı, the function fi � fj is linear, and it interpolates a

height difference greater than ı over an interval smaller than 2M, so its slope is greater

than �.
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2ı
ı

Figure 25: Key move used to construct a family of pseudolines, slightly
modified from [57].

It was proven in [57, Proposition 6.4] that any arrangement of pseudolines in standard

wiring diagram form can be related through a family of pseudolines to a pencil. In

that paper, what is needed is that the pseudolines maintain transverse intersections

throughout the family, whereas we need a quantitative measure of this transversality.

We demonstrate here that this stronger condition is in fact satisfied by the family in [57].

We briefly recall the key aspects in the construction of the family and refer the reader

to [57, Proposition 6.4] for further details. This family is graphical and thus can be

written as `t
i D fy Dfi.x; t/g for i D 1; : : : ;m, where `1

i D `i . The key move to modify

the pseudoline arrangement into a pencil through a family is shown in Figure 25; this

figure is a slight modification of that appearing in [57, Figure 8]. This move is used
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Figure 26: First reordering move.

iteratively to break up k±tuple points into a sequence of double points in a particular

order. This procedure can be reversed to form an m±tuple point from a collection of

appropriately ordered double points at the end to obtain a pencil. The order of the

double points can be modified through the moves shown in Figures 26 and 27, by a

classical theorem of Matsumoto and Tits [37].

If a pseudoline arrangement satisfies the transversality property (4) before the move

in Figure 27, then it will continue to satisfy the same property throughout the move,

because the relative slopes remain the same; only the interval where they occur is

translated.

For the move from Figure 26, this can be realized using Figure 25 once in reverse to

form a triple point, and then again in the forwards time direction, but mirrored to break

up the triple point in the opposite manner; see [57, Figure 10]. Therefore it suffices

to ensure that property (4) is satisfied throughout the move shown in Figure 25. Indeed,

throughout this move, whenever a pair of pseudolines have height difference less than ı

(recall that the spacing between the heights of the strands at the left and right ends of

the figure is 2ı), both pseudolines are linear in this interval. The difference of pairwise

slopes whenever jfi.x; t/�fj .x; t/j<ı is always greater than � throughout this family,

because each crossing changes the difference in fi �fj by at least 2ı across the interval,

whereas the interval has length at most 2M. Moreover, this move preserves the property

that there is a unique interval at which a given pair satisfies jfi.x; t/�fj .x; t/j< ı.

Proof of Proposition 8.2 We use the functions ffi.x; t/g, representing a family of

pseudolines through their graphs at a fixed time t , and approximate these by real

polynomials intersecting in somewhat controlled ways. We assume that x 2 Œ�M;M �

and that M � 1. Our final pseudoline arrangement is given by `i D fy Dfi.x; 1/g. Let

x1; : : : ;xn be the points at which fi.xk ; 1/D fj .xk ; 1/ for some i ¤ j .

Figure 27: Second reordering move.
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Let " > 0. Let � D minf1;mini¤j fjxi � xj jgg. In particular, � � 1.

Using the Stone±Weierstrass approximation theorem, choose polynomials zpi.x; t/ such

that
ˇ

ˇ

ˇ

ˇ

@fi

@x
.x; t/� zpi.x; t/

ˇ

ˇ

ˇ

ˇ

<
"�n�1

4n2.2M /n
:

Then by integrating zpi.x; t/ and shifting by a constant, we can find xpi.x; t/ such that

.@ xpi=@x/.x; t/D zpi.x; t/ and

j xpi.x; t/�fi.x; t/j<
"�n�1

4n2.2M /n�1
:

Now for k D 1; : : : ; n let

ai
k D .fi.xk ; 1/� xpi.xk ; 1//

.xk � x1/ � � � .xk � xk�1/.xk � xkC1/ � � � .xk � xn/
:

Let ai
0

D xpi.0; 0/. Define

pi.x; t/D xpi.x; t/C ai
0.t � 1/C ai

1t.x � x2/ � � � .x � xn/

C ai
2t.x � x1/.x � x3/ � � � .x � xn/C � � � C ai

nt.x � x1/ � � � .x � xn�1/:

Then for every k D 1; : : : ; n, we have that pi.xk ; 1/ D fi.xk ; 1/ and pi.0; 0/ D
pj .0; 0/ D 0 for all i and j . In particular, for every multi-intersection point of

the pseudolines `1; : : : ; `m, there is a multi-intersection point of the corresponding

fp1.x; 1/D0g; : : : ; fpm.x; 1/D0g. We will show that the curves 
 t0

1
WDfp1.x; t0/D0g,

: : : ; 

t0

m WD fpm.x; t0/D0g form a pseudoline arrangement at each time t0 (namely

every pair of components intersects exactly once). In particular, this suffices to show

that at t0 D 1, the algebraic arrangement has the same intersections as the smooth

pseudoline arrangement. For this, we use the bounds

jpi.x; t/�fi.x; t/j � jpi.x; t/� xpi.x; t/jCj xpi.x; t/�fi.x; t/j

� ai
0C

n
X

kD1

ai
k.2M /n�1C "�n�1

4n2.2M /n�1

� "�n�1

4n2.2M /n�1
C

n
X

kD1

"

4n2.2M /n�1
�.2M /n�1C "�n�1

4n2.2M /n�1

< ":

We can similarly bound the difference of the derivatives with respect to x,
ˇ

ˇ

ˇ

ˇ

@pi

@x
.x; t/� @fi

@x
.x; t/

ˇ

ˇ

ˇ

ˇ

� ai
0 C

n
X

kD1

ai
kn.2M /n�2 C "�n�1

4n2.2M /n�1
< ":
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Now we want to show that the graphs �t
i WD fy Dpi.x; t/ j x 2 Œ�M;M �g provide

a family of algebraic pseudoline arrangements whose incidences agree with those

of f`ig at t D 1, and agree with the incidences of a pencil at t D 0. We will use the

intersection and quantitative transversality properties of Lemma 8.4 to verify that for

each time t0 2 Œ0; 1�, there is a unique transverse intersection between �t0

i and �t0

j where

pi.x; t0/D pj .x; t0/ for x 2 Œ�M;M �.

Since we could choose " > 0 arbitrarily in the argument above, we now set " D
min

˚

1
3
ı; 1

3
�
	

. For each t0 2 Œ0; 1� and each pair i ¤ j , there is an interval .a; b/ such

that for x 2 Œ�M;M � n .a; b/, we have jfi.x; t0/ � fj .x; t0/j � ı. By the triangle

inequality, for x 2 Œ�M;M � n .a; b/,

jpi.x; t0/� pj .x; t0/j � jfi �fj j � jfi � pi j � jpj �fj j> ı� 2"� 1
3
ı > 0:

Therefore pi.x; t0/¤ pj .x; t0/ for x 2 Œ�M;M �n .a; b/. Now for x 2 .a; b/, we have

that jfi.x; t0/�fj .x; t0/j< ı, so by the last property of Lemma 8.4,
ˇ

ˇ

ˇ

ˇ

@fi

@x
.x; t0/� @fj

@x
.x; t0/

ˇ

ˇ

ˇ

ˇ

> �:

Again by the triangle inequality and the bounds above we get that
ˇ

ˇ

ˇ

ˇ

@pi

@x
.x; t0/� @pj

@x
.x; t0/

ˇ

ˇ

ˇ

ˇ

> 1
3
�:

Since the difference of the derivatives is bounded away from zero, this implies that

there can be at most one value x 2 .a; b/ such that pi.x; t0/D pj .x; t0/.

Because fi.x; t0/ and fj .x; t0/ intersect once in the interval .a; b/ and their distance

is ı at the endpoints a and b, up to switching i and j , we have fi.a; t0/�fj .a; t0/D ıD
fj .b; t0/�fi.b; t0/. Since jpi.x; t/�fi.x; t/j< 1

3
ı and jpj .x; t/�fj .x; t/j< 1

3
ı, this

implies that pi.a; t0/ > pj .a; t0/ and pj .b; t0/ > pi.b; t0/. Therefore there must exist

at least one value x 2 .a; b/ such that pi.x; t0/D pj .x; t0/. Therefore the arrangement

f�t0

i gm
iD1

is a pseudoline arrangement for all t0 2 Œ0; 1�.

Finally, view x as a complex variable. Let B D Œ�M;M � � i Œ�˛; ˛� � DR � C2,

where DR is a disk of sufficiently large radius R so that all jpi.x; t/j < R for x 2
Œ�M;M �� i Œ�˛; ˛�. We consider the locus

˚
Qm

iD1.y � pi.x; t//D0
	

� B for each

t 2 Œ0; 1�, and label its irreducible components as � t
i D fy�pi.x; t/D0 j .x;y/2 Bg. If

˛> 0 is chosen sufficiently small, then all of the intersections where pi.x; t/D pj .x; t/

with x 2 Œ�M;M �� i Œ�˛; ˛� occur at real values of x. Therefore this complexification

of the �t0

i restricted to B gives an algebraic family of curves, which for any t0 2 Œ0; 1�
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is a symplectic line arrangement, at t0 D 0 has the incidences of a pencil, and at t0 D 1

has the incidences of the original pseudoline arrangement f`ig.

Remark 8.5 To prove Proposition 8.2, we started with a particular smooth homotopy

between the given pseudoline arrangement and the pencil; this homotopy was provided

by Lemma 8.4. The same argument applies to an arbitrary smooth graphical homotopy

that has the properties stated in Lemma 8.4. In many examples such as those in Section 7,

a homotopy with the required properties can be easily constructed directly, thus we

can find its polynomial approximation without resolving all multiple intersections into

double points as required by the algorithm of Lemma 8.4. However, we are unable to

do the polynomial approximation while preserving all the incidence relations during the

homotopy (we only guarantee the required incidences agree with those of the homotopy

for t D 0 and t D 1 but not for 0< t < 1).

8.2 Smooth graphical homotopies imitating picture deformations

Even without the algebraic condition, we can define a subclass of smooth graphical

homotopies which produce Stein fillings constrained in a similar way as Milnor fibers.

We now isolate these key properties of a picture deformation needed to detect the

examples of unexpected Stein fillings in Section 7.

We can describe a smooth graphical homotopy with branches C t
k

� C2 via equations

(8-1) fk.x1;x2; t/� y D 0;

where .x;y/ are the complex coordinates on C2, x D x1 C ix2, and t is the real

homotopy parameter. At t D 0, we assume that
Sk

iD1 C 0
k

D C is the germ of a

complex algebraic curve where each branch passes through the origin. In particular,

fk.0; 0; 0/ D 0 for all k. Additionally, any two branches of C have positive total

algebraic intersection number, so any two deformed branches C t
i and C t

j intersect for

small t > 0. Composing the homotopy with a t±dependent translation, we can also

assume that the first two branches always intersect at the origin, C t
1

\ C t
2

D 0.

As before, we will assume that the deformed branches C t
k

are not all concurrent for

t > 0. This means that for t > 0, at least one of the functions fk.0; 0; t/, with k > 2,

is nonzero. We need a nondegenerate version of nonconcurrence:

(8-2)
@rfk

@tr
.0; 0; 0/¤ 0 for some k 2 f3; : : : ;mg and r > 0:
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In other words, if we set

ordt fk D min
n

r W @
rfk

@tr
.0; 0; 0/¤ 0

o

;

then ordt fk is finite for at least some values k D 3; : : : ;m. Intuitively, this condition

says that the branches move away from being concurrent at the infinitesimal level.

In addition to the above nondegeneracy hypothesis, assume that for all t > 0 the

arrangements fC t
1
;C t

2
; : : : ;C t

mg are topologically equivalent. It follows that each

curvetta C t
i has a finite number of intersections with the other curvettas C t

j , i ¤ j ; the

incidence pattern, and the number of intersections, remain constant during the homotopy.

We can add decorations so that all intersection points on
Sm

iD1 C t
i are marked; as for

picture deformations, we allow free marked points as well. Let wk be the total number

of marked points on the branch C t
k

for any t > 0, and set w D .w1; w2; : : : ; wm/. We

will use the term small smooth deformation to refer to a smooth graphical homotopy of

the decorated germ .C; w/ with special properties as above. Small smooth deformations

mimic picture deformations in the smooth category, using smooth graphical instead of

algebraic curvettas: they preserve the topology of the curvetta arrangement and satisfy

the same weight restrictions and positivity of intersection properties.

Proposition 8.6 Lemma 7.5 holds for small smooth deformations of plane curve

germ C with smooth branches.

Proof The proof remains almost the same, but we have to use Taylor approximations

of smooth functions instead of power series for analytic functions.

In complex coordinates .x;y/ on C2, the complex tangent line to Ck at 0 has the form

akx � y D 0 for ak 2 C. Setting x D x1 C ix2 and identifying C2 with R2 � C, the

complex tangent line becomes the 2±plane akx1Ciakx2�y D0. Set bk.t/Dfk.0; 0; t/

and gk.x;y; t/D fk.x;y; t/� akx1 � iakx2 � bk.t/. Since gk.0; 0; t/D 0 for all t ,

we have
@
 gk

@t

.0; 0; 0/D 0

for all 
 ; additionally,

@gk

@x
.0; 0; 0/D 0 and

@gk

@y
.0; 0; 0/D 0:

Equation (8-1) for the deformed branch C t
k

becomes

(8-3) akx1 C iakx2 C bk.t/C gk.x1;x2; t/� y D 0:

Using (8-2), we have r D mink ordt bk.t/ D ordt bk0
.t/ < C1, and write bk.t/ D

tr xbk.t/ for all k.
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We now use the Taylor formula for each function gk.x1;x2; t/ at .0; 0; 0/, writing out

the terms up to r th order, followed by the remainder. This gives

(8-4) akx1 C iakx2 C tr xbk.t/C
X

1<˛CˇC
�r
˛>0 or ˇ>0

@˛CˇC
 gk

@x˛
1
@x

ˇ
2
@t


.0; 0; 0/x˛
1 x

ˇ
2

t


C
X

˛CˇC
Dr
˛>0 or ˇ>0

hkI˛;ˇ;
 .x1;x2; t/x
˛
1 x

ˇ
2

t
 C hkI0;0;r .0; 0; t/t
r � y D 0:

The remainder function hkI˛;ˇ;
 is continuous for each .kI˛; ˇ; 
 /, and we have that

hkI˛;ˇ;
 .x1;x2; t/! 0 when .x1;x2; t/! .0; 0; 0/. Now make a change of variables

x1 D tr x0
1; x2 D tr x0

2; y D tr y0:

It is not hard to see that, as in Lemma 7.5, after the change of variables we can divide

equation (8-4) by tr for t ¤ 0 and take the limit as t ! 0. The result is an arrangement

of nonconcurrent complex lines given by equations akx0 C xbk.0/� y0 D 0. Since we

have assumed that the incidence relations for C t
1
; : : : ;C t

m remain the same for all t ¤ 0,

the same relations must hold for the lines.

As a consequence, small smooth deformations cannot produce the unexpected symplec-

tic line arrangements that gave unexpected Stein fillings in Section 7. In such examples,

to obtain deformations which produce only Milnor fibers, the algebraic condition on

the curves and deformation is less important than keeping the topology of the curves

constant for t ¤ 0. For rational singularities with reduced fundamental cycle, small

smooth deformations give a symplectic analogue of smoothings, picking out the Stein

fillings which are ªclosestº to the singularity and its resolution.

