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Abstract
As an alternative to entanglement entropies, the capacity of entanglement
becomes a promising candidate to probe and estimate the degree of entan-
glement of quantum bipartite systems. In this work, we study the statistical
behavior of entanglement capacity over major models of random states. In
particular, the exact and asymptotic formulas of average capacity have been
derived under the Hilbert–Schmidt and Bures-Hall ensembles. The obtained
formulas generalize some partial results of average capacity computed recently
in the literature. As a key ingredient in deriving the results, we make use of
techniques in random matrix theory and our previous results pertaining to the
underlying orthogonal polynomials and special functions. Simulations have
been performed to numerically verify the derived formulas.

Keywords: quantum entanglement, entanglement capacity,
Hilbert–Schmidt ensemble, Bures-Hall ensemble, random matrix theory,
special functions

(Some figures may appear in colour only in the online journal)

1. