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We compare Stein fillings and Milnor fibers for rational surface singularities with
reduced fundamental cycle. Deformation theory for this class of singularities was stud-
ied by de Jong and van Straten (1998); they associated a germ of a singular plane curve
to each singularity and described Milnor fibers via deformations of this singular curve.

We consider links of surface singularities, equipped with their canonical contact
structures, and develop a symplectic analog of de Jong and van Straten’s construction.
Using planar open books and Lefschetz fibrations, we describe all Stein fillings of
the links via certain arrangements of symplectic disks, related by a homotopy to the
plane curve germ of the singularity.

As a consequence, we show that many rational singularities in this class admit Stein
fillings that are not strongly diffeomorphic to any Milnor fibers. This contrasts with
previously known cases, such as simple and quotient surface singularities, where
Milnor fibers are known to give rise to all Stein fillings. On the other hand, we show
that if for a singularity with reduced fundamental cycle, the self-intersection of each
exceptional curve is at most —5 in the minimal resolution, then the link has a unique
Stein filling (given by a Milnor fiber).
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1 Introduction

The goal of this paper is to compare and contrast deformation theory and symplectic
topology of certain rational surface singularities. Using topological tools, we examine
symplectic fillings for links of rational surface singularities with reduced fundamental
cycle and compare these fillings to Milnor fibers of the singularities. Each Milnor fiber
carries a Stein structure and thus gives a Stein filling of the link; however, we show that
there is a plethora of Stein fillings that do not arise from Milnor fibers. Milnor fibers
and deformation theory are studied in the work of de Jong and van Straten [27] for
sandwiched surface singularities (this class includes rational singularities with reduced
fundamental cycle). The main feature of their construction is a reduction from surfaces
to curves: deformations of a surface singularity in the given class can be understood
via deformations of the germ of a reducible plane curve associated to the singularity.
To describe Stein fillings, we develop a symplectic analog of de Jong and van Straten’s
constructions, representing the fillings via arrangements of smooth (or symplectic)
disks in C2. Our approach is purely topological and thus different from de Jong and
van Straten’s; their algebrogeometric techniques do not apply in our more general
symplectic setting. We work with Lefschetz fibrations and open books, referring to
algebraic geometry only for motivation and for the description of smoothings from [27].

Let X € C¥ be a singular complex surface with an isolated singularity at the origin.
For small r > 0, the intersection ¥ = X N S?V =1 with the sphere S?V=! = {|z;|? +
|z2]2 4+ |zn|? = r} is a smooth 3—-manifold called the link of the singularity (X, 0).
The induced contact structure £ on Y is the distribution of complex tangencies to Y,
and is referred to as the canonical or Milnor fillable contact structure on the link. The
contact manifold (Y, £), which we will call the contact link, is independent of the
choice of r, up to contactomorphism.

An important problem concerning the topology of a surface singularity is to compare the
Milnor fibers of smoothings of (X, 0) to symplectic or Stein fillings of the link (Y, &).
A smoothing is given by a deformation of X to a surface (the Milnor fiber) that is
no longer singular. (We discuss smoothings in more detail in Section 2.) Milnor
fibers themselves are Stein fillings of (Y, &), called Milnor fillings. An additional
Stein filling can be produced by deforming the symplectic structure on the minimal
resolution of (X, 0); see Bogomolov and de Oliveira [10]. For rational singularities, this
filling agrees with the Milnor fiber of the Artin smoothing component and need not be
considered separately; see Section 4. An interesting question is whether the collection
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of these expected fillings, taken for all singularities with the same link (Y, &), gives all
possible Stein fillings of the link. In this article, we will use the term unexpected Stein
filling to refer to any Stein filling which does not arise as a Milnor fiber or the minimal
resolution.

There are very few examples of unexpected Stein fillings in the previously existing
literature, none of which are simply connected. In this article, we show that, in fact,
unexpected Stein fillings are abundant, and in many cases simply connected, even
for the simple class of rational singularities with reduced fundamental cycle. These
singularities, also known as minimal singularities (see Kollar [29]), can be characterized
by the conditions that the dual resolution graph is a tree, where each vertex v corresponds
to a curve of genus 0, and its self-intersection v-v and valency a(v) satisfy the inequality
—v-v > a(v). (See Section 2 for more details.) In low-dimensional topology, such
graphs are often referred to as trees with no bad vertices. The corresponding plumbed
3-manifolds are L—spaces, ie they have the simplest possible Heegaard Floer homology;
see Ozsvath and Szabé [51]. In a sense, links of rational singularities with reduced fun-
damental cycle are just slightly more complicated than lens spaces. As another measure
of low complexity, these contact structures admit planar open book decompositions. In
the planar case, the set of Stein fillings satisfies a number of finiteness properties (see
for instance Kaloti [28], Lisi and Wendl [35], Plamenevskaya [54] and Stipsicz [60]),
which makes it rather surprising that these singularities diverge from the expected.

We construct many specific examples of unexpected Stein fillings for rational singulari-
ties with reduced fundamental cycle. Then we show that our examples can be broadly
generalized to apply to a large class of singularities with reduced fundamental cycle:
we only require that the resolution graph of the singularity contain a certain subgraph
to ensure that the link has many unexpected Stein fillings.

Theorem 1.1 For any N > 0, there is a rational singularity with reduced fundamental
cycle whose contact link (Y, En) admits at least N pairwise nonhomeomorphic
simply connected Stein fillings, none of which is diffeomorphic to a Milnor filling
(rel certain boundary data). Examples of such (Y, £n) include Seifert fibered spaces
over S? corresponding to certain star-shaped resolution graphs.

The statement also holds for any rational singularity with reduced fundamental cycle
whose resolution graph has a star-shaped subgraph as above.

More precise statements are given in Section 7. Our first example which admits
simply connected unexpected Stein fillings corresponds to the singularity with resolution
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Figure 1: A resolution graph for a singularity whose link admits simply con-
nected unexpected fillings. (Unlabeled vertices have self-intersection —2.)
Any graph containing this as a subgraph corresponds to a singularity which
also admits simply connected unexpected fillings.

graph in Figure 1. More generally, for every N > 4 we can find NV distinct unexpected
Stein fillings for singularities whose dual resolution graph is star-shaped with at least
2N + 5 sufficiently long legs, the self-intersection of the central vertex is a large
negative number, and the self-intersection of any other vertex is —2.

By contrast, previous results have indicated that for simple classes of singularities,
all Stein fillings come from Milnor fibers or the minimal resolution (there are no
unexpected fillings). This is true for (S*, £q) by Eliashberg [13], for links of simple
and simple elliptic singularities by Ohta and Ono [49; 50], for lens spaces (links of
cyclic quotient singularities) by Lisca [34] and Némethi and Popescu-Pampu [45], and
in general for quotient singularities by Bhupal and Ono [8] and Park, Park, Shin and
Urzda [52]. Theorem 1.1 breaks this pattern and provides many unexpected fillings.
However, we are also able to show that certain classes of rational singularities with
reduced fundamental cycle do not admit any unexpected fillings:

Theorem 1.2 Let (X, 0) be a rational singularity with reduced fundamental cycle with
link (Y, £), and suppose that each exceptional curve in its minimal resolution has self-
intersection at most —5. Then the resolution of (X, 0) is the unique weak symplectic
filling of (Y, &), up to blow-up, symplectomorphism and symplectic deformation.

This theorem proves a symplectic analogue of [27, Theorem 6.21], which establishes a
special case of a conjecture of Kollar, showing that for singularities as in Theorem 1.2,
the base space of a semiuniversal deformation has one component. Thus, they show there
is a unique smoothing, whereas we generalize this to show there is a unique minimal
symplectic filling. To prove Theorem 1.2, we build on the combinatorial argument
of [27] and use mapping class group arguments to establish the symplectic case.

The bound of —5 on the self-intersection of the exceptional curves in Theorem 1.2
cannot generally be improved. Indeed, any singularity whose minimal resolution
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contains a sphere of self-intersection —4 has at least two distinct Stein fillings, because
a neighborhood of the (—4) sphere can be rationally blown down to produce another
filling with smaller Euler characteristic; see Symington [61]. This corresponds to the fact
that the singularity has at least two smoothing components if a (—4) sphere is present;
see Kollar [30]. While our Theorem 1.1 shows there are unexpected fillings in many ex-
amples, we do not cover all examples which fail the hypotheses of Theorem 1.2; there are
many cases where we cannot determine whether or not the link has unexpected fillings.

Theorem 1.2 extends the list of singularities with no unexpected Stein fillings. However,
when complexity of the singularity increases, one should expect the unexpected: as
predicted in Némethi [43], more complicated singularities are likely to have Stein
fillings that do not arise from Milnor fibers. To our knowledge, the only previous
examples of unexpected Stein fillings in the literature are detected by their first Betti
number. By Greuel and Steenbrink [22], Milnor fibers for normal surface singularities
always have b; = 0. An infinite family of Stein fillings with b; # 0 was given in
Akhmedov and Ozbagci [3; 4] for links of certain nonrational singularities; these links
are Seifert fibered spaces over higher genus surfaces. It follows from [3; 4] that most
of these fillings are different from both the Milnor fibers and the resolution of the
singularity. The constructions in these papers use surgeries and produce infinite families
of exotic fillings (which are all homeomorphic but pairwise nondiffeomorphic). Note
that for rational singularities, the first Betti number cannot detect unexpected fillings:
the link is a rational homology sphere, and a homology exact sequence argument shows
that b; = 0 for any Stein filling; see Remark 6.5.

Note that, in general, known results allow us to find many nonrational singularities
whose links have infinitely many Stein fillings. As an example, consider a normal
surface singularity whose resolution has a unique exceptional curve of genus g > 2 with
self-intersection —d, for d > 0. The resolution is the total space of the complex line
bundle of degree d over the corresponding Riemann surface, and the singularity can be
thought of as cone point. If g = %(d —1)(d —2), one of the analytic singularities in
this topological type is the hypersurface (Xy,0) in C3, given by x? + y 4 24 = 0.
For each d > 5, the results of Baykur, Monden and Van Horn-Morris [7] produce
arbitrarily long positive factorizations of the corresponding open book monodromy,
which in turn yields infinitely many Stein fillings for the link (Y, £4); in particular,
there are Stein fillings with arbitrarily large b,. One might hope that most of these
Stein fillings are unexpected: indeed, a hypersurface singularity has a unique Milnor
fiber, and its topology is well understood; see Milnor [39] and Tyurina [64]. However,
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the question is more subtle: because (X, 0) is not (pseudo)taut (see Laufer [32]),
there are infinitely many singularities with the same link (Y, £4). Milnor fibers of
these singularities may yield additional Stein fillings. Describing all such Milnor fibers
seems to be out of reach; conceivably, they may produce all the Stein fillings given
by the arbitrarily long factorizations of [7]. We will discuss related questions in more
detail in Section 4, although we do not have any answers for this case.

Our present work gives the first examples of unexpected Stein fillings for rational singu-
larities, and for the case where the link Y is a rational homology sphere. In the case of ra-
tional singularities, the fillings must be differentiated from Milnor fibers by more subtle
means than by, as all Stein fillings have 51 = 0 in this case. For singularities with reduced
fundamental cycle, the contact link admits a planar open book decomposition; see
Némethi and Tosun [46] and Schonenberger [58]. By Kaloti [28], Plamenevskaya [54]
and Stipsicz [60], it follows that the number of Dehn twists in any positive monodromy
factorization, and thus b, of Stein fillings, is bounded above. This means that we
cannot generate unexpected fillings by arbitrarily long positive factorizations. On the
other hand, even though there is typically an infinite collection of singularities with the
given link, the reduced fundamental cycle hypothesis, together with the de Jong—van
Straten theory, gives us certain control over the topology of all possible Milnor fibers.

In general, comparing Stein fillings to Milnor fillings is a two-fold challenge: clas-
sification is typically out of reach, both on the deformation theory side (smoothings
and Milnor fibers) and on the symplectic side (Stein fillings). In the particular case of
rational singularities with reduced fundamental cycle, two important tools facilitate
the study of fillings. On the algebraic geometry side, de Jong and van Straten reduce
the study of deformations of the surface to certain deformations of a decorated germ
of a reducible singular complex curve C C C2. (The germ C is associated to the
surface as explained in Section 2. For now, we omit the decoration from notation.) The
construction of [27] works for a more general class of sandwiched rational singularities;
in the case of reduced fundamental cycle, the associated plane curve germ has smooth
irreducible components. Thus in this case, C is simply the union of smooth complex
disks C1, Cy, ..., Cy, all passing through 0. The decoration of the germ is given by
marked points, initially concentrated at the origin. To encode deformations of the surface
singularity, one considers 1—parameter —constant deformations of C, where the marked
points are redistributed so that all singularities of the deformed curve C* are marked
(additional “free” marked points are also allowed). Smoothings of the corresponding
singularities are given by picture deformations, where the only singularities of the
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deformed curve are transverse multiple points. While picture deformations are still
hard to classify directly and thus rarely give explicit classification of smoothings, they
do provide a lot of useful information. In certain examples, they allow us to understand
the topology of Milnor fibers and compute their basic invariants.

The following theorem summarizes the results of de Jong—van Straten that we use.
Detailed definitions and precise statements will be given in Section 2.

Theorem 1.3 [27, Theorem 4.4, Lemma 4.7] Let (X, 0) be a rational singularity with
reduced fundamental cycle, and C C C? its decorated germ of a reducible complex
curve such that all the branches Cy, ..., Cy, of C are smooth complex disks. Then
smoothings of (X, 0) are in one-to-one correspondence with picture deformations of C.
A picture deformation gives an arrangement C* of the deformed branches C}, ..., Cy,
s # 0, with marked points that include all the intersections of the branches. The Milnor
fiber Wes of the corresponding smoothing can be constructed by blowing up at all
marked points and taking the complement of the proper transforms of C?, ..., Cp,.

The Milnor fibers described in Theorem 1.3 are noncompact, but a slight modification
yields compact Milnor fillings of the contact link (Y, &) of (X, 0). We consider the
germ C in a small closed ball B C C 2 centered at 0, such that all the branches of C, and
thus all the deformed branches for small s, intersect dB transversely, and B contains
all marked points. To obtain a smooth compact 4—manifold whose boundary is the
link Y, we blow up B at the marked points, take the complement of disjoint tubular
neighborhoods of the proper transforms of C?, ..., C,, and smooth the corners.

In turn, on the symplectic side, contact links of singularities with reduced fundamental
cycle are more accessible because they are supported by planar open books; see Némethi
and Tosun [46] and Schonenberger [58]. By a theorem of Wendl [65], all Stein fillings
of a planar contact manifold are given by Lefschetz fibrations whose fiber is the page of
the open book. In other words, all these Lefschetz fibrations arise from factorizations
of the monodromy of the given open book into a product of positive Dehn twists. In
most cases, such positive factorizations cannot be explicitly classified, but they give a
combinatorial approach to Stein fillings.

To relate the two sides of the story, we generalize the notion of picture deformation and
consider smooth graphical homotopies of the decorated germ C with smooth branches.
A smooth graphical homotopy of C is a real 1-parameter family of embedded disks
C{,....C], such that for r = 0 the disks Clo, ..., C2 are the branches of C, and
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for ¢t = 1, the intersections between Cl.1 and C jl are transverse and positive for all 7, j.
There is a collection of marked points on C|!, ..., C,\, coming from a redistribution of
the decoration on C, such that all intersection points are marked. (See Definition 3.1.)

We prove that just as picture deformations yield smoothings in [27], every smooth
graphical homotopy gives rise to a Stein filling naturally supported by a Lefschetz
fibration.

Theorem 1.4 Let (Y,&) be the contact link of a singularity (X,0) with reduced
fundamental cycle, and let C be a decorated plane curve germ representing (X, 0),
with m smooth components C?, . . ., C,%. For any smooth graphical homotopy, let W
be the smooth 4-manifold obtained by blowing up at all marked points and taking
the complement of the proper transforms of C}, ..., C\. (In the case of a picture
deformation C%, W is the Milnor fiber Ws from Theorem 1.3).

Then W carries a planar Lefschetz fibration that supports a Stein filling of (Y, £). When
W = Wes, the Lefschetz fibration is compatible with the Stein structure on the Milnor
fiber.

The fiber of the Lefschetz fibration on W is a disk with m holes, and the vanishing
cycles can be computed directly from the decorated curve configuration C!, .. ., Cnll.
On (Y, &), the Lefschetz fibration induces a planar open book decomposition, which is
independent of the smooth graphical homotopy of the given decorated germ C.

Each rational singularity with reduced fundamental cycle has a distinguished Artin
smoothing component, which corresponds to a picture deformation called the Scozt
deformation; see Section 4. Applying Theorem 1.4 to the Scott deformation yields
a planar Lefschetz fibration filling (Y, §) where the vanishing cycles are disjoint; see
Proposition 4.1. This gives a natural model for the planar open book decomposition
on (Y, £). This open book is closely related to the braid monodromy of the singularity
of C. Note that we need to consider all singularities topologically equivalent to (X, 0) to
describe all Milnor fillings for (Y, &), since all such singularities have the same contact
link. However, topologically equivalent singularities can be represented by topologically
equivalent decorated germs and produce the same open book decompositions.

The process of computing the monodromy factorization resembles a known strategy for
monodromy calculation for a plane algebraic curve; see Moishezon and Teicher [40; 41].
The necessary information can be encoded by a braided wiring diagram given by the
intersection of C* with a suitably chosen copy of C x R C C?2,
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A reversal of the above constructions allows us to represent Stein fillings of (Y, £) via
arrangements of symplectic curves, as follows. Let W be an arbitrary Stein filling of
the link (Y, £). We fix an open book for (Y, &) defined by the germ C as above. By
Wendl’s theorem, W can be represented by a Lefschetz fibration with the planar fiber
given by the page. The Lefschetz fibration corresponds to a factorization of the open
book monodromy into a product of positive Dehn twists. We reverse-engineer a braided
wiring diagram producing this factorization, and then use the diagram to construct an
arrangement [" of symplectic disks. (In fact, an arrangement of smooth graphical disks
is sufficient for our constructions, but the symplectic condition can be satisfied at no
extra cost.) We require that the disks intersect transversally (multiple intersections are
allowed), and equip I" with a collection of marked points that include all intersections
and possibly additional “free” points. We also show that the resulting arrangement
of disks and points is related to the decorated germ C by a smooth homotopy, which
is graphical in suitable coordinates. (The homotopy moves the disks and the marked
points.) This yields a symplectic analog of Theorem 1.3.

Theorem 1.5 Let (Y,&) be the contact link of a singularity (X, 0) with reduced
fundamental cycle that corresponds to a decorated plane curve germ C. Then any
Stein filling of (Y, &) arises from an arrangement I of symplectic graphical disks with
marked points, as in Theorem 1.4. The arrangement I" is related to the decorated germ C
by a smooth graphical homotopy.

Theorems 1.3 and 1.5 mean that both Milnor fibers and arbitrary Stein fillings of a given
link of rational singularity with reduced fundamental cycle can be constructed in a
similar way, starting with the decorated plane curve germ C representing the singularity.
Milnor fibers arise from algebraic picture deformations of the branches of C, while
Stein fillings come from smooth graphical homotopies of the branches.

Once the comparison of Milnor fibers and Stein fillings is reduced to comparison
of arrangements of complex curves or smooth disks with certain properties, we can
construct examples of arrangements that generate Stein fillings not diffeomorphic to
Milnor fibers. We need arrangements that are related to a particular plane curve germ
by a smooth graphical homotopy but not by an algebraic picture deformation. We
build unexpected line arrangements satisfying this property in Section 7, using classical
projective geometry and a study of analytic deformations. We use these to construct
unexpected Stein fillings; then we verify that they are not diffeomorphic (relative to
the boundary open book data) to Milnor fillings by an argument based on Némethi
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and Popescu-Pampu [44]. This leads to the proof of Theorem 1.1 and other similar
examples.

At first glance, the difference between algebraic and smooth plane curve arrangements
seems rather obvious. However, because we are in an open situation, working with
germs of curves and smooth disks with boundary as opposed to closed algebraic surfaces,
the question is quite subtle. In particular, we cannot simply use known examples of
topological or symplectic line arrangements in CP? not realizable by complex lines.
Indeed, in many cases the smooth surfaces can be closely approximated by high-degree
polynomials, so that a Lefschetz fibration on the corresponding Stein filling can be
realized by a Milnor fiber. We discuss the relevant features of the picture deformations
and smooth (or symplectic) graphical homotopies in detail in Section 8, and explain
what makes our examples work.

It is worth stating that while Stein fillings and Milnor fillings are the same for certain
small families of singularities, the two notions are in fact fundamentally different. A
Milnor filling is given by a smoothing of a singular complex surface, so there is a
family of Stein homotopic fillings of (Y, £) that degenerate to the singular surface. A
Stein filling of the link has no a priori relation to the singular surface and is not part
of any such family. This distinction becomes apparent in our present work, by the
following heuristic reasoning. A picture deformation C® of the decorated germ C gives,
for any s # 0, a Milnor filling Wes, so that all these fillings are diffeomorphic and
even Stein homotopic. The Milnor fillings look the same for all s £ 0 because the
arrangements of deformed branches {C7, ..., C,} have the same topology. By contrast,
if the germ C is homotoped via a family of smooth disk arrangements I', the topology
of the arrangement {I'?, ..., '}, } may change during the homotopy. Under certain
conditions we can construct a family of Lefschetz fibrations W; that includes the given
Stein filling and changes its diffeomorphism type at finitely many discrete times as it
connects to the minimal resolution. In other cases, at some time ¢ the homotopy gives
an arrangement I which produces an achiral Lefschetz fibration, so the 4-manifolds
in the corresponding family do not necessarily carry a Stein structure. We return to
this discussion in Section 8.

One can also ask whether unexpected fillings exist for rational singularities with reduced
fundamental cycle that are not covered by Theorem 1.1 or Theorem 1.2. For certain
additional simple examples, we can use Theorem 1.5 and pseudoholomorphic curve
arguments to verify that there are no unexpected fillings, even though the smoothing
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may not be unique. This approach only works when the germ of the singularity is a
pencil of lines satisfying certain restrictive constraints. Namely, we can consider

(1) arrangements of 6 or fewer symplectic lines, or

(2) arrangements of symplectic lines where one of the lines has at most two marked
points where it meets all the other lines in the arrangement.

Since the boundary behavior of symplectic lines is controlled, we can cap off symplectic
lines in a ball to symplectic projective lines in CP?, together with the line at infinity.
The corresponding arrangements in CP? are shown to have a unique symplectic isotopy
class and are symplectically isotopic to an actual complex algebraic line arrangement
in CP2; see Starkston [59, Lemma 3.4.5]. It follows that every symplectic arrangement
as above can be obtained as picture deformation of a pencil of complex lines, and
therefore, the corresponding Stein fillings are given by Milnor fibers. The links of the
corresponding singularities are Seifert fibered spaces, for which Stein fillings were
completely classified and presented as planar Lefschetz fibrations in [59, Chapter
4]. The line arrangements appearing in that classification precisely coincide with the
symplectic disk arrangements from the perspective of this article. (Here, gluing in the
deleted neighborhood of the disk provides an embedding of the Stein filling into a
blow-up of C2. In [59], gluing on the cap, which augments the configuration of lines
by the additional line at infinity, provides an embedding of the Stein filling in a blow-up
of CP2.) In general, Theorem 1.5 seems to have limited applications to classification
of fillings, due to complexity of arrangements of curves.

It is interesting to note that while de Jong and van Straten describe deformations
of sandwiched singularities, our constructions only work for the subclass of rational
singularities with reduced fundamental cycle. Indeed, a planar open book decomposition
of the contact link plays a key role in our work because we need Wendl’s theorem
to describe Stein fillings. By Ghiggini, Golla and Plamenevskaya [19] the Milnor
fillable contact structure on the link of a normal surface singularity is planar only if the
singularity is rational and has reduced fundamental cycle. This means that our methods
in the present paper cannot be used for classification for any other surface singularities.
However, for future work, we are investigating extensions of these methods to produce
examples of unexpected fillings for more general surface singularities. Finally, recall
that all weak symplectic fillings of a planar contact 3—manifold are in fact given by planar
Lefschetz fibrations, up to blow-ups and symplectic deformation; see Niederkriiger
and Wendl [48]. It follows that Theorem 1.5 and related results apply to describe all
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minimal weak symplectic fillings. However, we focus on Stein fillings and will give all
statements, with the exception of Theorem 1.2, only for the Stein case.

Organization of the paper

In Section 2 we review the definitions of rational singularities with reduced funda-
mental cycle as well as their deformation theory from [27], and prove some of their
properties from the topological perspective. In Section 3 we prove the first direction
of the symplectic correspondence, namely Theorem 1.4. In Section 4 we explain
the smoothing in the Artin component from the perspective of symplectic topology,
discuss the corresponding open books, and also raise some questions related to open
book factorizations and nonrational singularities. In Section 5 we prove the other half
of the correspondence, establishing Theorem 1.5 using braided wiring diagrams and
Wendl’s theorem [65]. In Section 6 we prove Theorem 1.2 and explain how to calculate
algebraic topological invariants of the fillings, which we will use to distinguish our
examples of unexpected Stein fillings from Milnor fillings. In Section 7 we prove
that there are many examples of unexpected Stein fillings for links of rational surface
singularities with reduced fundamental cycle, establishing Theorem 1.1. Finally, in
Section 8 we explain what key differences between picture deformations and smooth
graphical homotopies contributed to the distinction between expected and unexpected
Stein fillings.
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2 Rational singularities with reduced fundamental cycle, their
decorated curve germs, and relation to deformations

In this section, we collect some facts about rational singularities with reduced fundamen-
tal cycle and state de Jong and van Straten’s results on their smoothings [27]. De Jong
and van Straten’s results are in fact more general: they fully describe deformation
theory for a wider class of sandwiched singularities. We state only the results we need.
Some of our statements are slightly different from [27]: we describe their constructions
from the topological perspective and set the stage for our work. Although we aim for
a mostly self-contained discussion, the reader may find it useful to consult [42] for a
general survey on topology of surface singularities. The survey [56] focuses on the
interplay between singularity theory and contact topology and provides very helpful
background. Additionally, a brief survey of the key results of [27] from the topological
perspective can be found in [44].

2.1 Resolutions and smoothings.

We begin with some general facts about surface singularities. Let (X, 0) be a normal
surface singularity. Its resolution 7 : X > Xisa proper birational morphism such
that X is smooth. The exceptional divisor m~1(0) is the inverse image of the singular
point. For a given singularity (X, 0), the resolution is not unique, as one can always
make additional blow-ups; however, for a surface singularity, there is a unique minimal
resolution [31]. The minimal resolution is characterized by the fact that X contains no
embedded smooth complex curves of genus 0 and self-intersection —1 (thus it does not
admit a blow-down).

After performing additional blow-ups if necessary, we can assume that the exceptional
divisor 7 ~1(0) has normal crossings. This means that 7~1(0) = | J,cg Ev, Where the
irreducible components £, are smooth complex curves that intersect transversally at
double points only. A resolution with this property is called a good resolution. For a
surface singularity, a minimal good resolution is also unique [31].

The topology of a good resolution is encoded by the (dual) resolution graph G. The
vertices v € G correspond to the exceptional curves E, and are weighted by the genus
and self-intersection E, - £, of the corresponding curve. We will often refer to £y, - E
as the self-intersection of the vertex v, and use the notation v - v for brevity. The edges
of G record intersections of different irreducible components. Note that the link of the
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singularity is the boundary of the plumbing of disk bundles over surfaces according
to G. In this paper, we focus on rational singularities; in this case G is always a tree,
and each exceptional curve E; has genus 0. (Genus 0 curves are also called rational
curves.) Therefore we will typically omit the genus from the markings on the vertices
and only record the self-intersection numbers.

It is well known that the dual resolution graph of every normal surface singularity is
negative definite, and conversely, every negative definite connected graph corresponds
to some normal surface singularity; see eg [42]. The link of the singularity deter-
mines the dual graph of the minimal good resolution, and vice versa. By a result of
W Neumann [47], the links of two normal surface singularities have the same oriented
diffeomorphism type if and only if their dual resolution graphs are related by a finite
sequence of blow-ups/blow-downs along rational (—1) curves. Moreover, the links of
two normal surface singularities are orientation-preserving diffeomorphic if and only if
their minimal good resolutions have the same dual graphs. Minimal good resolutions
are easy to recognize: if a good resolution is not minimal, its graph will have a vertex
representing a genus 0 curve with self-intersection —1. (This follows from [47]; see
also [19, Lemma 5.2] for a direct proof that any possible blow-downs can be seen
directly from the graph.)

The local topological type of the singularity (X, 0) can be understood from its link Y,
as a cone on the corresponding 3—manifold. We will say that two singularities are
topologically equivalent if they have the same link. It is important to note that the
analytic type of the singularity is not uniquely determined by the link; typically, many
analytically different singularities have diffeomorphic links. It is known that the
canonical contact structures are all isomorphic for different singularities of the same
topological type [11]; thus, the dual resolution graph encodes the canonical contact
structure. Indeed, this contact structure can be recovered as the convex boundary of the
plumbing, according to the graph, of the standard neighborhoods of the corresponding
symplectic surfaces.

We now turn our attention to deformations and Milnor fibers. A deformation of a
surface singularity (X, 0) is any flat map A : (X', 0) — (77, 0) such that A~1(0) = (X, 0).
A versal (or semiuniversal) deformation f: (X, 0) — (B, 0) parametrizes all possible
deformations of (X,0). The base space (B, 0) generally has multiple irreducible
components, which may have different dimensions. It is generally difficult to understand
the space B, its irreducible components, and the dimensions of these components.
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A deformation A : (X, 0) — (D, 0) over the disk in C is called a (1-parameter) smoothing
of (X,0) if X := A~!(s) is smooth for all s # 0. For any smoothing all such X are
diffeomorphic, and we call X the Milnor fiber of the smoothing. For example, for a
hypersurface X = { f(x, y,z)=0} C C3 with £(0) =0 and df (0) = 0, a smoothing of
the singularity at 0 can be given by f:C3 — C, with Milnor fiber X ={ f(x, y,z) =€}
for a small € # 0. Each Milnor fiber is endowed with a Stein structure, and for different
to.t1 € D\ 0, Xy, and Xj, are Stein homotopic (the Stein homotopy is obtained by
choosing a path from s¢ to s; in D which avoids 0).

We need to work with a compact version of the Milnor fiber. For a sufficiently small
radius r > 0, the surface X C C is transverse to the sphere S;¥~!. We fix a ball
BN < CN centered at 0, sometimes called a Milnor ball, and consider X N BY as
the Milnor representative of X. The boundary d(X N Bﬁv ) is the link Y of (X, 0),
and the complex structure on X induces the canonical contact structure £ on Y. For
sufficiently small s 7 0, we can similarly find a compact version of X whose boundary
is contactomorphic to the link (Y, £), which provides a Stein filling of (Y, &).

For a semiuniversal deformation f: (X, 0) — (B, 0) of the surface singularity (X, 0), an
irreducible component B; of B is called a smoothing component of (X, 0) if the general
fiber over B; is smooth. We note that B; may have lower (complex) dimensional strata
where the fibers over these strata are not smooth. For example, these nongeneral strata
could arise from singularities in the component B; or intersections of B; with other
irreducible components of B. Nevertheless, these nongeneral strata have positive com-
plex codimension, so the subset of B; over which the fiber is smooth will be connected.
Any l-parameter smoothing of (X, 0) lies in a unique smoothing component B;.

In general, not every surface singularity admits a smoothing. However, for rational
singularities every irreducible component of B is a smoothing component; see [5] and
also [56, Theorem 4.24]. Moreover, there is one distinguished component, called the
Artin component. This component is associated to the minimal resolution X of (X,0);
see [5] and also [56, Theorem 4.25]. (For rational singularities, deformations of X
come from deformations of (X, 0), and these deformations of (X, 0) form the Artin
component.) We discuss Milnor fibers in this component in greater detail in Section 4.

In this paper, we study Stein fillings for the contact link (Y, &) of a surface singularity,
and compare them to Milnor fillings. As explained above, in general the link determines
only the topological, but not the analytic, type of the singularity. Normal surface
singularities whose topological type admits a unique analytic type are called taut; if
there are only finitely many analytic types, the singularity is pseudotaut. Taut and
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pseudotaut singularities were classified by Laufer [32]: there are several very restrictive
lists for the dual resolution graphs, in particular, the graphs cannot have any vertices
of valency greater than 3. Thus, most singularities are not (pseudo)taut, even if we
restrict to a very special kind that we consider in this paper, rational singularities with
reduced fundamental cycle. If we are to compare Stein fillings and Milnor fillings
of the link, we need to consider Milnor fibers for all possible singularities of the
given topological type. In principle, it is quite possible that topologically equivalent
singularities have nondiffeomorphic Milnor fibers: for example, the hypersurface
singularities x2 + y7 4+ z1%* = 0 and x3 4 y* + 212 = 0 have the same topological type,
but their (unique) Milnor fibers have different b,; see [33] and also the discussion in
[56, Section 6.2]. Fortunately, in the case of reduced fundamental cycle we will have
some control over the topology of Milnor fibers for different analytic types, thanks to
the de Jong—van Straten construction.

2.2 Sandwiched singularities, extended graphs, and decorated germs

Definition 2.1 (X, 0) is a rational singularity with reduced fundamental cycle if it
admits a normal crossing resolution such that all exceptional curves have genus 0, the
dual resolution graph G is a tree, and for each vertex v € G, the valency a(v) of v and
the self-intersection v - v satisfy the inequality

2-1) a(v) <—v-v.

It follows from (2-1) that the graph as above can only have vertices with self-intersection
—1 as the leaves of the tree. Blowing down all such vertices, we obtain a graph that
still satisfies (2-1) and represents the minimal resolution of (X, 0).

To explain the terminology of Definition 2.1, we recall the definition of a fundamental
cycle. For a given resolution, consider the set of divisors

{Z =) myEy

veG
This set has a partial order, defined by Y my Ey > > ny Ey if my > ny, for all v. There
is a minimal element with respect to this partial order, denoted by Z,;, and called

Z >0, and Z- E, <0 for all Ev}.

Artin’s fundamental cycle. The resolution dual graph is connected, different components
E, intersect positively, and Z > 0, so any element in the set has m, > 0. Therefore,
Zmin = Y_peg Ev- It is easy to see that (3, cg Ev) - Ey <0 for all Ey if and only if
condition (2-1) is satisfied. In this case Zmin = D, Ev. and since each exceptional
curve enters with multiplicity 1, we say that the fundamental cycle Zy;, is reduced.
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In [27], de Jong and van Straten work with sandwiched singularities. By definition, a
sandwiched singularity (X, 0) is analytically isomorphic to the germ of an algebraic
smgular surface which admits a birational morphism to (C2,0). For a resolution
X > X, we get a diagram (X 771(0)) --> (X, 0) -=> (C?2,0). In particular, X is
sandwiched between two smooth spaces via birational maps. Sandwiched singularities
are rational and can be characterized by their resolution graphs as follows, by translating
the sandwiched condition. The graph G is sandwiched if we can add to it a number
of edges and their end vertices with self-intersections (—1), so that the resulting
graph G’ gives a plumbing whose boundary represents S>. In other words, G’ gives a
configuration of rational curves that can be blown down to a smooth point. The choice
of the graph G’ is not unique. It is not hard to see that every rational singularity with
reduced fundamental cycle is sandwiched. In Proposition 2.2 below, we discuss in
detail the construction of the possible graphs G’ for this case.

Any sandwiched singularity can be associated to a (germ of a) complex plane curve
singularity, constructed as follows. The choice of the graph G’ corresponds to an
embedding of the tubular neighborhood of the exceptional set of the resolution X into
some blow-up of C2 This blown-up surface also has a distinguished collection of
(—1) curves, so that the configuration of these (—1) together with the exceptional set
can be completely blown down. For each distinguished (—1) curve, choose a transverse
complex disk (called a curvetta) through a generic point. Now, contract the curve
configuration corresponding to G’. The union of the curvettas becomes a germ of a
reducible curve C in C2 with components passing through 0. Let C;,i = 1,2,...,m,
be the irreducible components of C; following [27], we also refer to C; as curvettas.
We emphasize that only the germ of C at the origin is defined; when we use the notation
C C C2, we only consider a small neighborhood of 0 € C2. In particular, we are only
interested in the singularity of the reducible curve C at 0. In this paper, we will focus
on the case where the components C; are smooth at 0, so that locally C; is a smooth
disk. This suffices to study rational singularities with reduced fundamental cycle, as
we will soon see. This disk may be locally parametrized by a high-degree algebraic
curve in C2, but the global topology of this curve is unimportant to us, because we
only use the part of the curve in a neighborhood of the origin.

Each curvetta C; comes with a weight w; = w(C;j), given by the number of exceptional
spheres that intersect the corresponding curve in the blow-down process from G’ to
the empty graph. In other words, w; is the number of blow-down steps that affect the
corresponding curvetta before it becomes C;. The weighted curve (C, w) is called a
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1®,

Figure 2: An example of a sandwiched singularity and a choice of corre-
sponding curvettas (green arrows). The first diagram shows the resolution
curves together with extra (red) (—1) exceptional curves attached. Then
there is a sequence of blow-downs. We keep track of the weights w(C;) in
rectangular boxes next to each green curvetta arrow. The multiplicities of
tangencies between bunches are recorded in blue circled numbers.

decorated germ corresponding to (X, 0). An example of this process, and the resulting
decorated germ for the given singularity, is shown in Figure 2.

It is convenient to start the process with the minimal normal crossings resolution
of (X,0). For rational singularities with reduced fundamental cycle, it is easy to
see that the graph of the minimal normal crossings resolution has no (—1) vertices.
(From (2-1), only vertices of valency 1 can have self-intersection —1 in any resolution
graph, and these can be blown down to get the minimal graph.) If G has no (—1)
vertices, then all the (—1) vertices of G’ are those that come from the extension: each
(—1) vertex is a leaf of G’, connected by an edge to a unique vertex of G. The transverse
curvetta slices are added to all these (—1) vertices.

In what follows, we will only consider decorated germs that arise from the above
construction. (These are called standard decorated germs in [44]. Some statements
in [27] allow for more general decorated germs.)
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The singularity (X, 0) can be reconstructed from (C, w). We iteratively blow up points
infinitely near 0 on proper transforms of curvettas Cy, . .., C until we obtain a minimal
embedded resolution of C. Then we perform additional blow-ups at the intersection
of C; with the corresponding exceptional curve, so that the sum of multiplicities of
proper transforms of C; at the blow-up points is exactly w;. The union of the exceptional
curves that do not meet the proper transforms of the curvettas is then contracted to
form (X, 0).

We emphasize that C depends on the choice of the graph G’, ie on the particular
extension of the resolution graph of (X, 0) by (—1) curves. Any of these choices can
be used to classify Milnor fillings as in [27]. In general, the branches of C are singular
curves. However, if (X, 0) is a rational singularity with reduced fundamental cycle, an
appropriate choice of G’ ensures that C has smooth branches. We will always work
in this setting and only consider decorated germs with smooth components. In the
following proposition, we establish a necessary and sufficient condition for smoothness
purely in terms of the graph G’. Although similar questions were studied in [27; 26],
we formulate the condition here in a way that seems simplest from the topological
point of view. In the next section, we will reinterpret the statement for open book
decompositions.

Proposition 2.2 Let the graph G’ be a negative definite plumbing tree, and P’ the
corresponding plumbing of disk bundles over rational curves. Suppose that the bound-
ary of the plumbing P’ is S3; equivalently, G’ encodes a configuration of rational
curves that can be blown down to a smooth point. For each (—1) vertex, let C i be a
complex disk intersecting the corresponding (—1) sphere in P’ transversally once. Let
Ci,...,Cy be the images of 51, - ém under blowing down the configuration G’.
Then the following are equivalent:

(1) Each Cj is smooth.

(2) There exists exactly one vy € G’ such that

Vg Vo +a(vy) = —1,

Vv +a(v) =0 forall v # vy,
(We will often refer to v(’) as the root.)

As before, v' - v’ denotes the self-intersection of a vertex v’ € G’, and a(v’) its valence.
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Proof Consider C = Cy U --- U Cp, with smooth branches C;. We obtain G’ as
described above, by blowing up repeatedly at intersections of the C; with each other
and with the exceptional divisors. We stop when the resulting configuration of curves
has the following property: if an exceptional divisor intersects a proper transform @
then it is disjoint from all other proper transforms C 7, J' # Jj (in particular, different C i
are disjoint from each other), and the total number of blow-ups performed on (proper
transforms of) C; is exactly w;, the weight on C;.

We will show that G’ has the structure of a rooted tree by repeatedly applying the
following procedure. For the root vy, we will have v - vy + a(vy) = —1, and for all
other vertices v’ # vy, v"- v’ +a(v’) = 0. We show that this condition is satisfied at
every stage of the process.

Blow up at the common intersection point of all Cj. The resulting exceptional divisor
(and its future proper transforms) gives the root of the tree. If proper transforms
of all C; still have a common point, we repeatedly blow up at the same point until
some of the proper transforms C 7 become disjoint from each other. (With a slight
abuse of notation, 5]' will denote the proper transform of C; at any stage of the
process.) Additional blow-ups create a chain of exceptional (—2) spheres with the
root at one end and the most recent exceptional (—1) sphere at the other end. Up to
relabeling, we can assume there are distinct intersection points C 1N---N éal = p%,
5a1+1 n-- -05@ = p;, cee, 6“}1 N---NCp :prl1 lying on the most recently introduced
exceptional divisor Bj.

Assuming m > 1, since all the C j intersect By, we must blow up exactly once at each pl.1
to make them all disjoint from B;. Here we use smoothness of the curvettas C; (and
thus of their proper transforms) to ensure that they become disjoint from B; after a
single blow-up: every point on C; has multiplicity 1, thus C ' intersects each exceptional
divisor with multiplicity at most 1. Note that once C Loeees Cp are all disjoint from By,
we will not blow up at any point on B; again, therefore at this stage we can already
compute the self-intersection and valency of the corresponding vertex in G’. The self-
intersection of the proper transform of B; in G’ (which we will also denote by Bj) is
—rq— L. If By is not the root, it has valency r; + 1, and if it is the root it has valency 7.
Thus, condition (2) is satisfied for the vertex of G’ given by B;. All the other vertices in
the graph at this stage are either (—2) spheres in a chain of valency 2 (if not the root) or
valency 1 (if the root), or newly introduced (—1) vertices of valency 1, so condition (2)
is satisfied at this stage.
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In order to obtain G’ we repeat this process iteratively, replacing the first exceptional
sphere with the exceptional sphere obtained by blowing up at some p;. (The points
p%, ey pr1 , were introduced above; after blowing up at each of these new points,
the new exceptional curves intersect the proper transforms of the curvettas at points
p%, ey przz; similarly, points pf, ..., p; are the intersections that appear at step s.)
Each time, condition (2) is preserved, since each curve C; intersects each exceptional
divisor with multiplicity at most 1. Repeating sufficiently many times, eventually all of
the C 7 will intersect only disjoint exceptional spheres. After potentially blowing up
more times at the intersection of C 7 with its intersecting exceptional sphere until the
number of blow-ups is w;, we obtain G’. (The additional blow-ups create a chain of
(—2) vertices connecting to the last (—1) vertex.) Since condition (2) is preserved at
each step of this procedure, G’ satisfies condition (2).

Conversely, if G’ satisfies condition (2), the only (—1) vertices are leaves of the rooted
tree (valency 1). Blowing down a leaf preserves condition (2) because it decreases the
valency of the adjacent vertex by 1 and increases the self-intersection by 1. The C ' are
disks which transversally intersect the (—1) leaves of G’ with multiplicity 1. Therefore
each C ' intersects each exceptional divisor with multiplicity at most 1. This property is
preserved under blowing down a (—1) leaf, because a multiplicity 1 intersection of C i
on a (—1) leaf becomes a multiplicity 1 intersection on the adjacent exceptional divisor
after blowing down. Blowing down an exceptional divisor which intersects C i with
multiplicity 1 preserves smoothness of C 'i. Therefore after blowing down all leaves
of G’ and finally the root, the resulting proper transforms C; are still smooth. a

Remark 2.3 Another way to see that G’ must satisfy condition (2) is to consider
what happens if G’ has a vertex with a(v’) > —v’-v’. After blowing down, eventually
the vertex v’ will correspond to a (—1) sphere with valency > 2, with at least one C i
intersecting it with multiplicity at least 1. (The existence of the intersecting C j comes
from the fact that intersections are transferred under blow-down to the adjacent ver-
tices. Initially, every (—1) sphere in G’ has an intersecting curvetta. Each time that
a (—1) sphere is blown down, the curvetta intersection is transferred to the adjacent
vertices, whose self-intersections are correspondingly increased. For v’ to reach self-
intersection —1, one must have blown down (—1) vertices adjacent to it. Throughout
the process of blowing down, we maintain the condition that (—1) vertices always have
at least one intersecting curvetta.) After blowing down the (—1) sphere of valency > 2,
we obtain a point where at least two exceptional divisors intersect at the same point

Geometry & Topology, Volume 27 (2023)



1104 Olga Plamenevskaya and Laura Starkston

1 -
<

Figure 3: Two possible choices to add —1 curves to the same resolution graph,
resulting in different curvettas, one with smooth components and another
with a singular (cuspidal) component.

with a 51-. Eventually one of these exceptional divisors will be blown down, forcing
C; to intersect the other exceptional divisor with multiplicity > 2. Once this other
exceptional divisor is blown down, the proper transform of C; becomes singular.

Note that it is possible to have different choices of extension for G, such that one
choice yields smooth curvettas and another yields singular curvettas; see Figure 3 for
an example. In other words, some sandwiched resolution graphs G have extensions
both to a graph which does satisfy condition (2) of Proposition 2.2 and to a graph which
does not. For our classifications, we will always work with a choice of extension of G
which does satisfy condition (2) and the corresponding smooth curvettas.

We can also deduce some basic numerical properties from Proposition 2.2. It turns out
that for a rational singularity (X, 0) with reduced fundamental cycle, the multiplicity
of the singular point determines the number of choices for the defining plane curve
germ C with smooth branches, as well as the number of curvetta branches in each such
germ. Assuming that (X, 0) C (CV,0) for some large N, recall that the multiplicity
mult X can be defined geometrically as the number of intersections #X N L of X with
a generic complex (/N —2)—dimensional affine subspace L C C, passing close to the
origin. For rational singularities, multiplicity is a topological invariant, which can be
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computed from the resolution graph by the formula mult X' = _Zr%mﬁ see eg [42]. The
two statements below are also discussed in [27] from the algebrogeometric perspective,

but they follow easily from the combinatorics of the resolution graph.

Proposition 2.4 Let (X, 0) be a rational singularity with reduced fundamental cycle,
and C a plane curve germ corresponding to (X,0). If C has smooth branches, the
number of branches is given by mult X — 1.

Proof The minimal normal crossings resolution graph G for (X, 0) has no (—1)
vertices. Then G is obtained from (any choice of) the graph G’ by deleting all vertices
v’ € G’ with v'-v' = —1. The curvetta branches are obtained by putting transverse
slices on each (—1) sphere v’ € G’, thus the number m of curvetta branches is given
by the number of the (—1) vertices in G’. By condition (2) of Proposition 2.2,

Z @V +a@)) =-1.

v'eG’
Again by condition (2), each (—1) vertex has valency 1 in G’, so each addition of a
(—1) vertex to G increases the sum ), . (v-v +a(v)) by 1, thus we have

Z(v-v—i—a(v)) = Z v +al))-m=-1—m.

veG v eq’
Finally, we relate this quantity to the fundamental cycle Z;,, which is the sum of
homology classes of the exceptional divisors, Zmin = Y ,cq Ev:

Z(v-v—{—a(v)):ZEﬁ—l—ZEv‘Eu =Z2. .

veG v v#u

Som=—1-—22

ip = mult X' —1. |
Decorated germs representing a given (X, 0) are obtained from extensions G’ of the
resolution graph G as above. These can be thought of as combinatorial choices for
the decorated germ; in the next lemma, we compute the number of such extensions.
Then, we show that the combinatorial choice, namely the choice of vertices of G on
which the additional (—1) vertices are placed to form G’, determines the topological
type of the resulting decorated germ. By definition, the topological type of a germ
of a singular curve C C C? is given by its link, which is the intersection of C with a
sufficiently small 3—sphere S3 C C? centered at the origin. For a decorated germ, we
additionally record the weights of the curvetta components. Later on, we will see that
the different choices of G’ correspond to natural different choices of data on the open
book decomposition we construct in Section 4.
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Lemma 2.5 Up to topological equivalence, there are at most mult X' choices of plane
curve germs with smooth branches representing (X, 0).

Proof We first show that there are at most mult X = —Z I%lin possible combinatorial
choices for germs with smooth components representing (X, 0). These correspond
to choices of extensions of G to G’ by adding (—1) vertices. If we have a minimal
graph G with an extension G’ satisfying condition (2) of Proposition 2.2, then we can
add another (—1) sphere leaf adjacent to the root to get a new graph G” so that the
valency of each vertex of G” equals its negative self-intersection. All the other possible
extensions of G to a graph satisfying condition (2) can be obtained by deleting one
of the (—1) vertices of G”. (Indeed, adding a (—1) vertex to any other position in G
would violate condition (2).) Since G’ has (mult X — 1) vertices of self-intersection —1,
we know that G” has exactly mult X vertices with this property, one of which must
be deleted. Note that because of potential symmetries in the graph G”, some of the
choices of G’ will result in isomorphic germs C, but mult X gives an upper bound on
the number of combinatorially different curvetta configurations.

Once the choice of the extension G’ of the graph G is made, the topological type of
the decorated germ C can be read off directly from G’. In particular, we can compute
the relevant numerical invariants, such as linking numbers between the components of
C C C2 As before, we assume that G satisfies condition (2) of Proposition 2.2, so that
C has smooth branches.

Following [27, Definition 4.14], we define the length and overlap functions on the
vertices of the graph G. For vg, v; € G, let the length /(vg, v;) be the number of vertices
in the path from v; to v in the tree G (including endpoints). For v, v;, v; € G, let the
overlap p(v;, vj; vg) be the number of common vertices in the paths from v; to vo and
vj to vg.

Let vy € G C G’ be the root. Now, if the curvetta C; comes from the transverse slice
on a (—1) sphere corresponding to a leaf of G’, and this leaf is attached to the vertex
v; € G, then the blow-down process gives w(C;) = 1 4 /(vg, v;). If C; and C;j are the
curvettas at the (—1) vertices attached to v; and v;, the order of tangency tang(C;, C;)
between the corresponding branches of C is given by tang(C;, Cj) = p(vi, vj; vo).

The topological type of C C C? is described via its link, given by the intersection CN S3,
where S3 is a small sphere centered at the origin. As each of the curvettas Cy, ..., Cy,
is a smooth disk, the intersection of C; with S3 is an unknot; C N S? is a link with
m components C; N S 3. ...,Cnn 83, each of them unknotted. The components of
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C; N S? are oriented as boundaries of C; N B*. Then, the linking number between two
link components equals the order of tangency between the corresponding curvettas,

k(C; N S?,C; N S?) = tang(C;, Cj).

The topological equivalence of germs follows from the above calculations, by con-
struction of the links of the germs that we consider; it can also be seen more directly.
Any decorated germ for (XX, 0) comes, after a blow-down, from a particular placement
of the transverse curvetta slices on the (—1) curves corresponding to vertices that we
added to G to from the graph G’. This gives a configuration of curvetta slices together
with the curve configuration corresponding to the graph G’, embedded in a blow-up
of C2 Clearly, for two different choices of the generic curvetta slices for the same
graph G’, the two configurations of curvettas+curves can be identified by an ambient
homeomorphism (in the blown-up C?2). After the blow-down, the induced ambient
homeomorphism will identify the links of the resulting germs, showing that the germs
are topologically equivalent. We already know that the weights will be same, so the
decorated germs have the same topological type. O

The following observation will also be useful later. Let #(C;) = max; tang(C;, C;) be
the maximal order or tangency between C; and another branch of C. Then it follows that

(2-2) 1(Ci) <w(Cy)

for all curvettas C;.

Remark 2.6 De Jong and van Straten [27] study deformation theory of the surface
singularity (X, 0); in particular, they are interested in the analytic type of the singularity
and its deformations. To encode the analytic type of (X, 0), one needs the analytic
type of the corresponding decorated germ C. By contrast, our focus is on the contact
link (Y,£) of (X,0) and its Stein fillings. A priori there may be another surface
singularity (X’,0) whose link is Y, and by [11], the singularities (X, 0) and (X", 0)
have contactomorphic links. By Neumann’s results [47], all singularities with the
same link have the same dual graph of minimal resolution, so both (X, 0) and (X", 0)
correspond to the same minimal graph G. (Note that by [32], if G has any vertices of
valency greater than 3, the analytic type of the singularity is not uniquely determined,
so indeed (X, 0) and (X, 0) may be analytically different in the above scenario.) We
can compare the decorated germs that describe singularities (X, 0) and (X’, 0): any
choice of the decorated germ for (X, 0) arises from an extension G’ of the graph G and
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the corresponding placement of the curvettas. Although analytically the exceptional
divisors of resolutions of (X, 0) and (X’, 0) may be different, topologically they look
the same, and we can choose the same extension G’ and the corresponding placement
of curvettas for (X', 0). By the argument above, the resulting germ for (X, 0) will
be topologically equivalent to the germ for (X, 0), even if the two germs may be
analytically different. This fact will play an important role in the proof of Theorem 7.8.
In particular, the two germs will have the same number of branches, the same weights
and the same pairwise orders of tangency for the branches.

Of course, if we only know the combinatorics of the graph G, we lose analytic in-
formation on the plane curve germ C (such as, for example, the angles between its
transverse branches), but we will never need the analytic information. The contact
3—manifold (Y, £) is fully determined by the weights and pairwise orders of tangency
of the branches of the decorated germ C.

2.3 De Jong-van Straten theory: Milnor fibers from germ deformations

The main result of [27] says that deformations of the sandwiched singularity can be
encoded via deformations of the germ (C, 0) satisfying certain hypotheses. We will
state a special case of their theorem that will be relevant to us, but first we introduce
some notation.

We have defined the weights as positive integers w; associated to the irreducible
components (curvettas) C; of C. It will be convenient to interpret the weight w; as a
collection of w; marked points concentrated at 0 € C;. More formally, we consider a
subscheme w (i) of length w; at 0 in C;. The normalization C of the reducible curve C
with smooth components is given by the disjoint union of the components C;; thus
we can think of the decoration w = (wq, w,, ..., Wy) as a subscheme of C, with
components w(i) C C; as above. (We use the notation C for normalization here and in
the discussion below. Similar notation C 7 had a different meaning in Proposition 2.2,
though in a sense, both uses refer to resolutions of the curve C; C C. This should not
lead to confusion as normalization is only mentioned in the next few paragraphs.)

De Jong and van Straten prove that for sandwiched singularities, 1—parameter smooth-
ings correspond to picture deformations, which are 1—parameter deformations of the
germ C together with the subscheme w. In fact, de Jong and van Straten describe all
deformations of (X, 0), but in this paper we are only interested in smoothings. Since
we do not use their results in full generality, we omit some technical points and give
simpler versions of the definitions and statements from [27].
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Informally, picture deformations look as follows. The deformation C* is given by
individual deformations C; of the curvetta components, so that the deformed germ C*
is reduced and has irreducible smooth components C; corresponding to the original
curvettas. (In the case of plane curves, any deformation is given by unfolding, ie by
deforming the defining equation of the curve.) The deformation is required to eliminate
tangencies between the curvettas, so that for s # 0 all deformed curvettas C; intersect
transversally. Thus, the only singularities of the deformed germ C* = (J; C/ for
s # 0 are transverse multiple points. For s = 0, the decoration w consists of wj;
marked points on the curvetta C; for each i = 1,...,m, concentrated at 0. During
the deformation, these marked points move along the curvettas, so that for s # 0, the
deformed curvetta C; contains exactly w; distinct marked points, and all intersection
points C; N C js for j # i are marked.

More formally, deforming the curvettas C; individually means that we consider 6—
constant deformations of the reducible germ C = _J; C;. Intersection points between
deformed curvettas define the total multiplicity scheme m* on the normalization C* for
s # 0; if all intersections are transverse, the corresponding divisor is reduced, ie each
point enters with multiplicity one. The requirement that all intersection points are
marked means that the deformation wS C C x S of the decoration w must satisfy the
condition m* C w*. The requirement that all marked points be distinct on each C}
for s # 0 is the same as saying that the divisor given by w7 is reduced for s # 0. The
condition m* C w* then implies automatically that all singularities of the deformed
germ C* are ordinary multiple points, ie the deformed curvettas intersect transversally.

Definition 2.7 A picture deformation C5 of the decorated germ (C, w) with smooth
components C1, ..., Cy, over a germ of a smooth curve (S, 0) is given by a §—constant
deformation CS — S of C and a flat deformation wS C €5 = C x S of the scheme w
such that for s # 0, the divisor w* is reduced, the only singularities of C* are ordinary
multiple points, and m® C w*.

Strictly speaking, w*S lives in the normalization, but for s # 0 we can think of w* as
the set of marked points {p1, p2,..., pn} C Ure, C} such that all intersection points
cince js are marked. We say that p; is a free marked point if it lies on a single C;
(away from the intersections). (Note that these points, and the number of such points 7,
can generally be different for different picture deformations.)

With these definitions in place, de Jong and van Straten’s results on smoothings are as
stated in Theorem 1.3: every picture deformation of (C, w) gives rise to a smoothing
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of the corresponding surface singularity (X, 0), and every smoothing arises in this
way. Specifically, the Milnor fiber of the smoothing that corresponds to the picture
deformation C* = | J/Z, C} C C? with marked points {p{, ps. ..., pn} is obtained by
blowing up C? at all points p;, pa,..., pn and taking the complement of the proper
transforms of Cls voo, Gy in C# #7=1 CP2 Picture deformations of C generate all
Milnor fibers, that is, each Milnor fiber of (X, 0) arises from some picture deformation
of (X, 0) via this construction. Note that Theorem 1.3 makes no claim of a precise
one-to-one correspondence between picture deformations and smoothings: one expects
that isomorphic smoothings only come from isomorphic picture deformations (in the
appropriate sense), but this has not been established. In certain cases, one can distinguish
Milnor fibers by their topological invariants, or by comparing incidence matrices of the
corresponding curvetta arrangements; see [27, Section 5] or [44]. We discuss this in
Section 6 and use a similar technique to distinguish Stein fillings.

Remark 2.8 To be more precise, we need to consider the compact version of the
construction of Milnor fibers, as follows. Fix a closed Milnor ball B C C? for the germ C.
For sufficiently small s # 0, the deformed arrangement C* will have a representative in B
which meets B = S? transversally, and all marked points py, ..., pn are contained
in the interior of B. Let B be the blow-up of B at py,..., py. Because in the picture
deformation all the intersections between deformed curvettas are transverse, the proper
transforms of Cls ,....Cpin B will be disjoint smooth disks. Let T7,..., Ty, be
pairwise disjoint tubular neighborhoods of these proper transforms. As a compact
4—manifold with boundary, the Milnor fiber that corresponds to C* is given by W =
B \ UL, T;, after corners are smoothed, and the Stein structure is homotopic to the
complex structure induced from the blow-up.

3 Graphical deformations of curvettas yield fillings

Let (X, 0) be arational surface singularity with reduced fundamental cycle, and consider
the associated decorated germ (C, w) of a reducible plane curve as in the previous
section, with smooth branches Cy, C,, ..., Cy, equipped with weights. Our goal is to
build an analog of [27] in the symplectic category: it turns out that Stein fillings of the
link of (X, 0) can be obtained from certain smooth homotopies of the branches of the
decorated germ C. We will restrict to graphical homotopies to streamline our definition
and constructions. (In our setting, one can always choose an appropriate coordinate
system, so the graphical hypothesis leads to no loss of generality.)
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Fix a closed Milnor ball B for C as in Remark 2.8, so that each branch C; intersects dB
transversally. If B is small enough, the complex coordinates (x, y) in C? can be chosen
so that all branches Cy, C,,..., Cy, are graphical in B: C; = {y= fi(x)}. We will
consider smooth graphical arrangements I' = {I'y, I, ..., [';,} such that each I7; is
a smooth graphical disk, so that I'; = {y =g;(x)} for a smooth function g;, and T’
intersects 0B transversally.

The following definition is given for homotopies of the branches defined for a real
parameter ¢ € [0, 1]. Sometimes we will use the same notion for homotopies defined
in a parameter interval ¢ € [0, ], with obvious notational changes. We assume that
coordinates (x, y) are chosen as above.

Definition 3.1 Let (C, w) be a decorated plane curve germ, with weights w; = w(C;)
of its smooth graphical branches Cy, Cs, ..., Cy. A smooth graphical homotopy of
(C, w) is a smooth homotopy Ci’ of the branches of C, so that C = U;-"zl Cl.o, together
with distinct marked points p, k = 1,...,n (for some n), on U;"zl Cl.l. We assume
that in a Milnor ball B the following conditions are satisfied:

(1) Each branch is given by C/ = {y= f/(x)} for a function f/(x) = fi(x.1)
smooth in (x,7), and C/ intersects 0B transversally for all 7.

(2) Intersections between the branches remain in the interior of B during the homo-
topy.

(3) Attt =1, all intersections of any two branches Ci1 and C jl are positive and
transverse.

(4) Att =1, all intersection points on each branch Cl.1 are marked, and there may
be additional free marked points. Each free point lies in the interior of B on a
unique branch Cil. The total number of marked points on Cl.1 is w;.

The choice of Milnor ball B is unimportant as all our considerations are local. For
brevity, we will often omit B from notation and talk about decorated germs and their
homotopies in C2. In that case, we implicitly work in a fixed neighborhood of the origin,
and assume that all intersections between branches which begin in this neighborhood
remain in this neighborhood during the homotopy, and thus the components of the
arrangement have controlled behavior near the boundary of the neighborhood.

Conditions (1) and (2) are automatically satisfied for “small” homotopies. Indeed, if
tisclose to 0, Cl.t is C1—close to C;. The reducible curve C with smooth branches has a
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finite set of tangent directions at the origin, and the branches Ci’ will have tangent spaces
lying in a small neighborhood of these directions in the Grassmannian of symplectic
planes in C2. Therefore we can choose coordinates so that the fiber of the projection
avoids these directions. We only include the intersection of the branches of C at 0 in
the Milnor ball B, so for small #, intersections will remain in B. For larger homotopies,
we require these conditions nontrivially.

Picture deformations satisfy all of the conditions (1)-(4), so a picture deformation is a
special case of a smooth graphical homotopy of the germ (in appropriate coordinates).
In contrast to picture deformations of [27], condition (4) on the marked points and
the weight restrictions is only required at # = 1 for homotopies. For a closer analogy
with Definition 2.7, we can consider marked points { pl.j (1)}jeq1,...,w;) ON Cl.’ for all
0 <t < 1. For t =0, the marked points are concentrated at the origin on each branch,
giving the decoration of (C, w). Suppose that pij (t), 0 <t <1, are smooth functions
describing the motion of marked points during homotopy, so that pij (1) € C/ forall 1.
For ¢t =1, the points pij ()= pij satisfy condition (4) above. This implies, in particular,
that at 7 = 1, the branch Cl.’ has no more than w; intersection points with other branches.
However, for 0 < ¢ < 1, the marked points pl.j (7) are not subject to any restrictions and
have little significance. The homotoped curvettas Ci’ can have an arbitrary number of
intersections, and intersections may be positive or negative. By contrast, for picture
deformations, the weights control the number of intersection points between deformed
curvettas at all times, the intersections between branches are always marked during
deformation, and all intersections are positive because curvettas are deformed through
complex curves.

Let (Y, &) be the link of the singularity (X, 0) with the decorated germ (C, w). We will
show that every smooth graphical homotopy of the germ C gives rise to a Stein filling
of (¥.$§).

First, we focus on the curvetta arrangement {C l Czl, R C,L} with marked points,
produced at the end of homotopy at the time # = 1. Lemma 3.2 below produces a certain
Lefschetz fibration from this input. The lemma applies to any arrangement of smooth
graphical disks {I'1, I'5, ..., Iy} satisfying the stated hypotheses; the homotopy is not
used at this stage. We use different notation to emphasize that {I";} need not be related
to C. Then, Lemma 3.4 uses the homotopy between the decorated germ (C, w) and
the curvetta arrangement {C !, Czl, ..., CL} with its marked points py, pa, ..., py to
show that the open book on the boundary of the Lefschetz fibration supports (Y, &). It
follows that our construction produces a Stein filling of (Y, £).
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As a smooth 4-manifold, the filling produced by Lemma 3.2 is constructed similarly
to the Milnor fibers in Theorem 1.3. Namely, we blow up at each of the intersection
points of the homotoped curvettas, as well as at the free marked points, and then take
the complement of the proper transforms of the curvettas. Even though Cl.1 are smooth
disks (rather than complex curves), we will assume that they are locally modeled on
complex curves near the intersection point, so the blow-up and the proper transforms
can be understood in the usual sense. Alternatively, one could also think about the
proper transform in the smooth sense, as the closure of the complement of the blown-up
point; see [20, Definitions 2.2.7 and 2.2.9]. To obtain a 4—manifold with given boundary,
we consider a compact version of the construction in a Milnor ball, as explained in
Remark 2.8. It is convenient to consider the Milnor ball of the form B = Dy x D, CC 2
with corners smoothed, where Dy and D), are disks in the coordinate planes C and C,,.
For every xo € Dy, the graphical disks I'; intersect {xo} x D, transversally, and the
intersection with d(Dx x Dy) lies as a braid in dDx x D). To simplify notation, we do
not mention the Milnor ball B explicitly in the first part of the lemma.

Lemma 3.2 Let I'y,..., ), be smooth disks in C? which are graphical with respect
to the projection 7y, that is, I'; = {y = f;(x)}. Assume that at each intersection point
of two or more T';, there exists a neighborhood U of the intersection such that | J; I';
is cut out by complex linear equations inside U. (Up to graphical isotopy, this only
requires the T'; to intersect transversally and positively with respect to the orientation
on the graph I'; induced from the natural orientation on C.) Let p1, ..., py be points
on the disks I'; which include all intersection points, and let «: C2 #nCP? — C? be
the blow-up at the points pq,..., pn. Let Ty,..., T, denote the proper transforms
of Ty,...,Tyy. Then my oz (C%#nCP?)\ (f‘l U---u f‘m) — C is a Lefschetz
fibration whose regular fibers are punctured planes, where each puncture corresponds to
a component T;. There is one vanishing cycle for each point p;j, which is a curve in the
fiber enclosing the punctures that correspond to the components I'; passing through p; .

Similarly, if B = Dx x Dy is a Milnor ball that contains all the points p;, ..., py
and contains (Dyx x C) N (Ul F,-), and T; is a small tubular neighborhood of f‘,-, then
mxoa: (@1 (Dy x Dy))\(T1 U---UTy) — Dy is a Lefschetz fibration with compact
fiber. The fiber is a disk with holes corresponding to the components I';. The vanishing
cycles correspond to the points p; in the same way.

If the curvettas C ls ...., Cy, with marked points are the result of picture deformation
of the germ (C, w) associated to a surface singularity, then the Lefschetz fibration

Geometry & Topology, Volume 27 (2023)



1114 Olga Plamenevskaya and Laura Starkston

constructed as above is compatible with the complex structure on the Milnor fiber of
the corresponding smoothing.

Proof Before blowing up, the projection 7y: C? — C is clearly a fibration, and
the smooth disks I'; are sections of this fibration. If they were disjoint sections, then
their complement would be a fibration whose fiber is C with m punctures. Since the
sections intersect, we blow up at each of the intersection points, along with blow-ups
at other chosen points on the curves. For each fiber containing one of the p; where
we blow up, the corresponding fiber in the blow-up is the total transform, which is a
nodal curve containing the exceptional sphere and the proper transform of the fiber.
More specifically, translating the coordinates (x, y) on C? to be centered at pj, the
coordinates on the blow-up are

C2#CP2, = {((x, ). [u 1] | v = yul,

The singular fiber is the total transform of F' = {x =0}, which has two irreducible
components:

(E =1{((0,0),[u: v]}) U (F = {((0, ), [0: 1]}).

The node occurs at the intersection of these two components at ((0, 0), [0: 1]). Therefore
in a neighborhood of the node we can take v = 1, so we have local coordinates on the
blow-up given by (p,u) € C? where x = yu. The projection 7 o« is given in these
coordinates by

wxoa(y,u) = yu,
which is exactly the model for a Lefschetz singularity at (y, u) = (0, 0).

In the coordinate chart on C? centered at p i, let Ty = {(x, fi(x))}. The total transforms
of the curves I'; which pass through p; —ie which have f;(0) = 0—are given by

(2 = 10,01z o3) U (= (v o 1 gim 2O ]))

a

and those which do not pass through p; —ie which have f;(0) # 0 — lift isomorphically
to the blow-up

{ENACHNREWHES)) I}

Note that the proper transforms do not pass through the node ((0, 0), [0 : 1]). Moreover,
since the intersections between the I'; were assumed to be transverse, lim,—.¢ fi(a)/a
have different values for different values of i where f;(0) = 0. Therefore, the T
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are disjoint sections of the Lefschetz fibration from the blow-up of C? to C, so their
complement gives a Lefschetz fibration with punctured fibers. Moreover, in the singular
fibers, the sections which intersect the exceptional sphere part of the fiber are precisely
the proper transforms I; such that T; passed through p;.

Regular neighborhoods 7; of the f‘,- can be chosen sufficiently small to be disjoint
from each other and the Lefschetz singular points, thus yielding the compact Lefschetz
fibration. This changes the fiber (converting the punctures into holes) but does not
change the fibration structure and the vanishing cycles. The total space of a Lefschetz
fibration over a disk is a compact 4-manifold with boundary; the fibration induces a
planar open book decomposition on the boundary.

In the case of a picture deformation of the germ (C, w), the deformed curvettas
Cy,C3, ..., C, are smooth complex disks with marked points satisfying the hypotheses
of the lemma. The Stein structure induced by the Lefschetz fibration is compatible
with the complex structure on the Milnor fiber, because 7y o & is holomorphic. a

Consider a smooth graphical arrangement I' = {I"¢, ..., [';,} in a Milnor ball B =
Dy x Dy, such that each I'; transversally intersects the vertical part dDx x D) of 9B
and is disjoint from Dy x dD,. Taking the boundaries of the graphical disks, we have
an m-braid o' = 9T'; UdlL, U---U A, C 9B = S3. (Each component 9T is an
unknot, but the components are linked.) The monodromy of this braid is called the
monodromy of the arrangement I". We can interpret the braid group on m strands as
the mapping class group MCG(C,,) of the m—punctured plane. Then the braid doI" is
identified with the monodromy ¢r of the C,,—bundle over S, given by the projection
7y C2\ UL Ti — C restricted to the preimage 7! (3Dx) of the circle dDy C C.

To construct the Lefschetz fibration corresponding to I' in Lemma 3.2, we perform
blow-ups at points p; that project to the interior of D,. These blow-ups do not affect
the bundle over dD,. Therefore, the noncompact version of the Lefschetz fibration
(with fiber C,,) has the monodromy ¢r given by the braid dT".

For the compact version of the Lefschetz fibration from Lemma 3.2, the general fiber Py,
is the disk D, with m holes. The fibration induces an open book on its boundary,
with page Py,. The boundary of the total space of the fibration £* is the union of two
parts: the horizontal boundary dP,, x D, which forms the binding of the open book,
and the vertical boundary, a fiber bundle over S' = 9D, with fiber P,,, which forms
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the mapping torus for the open book. This fiber bundle is given by the projection
(mx 0a)"1(dDy) — Dy, which is the same as the projection 7y : B\ | /L, Iy — Dy
restricted to 7, ! (3Dy), because the blow-up map « is the identity over dDy. Let
¢: Py — Py, denote the monodromy of this fiber bundle, ie the monodromy of the
open book. We then have a commutative diagram

PmLPm

L, |

Cpmw — Cyyy

where the vertical maps are inclusions. This proves:

Lemma 3.3 Let I' ={I"y,..., [y} be a smooth graphical arrangement with marked
points {p;}, and B = Dy x D,, a Milnor ball whose interior contains all marked points,
such that I'; N (Dyx x C) C B and T'; is transverse to dB foralli = 1,...,m. Let ¢r
be the monodromy of the braid 0I' = 0"y U---U dl'y, C 0B = S3.

Let ¢: Py, — Py, be the monodromy of the open book induced by the Lefschetz
fibration constructed for (I', { p; }) in Lemma 3.2. Then ¢r is the image of ¢ under the
projection

n: MCG(Py,) - MCG(Cyy)

induced by the inclusion P, — C,, of the compact disk with m holes into the m—
punctured plane.

When the arrangement (I, { p; }) is related to the decorated germ (C, w) by a smooth
graphical homotopy, the monodromy ¢r of the braid dI" is the same as the monodromy
of the braid dC = dCy U --- U dCy,, because the homotopy between disks gives an
isotopy of the two boundary braids. By definition, the braid monodromy of dC is the
monodromy ¢ of the singular point of C.

We next examine the monodromy of the open book corresponding to I' in the case of
the compact fiber, and find its relation to the monodromy of the singular curve C.

Lemma 3.4 Let {T'y,..., Ty} and {T"},..., T, } be two smooth graphical arrange-
ments, such that the boundary braid of are braid-isotopic (respecting labels) and the
weights on the corresponding components agree. Let £ and L' be the corresponding
Lefschetz fibrations constructed in Lemma 3.2. Then the induced open book decompo-
sitions on the boundary have the same page and same monodromy.
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We will prove the lemma after pointing out its consequences. Since the plane curve
arrangements at either end of a smooth graphical homotopy have braid-isotopic bound-
aries, and the weights on the components remain constant during the smooth graphical
homotopy, it follows that the open book decomposition induced on the boundary for
any Lefschetz fibration arising in this way is independent of the choice of smooth
graphical homotopy.

For the case where (I, w) is the end point of a picture deformation of a plane curve germ
(C,w), £ is a Lefschetz fibration on the (compactified) Milnor fiber of the associated
smoothing of the surface singularity (X, 0), as in Theorem 1.3. In this case the boundary
of the Milnor fiber is the link Y of the singularity (X, 0), and the Milnor fiber gives a
Stein filling of the canonical contact structure & on the link, so the open book supports &.
Because every rational singularity has a picture deformation yielding a Milnor fiber
arising in such a manner (see Section 4 in our case), the open book on the boundary of
any Lefschetz fibration arising from the endpoint of a smooth graphical homotopy of the
same germ must support the canonical contact structure on the link of the singularity.

Combining Lemmas 3.2 and 3.4 with this discussion completes the proof of Theorem 1.4,
which we summarize in the following corollary.

Corollary 3.5 A smooth graphical homotopy of the decorated germ (C, w) gives rise
to a Stein filling of the link (Y, £) of the corresponding singularity.

Proof of Lemma 3.4 Applying the previous discussion and Lemma 3.3 to the ar-
rangement I' = {I'{, ", ..., [}, we see that the homomorphism n: MCG(Py,) —
MCG(C,,) sends the open book monodromies ¢ and ¢’ to the same braid monodromy
¢ € MCG(C,,). The kernel of the map n: MCG(P,,) - MCG(C,,) is generated
by the boundary-parallel Dehn twists around the holes in the fiber P,,. (Recall that
the monodromy of an open book is considered rel boundary of the page, so while
the twists around individual strands are trivial in the braid case, the boundary twists
become nontrivial for open books.) It follows that the monodromies ¢ and ¢’ of the
open books on the boundaries of £ and £’ can differ only by boundary twists, since

(@) =n@") =¢.
Let T; denote a positive Dehn twist around the i hole. Then we have
(3-1) ¢ =¢oT " oT,?0---0Tmm

for some integers oy, &, ..., &;. The order is unimportant since the boundary twists
are in the center of MCG(Py,).
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It remains to pin down the boundary twists around each hole, ie to show that o; =0
for every i = 1,...,m. To do so, we need to take into account the blow-ups at
the free marked points p; (the marked points that lie on the branches away from
the intersections). These correspond to boundary twists. Recall a basic fact about
diffeomorphisms of a planar surface rel boundary: for any two factorizations ¥ and W’
of ¥: Py — Py, the number of Dehn twists that enclose a given hole / is the same
for W and W'. (Here, we count all twists, not only the boundary ones.) The above
statement easily follows from the fact that lantern relations generate all relations in the
mapping class group of a planar surface [36], and the number of Dehn twists enclosing
a given hole is unchanged under a lantern relation. This implies that the number of
Dehn twists enclosing the i™ hole is well defined for a monodromy V¥ : P, — Py,; let
n; = n;(y) denote this number. If two monodromies ¢ and ¢’ are related by (3-1), we
have

(3-2) ni(¢') =ni(¢) +a;.

On the other hand, the number #; is determined by the vanishing cycles of the Lefschetz
fibration. By construction of the fibration £! associated to the homotopy C?, the number
of Dehn twists enclosing the i ™ hole is given by the number of blow-ups at the marked
points on Cil, which in turn equals the weight w; of the component C; of the original
germ C. So n;(¢) = w; = n;j(¢’), and a; = 0 from (3-2). O

Remark 3.6 Our description of the open book monodromy for an arrangement is
somewhat similar to E Hironaka’s results [24] on the monodromy of complexified real
line arrangements in C2 An important difference is that we consider Lefschetz fibrations
on the complement of the proper transform of the curves in a blow-up of C2 while
Hironaka computes the monodromy of the fiber bundle over S! obtained by projecting
the complement of the complex lines in C? to a circle of large radius; compare with the
proof of Lemma 3.4. She also considers the setting with compactified fibers, by taking
the complement of tubular neighborhoods of the lines, and computes the monodromy
of line arrangements as an element of MCG(P,,). It is important to note that even
in the compactified setting, her answers are different from the monodromy of the
corresponding Lefschetz fibrations that we consider. (The difference is given by some
boundary twists.) The discrepancy appears because when the tubular neighborhoods
of the Cl.1 are removed from C?2 their parametrization is induced from C2 When we
blow up and take proper transforms of Cil, the parametrization of tubular neighborhoods
is induced by the Lefschetz fibration structure on the blown-up manifold. These two
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parametrizations are different in the two settings, affecting the choice of the meridian of
the tubular neighborhood of a line and the framing of the boundary of the corresponding
hole.

4 The Lefschetz fibration for the Artin smoothing

4.1 The Scott deformation

We can now use a specific deformation to describe the monodromy of the open book
decomposition of (Y, £). We will use a canonical deformation, called the Scott deforma-
tion in [27], which yields a smoothing in the Artin component. This deformation yields
a particularly nice arrangement of curvettas where the associated Lefschetz vanishing
cycles are disjoint. This in turn yields a model factorization for the monodromy of
the boundary open book decomposition. In Proposition 6.7, we will show that the
corresponding Stein filling is uniquely recognizable from its combinatorics. Recall that
tang(C;, C;) stands for the order of tangency between branches C; and Cj of C, and
t(C;) = max; tang(C;, Cj).

Proposition 4.1 Let (X, 0) be a rational surface singularity with reduced fundamental
cycle, and (C, w) one of its decorated reducible plane curve germs with m smooth
irreducible components. Let (Y, &) be the contact link of (X,0). Then (Y,£) has
a planar open book decomposition whose page is a disk with m holes hy, ..., hy,
corresponding to the branches of C. The open book monodromy admits a factorization
into disjoint positive Dehn twists with the following properties:

(1) For any two branches C; and Cj, the corresponding holes h; and h; are enclosed
by exactly tang(C;, Cj) of these Dehn twists.
(2) There are w(C;) —t(C;) > 0 boundary Dehn twists around the hole h;.

(3) There is at least one positive Dehn twist about the outer boundary component of
the page.

Proof We use the picture deformation of (C, w) referred to as the Scott deformation in
[27, Proposition 1.10]. This deformation arises from iteratively applying the following
procedure. (We refer the reader to [27; 1] for details, including the explanation why
the procedure below can be actually realized by a 1—parameter deformation.)

The input of the procedure is an isolated singular point p of a plane curve C with
multiplicity m. In our case C is a union of smooth components, and the multiplicity m
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is the number of components through the point p. The output of the procedure is a
deformation C” whose singularities are

(I) one m—fold point where m branches intersect transversally, and

(II) the collection of singularities occurring on the proper transform of C in the
blow-up of C? at p.

The idea of the deformation is to blow up at p, perform a small deformation of the curves
so that the singularities of the proper transform become disjoint from the exceptional
divisor, and then blow down the exceptional divisor to return to the plane and obtain
the curve C’.

We demonstrate this process in an example in Figure 4. The initial configuration in the
bottom left consists of five curves. The curves C; and C, are tangent with multiplicity 3,
and these two curves are tangent to C3 with multiplicity 2. The curves C4 and Cs
are transverse to C, C, and C3 but tangent to each other with multiplicity 4. After
blowing up at the common intersection point, we obtain the proper transforms together
with an exceptional divisor as shown in the top left of Figure 4. Now C; and C, are
tangent with multiplicity 2 and transversally intersect C3 at the same point on the
exceptional divisor. The curves C4 and Cs become disjoint from C;, C, and C3, and
they are tangent to each other with multiplicity 3 at another point on the exceptional
divisor. Next we perform the deformation of the curves, fixing the exceptional divisor,
but translating the proper transforms C 1 52, ey 55 of the curvettas slightly so that
the intersection of the exceptional divisor with the proper transforms now occurs away
from the intersections of the proper transforms with each other, as shown in the top
right of Figure 4. Finally, we blow down the exceptional divisor, which results in
a transverse intersection of the resulting curvettas C¥, Czs ,...,C SS together with the
singularities (intersections) of the proper transforms, as required.

Since the multiplicity of the orders of tangency between components decreases each time
we take the proper transform, applying this procedure iteratively to the singularities
of type (II) eventually yields a deformation to a plane curve with only transverse
intersections. See Figure 5 for the iterations of the Scott deformation in our example,
until all of the singularities are transverse intersection points. When working with a
decorated germ (C, w), with the marked points of w initially concentrated at 0, the
same blow-up procedure will separate the marked points. Indeed, if there are additional
marked points which increase the weight, they can be separated by additional iterations
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G

Figure 4: One iteration of the Scott deformation in an example.

of the blow-ups and translations, so that at the end all marked points are disjoint.
(In this sense the scheme w* is reduced.) Note that the total weight w(C;) of each
component is equal to the total number of marked points on that component (including
the intersection points).

When the components of C are smooth, the result of this deformation is as follows. If
some components of C were tangent to order rq before the deformation, they will all

N7 N7 N7

Figure 5: A Scott deformation applied iteratively until all intersections are transverse.
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pass through the same ry transverse multipoints p;,, ..., pj, . If another component
of C intersects these components with multiplicity r, < ry before the deformation, this
component will pass through r, of these points afterwards. The total number of inter-
section points appearing on the Scott deformation of a component C; is precisely ¢(C;),
the highest possible order of tangency between C; and another branch in the original
germ C. In this sense, the intersection points are used as efficiently as possible. The
number of additional marked points on C; is w(C;) —t(C;).

Now, consider the Lefschetz fibration constructed from the Scott deformation via
Lemma 3.2. We claim that up to a curve isotopy, the vanishing cycles of this fibration
are disjoint curves on the planar page. The reason for this is built into the iterative
nature of the Scott deformation, which results in a nesting of the vanishing cycles as
follows.

Consider the equivalence relations on the components Cy, . . ., Cy, of the germ C defined
by C; ~; Cj if C; and C; intersect at 0 with multiplicity at least /. The transitivity of
this relation comes from the fact that if Cy intersects C, with multiplicity r at 0 and
C, intersects C3 with multiplicity s at 0, then C; must intersect C3 with multiplicity at
least min{r, s}. These equivalence relations induce partitions of the components of C,
and ~; refines ~j, for [ > [’.

If we apply the Scott deformation procedure iteratively, on the first iteration, we obtain
one transverse intersection of all of the branches (the singularity of type (I)), which
groups the components of C according to the (unique) block of the partition induced
from ~;. Applying the Scott deformation procedure to all the singularities of type (II)
generates a transverse multipoint of type (I) for every block in the partition induced
by ~,. Iterating this procedure, for / > 1 we obtain a transverse intersection for every
block of each partition P; induced by ~;. For sufficiently large /, each block will
consist of a single smooth component, and thus no new transverse intersections of
type (I) will result from the procedure. When a block contains a single element, there
may or may not be additional marked points placed. Instead of using the partition and
Scott deformation to place additional marked points, we can simply use the formula
that C; must have w(C;) —¢(C;) total additional marked points.

Recall that there is one vanishing cycle in the Lefschetz fibration for each marked point
of the Scott deformed curve, and this vanishing cycle encircles the punctures/holes
corresponding to the components of curves which pass through the given marked
point. Because the equivalence relations ~; refine each other as / increases, the subsets

Geometry & Topology, Volume 27 (2023)



Unexpected Stein fillings and plane curve arrangements 1123

of C; which intersect at the (/+1)™ iteration are nested within the subsets of C; which
intersect at the /™ iteration. Moreover, because the isotopy in the blow-up procedure can
be made arbitrarily small, we can assume that there is no braiding of the components C;
between the /™ and (/41)* iterations; see Section 5 for more details on how braiding
of the curves can occur and be understood in general. More specifically, observe that in
the Scott deformation procedure, as in Figure 4, the deformation from right to left in the
blow-up (at the top of the figure) can be performed by an arbitrarily small translation
of the exceptional divisor. By making the translation sufficiently small, we can ensure
that in each subset intersecting at the (/1) iteration, the curves stay close together
and do not interact with another such subset. (In the language of Section 5, nontrivial
braiding would correspond to a crossing of the wires, and a small translation ensures
that the wires cannot cross in between the singularities produced iteratively by the Scott
deformation.) Then, the vanishing cycles corresponding to the intersections of type (I)
which are introduced at the (/+1) iteration will be nested inside (and thus disjoint
from) the vanishing cycles corresponding to the intersections of type (I) introduced
at the /™ iteration. We can also assume that any two vanishing cycles introduced in
this way at the /" iteration are disjoint, because the application of Lemma 3.2 to the
Scott deformation actually realizes these Lefschetz singularities simultaneously in the
same fiber (we can later perturb so they arise in different fibers if desired). Finally, the
additional marked points at smooth points of the C; correspond to vanishing cycles
which are boundary parallel to the i hole, and thus can be realized disjointly from each
other and all other vanishing cycles. Thus we conclude that the Scott deformation yields
a Lefschetz fibration with disjoint vanishing cycles. This means that the compatible
planar open book for the link (Y, £) has monodromy which is a product of positive
Dehn twists about the disjoint curves described above. Because at the first step we get
a transverse intersection of all deformed curvettas, the corresponding vanishing cycle
encloses all holes, ie we have a Dehn twist about the outer boundary component of the
page. |

4.2 Symplectic resolution and Lefschetz fibrations

It is noted in [27] that the Scott deformation corresponds to the Artin smoothing,
which in this situation is diffeomorphic to the resolution of the singularity. In fact,
we can see more directly, through symplectic topological means, that the Lefschetz
fibration corresponding to this Scott deformation gives a plumbing which necessarily
corresponds to the resolution of the singularity.
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We recall the procedure of [18, Theorem 1.1]. Starting with the plumbing graph G,
this procedure produces a planar Lefschetz fibration compatible with the symplectic
resolution of a rational singularity with reduced fundamental cycle. (The symplectic
structure on the plumbing can be deformed to the corresponding Stein structure.) In
fact, [18, Theorem 1.1] applies to a wider class of singularities (see Section 4.3 below),
but we first describe it for this particular case. To construct the fiber of the Lefschetz
fibration, take a sphere S, for each vertex v € G and cut —a(v) — v -v > 0 disks out
of this sphere. (As before, a(v) is the valency of the vertex v; the number of disks
is nonnegative by (2-1).) Next, make a connected sum of these spheres with holes
by adding a connected sum neck for each edge of G. For a sphere S, corresponding
to the vertex v, the number of necks equals the number of edges adjacent to v, ie its
valency a(v). The resulting surface S has genus 0 because G is a tree. See the top of
Figure 6 for an example.

Proposition 4.2 [18, Theorem 1.1] The surface S constructed above is the fiber of a
Lefschetz fibration on a symplectic neighborhood of symplectic surfaces intersecting
w-orthogonally according to the graph G. The vanishing cycles are given by the curves
parallel to the boundaries of the holes (one curve for each hole) and the cores of the
necks of the connected sums.

Let X be the Milnor fiber of the Artin smoothing component for a rational (X, 0) with
reduced fundamental cycle; X is a Stein filling for the contact link (Y, £). We now have
several different Lefschetz fibration structures on X . First, because X is diffeomorphic
to the minimal resolution of (X, 0), a Lefschetz fibration is produced by the Gay—Mark
construction of Proposition 4.2. Second, for each choice of the decorated germ (C, w)
with smooth branches, the proof of Proposition 4.1 also gives a Lefschetz fibration
on X. All these Lefschetz fibrations have planar fibers. In our construction of the
Lefschetz fibration from the curvetta arrangement, the general fiber has a distinguished
“outer” boundary component coming from the fibration : B — C on the Milnor ball
B=DyxD,CcC 2. In the Gay—Mark construction, there is no distinguished boundary
component of the fiber. On the other hand, the decorated germ is not uniquely defined:
recall from Proposition 2.4 that there are mult X choices of decorated germs with smooth
branches representing (X, 0), where some of these germs may coincide due to symme-
tries in the extension of the resolution graph. Of course, since the link of the singularity
is independent of the choice of curvetta germs, the Stein filling arising from the Artin
smoothing should not depend on these choices. We now show that the choice of curvettas
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Figure 6: An example demonstrating different choices of curvettas corre-
spond to different choices of outer boundary component for the fiber of
the Lefschetz fibration. At the top we have the resolution configuration
and the corresponding Gay—Mark Lefschetz fiber with vanishing cycles. The
resolution configuration is augmented with red (—1) curves and blue curvettas.
For each choice of curvettas we delete exactly one of these red (—1) curves
and the corresponding curvetta. We show the resulting curvettas, their Scott
deformation, and the corresponding planar Lefschetz fibration obtained from
Lemma 3.2 in the cases of excluding the (—1) curves labeled 2, 3, and 5.
Note that because of symmetries in the graph, the exclusion of 1 or 2 yield
very similar looking cases, and similarly with the exclusion of 4 or 5.

corresponds precisely to the choice of the outer boundary component, so this choice
only affects the presentation of the Lefschetz fibration. See Figure 6 for an example.

Lemma 4.3 Let L be the planar Lefschetz fibration on X provided by Proposition 4.2.
Then the mult X different choices of smooth curvetta germs for (X, 0) produce, via
the Scott deformation, planar Lefschetz fibrations on X with a distinguished boundary
component of the fiber. The choices of smooth curvetta germs are in one-to-one
correspondence with the different choices of outer boundary component of the general
fiber of L.
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Proof As before, we associate to each vertex of the resolution graph G for the singular-
ity the quantities v-v for the self-intersection and a(v) for the valency. In the Gay—Mark
Lefschetz fibration £, each vertex v € G contributes —v-v—a(v) boundary components
to the fiber. On the other hand, recall from the proof of Propositions 2.2 and 2.4
that the germ C of smooth curvettas is obtained from an extension of the resolution
graph G to a graph G’. We attach —v - v — a(v) vertices with self-intersection —1
and valency 1 to each vertex v to obtain a graph G”, and then delete exactly one of
these (—1) vertices to get the graph G’. This shows that the number of choices for
the germ matches the number of boundary components of the fiber of £, and this
number is exactly mult X = —) (v-v + a(v)). The curvetta branches of the germ C
are obtained by taking disks dual to the remaining (—1) vertices and considering their
proper transform after blowing down all exceptional divisors; thus the curvettas are
in one-to-one correspondence with the (—1) vertices of G'. In turn, in the Lefschetz
fibration constructed by Lemma 3.2, the “inner” boundary components of the fiber
are in one-to-one correspondence with the curvettas. The deleted (—1) vertex in G”
still corresponds to a boundary component in the fiber of the Gay—Mark Lefschetz
fibration £, thus we can say that it corresponds to the outer boundary component of
the fiber of the planar Lefschetz fibration produced by Lemma 3.2. Note also that if we
enumerate the (—1) vertices of the graph G’ by 1,2,...,m = mult X — 1, we get an
enumeration of the components of C, which in turn gives an enumeration of the holes
of the fiber. O

Recall from Remark 2.6 that there may be different analytic types of singularities with
the same link (Y, £). These singularities are all topologically equivalent and have the
same graph G, so that decorated germs for each of these singularities are obtained
from extensions of G. A particular choice of extension gives topologically equivalent
decorated germs for all singularities with link Y. Topologically equivalent germs yield
the same open book decompositions of (Y, &) as in Proposition 4.1, since the weights
and the orders of tangency between branches are encoded by the topological type.
Together with the previous proposition, this gives:

Corollary 4.4 Let (Y, &) be a link of surface singularity with reduced fundamental
cycle. Then for any singularity (X, 0) whose link is Y, and any choice of the decorated
germ C for (X, 0) with smooth branches, the open book decomposition of (Y, £) defined
by C is the same; namely, the open book induced by the Gay—Mark Lefschetz fibration.
Different extensions G’ of the resolution graph G used to construct C correspond to
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different choices of the outer boundary of the page of the open book. Enumeration of the
branches of C (or equivalently, of the (—1) vertices of G') corresponds to enumeration
of the holes in the page.

It is interesting to note that the Milnor fiber of the Artin smoothing is the only Stein
filling with disjoint vanishing cycles in its Lefschetz fibration.

Proposition 4.5 Suppose a planar Lefschetz fibration has disjoint vanishing cycles,
with at least one boundary parallel vanishing cycle for each boundary component.
Then this is a Lefschetz fibration for the Artin smoothing of a rational singularity with
reduced fundamental cycle. In particular, the induced open book decomposition on the
boundary supports the contact link of a rational singularity with reduced fundamental
cycle.

Proof As in [18], if the vanishing cycles are disjoint, we can realize all Lefschetz
singularities simultaneously in the same fiber. The unique singular fiber is thus a
configuration of spheres intersecting transversally according to a graph. Note that the
boundary parallel twists are important to ensure that the only nonclosed components of
the singular fiber are disks which retract to a point. (These disks come from the small
annuli around the holes.) The nonsingular fibers provide a regular neighborhood for
the configuration, so the entire 4-manifold is a symplectic plumbing. This 4—manifold
gives a symplectic filling for a contact structure supported by a planar open book, thus
by [15] its intersection form is negative definite, ie the plumbing graph G is negative
definite. Thus, the graph can be thought of as the resolution graph of a normal surface
singularity (X, 0).

Asin [18], —v-v > a(v) for each vertex v € G, so (X, 0) is a rational singularity with
reduced fundamental cycle. To see this, observe that each vertex v € G corresponds to
a closed component §v of the singular fiber. Alternatively, §v can be viewed as the
union of a component S, of the complement of the vanishing cycles in a regular fiber
capped off by thimbles for each of its boundary vanishing cycles. Then, v-v = §v . §v
equals the negative number of thimbles in Sy, or equivalently the negative number of
vanishing cycles on the boundary of Sy; see [19, Proposition 2.1]. The valency a(v) is
the number of other spheres in the singular fiber intersecting §U. Put differently, a(v) is
the number of closed surfaces §v/, v’ # v, such that S, and S, share a vanishing cycle
in their boundaries; thus a(v) is the number of the vanishing cycles in 0.5, that are not
adjacent to a boundary component in the fiber. Then —v - v — a(v) is the number of
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vanishing cycles adjacent to a boundary component in 95y, so —v-v —a(v) > 0, as
required. Note also that v-v < —2, as each S, has at least 2 vanishing cycles on the
boundary, so G is the graph of the minimal resolution.

The above discussion implies that if we run the construction of Proposition 4.2 for
the graph G, we recover the given Lefschetz fibration. It follows that our Lefschetz
fibration is compatible with the symplectic structure on the minimal resolution. For
a rational singularity, the resolution is diffeomorphic to the Milnor fiber of the Artin
smoothing (and the symplectic structure on the symplectic plumbing deforms to the
corresponding Stein structure). This shows that the Lefschetz fibration produces the
same filling as the Artin smoothing. |

4.3 A digression: some nonrational singularities and potential unexpected
fillings

Although we stated Proposition 4.2 for rational singularities, Theorem 1.1 of [18] is
more general: the same construction works when the normal crossings resolution has
exceptional curves of higher genus, as long as condition (2-1) is satisfied. The fiber of
the corresponding Lefschetz fibration is formed by taking the connected sum of surfaces
given by the exceptional curves and cutting —v - v — a(v) > 0 holes in the surface
corresponding to v € G. As before, the vanishing cycles are given by the boundary
parallel curves around the holes and the curves around the connected sum necks. We
can use this construction together with monodromy factorizations of [7] to construct
infinite collections of Stein fillings for links of certain nonrational singularities.

Indeed, suppose that a normal surface singularity (X, 0) has a good resolution such that
one of the exceptional curves has genus g > 2 and self-intersection —d, with d <2g—4.
As before, we assume that the resolution graph has no bad vertices, ie satisfies (2-1).
Then the fiber of the Lefschetz fibration from [18, Theorem 1.1] has a subsurface of
genus g with some necks and holes, and a vanishing cycle around each neck and each
hole. (See Figure 7.) The total number of these vanishing cycles is d. We can cut
out this subsurface along the curves parallel to the vanishing cycles to get a surface
of genus g with d holes, so that the product of the Dehn twists around the vanishing
cycles is the boundary multitwist. For d <2g —4, [7, Theorem A] establishes that the
boundary multitwist has infinitely many positive factorizations as products of Dehn
twists about nonseparating curves. These factorizations can consist of arbitrarily many
Dehn twists. It follows that the monodromy of the corresponding open book on the
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Figure 7: The Gay—Mark Lefschetz fibration for the resolution of a non-
rational singularity which admits infinitely many unexpected fillings. The
subsurface of genus 4 with d = 4 used to produce infinitely many monodromy
factorizations is shaded. Vanishing cycles are drawn in blue.

link (Y, £) has infinitely many positive factorizations, each of which produces a positive
allowable Lefschetz fibration (see [2]) and thus a Stein filling; these Stein fillings can
have arbitrarily high Euler characteristic. We ask:

Question 4.6 Does the above construction produce any unexpected Stein fillings?

To answer this question, one would need to contrast these Stein fillings and the Milnor
fibers of all surface singularities with the given link. Each fixed singularity can only have
finitely many Milnor fibers. (Indeed, the Milnor fibers correspond to the components
of the base of miniversal deformation; the base is a germ of an analytic space, and as
such it can only have finitely many components; see eg [56, Theorem 4.10 and the
discussion in Section 7].) However, because of the presence of a higher-genus surface
in the resolution, every singularity as above is not (pseudo)taut [32], which means that
there exist infinitely many analytic types of singularities with the same dual resolution
graph, and thus the same contact link. We are interested in the Stein topology of the
Milnor fibers, which is more coarse than the analytic type; in principle, it is possible
that the infinite collection of analytic types of the singularity would only give rise to
finitely many Stein homotopy types for the Milnor fibers. Thus, we have the following
dichotomy: either

(1) there are only finitely many Stein homotopy types (or diffeomorphism types) of
the Milnor fibers, which would imply existence of unexpected fillings, or

(2) an infinite collection of possible analytic types gives rise to an infinite collection
of pairwise distinct Stein fillings.
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Establishing either outcome would be extremely interesting, even for a single example.

It should also be noted that in the nonrational case, one should in principle consider
nonnormal singularities as well, as these might generate additional Stein fillings;
see [55] for a detailed discussion of this issue (which doesn’t arise in the rational case).

Remark 4.7 In a related direction, it is interesting to take a closer look at a family of
examples given by cones over curves. Consider a normal surface singularity whose
resolution has a unique exceptional curve of genus g > 2 with self-intersection —d
for d > 0. The resolution is the total space of the complex line bundle of degree d
over the corresponding Riemann surface, and the singularity can be thought of as cone
point. The link is a circle bundle over the genus g surface, with Euler number —d.
The canonical contact structure is the Boothby—Wang structure, which has an open
book decomposition as described above: the page is a genus g surface with d boundary
components, and the monodromy is the boundary multitwist.

As explained above, for d < 2g — 4 we have an infinite collection of Stein fillings,
produced by factorizations of the multitwist. Interestingly, this method no longer
applies when d > 4g + 4: in that range, the boundary multitwist admits no nontrivial
positive factorizations, again by [7, Theorem A]. The singularity given by a cone over
a projective curve is nonsmoothable when d > 4g + 4 by [62]; in fact, it is also known
that the resolution gives the unique Stein filling in this case [49, Proposition 8.2].

Similarly, for cones over elliptic curves, ie g = 1, the singularity is nonsmoothable for
d > 9 [53], and the only Stein filling is indeed given by the resolution, while for d <9,
all Stein fillings are given by smoothings and resolutions [50].

5 Every symplectic filling comes from a symplectic
deformation of curvettas

5.1 Braided wiring diagrams

A braided wiring diagram is a generalization of a braid in R x C (where the braid
condition means that the curves should be transverse to each {¢} x C). In a wiring
diagram, instead of only looking at smooth braids, we allow the strands to intersect.
Let g : R x C — R denote the projection to the first coordinate. We will also use the
natural projection from C to R sending a complex number to its real part.
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Definition 5.1 A braided wiring diagram is a union of curves yj: R — R x C,
j =1,...,n, each of which is a section of the projection 7g: R x C — R, ie each
“wire” is given by y; (1) = (¢, hj(t) +iw;(¢)). Different wires y; may intersect; in this
article we will assume that they are not tangent at intersections.

We say a braided wiring diagram is in standard form if there are disjoint intervals
I, ..., In CRsuch that Iy x C contains a unique intersection point of some subcol-
lection of the curves y;, and in I, x C, the wires are given as y; (¢) = (¢, kjt +a; +ibj).
If y; does not pass through the intersection point, we require k; = 0.

Note that any braided wiring diagram can be isotoped through braided wiring diagrams
to be in standard form.

We can encode a braided wiring diagram by projecting the union of the images of
the y; to R x R and denoting the crossings of the projection as in a knot diagram.

A braided wiring diagram can be encoded by a sequence

(IBOsJ1v1817J27---7/3m—1’]maﬂm)?

where each B; is a braid and J; = {k;, k; + 1,...,k; +£;} is a consecutive sequence
of integers indicating the local indices of the strands involved in the i™ intersection
point. For brevity, we will say that J; is a consecutive set.

Conventions Strands in a wiring diagram are numbered from bottom to top. The
convention in [12] is to draw this sequence of braids and intersections from right to
left. If one thinks of composing words in the braid group using group notation (left to
right) instead of functional notation (right to left), then one will need to read off the
braid words from left to right — this is the convention used in [12]. However, in our
case since we are always thinking of braids as diffeomorphisms of the punctured plane,
we will use functional notation to compose braid words, and thus read everything —
the intersections and the braid words — from right to left.

Example 5.2 The braided wiring diagram shown in Figure 8 corresponds to the
sequence
(id, {2,3},id, {3,4}, 07 00y 1, {3, 4}).

Braided wiring diagrams were introduced in [12] (inspired by foundational work of [40]
and generalized from diagrams of [21]) to study configurations of complex curves,
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Figure 8: Braided wiring diagram.

particularly line arrangements, and the fundamental groups of their complements. The
definition works just as well to study configurations of smooth graphical disks in C?2
As in Section 3, let (x, ) be complex coordinates on C2 and let 7, be the projection
to the first coordinate. Let T'y, ..., I';; be smooth disks in C? which are graphical with
respect to the projection to x, so I'; = {y = fi(x)}. Assume that all the intersections
between the [; are transverse and positive (with respect to the natural orientation on
the graphical disks projecting to C).

Definition 5.3 For a graphical configuration I' = {I";, "5, ..., [',} of smooth disks
in C2, a braided wiring diagram is obtained as follows. Choose a (real) embedded
curve 1: [0, 1] = C which passes once through the projection of each singular point
of the configuration and whose real part Re 7 is nonincreasing. The preimage of the
curve 7 under 7, in C? is diffeomorphic to [0, 1] x C, and the intersection of this copy
of [0, 1] x C with the configuration I is the braided wiring diagram.

The transversality of each smooth disk I'; to the projection 7, ensures that the wiring
diagram curves are transverse to the projection ng : R x C — R. Note that different
choices of 1 may result in different braided wiring diagrams, which are related by
certain generalized Markov moves. See for example [12] for more details. We will show
in Section 5.3 that one can always construct a configuration I' with a given braided
wiring diagram; moreover, the components I'; of I" can be chosen to be symplectic.

5.2 Braided wiring diagrams to vanishing cycles

Given a configuration I' = {I'{, ', ..., },} in C? as above, Lemma 3.2 produces
an associated Lefschetz fibration. Recall that a Lefschetz fibration is completely
determined by its fiber and an ordered list of vanishing cycles. (Critical points are
assumed to have distinct critical values.) The fiber in this situation is planar with
m boundary components, where m is the number of curves in the configuration. If we
are given a braided wiring diagram of I', we can explicitly determine the vanishing
cycles, as follows.
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To describe the vanishing cycles of a Lefschetz fibration L: M — C, we first need
to fix certain data. Choose a regular fiber Fy := L~ (py) as the reference fiber. Let
P1. ..., pn denote the critical values of L. Choose paths n; connecting pg to p; in
the complement of the pj, such that the paths n; are ordered counterclockwise from
1 to n locally around po. Then the j™ vanishing cycle V; is the simple closed curve
in Fy which collapses to a point under parallel transport along the path ;.

When given a braided wiring diagram, we can construct the paths 7; in a systematic
manner and compute the vanishing cycles V; in terms of the braided wiring data. The
wiring diagram lies over a curve 1: [0, 1]— C whose real part Re 7 is always decreasing.
The Lefschetz fibration from Lemma 3.2 comes from the composition L := 7 oo of
the blow-down map «: C2 #, CP? — C? with the projection map 75 : C> — C. One
then takes the complement of the sections given by proper transforms of the curves
[y,T5, ..., in C%#, CP2, so that each I'j corresponds to a hole in the planar fiber.
Thus the j™ hole corresponds to the wire y;j in the diagram, and in the standard form
the holes are arranged vertically in the fiber, labeled 1, ..., m, consecutively. Each
consecutive set J; corresponds to a subcollection of holes contained in a convex subset
of C. The Lefschetz critical points occur in C2 #, CP? above the intersection points
of the braided wiring diagram. Let 0 < #; <--- < t; < 1 denote the times at which
the j! intersection point of the wiring diagram lies over n(t). We will choose our
reference fiber to lie over the right endpoint pg = 1(0) of the curve n in C. Strictly
speaking, we need a compact version of this construction, which is obtained by working
in a closed Milnor ball and taking complements of tubular neighborhoods of the T';,
but for simplicity we omit the Milnor ball from the notation.

We will choose paths 7; : [0, #;] — C given by n; (1) =n(t)—e;j pj (¢)i, where p; : [0, ;] =
[0,1] is a bump function which is 0 near t = 0 and ¢ = ¢;, and 1 outside a small
neighborhood of 0 and 7, and 0 < &1 <&y <--- <&, <eé. See Figure 9.

m

Figure 9: The vanishing paths 7; chosen to identify the vanishing cycles in
the fiber over pg relative to the wiring diagram path 7.
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Our local model for the Lefschetz fibration in Lemma 3.2 shows that the curve which
collapses to a point in the fiber L™ (1 (¢; —§)) (for small § > 0) is a convex curve
enclosing the holes in the set J;. To determine the vanishing cycle in our reference fiber
Fo = L™ (pg), we need to track the monodromy over the path n;j fort €0, —46].
This is the monodromy of the braid given by the intersection of the configuration
with the slice of C? which projects to 7 7. (Note that this intersection is indeed a
braid over the interior of 7;, because each curve 7; is disjoint from the critical points
away from its endpoints.) By assuming ¢ to be sufficiently small, we see that this
braid agrees with corresponding portion of the braided wiring diagram, except when
passing near an intersection point. When 7; passes an interval near # for k < j, the
braid resolves the intersection by separating the strands. The strands are ordered from
bottom to top in decreasing order by slope in the projection R x C — R x R (the most
positive slope is the lowest strand in the crossing). This can be verified by checking
the local model for the complexification of real lines because all of our intersections
are positive and transverse; see [40]. After resolving an intersection of the strands in
the set Ji = {ig,ir +1,...,ix + [}, the element of the mapping class group which
corresponds to this portion of the braid from right to leftis A™!, where A is the positive
half-twist of the strands iz, ix +1, . . ., iz +/;. (In terms of the standard generators of the
braid group, Ay, = (0 *+* 0iy 11, —1) (0 *+* Oiy 11, —2) (07, 04y +1) (07, ).) Therefore,
the braid lying above 7; is given by

¢j =Bj—10A7 o---0B1oAT! o By,
where Ay denotes the positive half-twist of the strands in the set Jj. Namely, Ay is the
diffeomorphism supported in a neighborhood of the disk convexly enclosing the holes
in the set Jj, which acts by rotating the disk by 7 counterclockwise. The j" vanishing
cycle is the curve which is taken to the convex curve A4; enclosing the holes in the
set J; under the braid lying above n;. Therefore, V; = ¢j_1 (4;).
Remark 5.4 We can encode blow-ups at “free” points (as is allowed by Lemma 3.2)
by adding marked points in our braided wiring diagram indicating “intersection points”
that involve only a single strand (so the corresponding J will have |J| = 1).

The total monodromy of the curve configuration around a circle enclosing all of the
critical points can now be calculated in two different ways:

(1) Using the total monodromy of the curve configuration encoded by the braided
wiring diagram.

(2) Taking the product of positive Dehn twists about the induced vanishing cycles.
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Figure 10: Vanishing cycles corresponding to the braided wiring diagram
of Figure 8. The circled crossings correspond to intersections in the wiring
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diagram. Uncircled crossings come from braiding between intersections.

To reassure the reader that our formulas and conventions are consistent, we verify that
these two different ways of calculating the monodromy agree.

The total monodromy encircling a braided wiring diagram

(/30’-]1»,31:---:,311—1,JnuBn)

is given by following the diffeomorphisms induced by a counterclockwise rotation
around the wiring interval. Such a counterclockwise circle is obtained by connecting
an upward push-off of the wire interval oriented right to left with a downward push-off
oriented left to right as in Figure 11. The intersections between the strands of J; are
resolved as the positive half-twist A; in the upward push-off (right to left). In the
downward push-off the intersection is resolved as the negative half-twist Aj_l right
to left, but since we pass through the downward push-off from left to right, each such
segment contributes A; to the monodromy. The braids contribute B; when traversed
right to left, and ﬂj_l when traversed left to right. See Figure 11. The total monodromy
is therefore

BoloAiofi ony0ps ool oAy 0Bt oA 0 By10Ap 0By
o-+-0fs0Az0B10A10py.

Bn IAn I/3n—1 IAn—ZIIBn—ZI . B2 A |,31 A Iﬂo

[ )
e N

} } }
Bt An B An-t 1

f f f f f

Figure 11: The total monodromy about a braided wiring diagram.
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On the other hand, each vanishing cycle is given as
Vi =97 (4j) = (Bj—10A7 ! 0---0 B0 AT 0 o) (4)).
Therefore a Dehn twist y; about V; is equal to
Ty, =¢; o ATog;

because 74, = Ajz. and in general t4(c) = Ppotc 0 ¢~ 1. Thus, the total monodromy of
the Lefschetz fibration given by the product of positive Dehn twists about the vanishing
cycles is

$n O ALOPnOP, O AL opu1 00 o Aoy,
We can simplify ¢; o ¢j__11 as
(Bj—10A7 1 0--0B10AT 0Bo)o(By o Ao o0 so B ) =B 1o AT!).
Therefore ty;, o--- o 1y, is equal to
$n' 0 Af o (Bum1o AL )0 AL 00 (BroAT!) 0 AT o o,
which equals
BoloAjoBilooA, 0Bt 0AZ0By_10A,_10---0B10A; 0Py.

This coincides with the total monodromy of the braided wiring diagram given above,
as required.

5.3 Wiring diagrams to symplectic configurations

Given any braided wiring diagram, we interpret it as a collection of intersecting curves
in R x C. We will extend each of these curves to a symplectic surface in C x C.

Proposition 5.5 Given a braided wiring diagram | J ; vj CRXC in standard form, there
exists a configuration of symplectic surfaces | J ; Tj in € x C such that T'; extends y;,

that is,
(Urj) NERx {0} xC) =
J J

and all intersections I'; N 'y lie in the original wiring diagram in (R x {0} x C) and
are transverse and positive.
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S\ /" \ /" \

Figure 12: The graph of p: R — [0, 1]. The marked points on R are the ;.

Proof Lett#; =ar(p1),...,t, = mr(pn) denote the R coordinates of the intersection
points pi,..., py in the wiring diagram. Braid crossings in the wiring diagram can be
viewed as additional intersections that appear in the image of the diagram under the
projection R x C — R x R. Choose § > 0 sufficiently small that there are no crossings
in the braided wiring diagram in 7 L([t; — 46, t; + 48]) (except the intersection at py,).
Let p;: R — [0, 1] be a smooth bump function such that

1 fortelt;—6,t + 4],

ill) =
pi(t) {o for t & (1 — 28, ; + 26).

Let p= Y1, pi- See Figure 12.

Let n > 0. Let x: R — [—n, 5] be a smooth function such that

—n fors <-2n,
x(s)=4s  for —%nfsf%n, x'(s) >0 forall seR.
n  fors=>2n,

See Figure 13.

For each wire, we will define its extension to a symplectic surface. Suppose the wire is
parametrized as

yi(t) = (t, h; (1) + iw; (1)) € R x C.
Define I'j(z,5): R? — C? by

Ty (o) = (1 4+ i, by (0) + 1 (i () + p() X () (1))

W

Figure 13: The graph of x: R — [—n, n].
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The tangent space of the image of I'; is spanned by

BI‘j 0 BF,- 0
G =) me G =dn(y)
The previous formulas use complex coordinates (x, y) on C2; now we pass to real
coordinates (x1, X2, ¥1, V2), so that x = x1 +ix,, ¥y = y1 +iy,. In these coordinates,
the standard symplectic form is given by w = dx{ A dx, + dy; A dy,. We have

aF 8 / a / / / " a
=t g5+ (w'(@) + ' O x () (1) + p(t) x ()] (l))—ay2 ,
aF' 8 / / 3
a_sj =gy, TPOX OO F

Evaluating the symplectic form gives

or; dI; ,
L) =14 p( h; (1)) > 0,
so the image of I'; is a symplectic surface.

To verify that these extensions do not intersect outside of the original intersections of
the wiring diagram, we observe that any intersection between I'; and I'y would occur
at the same parameters (¢, Sg) and must have

hj(to) = hi(to) and wj(to) + p(to) X (s0)h'; (to) = wy (t0) + p(t0) x(s0) 1} (t0)-

If h1j(to) = hi(fo), this means that the wires y; and y, project to the same point under
the projection R x C — R x R. This means there is either a crossing or an intersection
between wires y; and y at {o.

If 7o is an intersection point of the wires, w;(tg) = wy(fp). Additionally, at 7o, the
projections of the wires have different slopes, so h} (to) # hy (to). We also have p(t) =1
near #o. Using this, the intersection assumption that

wj (t0) + p(to) X (s0) ) (to) = wi (o) + p(t0) X (s0)/1). (t0)
implies that
x(s0) (i (t0) — 1 (£0)) = wj (to) — wy (to) = 0.
Therefore, x(sg) = 0, so 5o = 0 by definition of .

If 7o is a crossing between wires, w; (fo) # wg (fp). Because p is supported only near the
intersection times, and we assume the crossings occur outside of these intervals, p = 0.
Therefore, the assumption that w; (f9) + p (o) X(So)h;. (to) = wy (to) + p(t0) X (s0) ), (t0)
gives a contradiction.
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Finally, we check that I'; and I'y intersect positively. If we assume that the wiring
diagram is in standard form near the intersection points /;(¢) = kjt + a;j and constant
coordinate w;j () = b;, then near (#;, 0) where p(t) = 1 and x(s) = s, we have that

Lj(t,s) = (t+is, kit +a; +i(bj +kjs)),

so the image of I'j agrees with the complex line y = kjx +4a; +b;i, and the intersection
of I'; and I'x locally agrees with an intersection of complex lines. O

5.4 Stein fillings correspond to symplectic configurations

Given a contact structure supported by a planar open book, a theorem of Wendl [65] says
that every Stein filling is symplectic deformation equivalent to a Lefschetz fibration with
the same planar fiber; Niederkriiger and Wendl [48] extend this result to minimal weak
symplectic fillings. Thus, Stein fillings are essentially in one-to-one correspondence
with positive factorizations of the monodromy of the given planar open book (and the
same is true even for weak symplectic fillings, up to blow-up). The following statement
is equivalent to Theorem 1.5.

Proposition 5.6 Let (Y, &) be the link of a rational singularity (X, 0) with reduced
fundamental cycle. Fix a decorated germ (C, w) for (X, 0), with smooth branches
C,Cy,...,Cp.

Then every Stein filling of (Y, &) is supported by a Lefschetz fibration built from a
configuration of m symplectic disks {I";, T3, ..., T}, } in C? with marked points, via
Lemma 3.2.

Proof Because the contact manifold is planar, any Stein filling is supported by a
planar Lefschetz fibration with the same fiber. We will reverse-engineer the required
configuration of symplectic disks. Let Fj, be a fixed identification of the planar fiber,
where the holes are lined up vertically and labeled by numbers 1,2,...,m. Let
Vi,..., Vu be the ordered list of vanishing cycles for the Lefschetz fibration. We
begin by producing a collection (Y, ..., ¥,—1) of diffeomorphisms ¥;: Fo — Fy and
(J1,...,Jn) of consecutive subsets of {1,...,m}. Here, “consecutive” means that
Ji={i,i+1,...,i +k}for somei and k.

Choose a diffeomorphism B¢ : Fy — Fy so that B¢ (V) is isotopic to a curve convexly
enclosing a consecutive collection of holes; let J; be the corresponding consecutive
subset. Let A be the counterclockwise half-twist of the convex disk that contains
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precisely the holes indexed by J;. Recursively, choose a diffeomorphism f;: Fo — Fy
such that 8 o Aj_l o-+-0B10AT o Bo(Vj41) is isotopic to a curve convexly enclosing
a consecutive collection of holes that corresponds to the set J;j 41, and let A ; denote
the corresponding half-twist.

Consider the braided wiring diagram determined by (8¢, J1, B1, J2, .-, Bu—1, Jn). By
Proposition 5.5, we can construct a configuration of symplectic surfaces I'y, ..., 'y
in C? extending this diagram. Using Lemma 3.2, we obtain a planar Lefschetz fibration.
We need to use the compact version of the construction to get a fibration whose general
fiber is a disk with m holes; for this, we start with a Milnor ball of the form B = Dy x D,,,
such that Dy is a neighborhood of 7, and D), is a disk of sufficiently large radius to
include the wires above Dy.

As explained in Section 5.2, the vanishing cycles of this Lefschetz fibration will be
given by
Vi=(Bj—10A7 1 00 froAT 0 o) (4))

for j =1,...,n, where A; is a convex curve enclosing the consecutive holes in the
set Jj. The choice of the 8; ensures that these vanishing cycles are identical to our
original ones: V/ =V;.

Along with the symplectic disk configuration {I', ..., I';;}, we also obtain a collection
of marked points on these disks. The marked points include all the intersections as
well as additional free marked points, as in Remark 5.4. Each free marked point
can be chosen anywhere on the corresponding disk, as long as all marked points are
distinct. As in Lemma 3.4, counting multiplicities of pairwise Dehn twists in the
monodromy shows that the number of marked points on each disk I'; is the same as the
weight w(Cj) of the corresponding curvetta C; of the defining decorated germ (C, w)
of the singularity. |

Remark 5.7 The diffeomorphisms f; are not unique. Any choice will suffice to
produce an appropriate braided wiring diagram and corresponding symplectic configu-
ration.

To show that every Stein filling is generated by a symplectic analog of the de Jong—
van Straten theorem, it remains to prove that different symplectic configurations with
the same monodromy are related by deformations. The role of de Jong and van Straten’s
picture deformations is played by graphical homotopies.
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Proposition 5.8 Let (X, 0) be a rational singularity with reduced fundamental cycle,

and (C,w) its decorated plane curve germ with smooth branches Cy,...,Cy. Let
(Y, &) be the contact link of (X, 0). Suppose that I' = {I'y, 5, ..., [',,} is a configura-
tion of symplectic disks with marked points p1, ..., pn, constructed for a given Stein

filling of (Y, &) as in Proposition 5.6. Then (I", { p; }) can be connected to (C,w) by a
smooth graphical homotopy.

Lemma 5.9 Suppose C?,...,CY and Cll, ..., C} are two configurations of graph-
ical disks in a Milnor ball B = Dy x Dy, such that 3C = 9C}' for j = 1,...,m.
Then there is a family of graphical disks C!, ..., C} (potentially with negative in-
tersections) interpolating between these two configurations with fixed boundary link
IC{U---UIC,, C IB. Here, 0C] = C; NdB = C; N (dDx x Dy).

Proof Because we are not limiting the behavior of the intersections of the components,
it suffices to check that there is a family C j’ interpolating between C 19 and C jl for
one component. For simplicity of notation we will drop the j. For this, because
both C® and C! are graphical, we can write them as C* = {(x, f*(x))} fors =0, 1.
Then since dC® = dC!, we have that fO(x) = f1(x) for x € dDy. Let C! =
{(x,tf1(z) + (1 =1) f°(x)}. Then C’ interpolates smoothly between C°® and C, and
its boundary is fixed. a

Lemma 5.10 Suppose C; U --- U Gy, is a configuration of graphical disks, so its
boundary dCy U ---U dCy, is a braid. Let L1, ..., Ly, be the components of a braid
Ly U---U L, which is braid isotopic (with corresponding indices) to dC; U---U dCy,.
Then there is a homotopy of graphical disks Clt, ..., Cl such that C;) = C; and
IC) = L;.

Proof If Cy,..., Cy are graphical over a disk Dy, choose a larger disk D; contain-
ing Dy. Then we can extend Cy, ..., Gy, to graphical disks C', ..., C,, over D}, so
that dCy,...,dC,, is the braid L;, by realizing the trace of the braid isotopy over
the annulus D/, \ Dy. Next, we can shrink D’ to Dy continuously via a family of
embeddings ¢;: D). — D! where ¢ = id, ¢1 (D)) = Dx, and ¢; identifies points
in D, with points in 0D according to the same identification used to realize the trace.
Then if CJf = {(x, fj(x))} for x € D, we can let

Cj = {(de(x), fj(x) | x € D} N (Dx x C).
Then C ].0 =Cj and 0C jl = L;j, as required. m|
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Proof of Proposition 5.8 When we fix the germ (C, w) and apply the method of
Proposition 5.6 to a given Stein filling for (Y, &), we first consider the open book
on (Y, &) induced by the decorated germ as in Proposition 4.1. The Stein filling
then carries a Lefschetz fibration that induces the same open book on the boundary,
and the arrangement (I", { p; }) is constructed from the monodromy of this Lefschetz
fibration. The smooth disks I'y, ..., I',, are contained in the Milnor ball B for C and are
transverse to its boundary S3, so that $3 N (I';y U---UT}y,) is a braid. By Lemma 3.3,
the monodromy of this braid is the image of the monodromy of the open book under the
projection MCG( Py,) — MCG(C,,) of the mapping class group of the compact disk
with holes to the mapping class group of the punctured plane, so the two braids are braid-
isotopic. Therefore, we can apply Lemma 5.10 to perform a graphical homotopy to
Iy, ..., 'y sothatits boundary agrees with that of Cy, . . ., Cy,. Next, apply Lemma 5.9
to continue the graphical homotopy from Cy,...,Cy to I'y, ..., [y a

Remark 5.11 For our construction of a Lefschetz fibration, it is not important that the
Cl.’ are symplectic disks, we only care that they are graphical. However, by performing a
rescaling in the y direction, we can ensure that all of the graphical disks are symplectic
if the partial derivatives of the function f are sufficiently small. More specifically, if
C ={(x, f(x))}, where x = x| +ix, and

aller

8X1 8x2

V2

< -,
2

’

then C will be symplectic. This bound is sufficient although not necessary; it can be
achieved by rescaling /', which itself is a graphical homotopy. Moreover, if f° and
/1 both satisfy these bounds, then their convex combination ¢/° + (1 —¢) f! also
satisfies the bound for all ¢ € [0, 1], so the interpolation between the two disks will also
be symplectic.

6 Incidence matrix and topology of fillings

6.1 Basic topological invariants

It is shown in [27] that the basic topological invariants of the Milnor fibers obtained
from the picture deformations can be easily computed from the deformed curvetta
arrangement. Moreover, the incidence matrix of the arrangement can be reconstructed
from the Milnor fiber [44]. We now review these facts briefly and adapt and generalize
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them in our context: the goal is to show that exactly the same results hold for more
general Stein fillings, constructed from smooth disk arrangements as in Section 5.

As we have shown in Section 5, every Stein filling W can be described by an ar-

rangement I' = {I';} of symplectic curvettas with marked points {p; };.’ related

=1’
to the plane curve germ C = C; U --- U C,; by a smooth graphical homotopy. We
always assume that curvettas intersect positively. We also treat the components of
C as labeled, so the ordering of components Cq, ..., Cy, is fixed. The set of marked
points { pj };?zl contains all intersection points between the I'; and possibly a number
of free points. The incidence matrix Z(I", { pj}) has m rows and n columns, defined
so that its entry a;; at the intersection of the i™ row and the j™ column equals 1 if
p;j € T'i, and 0 otherwise. Note that there is no canonical labeling of the points pj,
so the incidence matrix is defined only up to permutation of columns. We will say
that two arrangements (I, {p;}) and (I, { p}}) are combinatorially equivalent if their
incidence matrices coincide (up to permutation of columns, ie up to relabeling of the
marked points).

Let £ be the Lefschetz fibration constructed for the arrangement (I', {p;}) as in
Lemma 3.2. Its general fiber is a disk with m holes that correspond to the curvettas
I'y,..., [y of T'; in particular, the number of holes equals the number of rows in the
matrix Z(I", { pj }). The vanishing cycles of £ correspond to the marked points { p; };.’=1
and enclose sets of holes that correspond to curvettas passing through that point: if
[,,..., I, are all curvettas that intersect at p;, the vanishing cycle V; encloses the
holes A;,, ..., hj, . It follows that homology classes of the vanishing cycles of £ can
be determined from the incidence matrix Z(I', { p; }), and we have:

Proposition 6.1 Let L be the Lefschetz fibration for the arrangement (I", { p; }) with in-
cidence matrix Z(T, {p;}). If the j" column of Z(T', { p;}) has lsinrowsiy,ia, ..., i,
the corresponding vanishing cycle V; of L encloses the holes h;, ..., h;, in the fiber.

Corollary 6.2 Let (T, {pj}) and (I, { p} }) be two combinatorially equivalent arrange-
ments, and £ and L' the corresponding Lefschetz fibrations. Then the vanishing cycles
of £ and L' are in one-to-one correspondence, so that the two vanishing cycles that
correspond to one another are given by homologous curves in the fiber.

Because smooth graphical homotopies do not allow intersections to escape through the
boundary, the number of pairwise intersections of I'; and I';j is given by tang(C;, C;) =
p(vi, vj;vo); see Remark 2.6. The weight of I'; (the total number of intersection points
and the free marked points on ;) is given by w(C;) = 1 4 /(vg, v;). The intersections
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between I'; and I'; correspond to the points among pp, p2, ..., pn contained in both
lines, and each such point gives a 1 in the same column for the i" row and the j™ row
of the incidence matrix. Therefore we have:

Lemma 6.3 Let (C,w) be a decorated germ corresponding to (X, 0), with branches
C1,Cs, ..., Cy. Consider any arrangement {I';}. | of smooth curvettas encoding a

Stein filling of the link of (X,0). The incidence matrix Z(I", { p; }) has the following
properties:

(i) The number of 1s in the i row of Z(T, {p;}) is w(C;) = 1 + (v, vi).

(ii) The number of 1s which appear in the same columns for the i row and the
i th

J " row is tang(Cj, Cj) = p(vi, vj; vo).
Here, [(vg, v;) and p(v;, vj; vg) are the length and overlap functions on the resolution
graph G, defined in Remark 2.6, and vy is the choice of root.

We now describe how the incidence matrix Z(I', {p;}) determines basic algebraic
topology of the filling W, namely H; (W), H,(W), the intersection form of W, and
the first Chern class ¢ (J) of the Stein structure. (Homology is taken with Z coefficients
throughout.) The statements about the homology and the intersection form of W are
proved in [27, Section 5] for the algebraic case, but the proofs are entirely topological
and apply in the more general settings as well. Alternatively, the same invariants can
be computed from the vanishing cycles of the Lefschetz fibration [6, Lemma 16]. For
Lefschetz fibrations with planar fiber, detailed proofs for the intersection form and ¢ (J)
calculations are given in [19]. We write Z({ p;}) for the free abelian group generated
by {pj }}121, and Z({I';}) is defined similarly. The incidence matrix Z(I", { pj }) defines
a map between the corresponding lattices.

Proposition 6.4 There is a short exact sequence

0 — Hy(W) = Z{{p;}) <> Z{{T1}) — Hi (W) — 0.

Proof Let W be the total space of a Lefschetz fibration over a disk D, with planar
fiber P. (We always assume that W, P and D are compatibly oriented.) If D’ C D
is a small disk that contains no critical points, then W is obtained from P x D’ by
attaching 2-handles to copies of the vanishing cycles contained in the vertical boundary
P x dD’, so that distinct handles are attached along knots contained in distinct fibers.
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We use the exact sequence of the pair (W, P x D’); since P x D’ retracts onto P, we
can replace the former with the latter. Notice also that Hy (W, P) = 0, so we get

0— Hy(W) 5 Hy(W, P) 255 H{(P) = H; (W) = 0.

The group H, (W, P) is freely generated by the cores of the attached 2-handles;
we can identify these generators with the vanishing cycles. By construction of the
Lefschetz fibration, each vanishing cycle corresponds to a blow-up at some marked
point, so we can identify the vanishing cycles with the set {p;}. The free abelian
group H, (W, P) is then identified with the lattice Z({p;}). The generators for the
free abelian group H;(P) can be given by loops around the holes in the planar fiber.
The holes correspond to the branches of C, thus H;(P) can be identified with the
lattice Z ({I';}). The map 04 is evaluated as follows: to compute d«(p;), we take the
boundary of the core of the corresponding 2-handle, given by the vanishing cycle
associated with pj, and express this vanishing cycle in terms of the generators of
H,(P) =Z{{T'j}). Since the vanishing cycle is a simple closed curve on the planar
page, its first homology class equals the sum of the boundaries of the holes it encloses,
which in turn correspond to the branches I'; passing through p;. Therefore, d4(p;) is
given precisely by the j™ column of the incidence matrix Z(T, {p i 1), as required. O

Remark 6.5 Since the link Y of a rational singularity (X, 0) is always a rational
homology 3—sphere, a standard argument shows that b (W) = 0 for any Stein filling
W of Y. Indeed, W has no 3-handles, so H3(W;Q) = 0; then for the pair (W, Y) =
(W, 0W) we have

0=H(0W;Q) - Hi(W;Q) — H\(W,dW;Q) = H*(W;Q) = 0.

It follows that the matrix Z(I", { p; }) always has full rank.

Note that H, (W) is isomorphic to Im j., which in turn equals ker d«. So H (W) can
be identified with null-homologous linear combinations of vanishing cycles (thought
of as I—chains in P). One can explicitly describe an oriented embedded surface in W
representing a given second homology class, as follows [19, Section 2]. First, one
constructs an oriented embedded surface in P x D’ whose boundary is the given
null-homologous linear combination of the vanishing cycles, and then the vanishing
cycles are capped off in W. A similar construction is given in [27] without Lefschetz
fibrations, for Milnor fibers obtained by blowing up the 4-ball at the marked points
and taking the complement of the proper transforms of curvettas; exactly the same
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argument works for a smooth curvetta arrangement (I', { p; }). After blowing up the
4-ball B at the points pi, pa, ..., pn, Wwe have the 4-manifold B, the blow-up of B,
with generators of H, (E) given by the fundamental classes E), of the exceptional
divisors. We identify H»(B) = Z({ pj}). The intersection form of B is standard
negative definite in the given basis, as £, - E;, = —1. The manifold W is obtained
from B by removing the tubular neighborhoods 7; of the proper transforms T; of
the curvettas I';. The inclusion induces a map Hy (W) — H2(§), which is in fact
the same map as j, above, under obvious identifications. Every homology class in
H,(W) is represented by an embedded oriented surface which can be constructed by
taking the collection of the corresponding exceptional spheres E,, punctured at their
intersections with f‘j, and connected by tubes running inside the cylinders 7;. The
intersection of two such surfaces can be computed by taking the intersections of the
corresponding collections of exceptional spheres, as the tubes can be arranged to be
disjoint. For the Stein structure J on W associated to the given Lefschetz fibration,
we can compute ¢(J) using the same inclusion H,(W) — Hz(E). Indeed, J is
homotopic to the restriction of the complex structure j on B, and ¢; (JIEp;]=1 for
every Ep,. Therefore we have:

Proposition 6.6 The intersection form on H,(W) C Z({pj}) is the restriction of the
standard negative definite form given by p; - pj = —;; fori, j =1,...,n. The first
Chern class ¢;(J) of the Stein structure is the restriction of the linear form on Z({p; })
given by c{[pi]=1fori =1,...,n.

See also [19, Propositions 2.1 and 2.4] for a detailed calculation (in terms of the
vanishing cycles) of the intersection form and ¢ (J') for an arbitrary Lefschetz fibration
(W, J) with planar fiber.

6.2 Uniqueness of the Artin filling and proof of Theorem 1.2

In general, the topology of the filling might not be fully determined by the incidence
matrix of the corresponding curvettas arrangement; Proposition 6.1 gives the homology
classes of the vanishing cycles but not their isotopy classes. However, it turns out that
the incidence matrix completely determines the smoothing for picture deformations
that are combinatorially equivalent to the Scott deformation, so that one gets the Artin
smoothing component [27, Cases 4.13]. We prove that an analogous result holds for
Stein fillings as well. Note that the argument in [27] uses simultaneous resolutions and
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only works in the algebraic setting, while we work with mapping class groups instead.
Our argument works because the Artin filling has a Lefschetz fibration with disjoint
vanishing cycles in the fiber.

Proposition 6.7 Let (X, 0) be a rational surface singularity with reduced fundamental
cycle, with contact link (Y, §£) and decorated germ (C, w). Let I be an arrangement of
smooth graphical curves with positive intersections and marked points { p; }, related to
the germ (C, w) by a smooth graphical homotopy, so that (I', { p; }) gives rise to a Stein
filling W of (Y, &).

Suppose that (I', { pj }) is combinatorially equivalent to the Scott deformation (C*, w*)
of (C, w). Then the Stein filling given by (I', { p; }) is Stein deformation-equivalent to
the Artin filling of (Y, §).

Proof Let £ be the Lefschetz fibration for (I', { p; }), constructed as in Lemma 3.2,
and let £4 be the Lefschetz fibration for the Artin smoothing, given in Proposition 4.2.
We know that £ 4 is given by the monodromy factorization as in Proposition 4.1; let ¢
denote the monodromy of the open book as in the lemma.

Both fibrations £ and £ 4 have the same fiber .S, and the fibration £ corresponds to some
factorization of the same monodromy ¢. By Corollary 6.2, the vanishing cycles {V;}
and {VjA} of the two fibrations are in one-to-one correspondence, so that the curves V;
and VjA are homologous in the fiber. We need to show that V; and VjA are isotopic.

There are two types of vanishing cycle in the fibration £4: (1) boundary-parallel
curves that enclose a single hole each, and (2) the curves that go around the necks
connecting the spheres, as shown at the top of Figure 6. The isotopy class of a boundary-
parallel curve in the fiber is uniquely determined by its homology class, so if VJ.A is
boundary-parallel, then V; = VjA. Now, because the total monodromy of £ and L4 is
the same, and the Dehn twists around the boundary-parallel curves are in the center
of the mapping class group of the fiber, we see that the products of the Dehn twists
around the vanishing cycles homologous to necks are the same for both £ and £4. In
other words, if N denotes the set of vanishing cycles homologous to necks, we have

(6-1) [1o=1] v«

Let ¥ denote the diffeomorphism of the fiber given by the product (6-1).
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To prove that each vanishing cycle V; is indeed isotopic to the vanishing class VjA
homologous to V;, we proceed by induction on the number of necks in the fiber S (this
is the same as the number of edges in the dual resolution graph G). Equivalently, we
can induct on the number of vertices, since G is a tree. When G has only one vertex,
there are no necks, so all the vanishing cycles are boundary-parallel, and V; = VjA for
all pairs of vanishing cycles. Assume that the claim is established for all graphs with
k vertices or fewer. Consider a graph G with k£ + 1 vertices and pick a leaf vertex v
of G. We will be able to remove v to reduce the question to a graph G’ with k vertices.

In the Lefschetz fibration of Proposition 4.2, the leaf v corresponds to the sphere S
with holes, connected to the rest of the fiber S by a single neck. The fibration £4 has
a vanishing cycle V4 that goes around this neck, and £ has a vanishing cycle V in the
same homology class. Since v is a leaf, Sy is separated from its complement S \ S, by
the curve V4. Observe that all the other nonboundary parallel vanishing cycles of £ 4
lie outside Sy. A priori, nonboundary parallel vanishing cycles of £ may belong to
different isotopy classes and intersect S, ; we want to show that they can be isotoped to
lie outside Sy.

If the self-intersection v - v = —2, then in fact V4 encloses only one hole, so it is
boundary-parallel, and we can immediately conclude that V and V4 are isotopic, and
Sy is a boundary-parallel annulus disjoint from all the other vanishing cycles.

Suppose now that v-v < —3, so that V4 encloses r = —1 —v-v > 1 holes. Connect
these holes by r — 1 disjoint arcs o, ..., ®,_1 in the sphere Sy, so that if the fiber .S
is cut along these arcs, the r holes will become a single hole; see Figure 14.

By construction, the arcs oy, ...,«,—1 are disjoint from all nonboundary parallel
vanishing cycles VjA of L4. It follows that each «; is fixed by the diffeomorphism .
Asin [7, Proposition 3] and [17, Section 2], we now make the following key observation:
after an isotopy removing nonessential intersections, all arcs a1, . .., a,_1 must be also
disjoint from all non-boundary-parallel vanishing cycles V; of L. To see this, we recall
that each right-handed Dehn twist is a right-veering diffeomorphism of the oriented
surface S [25]. If @ and B are two arcs with the same endpoint x € 0.5, we say that
B lies to the right of « if the pair of tangent vectors (B ,&) at x gives the orientation
of S. The right-veering property of a boundary-fixing map t:.S — S means that for
every simple arc o with endpoints on 9.5, the image 7(«) is either isotopic to o or
lies to the right of « at both endpoints, once all nonessential intersections between
o and t(«) are removed. Now, suppose that £ has a vanishing cycle V; € N that

Geometry & Topology, Volume 27 (2023)



Unexpected Stein fillings and plane curve arrangements 1149

G .- _Sv > G’ _l

—n —n

Figure 14: After cutting the fiber S, the vanishing cycle V4 becomes
boundary-parallel in S’.

essentially intersects one of the arcs, say a1. Then the curve 7y, (1) is not isotopic to «
(see eg [16, Proposition 3.2]), so 7y; (1) lies to the right of 1. Since the composition
of right-veering maps is right-veering, we can only get curves that lie further to the
right of o after composing with the other nonboundary parallel vanishing cycles of L.
However, the composition { = HVj en Tv; fixes ay, a contradiction.

Once we know that no vanishing cycles of £ or £ 4 intersect any of the arcs oy, ..., 0,1,
we can cut the fiber S along these arcs, and consider the image of the relation (6-1)
in the resulting cut-up surface S’. In S’, V4 becomes a boundary-parallel curve, and
since V lies in the same homology class, we see that V and V4 are isotopic in S’ (and
therefore in S'). We then have

l_[ ‘L’Vj = 1_[ TVjA.

V;eN,V;#V VAeN, VA#Y 4

Now observe that cutting up S along the arcs as above has the same effect as remov-
ing the sphere S, with its neck from the set of subsurfaces forming the fiber S in
Proposition 4.2. Then the cut-up fiber S’ with its non-boundary-parallel vanishing
cycles {Vj} and {VjA} corresponds to the fibrations for the graph G’ obtained by deleting
the leaf v and its outgoing edge from the graph G. By the induction hypothesis, we can
conclude that all pairs of homologous vanishing cycles V7, VjA are isotopic in S’, and
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thus in S. It follows that the Lefschetz fibrations £ and £ 4 are equivalent, and therefore
the Stein filling given by £ is Stein deformation equivalent to the Artin filling. |

The above results have the following interesting application, related to conjectures of
Kollar on deformations of rational surface singularities. Suppose that a rational singular-
ity (X, 0) has a dual resolution graph G such that v-v < —5 for every vertex v € G. In
this case, Koll4r’s conjecture asserts that the base space of a semiuniversal deformation
of X has just one component, the Artin component; in particular, there is a unique
smoothing, up to diffeomorphism. In the special case of reduced fundamental cycle,
this conjecture was proved by de Jong and van Straten via their picture deformations
method. We establish the symplectic version of this result, proving Theorem 1.2.

Proof of Theorem 1.2 We can focus on Stein fillings: by [65] and [48], every weak
symplectic filling of a planar contact manifold is a blow-up of a Stein filling, up to
symplectic deformation. By Section 5, Stein fillings are given by arrangements of
symplectic curvettas. The argument in [27, Theorem 6.23] shows that under the given
hypotheses on the resolution of (X, 0), there is a unique combinatorial solution to
the smoothing problem, namely, any arrangement of curvettas must have the same
incidence matrix as the Artin incidence matrix given by the Scott deformation. The
argument of De Jong and van Straten is somewhat involved, so we will not summarize it
here, but we emphasize that the proof of this fact is completely combinatorial and does
not use the algebraic nature of arrangements. The same claim holds for an arbitrary
smooth arrangement subject to the same hypotheses. The only input used in [27] is the
properties of the incidence matrix determined by the resolution graph as in Lemma 6.3,
together with the following observation: if all vertices of the resolution graph G have
self-intersection —5 or lower, each end vertex of G (except the root) gets at least
three (—1) vertices attached in the augmented graph G’, so that there are at least three
corresponding curvettas. An important step in the inductive proof is that the matrix
must have a column where all entries are 1, ie all the I'; must have a common point.

Once we know that all arrangements corresponding to possible Stein fillings are combi-
natorially equivalent to the arrangement given by the Scott deformation, Theorem 1.2
follows from Proposition 6.7. a

In the case where, additionally, the graph G is star-shaped with three legs, uniqueness
of minimal symplectic filling (up to symplectomorphism and symplectic deformation)
was proved by Bhupal and Stipsicz [9]. (They give a detailed proof under the hypothesis
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that the self-intersection of the central vertex is at most —10, but mention that one can
go up to —5 with similar techniques.) Their method relies on McDuff’s theorem [38]
and was previously used by Lisca [34]: one finds a concave symplectic cap which is
a plumbing of spheres that completes an arbitrary filling to a rational surface, which
must be a blow-up of CP?, analyzes possible configurations of (—1) curves, and then
verifies that the configurations in the image of the cap plumbing under the blow-down
is a pencil of symplectic lines which has a unique symplectic isotopy class. To our
knowledge, this strategy has not been applied to non-star-shaped graphs in the existing
literature. The difficulty in the non-star-shaped case is that there is not an obvious
concave symplectic plumbing which can serve as a cap. Our proof works for completely
arbitrary trees.

6.3 Distinguishing Stein fillings

We now turn to constructions that will be needed in the next section, and explain
how to use incidence matrices to distinguish Stein fillings, at least relative to certain
boundary data. Indeed, as shown by Némethi and Popescu-Pampu [44], the incidence
matrix is “remembered” by the Milnor fiber of the corresponding smoothing, which
allows us to show that certain Milnor fibers are not diffeomorphic (in the strong sense,
ie relative to a boundary marking). The argument in [44] is purely topological, so
we can generalize it to arbitrary Stein fillings. While [44] applies more generally to
sandwiched singularities, we only consider the case of reduced fundamental cycle.

Instead of the boundary marking used in [44], we will keep track of the boundary data
via a choice of a compatible embedded open book for (Y, £). As in Section 2, we fix a
choice of extension G’ of the dual resolution graph G of a singularity with link (Y, &), to
fix the topological type of the associated decorated germ (C, w) with labeled branches
C1, ..., Cp. Each branch C; corresponds to a hole /1 of the open book as, explained
in Section 4; fixing the embedded open book, up to isotopy, is equivalent to fixing the
topological type of the decorated germ. In fact, this open book decomposition provides
the data of the “markings™ of [44], where the solid tori components of the binding
correspond to “pieces” of the marking data which allow one to fix the gluing of the
smooth cap of [44] to the filling using the open book instead of the markings.

By WendI’s theorem [65], all Stein fillings of a planar contact 3—manifold are given, up to
symplectic deformation, by Lefschetz fibrations with same fiber, so that these fibrations
are encoded by monodromy factorizations of the fixed open book as above. Suppose
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that Stein fillings W and W’ arise from symplectic curvetta arrangements (I, {p; })
and (I'", {p}}) as in Propositions 5.6 and 5.8. On the boundaries 3W and W, these
arrangements induce open books which are isomorphic, because both are isomorphic
to the open book induced by the germ (C, w). Fix these two open books, OB on 0W
and OB’ on W', defined up to isotopy; as part of the open book data, we also label
the binding components (with the exception of the outer boundary of the disk, the
boundary components of the page correspond to the branches of the decorated germ).

We will say that W and W' are strongly diffeomorphic if there is an orientation-
preserving diffeomorphism W — W' whose restriction to dW maps the open book OB
on dW to an open book on dW’ which is isotopic to the given one, OB'. If the open
book on dW’ is isotopic to the image of the open book on dW, we can compose the
diffeomorphism W — W' with a self-diffeomorphism of W’ which extends the isotopy
of W’ to obtain a diffeomorphism matching the open books. Therefore, we can
equivalently say that W and W' are strongly diffeomorphic if there is an orientation-
preserving diffeomorphism W — W’ that identifies the open books OB on dW and
OB’ on dW’. This identification is required to preserve the labeling of the binding
components. (We will discuss a slightly weaker condition in Remark 6.9.)

Rephrasing the theorem of [44] in our context, we have:

Proposition 6.8 [44, Theorem 4.3.3] Let (Y, &) be the contact link of a rational
singularity with reduced fundamental cycle, and fix the isotopy class of an embedded
open book as above. Let two strongly diffeomorphic Stein fillings W and W' arise from
arrangements (I, {p;}) and (T, { pJ/. }) of symplectic curvettas with marked points, as
in Section 5. Then the incidence matrices Z(T', { pj}) and Z(T", {p} }) are equal, up to
permutation of columns.

Proof We outline the proof briefly, referring the reader to [44] for details, as we use
exactly the same topological argument in a slightly different (in fact, simpler) context.

Let (C, w) be the decorated germ with labeled smooth branches Cy, .. ., Cy,, determined
up to topological equivalence by the open book data for (Y, £). Unlike [44], we only
work with the case of smooth components of C; therefore, all §—invariants of the
branches C; are 0, and the formulas of [44] become simpler.

As in [44], we construct a cap U, which is a smooth manifold with boundary that
can be attached to any Stein filling W of (Y, &), so that W U U is a blow-up of a
4—sphere. To construct U, let B C C? be a closed Milnor ball as in Section 3, so that
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B contains both the branches of the germ C and the arrangement I" together with all
intersection points between curvettas I';. Let (B’,C’) be another copy of this ball with
the germ C inside, with reversed orientation. After an isotopy of the boundaries of the
curvettas I'; to match dC;, we can glue (B, T") and (B’,C’) so that the boundary of T
is glued to the boundary of the corresponding germ branch C;. Each disk I'; is oriented
as a graph over C, so the result of gluing is a smooth 4—sphere B U B’ containing
the embedded smooth 2—spheres X; = I'; U C/. Blowing up at the points p, ..., pn,
we get #7_, CP? represented as the blow-up B of the ball B glued to B’ Let T; be a
thin tubular neighborhood of the proper transform of I'; in B. By Lemmas 3.2 and 3.4,
we have W = B\J_, T;. Set U = B’ | JI", T}, so that we have UUW = #/_ CP2.
As in [44, Lemma 4.2.4], the cap U is independent of W and is determined by the
boundary data. Indeed, to form U, we attach 2-handles to the 4-ball B’. The attaching
circles are given by the boundaries of the I';, and the link (_J; T'; is isotopic to the link
given by the boundaries of the branches of the original decorated germ. The framing for
aI'; is —wj;, the negative weight on the branch C; of the decorated germ. The proof of
Lemma 3.4 shows that the weight w; is given by the number of Dehn twists enclosing
the i™ hole in (any decomposition of) the monodromy of the open book. Thus, the
cap U and the way it is glued to W is determined by the decorated germ defining the
singularity, together with the fixed open book data of (Y, ). Finally, as in [44], we
see that there is a unique basis {e; };’:1 for Hy (#;—, C_Pz) of classes of square —1
such that the intersection numbers X; - e; are all positive. It follows that these numbers
depend only on W and the open book data. On the other hand, the numbers X; -e; form
the incidence matrix Z(I', { pj }), as X; -e; = 1 if p; € I';, and 0 otherwise. It follows
that the incidence matrices Z(T", { p;}) and Z(I"/, { p} }) are the same, up to relabeling
the marked points, which amounts to permutation of columns. |

Remark 6.9 Our definition of a strong diffeomorphism and the above proof assumes
that the binding components of the open book are labeled, and that the diffeomorphism
preserves this labeling. In other words, we think of the page of the open book(s)
as a disk with holes, where each hole /; corresponds to the i™ branch of the fixed
decorated germ; the diffeomorphism matches the i™ hole of the page for dW to the
i™ hole for W', It is in fact possible to consider a less restrictive definition of strong
diffeomorphism, by allowing permutations of binding components, and to prove a
sightly stronger version of Proposition 6.8 and Theorem 7.8. More precisely, the
proposition still holds if there is a diffeomorphism f: W — W' that sends the chosen
open book OB on dW to an open book on dW’ which is isotopic to OB/, in the sense
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of isotoping the binding and the pages, but the isotopy matches the binding components
in a wrong order. Moreover, it is plausible that the proposition still holds if we only
have a diffeomorphism W — W’ whose restriction to dW takes the binding of the
open book OB to an oriented link which is isotopic to the binding of OB’ on W' —
because 0W =Y is a link of rational singularity, and thus a rational homology sphere,
it seems possible to use [63] to construct an isotopy of pages of the open books if
their bindings are isotopic, perhaps under some mild additional hypotheses. We leave
most of the details to the motivated reader, only indicating below why the proposition
should hold if the identification of the open books permutes the binding components.
It should be emphasized that these arguments would yield only a mild generalization
of Proposition 6.8: fixing appropriate boundary data is crucial for our proof. Note that
by Wendl’s theorem, all Stein fillings of a planar contact manifold fill the same open
book; so in this sense, it is reasonable to think of the boundary open book as fixed.

To consider the case where the diffeomorphism between the fillings permutes the
binding components of the open book, assume that there is an orientation-preserving
self-diffeomorphism o of the page of the open book that commutes with the monodromy.
We do not assume that o fixes the boundary of the page; in particular, we are interested
in the case where o permutes the boundary components. It can be shown that if o acts
nontrivially on the set of boundary components, then the decorated germ and/or the
resolution graph of the singularity has the corresponding symmetry. For example, if o
exchanges holes /11 and /5, these holes must be enclosed by the same number of Dehn
twists (in any positive factorizations of the open book); this implies, in particular, the
equality of weights for the corresponding curvetta branches,

w; = w(Cp) = w(Cy) = ws.

Additionally, for any other hole /;, the number of Dehn twists enclosing the pair /11, /;
must be the same as the number of Dehn twists enclosing the pair /,, i;. Because
the Artin factorization is determined by combinatorial data (see Proposition 6.7), it
follows that the Artin factorization admits a symmetry interchanging holes /; and /.
Then, we can argue as in Proposition 4.5 to reconstruct the resolution graph of the
singularity, and to see that the graph must have a symmetry, and the corresponding
curvetta arrangement must admit a symmetry interchanging curvettas C; and C, (up
to a topological equivalence). Similar reasoning would work for a more general
self-diffeomorphism o; we do not give the complete argument to avoid setting up
complicated notation. If o exchanges the boundary of a hole with the outer boundary of
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the page (thought of as a disk with holes), there must be a symmetry of the resolution
graphs and the corresponding extended graphs; see Section 2.

Since the self-diffeomorphism ¢ of the page commutes with the monodromy, it induces a
self-diffeomorphism of the supporting 3—manifold Y, which is not necessarily isotopic
to the identity. We will use the same notation for this self-diffeomorphism of Y,
0:Y =Y.

Now, suppose that fillings W and W' are as in Proposition 6.8, and that there is an
orientation-preserving diffeomorphism f: W — W' that maps the open book OB
on W to the open book f(OB) on W' that is isotopic to o (OB’) rather than to OB'.
As explained above, the decorated germ admits a symmetry induced by o; in turn, it
follows that the cap U admits a self-diffeomorphism that restricts to the mapo: Y — Y
on the boundary, after an orientation reversal. Using this self-diffeomorphism to glue
the cap to W', and comparing W U;q U and W/ U, U, we can argue as in Proposition 6.8
to conclude that the incidence matrices Z(T', { pj}) and Z(I"', { pj’. }) are the same.

7 Milnor fibers and unexpected Stein fillings: examples

We now construct examples where the link of a rational singularity with reduced
fundamental cycle has Stein fillings that are not realized by Milnor fibers of any
smoothing.

Our examples build on results of the previous sections: by [27], Milnor fibers of
smoothings correspond to (algebraic) picture deformations of the decorated germ,
while Stein fillings of the link can be constructed from arbitrary smooth graphical
homotopies of the curvettas. During the picture deformation, the decorated germ C is
immediately deformed into an arrangement of curvettas yielding a Milnor fiber, so that
the arrangement appears as the deformation C* for small s (and for a given deformation,
all values of s close to 0 produce diffeomorphic Milnor fibers and equivalent Lefschetz
fibrations). Indeed, for an algebrogeometric 1-parameter deformation of the germ C,
the general fibers of the deformation all “look the same” (up to diffeomorphism).
By contrast, during the course of a smooth graphical homotopy, we are allowed to
change the topology of the arrangement of curvettas, and thus will produce Stein
fillings whose topology varies during the homotopy. We emphasize that immediate
deformation vs long-term homotopy of the branches of C makes the key difference
between Milnor fillings and Stein fillings of links of rational singularities with reduced
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fundamental cycle. In Section 8, we explain why this is the key aspect and compare
picture deformations and smooth graphical homotopies in more detail. In this section,
we exploit the difference between immediate deformations and long-term homotopies
to produce examples of Stein fillings that are not diffeomorphic (rel boundary) to any
Milnor fibers.

7.1 Arrangements of symplectic lines and pseudolines

To construct links of singularities that admit unexpected Stein fillings, we first consider
decorated germs given by pencils of lines (with weights) and focus on their associated
singularities. In this section, we will use the following terminology: several points
are collinear if they all lie on the same line, and several lines are concurrent if they
all pass through the same point. Concurrent lines form a pencil; we will refer to an
arrangement of concurrent lines as a pencil of lines. We will also talk about concurrent
pseudolines or concurrent smooth disks, with the same meaning.

Note that any two pencils of complex lines in C? are isotopic through pencils, therefore
the corresponding singularities are topologically equivalent and have contactomorphic
links. Let C = {Cy, C,, ..., Cy} be a pencil of m complex lines, with each line Cy,
decorated by a weight w; = w(Cy). Consider the surface singularity that corresponds
to the decorated germ (C, w), and let Y (m, w) = Y (m;wq, ..., wy) denote its link
with the canonical contact structure £. Note that Y (m, w) is a Seifert fibered space
over S? with at most m singular fibers. Indeed, consider the dual resolution graph of
the singularity; the graph gives a surgery diagram for the link. This graph has m legs
emanating from the central vertex. Legs correspond to the lines of the pencil, so that
the k" leg has wy — 1 vertices (including the central vertex).

Note that legs of length 1 consist only of the central vertex and thus will appear
invisible. However, in the examples we focus on, every leg will have length greater
than 1. The central vertex has self-intersection —m — 1, all the other vertices have
self-intersection —2. See Figure 16 for an example. The decorated pencil C can be
recovered from the graph as in Section 2: we add (—1) vertices at the end of each leg,
take the corresponding collection of curvettas, and blow down the augmented graph.

To construct Stein fillings of Y (m, w), we will use curvetta homotopies taking the
pencil of complex lines to a symplectic line arrangement in C2. We define these
arrangements as follows.

Geometry & Topology, Volume 27 (2023)



Unexpected Stein fillings and plane curve arrangements 1157

Definition 7.1 A symplectic line arrangement in C? is a collection of m symplectic
graphical disks Ty, ..., T, in C? with respect to a projection 77: C> — C such that

(i) forevery pairi, j € {1,...,m} withi # j, I'; intersects I'; positively transver-
sally exactly once, and

(ii) for R sufficiently large, (I'y U---UT,,) N ~1(SR) is isotopic to the braid given
by one full twist on 7 strands in the solid torus 7! (Sg), where Sg C C is the
circle of radius R.

Equivalently, we can view the symplectic line arrangement in a Milnor ball B =
Dy x Dy C C? containing all intersections. The intersection of the arrangement
with 0B is then the braid of one full twist in dDx x D). A symplectic line arrangement
in the closed ball B can always be extended to an arrangement in C?2, so we will give
all statements about symplectic line arrangements in C?2.

Example 7.2 A pencil of complex lines intersecting at the origin in C? is a symplectic
line arrangement. Clearly every pair of lines intersects at a single point (the origin)
transversally (and positively because they are complex). That the monodromy in
7~ 1(SR) is one full twist on m strands can be computed directly from a model as in [40].

More generally, any complex line arrangement of 7 lines in C? such that no intersec-
tions between lines occur at infinity (ie every complex line has a different complex
slope) gives a symplectic line arrangement. This can be seen by compactifying the line
arrangement in CP? and looking at the intersection of the lines with the boundary of a
regular neighborhood of the CP! at infinity. These intersections form an 7 component
link with one component for each line, such that the link components are isotopic to
disjoint fibers of the e—neighborhood (which can be identified with a subset of the
normal bundle) of the CP! at infinity. After changing coordinates from the perspective
of the CP! at infinity to the perspective of the complementary ball, the components of
the link obtain one full twist. From the Kirby calculus perspective, the boundary of the
e—neighborhood of CP! is presented as (41) surgery on the unknot, and the link is m
parallel meridians of this surgery curve. After reversing orientation to get the boundary
of the complementary ball, the surgery coefficient on the unknot becomes a (—1) surgery,
and blowing down this surgery curve induces one full twist in the 7 unknotted meridians.

Since any symplectic line arrangement has the same monodromy as the pencil of
complex lines, Lemmas 5.9 and 5.10 imply they are related to the pencil by a smooth
graphical homotopy.
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Our primary source of examples of noncomplex symplectic line arrangements is given
by pseudoline arrangements as described below. However, symplectic line arrangements
are more general and can include braiding in the associated wiring diagram.

Example 7.3 A pseudoline arrangement is a collection £1, . .., £;, of smooth graphical
curves in R? where for every pair i, j, the curves ¢; and ¢ j intersect transversally at
exactly one point. Such a pseudoline arrangement can be considered a braided wiring
diagram as in Definition 5.1, but in the particular case where there is no braiding.
In particular, we can apply Proposition 5.5 to extend the pseudoline arrangement to
an arrangement of symplectic graphical disks I'y, ..., I';;; the extension produces a
symplectic line arrangement. Indeed, condition (i) in the definition of a symplectic
line arrangement is satisfied because any two pseudolines intersect transversally at one
point, and their extensions intersect positively by construction. Condition (ii) follows
from the calculation of the total monodromy as in Section 5.2 and a classical theorem of
Matsumoto and Tits [37] about uniqueness of reduced factorizations in the braid group.

Alternatively, we can refer to the results of [57, Section 6], where pseudoline ar-
rangements in RP? are extended to symplectic line arrangements in CP? (extensions
in CP? are strictly harder to construct than extensions in C2). Additionally, using the
same theorem of Matsumoto and Tits, [57, Proposition 6.4] provides a homotopy of
pseudoline arrangements connecting the given arrangement to the pencil. After applying
Proposition 5.5, we get a homotopy of the corresponding symplectic line arrangements.
Note that by construction, this homotopy of symplectic line arrangements keeps all
intersections positive at all times, whereas the smooth graphical homotopy given by
Lemmas 5.9 and 5.10 may introduce negative intersections.

We use symplectic line and pseudoline arrangements to construct Stein fillings of Seifert
fibered spaces (Y (m; w), §) via Lemmas 3.2 and 3.4.

Proposition 7.4 Let (C,w) be a decorated pencil of m lines. Suppose that I' =
{TI'1,..., T} is a symplectic line arrangement such that each disk I'; has at most w;
distinct intersection points with the other disks of the arrangement. Then, (I', {p;})
yields a Stein filling of (Y (m; w1y, wy, ..., Wn),E).

In particular, a pseudoline arrangement A = {{1,...,¢,,} gives a Stein filling of
(Y(m; wy, wa, ..., wy), ) via an extension to a symplectic line arrangement, provided
that £; has at most w; distinct intersection points with the other pseudolines.
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7.2 Unexpected line arrangements yield unexpected fillings

Now we will show that some of the Stein fillings as above do not arise as Milnor fibers.
In the next lemma, we consider analytic deformations of reducible plane curve germs,
associated to a singularity by the de Jong—van Straten theory, and establish a property
that will play a key role in our construction of unexpected arrangements.

The term 6—constant deformation in the next lemma refers to an algebrogeometric
property: the deformation is required to preserve the §—invariant of a singular plane
curve. We keep this terminology since it is used in [27] and [44]; however, under the
hypothesis that the germ has smooth branches, the §—constant condition simply means
that the deformation changes the germ componentwise, without merging different com-
ponents. Intuitively, the j—invariant counts the number of double points “concentrated”
in each singular point [39, Section 10]; for example, an ordinary d—tuple point (where
d smooth components meet transversely) contributes § = %d (d — 1), since it can be
perturbed to %d (d — 1) double points. Thus, we can deform a triple point to three
double points by a §—constant deformation, but we are not allowed to deform two
transversely intersecting lines into a smooth conic (such a deformation would kill a
double point).

Lemma 7.5 Consider the germ of a reducible plane curve C in C? with m smooth
graphical branches Cy, Cs, ..., Cy, passing through 0, and let C° = UZLI C,f be a
d—constant deformation of C. (Here, —constant means that each branch of the germ is
deformed individually, ie the deformation is not allowed to merge different branches.)
Suppose that all the branches C1, . .., Cy, have distinct tangent lines at 0, and that not
all deformed branches C ls ,...,Cp are concurrent for s # 0.

Then there exists a complex line arrangement A= {L1, ..., Ly} in C? such that not
all lines in A are concurrent, no two lines are equal, and A satisfies all the incidence
relations of C5. Namely, for any collection of the deformed branches Cl.sl , Cl.s2 s Cl.sk
that intersect at one point, the corresponding lines L;, L,, ..., L, also intersect, ie

7-1) CislﬂCiszﬂu-ﬂCisk;é®=>LilﬂLizﬂ---ﬂLik#Q.
Note that the incidence pattern for branches of C¥ is the same for all s # 0, because
the definition of a 1-parameter deformation implies that all nearby fibers “look the

same”. It is important to keep in mind that the complex line arrangement .4 may satisfy
additional incidences, so that certain intersection points coincide in .4 but are distinct
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for the arrangement {C¥, CJ, ..., Cy}. In particular, a pencil of lines would satisfy
incidence relations of any other arrangement, but we postulate that .4 cannot be a pencil
(the lines in A are not all concurrent).

Proof of Lemma 7.5 Since any two curvettas intersect positively in the original
germ C, any two deformed branches C;, C js intersect for s # 0. We can make an
s—dependent translation to ensure that the first two branches always intersect at the
origin, C{ N C§ = {0}; strictly speaking, this means passing to a slightly different
deformation of the germ C.

All components of the reducible curve C pass through 0 and are graphical analytic disks
with respect to the projection to the x—coordinate. Thus we can define the germ of C
near 0 by an equation of the form

m

[T@x+citx) =y =0,

i=1
where ¢;(X) =) ;55 C'i’kxk are analytic functions in x with ordy ¢; > 1 at 0. We can
also assume that ¢; # O foralli =1,...,m.

The 1-parameter deformation C* is then given, for s close to 0, by an equation of the
form

m

[ T(@i($)x +bi(s) + ci(x.5)— ) =0.

i=1
Here a; and b; are analytic functions in s, and at the origin (0, 0) we have ords a; =0 and
ordg b; > 0; additionally, ¢; (x, s) is analytic in x and s, and ordy ¢; > 1. The i th com-
ponent C;* of the deformed curve at time s is given by a; (s)x +b;(s) +c¢;i(x,s)—y =0.
Because the branches C| and CJ pass through O for all s, we have by = b, = 0. At
s = 0 all components pass through the origin, so b;(0) = 0 for all 7.

Let r = min; (ords b;), where the order is always taken at the origin. Because 5; (0) =0
for all i, we have r > 0, and r = ordy b;, for some 3 < iy < m. Notice also that
r < 400, since otherwise all the components C; would pass through 0 for all s # 0.
We write b;(s) = s”b; (s); then l;,-o (0) #0.

Now make a change of variables for s # 0,

/ /
x=s"x" and y=s"y"
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Since ordy ¢;(x, s) > 2, we have ¢; (x, s) = s27¢;(x', s) for some analytic function ;.
Thus, the equation for the deformation becomes

m

H(ai(s)s’x/ +57bi(s) + s27 i (x', 5) —s"y') =0.
i=0
Equivalently, for s # 0 and i = 1,...,m, the deformed components C; are given by

the equations
a;i(s)x" +bi(s) +s"¢i(x",5) = y' = 0.
When we pass to the limit as s — 0, the equations become
a; (0)x" +b;(0) — y' =0,

so in the limit we obtain an arrangement of straight lines in C2. Not all of these lines
are concurrent, since 550 (0) # 0 while b1(0) = b,(0) = 0.

The curves C;' satisfy the same incidence relations for all s # 0. Since intersection points
between curves vary continuously with s, the incidence relations must be preserved in
the limit, so (7-1) holds. O

Our examples of unexpected Stein fillings are given by pseudoline arrangements with
the following special property.

Definition 7.6 Let A = {I';,...T},} C R? be a symplectic line arrangement where
not all lines are concurrent. We say that A is unexpected if the only complex line
arrangements that satisfy all the incidence relations of A are pencils of lines. Namely,
whenever a complex line arrangement A = {L{, L, ..., Ly} C C? has the property

Iy ﬂFizﬂ---ﬂFik +0 = Li, ﬂLizﬂ'--ﬂLik #* @,
all the lines L, L,, ..., Ly, of A must be concurrent.

If an unexpected symplectic line arrangement comes from a pseudoline arrangement,
we will say that the pseudoline arrangement is unexpected.

Remark 7.7 It is important to note that unexpected symplectic line arrangements
are not the same as symplectic line arrangements not realizable by complex lines.
Being an unexpected arrangement is a stronger condition: we want to rule out not only
complex line arrangements with the same incidence relations as those of A, but also
complex line arrangements that satisfy all the incidence relations of A and possibly
additional incidence relations (without being a pencil). For instance, the pseudo-Pappus
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arrangement (Example 8.1 in the next section) is not realizable by complex lines but
it is not unexpected, because the classical Pappus arrangement has all of the same
incidences and an additional one.

Theorem 7.8 Suppose that I' = {T"y, ..., 'y} is an arrangement of smooth graphical
disks with marked points { p; }, related by a smooth graphical homotopy to a decorated
germ (C, w). Let (Y, £) be the link of the surface singularity that corresponds to (C, w).
Suppose that a subcollection of disks {I'{,I'5,..., [} of I' forms an unexpected
symplectic line arrangement.

Then the Stein filling W given by (I', { p; }) is not strongly diffeomorphic to any Milnor
filling of (Y, ). If the weights on C are large enough, W is simply connected.

By Proposition 7.4, unexpected line arrangements yield unexpected fillings of Seifert
fibered spaces of the form Y (m, w).

Corollary 7.9 Let I' ={T'y,..., '} be an unexpected symplectic line arrangement,
and fork = 1,...,m, let w(I'y) denote the number of intersection points of T';, with
the disks I';, i # k. Then for every weight w = (wq, Wy, ..., Wy) wWith wg > w(T)
fork =1,...,m, the Seifert fibered space (Y (m, w), £) has a Stein filling not strongly
diffeomorphic to any Milnor filling. This Stein filling is given by a Lefschetz fibration
constructed from the arrangement I" with the appropriate choice of marked points. When
strict inequalities wy, > w(I'y) hold for all k, we get a simply connected unexpected
Stein filling.

Proof of Theorem 7.8 Observe that when the number of intersection points on each
I'; is smaller than the weight of the corresponding branch of the decorated germ, each
I'; has a free marked point. Then the Lefschetz fibration constructed from (I, { p; })
has a boundary-parallel vanishing cycle around every hole in the disk fiber, so that
the corresponding thimbles kill all generators of 1 (fiber), and therefore, in this case
T (W) =0.

Let Wy, be a Milnor filling that arises from a smoothing of some surface singularity
with the link Y. By Theorem 1.3, W, corresponds to a picture deformation C** of a
decorated germ C’' = | J/L, C/ with weight w, topologically equivalent to (C, w).

Although the germs C and C’ may differ analytically, they are topologically equivalent
and thus have isotopic boundary braids. Therefore by Lemma 3.4 the open book
decomposition naturally induced by the Lefschetz fibration in Lemma 3.2 for W agrees
with that for W, so comparing them via strong diffeomorphism makes sense.
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By Proposition 6.8, if W is strongly diffeomorphic to Wy, the incidence matrix of
the deformed curvetta arrangement {C/*, ..., C,5}, s # 0, with its marked points must
be the same as the incidence matrix for the arrangement (I', { p;j }), up to permutation
of columns. In particular, we see that the subarrangement {I', ..., I, } of symplectic
lines satisfies the same incidence relations as the subarrangement {C*, ..., C/*} of the
deformed curvettas of C’. By assumption, in each of these arrangements not all curvettas
are concurrent. Because pairs of curves I'y, ..., I', intersect algebraically positively
once, C 1’ ,...,C r’ have distinct tangent lines. Now by Lemma 7.5, there exists a complex
line arrangement A that satisfies all the incidence relations of {C*, ..., C,*}, and thus
all the incidence relations of I". This is a contradiction because I'" is an unexpected
arrangement. m

7.3 Constructing unexpected pseudoline arrangements

We now give examples of unexpected pseudoline arrangements; these will yield concrete
examples of unexpected Stein fillings. We start with classical projective geometry
constructions.

Example 7.10 Recall that the classical Pappus arrangement in R? is constructed as
follows. Take two lines, £; and £,, and mark three distinct points @, b, c on L; and
three distinct points A, B, C on {,, avoiding the intersection £; N £,. Consider the
following lines through pairs of marked points:

33 =aB, £4=CZC, 55 =bA, £6=bC, £7=CA, £8=CB.

The Pappus theorem asserts that the three intersection points £3 N €5, £4 N £7, and
£e N Lg are collinear; the classical Pappus arrangement consists of the lines £1, ..., {g,
together with the line through these three points. We modify this last line to make an
unexpected pseudoline arrangement, as follows. Let £¢ be a line through C, distinct
from €4 and £4. Consider the intersection point £g N £g and let £;(¢ be a pseudoline
passing through points £3 N €5, £4 N £7 and £g N £g, as shown in Figure 15. Let
P={i, L, ..., 010}

Notice that in this case, it is clear that the pseudoline £;y can be homotoped to the
classical Pappus line through the points £3 N {5, £4 N €7 and £g N £g. The resulting
arrangement of straight lines in R? can be homotoped to a pencil by linear homotopy.
(We already know from discussion in Example 7.3 that P is homotopic to the pencil,
but here we have a very simple explicit homotopy.)
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Figure 15: The pseudoline arrangement P = {{;,{5,..., {10} is given by
the black lines, the blue line, and the red line in the figure. The dotted line
in the middle is not included. The dotted line and the eight black lines give
the classical Pappus arrangement. The intersection points £; N £, £3 N £,
€3N 4Ly, £s NLg and £5 N Ly are not shown in the figure.

Proposition 7.11 The arrangement P is unexpected.

Proof As already stated, the classical Pappus theorem asserts that for the given arrange-
ment, the intersection points £3 N {5, £4 N €7, and £4 N £g are collinear. Collinearity
holds both in the real and in the complex projective geometry settings, so that if
L{,Ly,...,L7,Lg C C? are complex lines with given incidences, then L3 N Ls,
LysN L4, and Lg N Lg are collinear. From this, we can immediately see that the
arrangement P is not realizable by complex lines {L;, L,,..., Lig}: since LN Lg
and Lg N Ly are distinct points on Lg, the points L3 N Ls, L4 N L7 and Lg N Ly
cannot be collinear.

To show that P is unexpected, we need to prove that no complex line arrangement satis-
fies all the incidence relations of P even if some (but not all) of the intersection points
coincide. Indeed, we show that if a complex line arrangement A = {L;, L,,..., Lo}
satisfies the incidence relations of P and two of the intersection points coincide, then A
must be a pencil. Remember that we always assume that all the lines in the arrangement

are distinct.

The following trivial fact, applied systematically, greatly simplifies the analysis of cases:
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Observation 7.12 Let L, L,, L3, L, be four lines in C2, which are not necessarily
distinct. Suppose that two of the pairwise intersection points coincide: L1 N L, =
L3N Ly. Then Ly, Ly, L3 and L4 are concurrent, so that they all intersect at the point
LinL,=L1NLy=LiNLy=L,NLy=L,NLs= L3N Ly.

In the case of three lines, if L1 N L, = L3N Ly, then LoNLs=L{NLy,=L3NLy.
Visually, if two vertices of a triangle coincide, the third vertex of the triangle coincides
with the first two.

Assuming that some of the intersection points in Figure 15 coincide, we mark these
points by “O”, and then use Observation 7.12 to chase vertices that coincide: starting
with two marked vertices, we look for additional vertices that coincide with the first
two, further mark these by “O”, and continue. When every line contains a marked
intersection point, we know that all lines in the arrangement are concurrent: they form
a pencil though O.

We begin this process. First, assume that the intersection points L3 N Ls N Lqg
and L4 N L7 N Ljg are distinct. By the Pappus theorem, the complex line arrange-
ment A = {Ly, L,,..., Lo} can satisfy all the incidence relations of P only if
L¢NLg=LgNLgNLyg. SettingO=LgNLg=LgNLyNLjg, by Observation 7.12
we have O = C = L4 N Lg N Lg N Ly, then O = B = LgN L, N Lj, then
O:a:L3ﬂL4ﬂL1,thenO:b:L50L6DL1 andO:c:L7ﬂLgﬂL1.
Now, O appears on every line at least once, so the arrangement degenerates to a pencil.

(This can be seen quickly if in the above diagram, you highlight the lines passing
through intersection points marked by O, in order. You can mark a new intersection
by O if it contains at least two highlighted lines, and then highlight all the lines through
that point O. When all the lines are highlighted, you have a pencil.)

For the second case, assume that the intersection points L3N LsNLigand L4NL7MNL1g
coincide. Set O = L3ﬂL5ﬂL10 :L4ﬂL7ﬂL10. ThenO=a= L3ﬂL4ﬂL1 and O =
A :L5 ﬂL7ﬂL2. ThenO=c = L7 ﬂLg ﬂLl andO=C = L4ﬂL6 ﬂLz ﬁLg. Again,
every line contains a point marked O, so the arrangement degenerates to a pencil. O

Corollary 7.13 LetY = Y (10; w) be a Seifert fibered space given by a star-shaped
plumbing graph with 10 legs, as in Figure 16, such that eight of the legs of the graph
have at least 5 vertices each, including the central vertex, and two remaining legs have
at least 4 vertices each. (Equivalently, two components of w are 5 or greater, and the
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Wio = 6

Figure 16: Left, a pencil of 10 lines decorated with weights. Right, the
plumbing graph for Y: the central vertex has self-intersection —11, all the
rest have self-intersection —2. Eight of the legs have at least 5 vertices each
(including the central vertex), and two remaining legs have at least 4 vertices
each.

rest are 6 or greater.) Observe that Y is the link of a rational singularity, and let £ be
the Milnor fillable contact structure on Y. Then (Y, £) admits a Stein filling which is
not strongly diffeomorphic to any Milnor filling.

Proof We count the intersection points on each line in the arrangement P: w({,) =
w(fy) =5, w(l)=6for k #2,4. Then for any collection of integers w1, wy, ..., Wig
such that w, > 5, wg > 5 and wy > 6 for k # 2,4, we can mark the lines of the
arrangement P as required in Corollary 7.9. The corresponding singularity has the dual
resolution graph as shown in Figure 16, with one leg of length wj — 1 for each line Ly
in the arrangement, so the link is the Seifert fibered space Y (10, w). The result now
follows from Corollary 7.9 and Proposition 7.11. O

A different example comes from a version of the Desargues theorem; we use complete
quadrangles and harmonic conjugates. The example in Figure 17 was pointed out to us
by Stepan Orevkov. He suggested an approach to proving that this arrangement cannot
appear as an algebraic deformation of a pencil. We are grateful for his input, which
inspired us to define unexpected line arrangements and prove Lemma 7.5.

Example 7.14 In the standard R? ¢ RP2, we take four vertical lines £1, £, {3,484,
three horizontal lines {5, {¢, {7, the two parallel diagonal lines £g, 9, and a “bent”
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Figure 17: An arrangement of real pseudolines. The intersection of £ and
{10 is not shown.

pseudoline £, as shown in Figure 17. Let £ be the line at infinity. Note that because
01,45,3, 44 are all parallel in R? they intersect at a point V on £y. Similarly, the
lines £5, £¢, £7 have a common intersection with £ at a point H, and the lines £g and
{4 intersect on £ at a point P. Removing from RP? a line which is different from all
the £; and intersects them generically, we can consider Q = {e,-}!go as a pseudoline
arrangement in R2 (See Figure 18 for a version where £ is no longer the line at infinity.)

Proposition 7.15 The pseudoline arrangement Q is unexpected.

Proof Suppose that a complex line arrangement A = Lo, L, ..., Lq¢ satisfies all the
incidence relations of Q. This means that for all intersections between the pseudolines in
Figure 17, the corresponding lines of A intersect. We claim that unless A is a pencil, all
of these intersection points must be distinct — that is, no two distinct intersection points
in Figure 17 can coincide for the arrangement .A. To see this, we use Observation 7.12
repeatedly, as in Proposition 7.11. Recall that V = LN L, N L3N Ly N Ly and
H=LsNL¢NL;NLy.

If H=V =0, thenwehave L; N L; =Oforall ] <i<4and5=<; <7,s0 Aisa
pencil.
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If one of the intersection points L; N L; with 1 <i <4 and 5 < j <7 coincides with
V or H, then we have two intersection points marked with O on a vertical or horizontal
line in Figure 17; then O = V = H, and all lines are concurrent.

If any two intersection points L; N L; with 1 <i <4 and 5 < j < 7 coincide,
Observation 7.12 implies that they will both coincide with at least one of V or H, so
we revert to the previous case.

Finally, if all the points V', H and L; N L; with 1 <i <4 and 5 < j <7 are distinct, all
remaining intersection points which do not coincide with one of these are necessarily
generic double points (otherwise we would have a pair of lines intersecting more than
once).

Once we know that all the distinct intersections for Q are distinct for .4, it remains to
show that Q cannot be realized as a complex line arrangement A = {L; 1.120. Suppose
that it is, for the sake of contradiction.

We will show that the intersection points
a=L2ﬂL5, b=L3ﬂL6 and c=L4ﬂL7

are collinear. (See Figure 18.) Then we can conclude that the points ¢’ = L N Ls,
b and ¢ cannot be collinear. Indeed, a # «’, since all intersection points in the diagram
are distinct. If all four points a, a’, b and ¢ were collinear, then the line L5 through a
and a’ would coincide with the line L ¢ through &, b and ¢, but we assume that L5
and L are distinct.