8.3 Smooth graphical homotopies changing topology

The key difference between picture deformations and smooth graphical homotopies in

Table 1 is that the topology of the union of the curves is allowed to change multiple

times during a smooth graphical homotopy Ð for picture deformations, the only change

happens at time 0. In other words, the types of singularities where the curves intersect

can vary during the homotopy.

Here we provide an explicit example to illustrate the topology change in the family of

Lefschetz fibrations. Our example is related to the configuration Q from Example 7.14,

but with a careful choice of weights.
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algebraic deformation

line-bending homotopy

line-bending
homotopy

Figure 28: A long-term homotopy from a pencil of lines to Q.

Example 8.7 Consider the pencil of 11 lines indexed from 0 to 10, with weightsw0 D4,

w1 Dw2 Dw3 Dw4 Dw5 Dw7 D 5, w6 Dw8 Dw9 D 6 and w10 D 8. Observe that

any arrangement of straight lines is related to the pencil by linear deformation (scaling

the constant terms of the linear equations to 0). Using such a deformation, let Qt0
be the

arrangement shown in Figure 28, where `10 is a straight line. Unlike the arrangement Q,

`10 does not pass through the intersection point b of `3, `6 and `9. The corresponding

picture deformation of the weighted pencil gives a deformation of the surface singularity.

We can extend the picture deformation to a smooth graphical homotopy which for

t0 < t < 1 bends the pseudoline `10 towards the intersection `3 \ `6 \ `9, and at t D 1

realizes the configuration Q. (We implicitly use Proposition 5.5 to symplectify the

family of pseudolines to a smooth graphical homotopy of symplectic line arrangements.)
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Figure 29: The Stein filling W is related to the Milnor fibers Wt by the
monodromy substitution as shown.

Now, consider the Stein fillings Wt correspond to the arrangements Qt , 0 � t � 1. For

0 < t < 1, the Stein fillings are diffeomorphic to Milnor fibers of the corresponding

smoothings of the singular complex surface. Indeed, the Lefschetz fibrations given

by Lemma 3.2 are all equivalent, and for t close to 0 the smooth graphical homotopy

is a picture deformation. When t D 1, Corollary 7.17 says that the Stein filling W

arising from Q is not strongly diffeomorphic to any Milnor fiber. The topology of W is

different from that of Wt : as a smooth manifold, Wt for t < 1 is obtained from W by

rational blow-down. The corresponding Lefschetz fibrations are related via the positive

monodromy substitution given by the daisy relation [14]; see Figure 29.

8.4 Violating positivity of intersections and weight constraints

Although we have seen that we can produce many examples of unexpected Stein fillings

using smooth graphical deformations which satisfy positivity of intersections and the

weight constraints, we also can construct examples where a Stein filling arises from

a configuration of curves such that every smooth graphical homotopy from the germ

curvetta violates the weight constraints.

Example 8.8 Consider again the configuration Q, from Example 7.14, of 11 symplectic

lines fLkg11
kD1

. We compare this to a pencil of lines with weights

(8-5) w0 Dw3 D 4; w1 Dw2 Dw4 Dw5 Dw6 Dw7 Dw9 D 5; w8 Dw10 D 6:

These are chosen such that wk D w.Lk/, so they are the minimal possible weights

satisfying the hypotheses of Corollary 7.9. We can show that there is no smooth

graphical homotopy from this pencil to Q satisfying these weight constraints.

Proposition 8.9 The arrangement Q cannot be obtained from the pencil of lines by a

smooth graphical homotopy satisfying the weight constraints as above if we consider

homotopies that are analytic in t or satisfy a nondegeneracy condition such as (8-2).
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This statement follows from the following lemma, which shows that for combinatorial

reasons, there are no ªintermediateº arrangements between the pencil and Q, so if a

homotopy existed, it would have to deform the pencil immediately into an arrangement

with the same incidence relations as Q.

Lemma 8.10 Let Qt D
S10

kD0 Lt
k

be a smooth graphical homotopy such that Q0 is a

pencil of 11 lines , and Q1 D Q (after an appropriate choice of coordinates). Suppose

that all intersections Lt
i �Lt

j are positive , and each Lt
k

has no more than wk intersection

points at all times t 2 Œ0; 1�. Then , the homotopy Qt immediately deforms the pencil

of lines into an arrangement combinatorially equivalent to Q, perhaps after restricting

to a smaller time interval : there exists � � 0 such that Q� is a pencil , and Qt is

combinatorially equivalent to Q for all t 2 .�; 1�.

Proof Any two lines in the pencil have algebraic intersection number 1. Since

intersections remain inside the Milnor ball during the homotopy and remain positive at

all times, throughout the homotopy any two components Lt
i and Lt

j of Qt intersect

exactly once. This allows us to work with Qt as with pseudoline arrangements in

Proposition 7.15.

We examine possible combinatorics of an arrangement with the weight restrictions

as above. The analysis below works at any time t . For each individual line Lk , we

write Lt
k

for its image under the homotopy at time t . For t D 0, the lines L0
k

form a

pencil; for t D 1, we have Q D
S

L1
k

.

In the arrangement Q, the line L0 contains 4 intersection points. These are points

where L0 meets the pencil L1;L2;L3;L4 of vertical lines, the pencil L5;L6;L7 of

horizontal lines, the two diagonal lines L8;L9, and the bent line L10. The weight

condition then implies that Lt
0

can never have more than 4 intersection points. Note

that L3 also has only 4 intersection points, so the same is true for Lt
3
. It follows that

at most one intersection point on Lt
0

can have multiplicity 5 or greater: if there were

two such points, there would be two pencils of 5 or more lines. Even if Lt
3

is in one

of these pencils, it would intersect the lines of the other pencil in 5 or more distinct

points, a contradiction. Next, observe that no line has more than 6 intersection points,

so no pencil can contain more than 6 lines unless all the lines are concurrent. We

conclude that Lt
0

must have at least 3 intersection points for all t , because it is not

possible to distribute the 10 other lines into two intersection points on L0 subject to

these conditions.
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Observe that Qt must be combinatorially equivalent to Q for t close to 1. Indeed, for t

sufficiently close to 1, the four distinct intersection points on L0 remain distinct on Lt
0
.

Similarly, for t close to 1, each of Lt
5
, Lt

6
and Lt

7
have at least 5 distinct intersection

points with the other curves in the arrangement Qt . On the other hand, due to weight

restrictions, each of these curves has at most 5 intersection points. It follows that Lt
5
,

Lt
6

and Lt
7

have exactly 5 intersection points each, and the curves of Qt meeting at

each intersection have the same incidence relations as the corresponding lines in Q.

Thus, the incidences involving Lt
0
, as well as the incidences for the ªgridº intersections

between Lt
1
;Lt

2
;Lt

3
;Lt

4
and Lt

5
, Lt

6
, Lt

7
, are the same as in Q for t close to 1. All

the remaining intersections in Qt are double points, and they cannot merge with other

intersections if t is sufficiently close to 1.

The above argument shows that ft 2 Œ0; 1� W Qt is combinatorially equivalent to Qg is

open. Now, suppose that Qt is equivalent to Q for t > t0. We examine the combinatorial

possibilities for Qt0
, assuming that this arrangement is not a pencil. Consider two cases:

(1) L
t0

0
has 4 distinct intersection points.

(2) L
t0

0
has 3 distinct intersection points.