To see that the points @, b and ¢ are collinear, we will use some notions of classical
projective geometry, namely complete quadrangles and harmonic conjugates. (In
Remark 7.16 below, we also indicate an alternative proof, in the more familiar Euclidean
terms.) Observe that the lines Ls, Lg, Ly, L3, Lg and the line L through a and b
form the four sides and the two diagonals of a complete quadrangle. Then the point
Q = L N Ly is the harmonic conjugate of the point P = Lg N L with respect to the
points V.= L, N L3 and H = LsN Lg. Now, consider the lines L,, L4, Ls, L7, Lo
and the line L’ through a and ¢. Again these form a complete quadrangle, so that the
point Q' = L’ N L is the harmonic conjugate of the point P = Lg N L with respect
toV=L,NLsand H = LsN L. Since the harmonic conjugate of P with respect
to V and H is unique, it follows that Q = Q’. Since the lines L and L’ both pass
through QO = Q’ and a, we must have L = L', and so all three points a, b and ¢ lie on
this line. O
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Ly Lg

LS L] [‘9 L2

Figure 18: An arrangement of lines Lg, L1, ..., Lo and pseudoline Lo with
incidences as in Figure 17. We show that the line L through « and b and the
line L’ through a and ¢ coincide (with the dotted line shown), so the points «,
b and ¢ are collinear. Therefore a’, b and ¢ cannot be collinear.

Remark 7.16 The above statement also has an easy Euclidean geometry proof, after
some projective transformations. Indeed, we can find an automorphism of CP? such that

LlﬂL5l—>(O:O:1), LlﬂLﬁl—)(IZOIl),
LryNLs—(0:1:1), L,NLgr—(1:1:1).
Then H+— (1:0:0)and V' +— (0:1:0), and it is not hard to see that all the lines in
the figure must be complexifications of real lines. The line L is the line at infinity;

the remaining lines are (complexifications of) the corresponding real lines in R2. We
use the same notation for the real lines. Now we see that L, L,, L3, L4 are parallel
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vertical lines, Ls, Lg, L7 are parallel horizontal lines, etc. So the arrangement looks
like Figure 17. The lines in the figure form a number of triangles that are similar to the
shaded triangle; it then follows that the points a, b, ¢ are collinear, so @', b, ¢ are not.

Note, however, that the above proof is somewhat incomplete: Figure 17 assumes a
particular position of the lines L3, L4, L7 relative to Ly, L,, L5, Lg. For a complete
proof, an additional analysis of cases is required, with slightly different figures for
other possible relative positions of the lines. Our projective argument with harmonic
conjugates allows us to avoid this analysis, and also to emphasize the projective nature
of the statement and the proof.

Corollary 7.17 Let Y = Y (11; w) be the Seifert fibered space given by a star-shaped
plumbing graph with 11 legs such that two legs have at least 5 vertices each, two legs
have at least 3 vertices, and the remaining 7 legs have at least 4 vertices each (including
the central vertex). In other words, two components of the multiweight w are 4 or
greater, two are 6 or greater, and the remaining seven are 5 or greater. Let £ be the
Milnor fillable contact structure on Y. Then (Y, §) admits a Stein filling which is not
strongly diffeomorphic to any Milnor filling.

Proof Exactly as in Corollary 7.13, this follows from Corollary 7.9 and Proposition
7.15. The picture is similar to Figure 16, with the obvious minor changes. Indeed, the
pseudoline arrangement of Proposition 7.15 has two lines £ and £5 with weight 4, two
lines €9 and £;¢ with weight 6, and seven remaining lines with weight 5. Note that
a permutation of the components of w does not change the contact manifold, so we
avoided labeling the components of w in the statement of the corollary. a

It is easy to generalize the above examples to star-shaped graphs with higher negative
self-intersection values of the central vertex. Indeed, by Theorem 7.8, we can construct
unexpected Stein fillings from an arbitrary arrangement of smooth graphical disks that
contains an unexpected symplectic line arrangement. We turn to the general case later
in this section; for now, we create more unexpected pseudoline arrangements simply
by adding extra lines.

Lemma 7.18 Suppose that A is an unexpected symplectic line arrangement. Let £ be
a symplectic line that passes through at least one intersection point of two or more lines
in A. Then the pseudoline arrangement A U {{} is also unexpected.
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Proof If there exists a complex line arrangement AU { L} that satisfies all the incidence
relations of A U {£}, and L corresponds to £, then A satisfies all incidences of A, and
so A is a pencil. The line L must pass through the intersection of two or more lines
of A, so AU {L} is also a pencil. |

Theorem 7.19 For any m > 10, consider the Seifert fibered space Yy, = Y (m, w) with
m > 10, with weights w = (wy,...,Wy) such that w; > m—1 foralli =1,...,m.
The space Y, is given by a star-shaped graph with m > 10 legs, such that the length of
each leg is at least m — 1. The central vertex has self-intersection —m — 1, and all other
vertices have self-intersection —2. Let & be the Milnor fillable contact structure on Y.
Then (Y, &) admits a simply connected Stein filling not strongly diffeomorphic to any
Milnor fiber.

Proof We can add lines to the arrangement P to form unexpected arrangements of
m > 10 pseudolines. Since any pseudolines intersect at most once, each pseudoline
has at most m — 1 intersections with other lines. By Corollary 7.9, Y = Y (n, w) is an
unexpected Stein filling if w; >m —1 foralli =1,...,m, which is simply connected
if all inequalities are strict. a

Varying the positions of the additional lines and/or applying a similar procedure to
different arrangements such as P and Q, it is possible to construct a variety of pairwise
nonhomeomorphic Stein fillings of the same link, so that none of the Stein fillings
is strongly diffeomorphic to a Milnor filling. We give one such construction below
to prove the first part of Theorem 1.1. The second part of Theorem 1.1 follows from
the discussion at the end of this section, where we extend star-shaped graphs that
correspond to unexpected arrangements to a much wider collection of graphs of rational
singularities with reduced fundamental cycle.

Theorem 7.20 For every N > 0 there exists a rational singularity with reduced
fundamental cycle whose link (Y, £) admits at least N pairwise nonhomeomorphic
simply connected Stein fillings, none of which is strongly diffeomorphic to any Milnor
fiber. The link Y is given by a Seifert fibered space Y = Y (2N + 5, w) with sufficiently
large weights w.

Proof We will start with the arrangement Q of Figure 17 and augment it to other unex-
pected arrangements, using Lemma 7.18. First, we add more “vertical” and “horizontal”
lines to the arrangement, so that it has NV vertical and N horizontal lines, creating a
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Figure 19: Pseudoline arrangements and fillings with different topology.

grid as shown in Figure 19. (We assume N > 4 as the N = 4 case fulfills the statement
for lower values of N.) All “vertical” lines intersect at the point V, all horizontal lines
intersect at the point H. The two diagonal lines £g and £y intersecting at P, the bent
pseudoline £, and the line at infinity £ are present as in the arrangement Q. Let
Q' denote this arrangement. We will now produce N + 1 unexpected arrangements
Q, = QU fork =0,1,..., N, by adding to Q' different additional “diagonal”
pseudolines Ag, Ay, ..., AN passing through P; see Figure 19. Each arrangement Q}c
consists of 2N + 5 pseudolines. The pseudoline A is taken to be the main diagonal of
the grid formed by the vertical and horizontal lines; it is a straight line in RP? passing
through the point P. The pseudoline A; differs from A( in a small neighborhood
of a single grid intersection: while Ay passes through the chosen intersection point
of a vertical and a horizontal line, A; intersects these two lines at distinct points.
Similarly, Az differs from A¢ in neighborhoods of & grid intersections and meets the
corresponding vertical and horizontal lines at distinct points. Figure 19 shows the
arrangements Qg =Q UM\ and Qg =Q UMj.

Now, consider the decorated germ given by a pencil of 2N + 5 lines, each with a
weight greater than 2N + 4. We choose the weights to be greater than the number
of intersection points on each line in any of the arrangements Q;{; obviously, taking
weights greater than 2N + 4 suffices because each line intersects the other 2N + 4 lines
once (in fact, w > 2N + 2 suffices for this arrangement). Let (Y, £) be the contact
link of the corresponding singularity. Similarly to the previous examples, Y is the
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Seifert fibered space given by a star-shaped plumbing graph with 2N + 5 sufficiently
long legs, with the central vertex having the self-intersection —2/N — 6 and all the other
vertices self-intersection —2. By Corollary 7.9, each arrangement Q;C yields a Stein
filling Wy, of (Y, &) which is not strongly diffeomorphic to any Milnor filling.

Finally, we argue that all fillings W, W1y, ..., Wx have different Euler characteristic.
Each W} has the structure of a Lefschetz fibration with the same planar fiber (a disk
with 2N + 5 holes), but these Lefschetz fibrations have different numbers of vanishing
cycles. Every time we replace a triple intersection of pseudolines in the arrangement
by three double points (and arrange the marked points on the lines accordingly), the
number of vanishing cycles decreases by 1. Indeed, three double points correspond
to three vanishing cycles in the Lefschetz fibration (each enclosing two holes), while
a triple intersection together with an additional free marked point on each of three
lines corresponds to four vanishing cycles (one vanishing cycle enclosing three holes,
the remaining three enclosing a single hole each). Thus, replacing a triple point
by three double points corresponds to a lantern relation monodromy substitution,
which in turn corresponds to a rational blow-down of a (—4) sphere. Therefore,
x(Wo) > x(Wy) > --- > x(Wy), as required. |

7.4 Generalizations

All our previous examples were given by singularities with star-shaped graphs where
most vertices have self-intersection —2. It is not hard to obtain examples with much
more general graphs, using the full power of Theorem 7.8: we add more smooth disks
to an unexpected symplectic line arrangement.

Example 7.21 In the arrangement Q of Figure 17, replace the line 3 by several
pseudolines that all pass through the same four intersection points. Note that because of
multiple intersections, the result is no longer a pseudoline arrangement, but we still have
a braided wiring diagram and can apply Proposition 5.5 to extend it to an arrangement
of symplectic disks. In Figure 20, we take three curves replacing £3. In the decorated
germ, the complex line corresponding to 3 will be replaced by 3 curvettas that are
tangent to order 4 (and transverse to the other 10 branches of the germ). By (2-2),
the weight of each new curvetta must be 5 or greater. We take the weights to be
exactly 5 for the three new curvettas. Consider the symplectic curve arrangement given
by the extension of the diagram in Figure 20, with marked points at all intersections
and one additional free marked point on each of the three new curves (to account
for higher weights). The resolution graph for Q is star-shaped with 11 legs. The
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Figure 20: The pseudoline arrangement Q of Figure 17 is modified: the
pseudoline £; is replaced by three smooth curves with 4 intersections, as
shown. There are 3 free marked points, one on each of the new curves;
the rest of the marked points are the intersections in the diagram. The
germ of the corresponding singularity has three curvettas tangent to order 4,
each of weight 5, replacing one of the lines. The resolution graph of the
corresponding singularity is shown in the middle of the figure. If the weights
of the three tangent curvettas are taken to be higher, the graph will have
additional branching as shown on the right. All unlabeled vertices have self-
intersection —2.

self-intersection of the central vertex is —12 and all other self-intersections are —2.
The legs of the resolution graph for Q with minimal weights had two legs of length 3,
two of length 5, and seven of length 4. For this revised arrangement, the corresponding
singularity has an augmented graph. Specifically, one of the legs of length 3 (which
corresponded to £3) gains an additional vertex of self-intersection —4. If the three
tangent curvettas have higher weights, so they have additional free marked points in the
deformed arrangement, the —4 vertex becomes a branching point with 3 additional legs
(each vertex on these legs has self-intersection —2). See Figure 20. By Theorem 7.8,
the links of the corresponding singularities have unexpected Stein fillings.

In general, if we replace £3 with k curves commonly intersecting at the four points
where {3 intersected other pseudolines as above, the additional vertex will have self-
intersection —k — 1 and increased weights will yield k additional legs with (—2) vertices.

Further, we can replace each of the k& pseudolines by a bundle of curves that go through
the same intersections.

Geometry & Topology, Volume 27 (2023)



Unexpected Stein fillings and plane curve arrangements 1175

s

Le

%

Figure 21: In the pseudoline arrangement Q of Figure 17, we replace {3 with a
bundle of curves passing through the existing intersections of £3 with £s, £¢, £7
and £y. (Only part of the arrangement is shown.) The additional curves create
no extra intersections with the pseudolines of Q. All the intersection points are
marked, and there are additional free marked points that correspond to higher
weights. In the resolution graph of the singularity, the leg corresponding to £3 is
replaced by a tree with additional branching, as shown. All unlabeled vertices
have self-intersection —2.

Example 7.22 Figure 21 shows a possible bundle replacing £3, instead of the bundle
of three curves in the previous arrangement of Figure 20. All the new curves run
C!—close to and are isotopic to the original pseudoline, and they pass through the
same intersection points with the other pseudolines. Within each bundle, the curves
may have additional intersections, which lead to higher-order tangencies between the
corresponding curvettas in the decorated germ. In particular, for the arrangement in
Figure 21, the bundle of curves replacing £3 will have three subbundles of curves
intersecting each other 4 times, and intersecting each of the other pseudolines once.
One of these subbundles has four curves which intersect each other a total of 5 times,
another has two curves which intersect a total of 7 times, and the third has two curves
intersecting each other a total of 6 times, with an additional curve intersecting these
two 5 times.

The corresponding decorated germ (with the weights given by the number of intersection
points in the disk arrangement) encodes the singularity whose graph has more branching
and some vertices with higher negative self-intersections, as shown in Figure 21. If we
vary the incidence pattern of the additional curves (subject to the weight restrictions),
we can obtain a number of unexpected Stein fillings with different topology.
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Example 7.22 demonstrates how, once we have an unexpected symplectic line ar-
rangement ' = {I';}, the star-shaped graph G of the corresponding singularity can
be extended to arbitrarily complicated graphs of rational singularities with reduced
fundamental cycle. The following proposition explains how to form these bundles in
general from a given extension of the graph, completing the proof of Theorem 1.1. It
is not hard to see that under the hypotheses of the proposition, the extended graph H
corresponds to a singularity with reduced fundamental cycle.

Proposition 7.23 Let G be the star-shaped resolution graph corresponding to the
surface singularity associated to an unexpected symplectic line arrangement with
minimal possible weights. Let I be the set of leaves of G, and let {G;};cs be a
collection of (possibly empty) negative definite rooted trees; assume that G and G;
have no (—1) vertices.

Consider a graph H constructed by attaching to G the rooted trees G;, i € I, so that
the root of G; is connected to the leaf u; by a single edge. Assume that the resulting
graph H satisfies condition (2-1). Let (Y, &) be the link of a rational surface singularity
with reduced fundamental cycle whose dual resolution graph is H.

Then (Y, §) admits a Stein filling which is not strongly diffeomorphic to any Milnor
filling.

Remark 7.24 Proposition 7.23 provides a fairly general class of rational surface
singularities with reduced fundamental cycle which admit unexpected fillings. The
construction can be further generalized to include variations in the bundling structure
and to apply to more general graphs G as the input. Despite all variations, getting
rid of the (—2) vertices in the resolution graph seems difficult. Indeed, we could
add a curve intersecting £5 only twice in Example 7.22, which would lower the self-
intersection to (—3) for one of the vertices on the leg of the star-shaped graph G.
However, such a curve would intersect the other pseudolines in the arrangement Q at
new points. This would increase the weights on the curvettas corresponding to these
other pseudolines, producing free marked points and yielding additional (—2) vertices
elsewhere in the graph. In fact, we already know from Theorem 1.2 that our strategy
must have limitations, as there are no unexpected fillings when each vertex of the
resolution graph has self-intersection —5 or lower.

Proof of Proposition 7.23 The initial unexpected symplectic line arrangement {L;}
consists of symplectic lines associated to the legs of the star-shaped graph G. As above,
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let u; denote the valency 1 vertex of the leg that corresponds to L;. Choose a braided
wiring diagram for the symplectic line arrangement such that a symplectic line L;
corresponds to the wire y;. The braided wiring diagram should be chosen so that y;
contains all the marked points of L; (including free points). We will replace each wire y;
with a bundle of curves (with intersections but no braiding between the components of
the bundle) constructed according to the tree G;, as follows.

All curves in the ;™ bundle must intersect at all marked points on ;. We will specify
the additional intersections and explain how to determine the number of curves and
free marked points in the bundle. The bundle will be described recursively, via its
subbundles and iterative (sub)*—bundles, which we determine by moving through the
graph G;. We start at the root and move upward in the graph G; with respect to the
partial order induced by the root, stopping when we either reach either a vertex vg of
self-intersection number —sg for sy > 3, or exhaust the graph G;.

By condition (2-1), (—2) vertices can only occur in a linear chain. Thus, if we never
reach a vertex with self-intersection —sq for s¢ > 3, then all vertices of G; have self-
intersection —2 (and Gj is a linear chain). Suppose there are ro > 0 such (—2) vertices.
In that case, the bundle for G; should consist of only a single curve, but with ry > 0
additional free points. (The weights of the decorated germ increase accordingly.)

If there exists a vertex vg of self-intersection —sq for s¢ > 3 after passing through a
linear chain of rg vertices of self-intersection —2, then the bundle will consist of exactly
S0 — 1 nonempty subbundles. The subbundles will be described as we travel further
along G;. We require that all curves in the bundle intersect exactly ry additional times
(where each of these r( intersection points gets marked) and increase the weight of
each curve by rg + 1, yielding one additional free marked point on each curve. Two
curves in different subbundles will not intersect at any additional points beyond those
specified so far.

Note that vy can have at most sy — 1 vertices directly above it in Gj, since its valency
is at most so. In particular, G; itself is built by attaching 5o — 1 (potentially empty)
trees onto the subgraph {v < vo} C G;. We associate the sy — 1 subbundles to these
so — 1 rooted trees G!,...,G slo_l, which may be empty or nonempty. (The partial
order on G induced by its root induces a partial order and root on each G jl J)

Now we will create subbundles and their subsubbundles by iteratively repeating a slight
modification of the process above. For each tree G!, we construct a subbundle as
follows. Starting at the root of G!, we again have a linear chain of r; > 0 vertices
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with self-intersection —2, which either exhausts the graph G 11 or ends in a vertex v;
of self-intersection number —s; for s; > 3. (Note that r; and s; depend on j, but we
drop this index to avoid further notational clutter.) If we are in the first case, where
there is no such vertex vy, the subbundle associated to G} will consist of a single curve
with r; additional free marked points. If we are in the second case, where the chain of
length r; of (—2) vertices ends at a vertex v, with self-intersection —s; with s; > 3,
the subbundle itself will be a union of s; — 1 nonempty subsubbundles, intersecting at
r1 + 1 additional points. (Accordingly, the weights increase by ry + 1, but no new free
marked points are added.) Two curves in different subsubbundles will not intersect at
any additional points beyond those previously specified.

The s, —1 subsubbundles correspond to the s; —1 potentially empty trees G2, ..., G s21 _1
attached above v;. We determine these subsubbundles by iteratively repeating this
process, where G12 takes the role of G ]1 and the subsubbundle takes the role of the
subbundle. The (sub)*—bundles will generally have (sub)**!—bundles, leading to
additional iterations of the procedure. The situation where a (sub)k —bundle does not
have a (sub)*!—bundle is when the (sub)*—bundle consists of a single component
(as in the first case of the procedure). Since the graph is finite, there will be a finite

number of iterations, so this process will eventually describe the bundle completely.

Having constructed such bundles individually for each G;, we now superimpose them
onto the wires y; as satellites to get a new braided wiring diagram by inserting them
into a small neighborhood of y; so that each wire of the bundle is C!—close to the
original wire y;. Recall that all intersection points between wires are marked in the
original diagram, and all curves from the i"—bundle are required to intersect at all
marked points. It follows that curves from the different bundles are allowed to intersect
only at the marked points of the original diagram.

We can apply Proposition 5.5 to extend the new braided wiring diagram to an arrange-
ment I" of symplectic disks. We claim that via Lemma 3.2, the resulting arrangement I"
provides a Stein filling for the link of the singularity with the resolution graph H. To
check the claim, we need to show that the open book decomposition on the boundary
of the Lefschetz fibration constructed from I' supports the canonical contact structure
for the link associated to H. Recall that H is associated to a decorated germ C¥
with smooth branches, by attaching (—1) vertices and curvettas and blowing down.
We will show that I" is related by a smooth graphical homotopy to another decorated
germ C, which is topologically equivalent to CH. The topological type of C will be
determined by the intersections and marked points in I': the order of tangency between
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two components in C is equal to the number of intersections between the corresponding
components of I'. The weight on each curve is the total number of marked points on
the corresponding disk of T", including intersections and free marked points. After
showing that I and C are related by a smooth graphical homotopy, we will verify that
C and CH are topologically equivalent (with corresponding weights), to conclude that
the open book decompositions are equivalent.

To relate I" and C, we first construct a smooth graphical homotopy from I" to a “pencil
of the bundles”. In the pencil of the bundles, all curves will intersect at one point, and
curves from different bundles do not intersect anywhere else, but curves from the same
bundle may intersect at other points along the corresponding line. We can use a smooth
graphical homotopy of the original symplectic line arrangement {L;} to a pencil as a
guide to build the required homotopy of I', because each bundle is C!—close to the
corresponding symplectic line inside the chosen Milnor ball. Essentially, at this step
we treat each bundle as a whole, bringing different bundles together without perturbing
curves inside each bundle. More precisely, we satellite the bundle onto the family of
wiring diagrams corresponding to the smooth graphical homotopy of the symplectic
lines to the pencil. The intersection points within a bundle will remain distinct in this
smooth graphical homotopy. At intermediate times during the homotopy, we allow
many additional intersection points in the arrangement, as curves from different bundles
will intersect outside the common marked intersections.

Next, we show that each bundle can be homotoped so that all the intersections come
together to high-order tangencies. Let ' denote the ;™ bundle constructed above, and
let C* denote the curves in the germ C corresponding to those in ', To show that I
and C' are related by a smooth graphical homotopy, it suffices to check that they have
the same boundary braid. To verify this, we observe that the subbundling structure
looks like the nested structure produced by the Scott deformation of C’ as in the proof
of Proposition 4.1. The bundle, as drawn in R?, provides a wiring diagram which is
planar isotopic to the wiring diagram of the Scott deformation, and thus their braid
monodromy is the same. As a consequence, each bundle T is related by a smooth
graphical homotopy to C’. Applying these homotopies to all bundles, we see that T is
related to C by a smooth graphical homotopy, and their induced open books agree.

Now, we need to check that C and C¥ are topologically equivalent. To this end, we
will compare the weights and the pairwise orders of tangency between curvettas in the
two germs. For C, these quantities are computed from the intersections and marked
points in I', while Remark 2.6 shows how to compute them from the graph H.
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First, we make a few observations to relate the curvettas on the graph H to the bundling
construction above. Before the star-shaped graph G is extended, the lines L; correspond
to the legs of the graph. For each i, the i" leg is a chain of (—2) vertices, with an end
vertex u;. We attach a single (—1) vertex to u; and put a curvetta on this vertex; this
curvetta gives rise to the line L;. By Remark 2.6, the weight of L; is 1 4+ [(ug, u;),
where 1 is the root of G'. In this case, the root has been chosen to be the center of the
star-shaped graph.

When G; is nonempty, the symplectic line L; is replaced by a collection of m; curves
(we compute m; below) in the germ associated to H. These new curves come from
curvettas on the additional (—1) vertices attached to G;. For each v € G;, (v-v+a(v))
additional (—1) vertices are attached to v, and each (—1) vertex has a curvetta attached,
thus

mi=—> (v-v+a)),

veG;

as in Proposition 2.4. Note that m; agrees with the number of curves in the bundle I';
constructed above for the graph G;. This is because the subbundling process terminates
when you reach a (sub)—bundle which is a single component. This occurs when
the (sub)*—bundle corresponds to a (sub)k—tree consisting of only r > 0 vertices of
self-intersection —2. When r > 0, this means that there is a (—2) vertex leaf which
contributes one to m;, and when r = 0, this means there is a (—s) vertex v with fewer
than (s — 1) branches above it, and there are correspondingly —(v-v+a(v)) = s —a(v)
such (sub)k—bundles, each consisting of a single curve.

Now, let Cy be one of the curvettas for the graph H, and let v, be a vertex of G such
that C, intersects a (—1) vertex attached to Vx. According to Remark 2.6, the weight
of Cyx according to the graph H is 1 4+ /(Vy, ug), where [(Vx, ug) counts the number of
vertices in the path from the root uo of G to the vertex v. This path consists of several
parts. From the original graph G, the path contains the /(u;, uo) vertices connecting
the root ug to the vertex u; where Gj; is attached. Next, there are vertices from G;,
which can be organized into (K + 1) chains as shown in Figure 22. For0 <k < K —1,
the k™ chain consists of 7 > 0 vertices of self-intersection (—2), followed by a vertex
of self-intersection —s; < —2. Finally, there may be a last chain of (—2) vertices, of
length rg > 0, such that vy is its last vertex. (If Uy - Ux < —2, then rg = 0.) Therefore,

K—1
L+ 1(@x.uo) = 1 +1(ui.ug) +rg + Y (g +1).
k=0
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Figure 22: How to compute the weights from the graph G following the
proof of Proposition 7.23.

On the other hand, in the construction of the bundle, the initial weight on each curve
begins at 1 + /(u;, ug). For each iterative (sub)’—bundle it is included in, the weight
is increased by ¢ + 1, until we reach a stage K where the (sub)X graph consists of
rg > 0 vertices, all of self-intersection —2. For this K" stage, the weight is increased
by rx (the increase is associated to free marked points). Therefore, the total weight

on Cy will be
K—1

w(Cx) = 1+ (i, ug) +rx + Y (e + 1),
k=0

which agrees with 1 + /(Vy, ug), as required.

Next, we compare the orders of tangency between the curves. According to Remark 2.6,
the order of tangency between two components Cy and Cy, is p(Vx, Vy; u¢), the number
of common vertices in the path from Uy to u with the path from v, to uy. By
condition (2-1), the vertex vy where these two paths diverge has self-intersection
—sy, for s > 3. See Figure 23. The path from ug to vy, includes the path from ug
to u; in G. This contributes /(u;, ug) vertices. The path continues into G;, with
sequential chains of r; vertices of self-intersection (—2), each ending in a vertex vy of
self-intersection —sy < —2, for 0 < k < L. Therefore,

L
p(Vx. Ty1vo) = (i ug) + H_ (rg + 1).
k=0
On the other hand, in the bundle construction, the curves Cx and Cy, lie in two distinct
(sub)Lt1_bundles created for two of the distinct trees lying above vertex vy. No
intersections between Cx and C), will be created after the L™ stage. At the beginning
of the bundle construction, all curves are required to intersect 1 4 /(u;, ug) times. All
other intersections between Cx and C) are created in the procedure above at some
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Figure 23: How to compute the tangencies from the graph G following the
proof of Proposition 7.23.

iteration k, 0 <k < L. Atthe k = 0 stage, we add r( intersections between Cy and Cy.
At stage k for 1 <k < L, we add additional r; 4 I intersections between Cx and C).
Therefore the total number of intersections between Cy and C), is

L
4 (g, ui) + 7o+ Y (i + 1),
k=1
which agrees with p(Vy, Vy; vy).

To complete the proof, observe that the arrangement I" contains the original unexpected
symplectic line arrangement as a subarrangement (choose a single component of each
bundle). By Theorem 7.8, we obtain unexpected Stein fillings of the link of the
singularity corresponding to the graph H. O

8 Further comments and questions on curvetta homotopies

In the previous section we showed that Stein fillings of the link of a singularity do not
always arise from the Milnor fibers, even for the simple class of rational singularities
with reduced fundamental cycle. Our examples of unexpected Stein fillings come
from curvetta arrangements that do not arise as picture deformations of the decorated
germ representing the singularity, although these arrangements are still related to the
decorated germ through a smooth graphical homotopy. In this section, we make a
detailed comparison of de Jong and van Straten’s picture deformations (Definition 2.7)
with smooth graphical homotopies (Definition 3.1). Observe that the two notions differ
in several essential ways. Indeed, the curvetta branches are required to be algebraic in
the former, and just smooth in the latter; positivity of all intersections and the weight
restrictions must hold at all times during a picture deformation but only at the end of a
graphical homotopy; the topology of the arrangement may change at nonzero times
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smooth graphical homotopy picture deformation

disk given by (germ of)

type of curvetta branch C! | smooth graphical disk )
J algebraic curve

topology of curvetta

may change with time remains the same
arrangement

i ictions: C! 1y hold for final
weight restrictions: C] has | only hold for final arrangement, hold at all times

at most w; intersections may be violated during homotopy
po.smvny of intersection only hold' for the ﬁn?ll arrangement, hold at all times
points: Cf - C} > 0 may be violated during homotopy

Table 1

during graphical homotopy but not during a picture deformation. This is summarized
in Table 1. We will explore each of these aspects and their role in differentiating Stein
fillings from Milnor fibers. The most important aspect seems to be the topology of the
curvetta arrangement, and whether it is allowed to vary during the homotopy.

8.1 Algebraic versus smooth

The first difference between picture deformations and homotopies is that a smooth
graphical homotopy includes curvettas which need not be complex algebraic curves,
either during the course of the homotopy or at the end of the homotopy. It turns out
that this is not the key aspect contributing to the difference between Milnor fillings
and Stein fillings in our examples. Indeed, adding higher-order terms, one can produce
some surprising curvetta arrangements. Because the curvettas are open algebraic disks,
possibly given by high-degree algebraic equations, curvetta arrangements can be more
general than arrangements of complex lines or global algebraic curves. To illustrate,
we recall the example of the pseudo-Pappus arrangement from [27]; see Figure 24.

Figure 24: The pseudo-Pappus arrangement.
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Example 8.1 [23;27] The classical Pappus arrangement consists of 9 lines; we have
already discussed this arrangement in Example 7.10. By the Pappus theorem, the points
P, q, r in the middle of Figure 24 are collinear. In the pseudo-Pappus arrangement, the
line through these three points is replaced by a bent pseudoline that passes through two
points but not through the third. The pseudo-Pappus arrangement cannot be realized by
complex lines. However, the bent pseudoline can be given by a graph of a high-degree
polynomial whose additional intersections with the other lines occur sufficiently far
outside the ball we restrict to. Thus, the pseudo-Pappus arrangement can be realized by
higher-degree open algebraic curves. In fact, as mentioned in [27], the pseudo-Pappus
arrangement arises as a picture deformation of the pencil of 9 lines, with the weights
of each line given by the number of intersection points on the corresponding line in the
arrangement. The picture deformation can be obtained by adding small higher-order
terms to the linear deformation of the pencil to the classical Pappus arrangement.
Thus, the pseudo-Pappus arrangement gives rise to Milnor fibers of smoothings of the
singularities given by the corresponding decorated pencil of 9 lines.