In the first case, it follows that Qt0
must be combinatorially equivalent to Q. This

is because all the incidence relations valid for t > t0 still hold by taking a limit as

t ! t0. As in the proof of Proposition 7.15, we see that no two intersection points can

collapse (if they do, all the curves must be concurrent). It follows that in this case, all

the incidence relations in Qt0
are the same as in Q.

In the second case, there are 3 intersection points on L0. Again, because all incidences

hold after taking limits as t ! t0, the arrangement Qt0
satisfies all the incidence

relations of Q. Additionally, two of the intersection points on L0 collapse. It follows

from the proof of Proposition 7.15 that in this case Qt0
must be a pencil, contradicting

the assumption that L
t0

0
has 3 distinct intersection points.

We conclude that if Qt is combinatorially equivalent to Q for all 1 � t > t0, and Qt0

is different, then Qt0
must be a pencil.

We have just seen that there are examples of Stein fillings arising from graphical

smooth homotopies which do not satisfy the weight constraint (and such that there is

no possible graphical smooth homotopy which does satisfy the weight constraint). On

the other hand, we do not have examples of Stein fillings associated to a configuration

of graphical curves which cannot be related to the curvetta germ by a smooth graphical
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homotopy satisfying positivity of intersections between the curve components. We

suspect that in fact, there may always be a smooth graphical homotopy maintaining

positivity of intersections.

Question 8.11 Suppose C 0 DfC 0
1
;C 0

2
; : : : ;C 0

mg and C 1 DfC 1
1
;C 0

2
; : : : ;C 1

mg are two

collections of symplectic disks in B4
r such that C t

i intersects C t
j positively transversally

or with a local holomorphic model. Further assume that the boundaries of C 0 and C 1

are isotopic braids in S3
r . Does there exist a continuous family fC t

1
;C t

2
; : : : ;C t

mg of

symplectic disks, all with isotopic boundary braid for t 2 Œ0; 1�, extending this pair of

arrangements, such that for each t , C t
i and C t

i0 have positive intersections?

To prove existence of such a homotopy, one could realize C 0 and C 1 as J0± and

J1±holomorphic curves, respectively, for almost complex structures J0 and J1 which

are compatible with the standard symplectic structure, with appropriate convexity

conditions at the boundary of the ball. One could connect J0 and J1 through a

family Jt of almost complex structures with the same properties, and then try to find

a family C t
i of Jt ±holomorphic disks interpolating between C 0

i and C 1
i for each i .

The difficulty arises in analyzing the moduli spaces of J±holomorphic curves with

appropriately chosen boundary conditions (either using an SFT set-up or a totally real

boundary condition). Compactness issues in the moduli space must be overcome to

obtain a positive answer to Question 8.11. Because such techniques are far beyond the

scope of this article, and the answer to the question is not central to our investigations,

we leave this open.

Remark 8.12 If a smooth graphical homotopy fails to satisfy the weight constraints

or positivity of intersections, we cannot construct a sequence of Stein fillings using

Lemma 3.2. However, we can ªconnectº the singular complex surface .X; 0/ to the

Stein filling W via a family of achiral Lefschetz fibrations; see [20, Section 8.4].

Consider Example 8.8. We will use the homotopy of pseudoline arrangements given in

Example 8.7. For 0< t < 1, the pseudolines `3, `6, `9 and `10 have more intersection

points than the weights (8-5) allow. We need to compensate for the higher weights to

obtain the required open book monodromy, so we place negative free marked points

on these lines: `3, `6, `9 need one negative marked point each to compensate for

one extra positive intersection, and `10 needs 2 negative points. In the open book

monodromy, every negative marked point contributes a negative Dehn twist around the

corresponding hole. It follows from the proof of Lemma 3.4 that with these additional
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negative twists, the resulting open book supports .Y; �/. The corresponding vanishing

cycles determine an achiral Lefschetz fibration. The negative Dehn twists correspond

to a ªnegativeº blow-up in the smooth category (the 4±manifold changes by taking a

connected sum with CP2).
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