In fact, all of the fillings produced via arrangements of real pseudolines can be obtained
from an algebraic curvetta arrangement which can be deformed by a polynomial
homotopy (through algebraic curves) to a pencil of lines. (However, this family does
not constitute a picture deformation because the topology may vary at different ¢ # 0,
and the weight constraints may fail at intermediate times.) Note that we only consider
a portion of the algebraic curves in a chosen ball surrounding the origin. In particular,
the algebraic curves may intersect additional times outside of this ball, but we do not
need to count such intersections in the incidence data of our arrangement.

Proposition 8.2 Let A = {{;,...,{,;;} be an arrangement of real pseudolines in R,
Then there exists a family of complex algebraic curves {I'!, ... T’} }, given by polyno-
mial equations

I ={r=p@.0}

and a smoothly embedded closed 4—ball B C C?, such that {T'?,... T } is a symplectic
line arrangement in B (with intersections in the interior of B) for every t € [0, 1], where

e BN(TYU---UTY) has the incidences of a pencil of lines, and

e BN (I‘l1 U---u F,ll) is isotopic in B to the symplectic extension of the pseudoline
arrangement £, U - -- U £, given by Proposition 5.5.

Before proving the proposition, we discuss its consequences.
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Remark 8.3 Consider an arbitrary pseudoline arrangement £, ..., £,, and the corre-
sponding symplectic line arrangement {I';, ..., [';,}. By Proposition 7.4, this arrange-
ment gives Stein fillings of the spaces (Y (m; wy, ..., wy), &) whenever the weights
satisfy inequalities wy > w(Tk) for k = 1,...,m. Let I'" = {T'!,... T’} be a
polynomial homotopy between a pencil of lines and the arrangement {I';, ..., [}, };
such a homotopy always exists by Proposition 8.2. A priori, the homotopy may
violate the weight constraints: at some moment #, the number of intersections may
increase, so that w(F;C) > wy. (In fact, the homotopy constructed in Proposition 8.2
converts all multiple intersections into double points and thus creates a lot of additional
intersections.) However, since F,’( intersects each of the other m —1 components exactly
once, w(FI’c) will never exceed m — 1. Thus, if wg > m —1 for all k, any homotopy as
above will satisfy the weight constraints. By construction, intersections between any
two components I'; and T'} remain positive for all . Thus, the homotopy T'* satisfies
the requirements of the first, third and fourth lines in Table 1, sharing these properties
with picture deformations, but it changes the topology of the arrangement. Accordingly,
the arrangement {I'!, ..., T! } gives a Stein filling W; of (Y (m;wy,. .., wg),§) for
every t, and W; carries a Lefschetz fibration as in Lemma 3.2, but the topology of the
fillings W; changes with 7. Note also that for small # > 0, the defining polynomials
for l",’c give an unfolding, and thus a 1—parameter deformation of C. Equipped with
marked points, this gives a picture deformation. Therefore, for small # > 0 the Stein
filling W; is given by a Milnor fiber. As ¢ increases and the topology of the arrangement
changes, we obtain new fillings W}, which may not be realizable by Milnor fibers. We
will consider a specific example of such a topology change in Section 8.3.

The conclusion we wish to draw here is that the difference between algebraic curves
and smooth curves is not essential to our counterexamples, as we can realize the
corresponding symplectic line arrangements by complex algebraic curves and construct
polynomial homotopies. The positivity of intersections and the weight constraints can
often be trivially satisfied, although we further discuss the role of weights in Section 8.4.
In fact, the important difference comes from the second aspect in Table 1, namely
smooth graphical homotopies can vary their topology and singularities in various
different ways during the homotopy, whereas picture deformations must maintain the
same topology for all nonzero parameters .

We now turn to the proof of Proposition 8.2. Given any pseudoline arrangement, it
can be isotoped in R? to be in a standard wiring diagram form, with the following
properties. Each pseudoline is graphical, £; = {y = f;(x)}. Away from intersection
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points, each pseudoline is horizontal with f;(x) = 26n for some integer | <n <m and
a fixed constant § > 0. There are disjoint intervals (a1, by), ..., (ar, by) at which f;(x)
is nonconstant, such that there is a unique point in each interval (ay, by ) at which ¢;
intersects other pseudolines. Furthermore, we ask that f; and f; are linear whenever
| fi(x) — fj(x)| <é, and each f;(x) is monotonic in each interval (ag, by). We will
assume after a planar isotopy of A that our pseudoline arrangement is initially given
in this form. To construct our algebraic family, we first require a smooth family of
pseudolines connecting this given pseudoline arrangement in standard wiring diagram
form to a pencil, and satisfying a quantitative transversality property, as follows.

Lemma 8.4 Let A = {{,,...,{y} be an arrangement of real pseudolines in R? in
standard wiring diagram form with constant §, such that all intersections occur in
[-M, M]xR. Then there exist smooth functions f;:[—M, M]x |0, 1] — R with the
following properties:

(1) ¢; ={y=fi(x,1)}, ie at time 1 the graphs of the functions give the chosen
pseudoline arrangement.

(2) fi(x,0) =c;ix, ie at time O the graphs of the functions give a linear pencil.

(3) Foranyty€|0,1]and anyi # j, there is a unique point X € [—M, M such that
Ji(x,10) = fj(x,t) and an interval (a, b) C [-M, M| containing X such that
| fi(x,t0) — fj(x.%0)| <6 if and only if x € (a, b), ie the pseudolines remain at
least distance § apart except in a neighborhood of their unique intersection.

(4) Forany ty €[0, 1] and any xo € [-M, M such that | f; (xo, to) — fj(x0.%)| <9,
we have that
dfi

9
— Xo,lo)—i(xo,lo) > 1=
ax ox

5

2M°

ie whenever the pseudolines become close enough to intersect, their slopes are
quantitatively far enough from each other to ensure isolated transverse intersec-
tions.

Proof Note that when the original pseudoline arrangement {{;} is in standard wiring
diagram form, it does satisfy property (4) of the lemma when #y = 1. This is because
whenever | fi(x, 1) — fj(x, 1)| <4, the function f; — f; is linear, and it interpolates a
height difference greater than § over an interval smaller than 2 M, so its slope is greater
than 7.
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Figure 25: Key move used to construct a family of pseudolines, slightly
modified from [57].

It was proven in [57, Proposition 6.4] that any arrangement of pseudolines in standard
wiring diagram form can be related through a family of pseudolines to a pencil. In
that paper, what is needed is that the pseudolines maintain transverse intersections
throughout the family, whereas we need a quantitative measure of this transversality.
We demonstrate here that this stronger condition is in fact satisfied by the family in [57].

We briefly recall the key aspects in the construction of the family and refer the reader
to [57, Proposition 6.4] for further details. This family is graphical and thus can be
written as £; = {y = fi(x, 1)} fori =1,...,m, where E} = {;. The key move to modify
the pseudoline arrangement into a pencil through a family is shown in Figure 25; this
figure is a slight modification of that appearing in [57, Figure 8]. This move is used

Geometry & Topology, Volume 27 (2023)



1188 Olga Plamenevskaya and Laura Starkston

e e S

Figure 26: First reordering move.

iteratively to break up k—tuple points into a sequence of double points in a particular
order. This procedure can be reversed to form an m—tuple point from a collection of
appropriately ordered double points at the end to obtain a pencil. The order of the
double points can be modified through the moves shown in Figures 26 and 27, by a
classical theorem of Matsumoto and Tits [37].

If a pseudoline arrangement satisfies the transversality property (4) before the move
in Figure 27, then it will continue to satisfy the same property throughout the move,
because the relative slopes remain the same; only the interval where they occur is
translated.

For the move from Figure 26, this can be realized using Figure 25 once in reverse to
form a triple point, and then again in the forwards time direction, but mirrored to break
up the triple point in the opposite manner; see [57, Figure 10]. Therefore it suffices
to ensure that property (4) is satisfied throughout the move shown in Figure 25. Indeed,
throughout this move, whenever a pair of pseudolines have height difference less than §
(recall that the spacing between the heights of the strands at the left and right ends of
the figure is 268), both pseudolines are linear in this interval. The difference of pairwise
slopes whenever | f; (x, 1) — fj (x,t)| <§ is always greater than  throughout this family,
because each crossing changes the difference in f; — f; by at least 2§ across the interval,
whereas the interval has length at most 2 M. Moreover, this move preserves the property
that there is a unique interval at which a given pair satisfies | f; (x, 1) — fj(x,7)| <. O

Proof of Proposition 8.2 We use the functions { f;(x, )}, representing a family of
pseudolines through their graphs at a fixed time ¢, and approximate these by real
polynomials intersecting in somewhat controlled ways. We assume that x € [—-M, M|
and that M > 1. Our final pseudoline arrangement is given by £; = {y = f;(x, 1)}. Let
X1,...,Xp be the points at which f;(xg, 1) = fj(xg, 1) for some i # j.

D D
D G G

Figure 27: Second reordering move.
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Let & > 0. Let { = min{1, min; - ;{|x; — x;|}}. In particular, { < 1.
Using the Stone—Weierstrass approximation theorem, choose polynomials p;(x, t) such
that

9 fl P é-n—l

0x 4n22M)"
Then by integrating p; (x, ¢) and shifting by a constant, we can find p;(x, ) such that
(0pi/dx)(x,t) = pi(x,t) and

[pi(x.1) = fi(x,0)] <

Now fork =1,...,n let

(x.1) = pi(x.1)| <

gé-n—l
4n22M =1’

(ﬁ(xk’ 1) _ﬁi(xk’ 1))
Ok —x1) -+ (X = Xk—1) (X — Xpep1) -+ (X — Xn) |
Let af) = p;(0,0). Define

I
a, =

Pi(x, 1) = Pi(x, 1) +ag(t — 1)+ af1(x —x3) -+ (x = xp)
+a§t(x—x1)(x—x3)~--(x—xn) +-~-+a£,t(x—x1)~~-(x—x,,_1).

Then for every k = 1,...,n, we have that p;(xg,1) = fi(xg,1) and p;(0,0) =
pj(0,0) = 0 for all i and j. In particular, for every multi-intersection point of
the pseudolines £1, ..., {;,, there is a multi-intersection point of the corresponding
{p1(x, )=0},...,{pm(x, 1)=0}. We will show that the curves ylt" ={p1(x,19)=0},

V9= {pm(x, 19) =0} form a pseudoline arrangement at each time 7, (namely
every pair of components intersects exactly once). In particular, this suffices to show
that at 7y = 1, the algebraic arrangement has the same intersections as the smooth

pseudoline arrangement. For this, we use the bounds

|pi(x, )= fi(x, O] = | pi(x, ) = pi(x, O+ pi(x, 1) = fi(x, 1)

n n—1
i i n—1 e¢
Sa0+; a, (2M) +—4n2(2M)”_1
8§n—1 n e 3 Sé'n_l
=< + oMy —
4n22M)Hn—1 24;12(2M)”—1 (2M) 4n2(2M)Hn—1

k=1

<Eé&.

We can similarly bound the difference of the derivatives with respect to x,

api afi g

n
. . —s
E(X,Z)—a(x,t) 56164‘261;{}’1(21\1)” +W<8

k=1
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Now we want to show that the graphs A} := {y=p;(x,1) | x € [-M, M]} provide
a family of algebraic pseudoline arrangements whose incidences agree with those
of {£;} at t = 1, and agree with the incidences of a pencil at t = 0. We will use the
intersection and quantitative transversality properties of Lemma 8.4 to verify that for
each time g € [0, 1], there is a unique transverse intersection between A;O and )»;O where
pi(x,t0) = pj(x,ty) for x € [-M, M].

Since we could choose ¢ > 0 arbitrarily in the argument above, we now set ¢ =
mln{ 8,3 77} For each 7y € [0, 1] and each pair i # j, there is an interval (a, b) such
that for x € [-M, M]\ (a,b), we have | f;(x,ty) — fj(x,%)| = §. By the triangle
inequality, for x € [-M, M]\ (a, b),

|pi(x,t0) = pj (X, 1) = | fi = fj| =1 fi = pil = |pj — fi] > 6 =2 = 38 > 0.
Therefore p;(x, 7o) # pj(x.to) for x e [-M, M]\ (a, b). Now for x € (a, b), we have
that | f; (x, o) — fj(x. )| <8, so by the last property of Lemma 8.4,
afz

> ).

i) L )

Again by the triangle inequality and the bounds above we get that

ad apj
‘pl to)——épj(X,to) >3
X

Since the difference of the derivatives is bounded away from zero, this implies that
there can be at most one value x € (a, b) such that p;(x, 7)) = pj(x,t).

Because f;(x,%p) and fj(x, 1) intersect once in the interval (a, b) and their distance
is § at the endpoints ¢ and b, up to switching i and j, we have f;(a,ty)— fj(a,ty) =6 =
Ji(b,to)— fi (b, tp). Since | pi(x,1)— fi(x,1)| < %5 and |pj(x,t)— fj(x,1)| < %(3, this
implies that p;(a,ty) > pj(a,to) and pj(b,t9) > pi(b, ty). Therefore there must exist
at least one value x € (a, b) such that p;(x,ty) = pj(x,t). Therefore the arrangement
{A 0}1—1 is a pseudoline arrangement for all 7y € [0, 1].

Finally, view x as a complex variable. Let B = [-M, M| x i[-a,a] x Dg C C?2,
where Dp is a disk of sufficiently large radius R so that all |p;(x,?)| < R for x €
[-M, M] x i[-a,a]. We consider the locus {[]iZ,(y — pi(x,7))=0} C B for each
1 €[0, 1], and label its irreducible components as I'} = {y— p;(x,1)=0] (x, y) € B}. If
a > 0 is chosen sufficiently small, then all of the intersections where p;(x, ) = p; (x,t)
with x € [-M, M| xi[—a, a] occur at real values of x. Therefore this complexification
of the )»ﬁ" restricted to B gives an algebraic family of curves, which for any ¢y € [0, 1]
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is a symplectic line arrangement, at 7y = 0 has the incidences of a pencil, and at g = 1
has the incidences of the original pseudoline arrangement {¢;}. |

Remark 8.5 To prove Proposition 8.2, we started with a particular smooth homotopy
between the given pseudoline arrangement and the pencil; this homotopy was provided
by Lemma 8.4. The same argument applies to an arbitrary smooth graphical homotopy
that has the properties stated in Lemma 8.4. In many examples such as those in Section 7,
a homotopy with the required properties can be easily constructed directly, thus we
can find its polynomial approximation without resolving all multiple intersections into
double points as required by the algorithm of Lemma 8.4. However, we are unable to
do the polynomial approximation while preserving all the incidence relations during the
homotopy (we only guarantee the required incidences agree with those of the homotopy
fort =0andf=1butnotfor0 <zt <1).

8.2 Smooth graphical homotopies imitating picture deformations

Even without the algebraic condition, we can define a subclass of smooth graphical
homotopies which produce Stein fillings constrained in a similar way as Milnor fibers.
We now isolate these key properties of a picture deformation needed to detect the
examples of unexpected Stein fillings in Section 7.

We can describe a smooth graphical homotopy with branches C ,i C C? via equations

(8-1) Jie(x1,x2,0) =y =0,

where (x, y) are the complex coordinates on C2, x = x| + iX,, and ¢ is the real
homotopy parameter. At ¢t = 0, we assume that Uf-;l C,? = C is the germ of a
complex algebraic curve where each branch passes through the origin. In particular,
Jf1(0,0,0) = 0 for all k. Additionally, any two branches of C have positive total
algebraic intersection number, so any two deformed branches Cl.’ and C jt intersect for
small 7 > 0. Composing the homotopy with a 7—dependent translation, we can also
assume that the first two branches always intersect at the origin, C 1’ n Czt =0.

As before, we will assume that the deformed branches C ,i are not all concurrent for
t > 0. This means that for ¢ > 0, at least one of the functions f; (0,0, ), with k > 2,
is nonzero. We need a nondegenerate version of nonconcurrence:

0" fk
at”

(8-2) (0,0,0) #0 forsome k €{3,...,m}and r > 0.
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In other words, if we set

" 1
ord; fr = min{r : T];k((), 0,0) # 0},
then ord; f} is finite for at least some values k = 3, ..., m. Intuitively, this condition

says that the branches move away from being concurrent at the infinitesimal level.

In addition to the above nondegeneracy hypothesis, assume that for all £ > 0 the
arrangements {C{,CJ, ..., C}} are topologically equivalent. It follows that each
curvetta Cl.’ has a finite number of intersections with the other curvettas C j’ , i # j;the
incidence pattern, and the number of intersections, remain constant during the homotopy.
We can add decorations so that all intersection points on | JiZ; C/ are marked; as for
picture deformations, we allow free marked points as well. Let wy be the total number
of marked points on the branch C,é for any ¢ > 0, and set w = (wq, W, ..., Wy). We
will use the term small smooth deformation to refer to a smooth graphical homotopy of
the decorated germ (C, w) with special properties as above. Small smooth deformations
mimic picture deformations in the smooth category, using smooth graphical instead of
algebraic curvettas: they preserve the topology of the curvetta arrangement and satisfy
the same weight restrictions and positivity of intersection properties.

Proposition 8.6 Lemma 7.5 holds for small smooth deformations of plane curve
germ C with smooth branches.

Proof The proof remains almost the same, but we have to use Taylor approximations
of smooth functions instead of power series for analytic functions.

In complex coordinates (x, y) on C?2, the complex tangent line to Cy, at 0 has the form
arx —y =0 for a; € C. Setting x = x| + ix, and identifying C? with R? x C, the
complex tangent line becomes the 2—plane ajx1+iapx,—y =0. Set by (t) = (0,0, 1)
and gr(x, y,t) = fi(x, y,t) —agpx1 —iagpxy, — by (). Since g4 (0,0,¢) = 0 for all ¢,

we have
9 gk

at—y(O, 0, 0) == O

for all y; additionally,
gk
ox

Equation (8-1) for the deformed branch C,i becomes

5
(0,0,0)=0 and %(0,0,0):0.
¥

(8-3) agxy +iagxy +bp(t) + gr(x1,x2,1) =y =0.

Using (8-2), we have r = ming ord; by () = ord; by, (1) < +oo, and write by (1) =
1" by (¢) for all k.
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We now use the Taylor formula for each function g4 (x1, x5,¢) at (0, 0, 0), writing out
the terms up to " order, followed by the remainder. This gives

8oc+/3+ygk

——— 2K (0,0,00x%xP7
angaxgazy( P

8-4) agxi+igxy +1 b+ Y

l<a+pB+y=<r
a>0or >0

+ Z hica B,y (X1, X2, t)x‘lxxfty + hk:0,0,-(0,0,2)t" —y =0.

a+p+y=r
a>0or >0

The remainder function /., g, is continuous for each (k; e, B, y), and we have that
hia,p,y(X1,Xx2,1) = 0 when (x1, x2,7) — (0,0,0). Now make a change of variables

xy=t"x], xa=t"x5, y=1"y.

It is not hard to see that, as in Lemma 7.5, after the change of variables we can divide
equation (8-4) by ¢” for ¢ # 0 and take the limit as # — 0. The result is an arrangement
of nonconcurrent complex lines given by equations ay x’ + by (0) — y" = 0. Since we
have assumed that the incidence relations for C|, ..., C}, remain the same for all 7 # 0,
the same relations must hold for the lines. d

As a consequence, small smooth deformations cannot produce the unexpected symplec-
tic line arrangements that gave unexpected Stein fillings in Section 7. In such examples,
to obtain deformations which produce only Milnor fibers, the algebraic condition on
the curves and deformation is less important than keeping the topology of the curves
constant for ¢ # 0. For rational singularities with reduced fundamental cycle, small
smooth deformations give a symplectic analogue of smoothings, picking out the Stein
fillings which are “closest” to the singularity and its resolution.

8.3 Smooth graphical homotopies changing topology

The key difference between picture deformations and smooth graphical homotopies in
Table 1 is that the topology of the union of the curves is allowed to change multiple
times during a smooth graphical homotopy — for picture deformations, the only change
happens at time 0. In other words, the types of singularities where the curves intersect
can vary during the homotopy.

Here we provide an explicit example to illustrate the topology change in the family of
Lefschetz fibrations. Our example is related to the configuration Q from Example 7.14,
but with a careful choice of weights.
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algebraic deformation
_—

line-bending
homotopy

line-bending homotopy

Figure 28: A long-term homotopy from a pencil of lines to O.

Example 8.7 Consider the pencil of 11 lines indexed from 0 to 10, with weights wo =4,
Wi =Wy =W3 =Wyg = W5 =wW7 =15, wWg =wg =Wy = 6and wig = 8. Observe that
any arrangement of straight lines is related to the pencil by linear deformation (scaling
the constant terms of the linear equations to 0). Using such a deformation, let Q;, be the
arrangement shown in Figure 28, where £ is a straight line. Unlike the arrangement Q,
£10 does not pass through the intersection point » of £3, £ and £9. The corresponding
picture deformation of the weighted pencil gives a deformation of the surface singularity.
We can extend the picture deformation to a smooth graphical homotopy which for
to <t < 1 bends the pseudoline £ towards the intersection £3 N € N Lg, and at ¢ = 1
realizes the configuration Q. (We implicitly use Proposition 5.5 to symplectify the
family of pseudolines to a smooth graphical homotopy of symplectic line arrangements.)
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Figure 29: The Stein filling W is related to the Milnor fibers W; by the
monodromy substitution as shown.

Now, consider the Stein fillings W; correspond to the arrangements Q;, 0 <¢ < 1. For
0 <t < 1, the Stein fillings are diffeomorphic to Milnor fibers of the corresponding
smoothings of the singular complex surface. Indeed, the Lefschetz fibrations given
by Lemma 3.2 are all equivalent, and for ¢ close to 0 the smooth graphical homotopy
is a picture deformation. When ¢ = 1, Corollary 7.17 says that the Stein filling W
arising from Q is not strongly diffeomorphic to any Milnor fiber. The topology of W is
different from that of W;: as a smooth manifold, W; for ¢ < 1 is obtained from W by
rational blow-down. The corresponding Lefschetz fibrations are related via the positive
monodromy substitution given by the daisy relation [14]; see Figure 29.

8.4 Violating positivity of intersections and weight constraints

Although we have seen that we can produce many examples of unexpected Stein fillings
using smooth graphical deformations which satisfy positivity of intersections and the
weight constraints, we also can construct examples where a Stein filling arises from
a configuration of curves such that every smooth graphical homotopy from the germ
curvetta violates the weight constraints.

Example 8.8 Consider again the configuration Q, from Example 7.14, of 11 symplectic
lines { L }llcl=1' We compare this to a pencil of lines with weights
(8-5) U)()=U)3=4, w1=w2=w4:w5=w6=w7=w9=5, w8=w10=6.

These are chosen such that wy; = w(Ly), so they are the minimal possible weights
satisfying the hypotheses of Corollary 7.9. We can show that there is no smooth
graphical homotopy from this pencil to Q satisfying these weight constraints.

Proposition 8.9 The arrangement Q cannot be obtained from the pencil of lines by a
smooth graphical homotopy satistying the weight constraints as above if we consider
homotopies that are analytic in t or satisfy a nondegeneracy condition such as (8-2).
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This statement follows from the following lemma, which shows that for combinatorial
reasons, there are no “intermediate” arrangements between the pencil and O, so if a
homotopy existed, it would have to deform the pencil immediately into an arrangement
with the same incidence relations as Q.

Lemma 8.10 Let Q; = ,1€0=O L;c be a smooth graphical homotopy such that Q is a
pencil of 11 lines, and Q1 = Q (after an appropriate choice of coordinates). Suppose
that all intersections L§ -Lj. are positive, and each L;{ has no more than wy, intersection
points at all times t € [0, 1]. Then, the homotopy Q; immediately deforms the pencil
of lines into an arrangement combinatorially equivalent to Q, perhaps after restricting
to a smaller time interval: there exists T > 0 such that Q. is a pencil, and Q; is
combinatorially equivalent to Q for all t € (z, 1].

Proof Any two lines in the pencil have algebraic intersection number 1. Since
intersections remain inside the Milnor ball during the homotopy and remain positive at
all times, throughout the homotopy any two components L§ and L; of Q; intersect
exactly once. This allows us to work with Q; as with pseudoline arrangements in
Proposition 7.15.

We examine possible combinatorics of an arrangement with the weight restrictions
as above. The analysis below works at any time ¢. For each individual line L, we
write L;c for its image under the homotopy at time z. For # = 0, the lines Lg form a
pencil; for = 1, we have Q = | J L}C.

In the arrangement O, the line L contains 4 intersection points. These are points
where L meets the pencil L, L,, L3, L4 of vertical lines, the pencil Ls, L¢, L7 of
horizontal lines, the two diagonal lines Lg, Ly, and the bent line L. The weight
condition then implies that Lf) can never have more than 4 intersection points. Note
that L3 also has only 4 intersection points, so the same is true for Lt3. It follows that
at most one intersection point on Lg can have multiplicity 5 or greater: if there were
two such points, there would be two pencils of 5 or more lines. Even if L’3 is in one
of these pencils, it would intersect the lines of the other pencil in 5 or more distinct
points, a contradiction. Next, observe that no line has more than 6 intersection points,
so no pencil can contain more than 6 lines unless all the lines are concurrent. We
conclude that Lg must have at least 3 intersection points for all ¢, because it is not
possible to distribute the 10 other lines into two intersection points on L subject to
these conditions.
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Observe that Q; must be combinatorially equivalent to Q for ¢ close to 1. Indeed, for ¢
sufficiently close to 1, the four distinct intersection points on L remain distinct on Lf).
Similarly, for ¢ close to 1, each of L%, L% and L’ have at least 5 distinct intersection
points with the other curves in the arrangement Q;. On the other hand, due to weight
restrictions, each of these curves has at most 5 intersection points. It follows that L’S,
Lt6 and L’; have exactly 5 intersection points each, and the curves of Q; meeting at
each intersection have the same incidence relations as the corresponding lines in Q.
Thus, the incidences involving L, as well as the incidences for the “grid” intersections
between L, LY, L}, L’ and L%, L%, LY, are the same as in Q for 7 close to 1. All
the remaining intersections in Q; are double points, and they cannot merge with other
intersections if 7 is sufficiently close to 1.

The above argument shows that {¢t € [0, 1] : Q; is combinatorially equivalent to Q} is
open. Now, suppose that Q; is equivalent to Q for ¢ > #3. We examine the combinatorial
possibilities for Qy,, assuming that this arrangement is not a pencil. Consider two cases:

(D) Lg’ has 4 distinct intersection points.

2) Lf)o has 3 distinct intersection points.

In the first case, it follows that Qy, must be combinatorially equivalent to Q. This
is because all the incidence relations valid for ¢ > ¢, still hold by taking a limit as
t — to. As in the proof of Proposition 7.15, we see that no two intersection points can
collapse (if they do, all the curves must be concurrent). It follows that in this case, all
the incidence relations in Qy, are the same as in Q.

In the second case, there are 3 intersection points on L. Again, because all incidences
hold after taking limits as ¢ — t, the arrangement Qy, satisfies all the incidence
relations of Q. Additionally, two of the intersection points on L collapse. It follows
from the proof of Proposition 7.15 that in this case Qy, must be a pencil, contradicting
the assumption that Lg’ has 3 distinct intersection points.

We conclude that if Q; is combinatorially equivalent to Q for all 1 > 7 > 79, and Qy,
is different, then Q,, must be a pencil. O

We have just seen that there are examples of Stein fillings arising from graphical
smooth homotopies which do not satisfy the weight constraint (and such that there is
no possible graphical smooth homotopy which does satisfy the weight constraint). On
the other hand, we do not have examples of Stein fillings associated to a configuration
of graphical curves which cannot be related to the curvetta germ by a smooth graphical
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homotopy satisfying positivity of intersections between the curve components. We
suspect that in fact, there may always be a smooth graphical homotopy maintaining
positivity of intersections.

Question 8.11 Suppose C°={C?, C2°, L COrandCl={C], CZO, ..., ClYaretwo
collections of symplectic disks in B such that Cl.’ intersects C j’ positively transversally
or with a local holomorphic model. Further assume that the boundaries of C® and C'
are isotopic braids in S2. Does there exist a continuous family {C?, Cl,....Ch}of
symplectic disks, all with isotopic boundary braid for ¢ € [0, 1], extending this pair of
arrangements, such that for each 7, Cl.’ and Cit/ have positive intersections?

To prove existence of such a homotopy, one could realize C® and C' as Jy— and
J1—holomorphic curves, respectively, for almost complex structures Jy and J; which
are compatible with the standard symplectic structure, with appropriate convexity
conditions at the boundary of the ball. One could connect Jy and J; through a
family J; of almost complex structures with the same properties, and then try to find
a family C} of J;—holomorphic disks interpolating between Cl.o and Cl.1 for each i.
The difficulty arises in analyzing the moduli spaces of J—holomorphic curves with
appropriately chosen boundary conditions (either using an SFT set-up or a totally real
boundary condition). Compactness issues in the moduli space must be overcome to
obtain a positive answer to Question 8.11. Because such techniques are far beyond the
scope of this article, and the answer to the question is not central to our investigations,
we leave this open.

Remark 8.12 If a smooth graphical homotopy fails to satisfy the weight constraints
or positivity of intersections, we cannot construct a sequence of Stein fillings using
Lemma 3.2. However, we can “connect” the singular complex surface (X, 0) to the
Stein filling W via a family of achiral Lefschetz fibrations; see [20, Section 8.4].

Consider Example 8.8. We will use the homotopy of pseudoline arrangements given in
Example 8.7. For 0 < ¢ < 1, the pseudolines £3, £¢, £9 and £1¢ have more intersection
points than the weights (8-5) allow. We need to compensate for the higher weights to
obtain the required open book monodromy, so we place negative free marked points
on these lines: {3, £¢, £9 need one negative marked point each to compensate for
one extra positive intersection, and £;¢ needs 2 negative points. In the open book
monodromy, every negative marked point contributes a negative Dehn twist around the
corresponding hole. It follows from the proof of Lemma 3.4 that with these additional

Geometry & Topology, Volume 27 (2023)



Unexpected Stein fillings and plane curve arrangements 1199

negative twists, the resulting open book supports (Y, £). The corresponding vanishing

cycles determine an achiral Lefschetz fibration. The negative Dehn twists correspond

to a “negative” blow-up in the smooth category (the 4—manifold changes by taking a

connected sum with CP?).
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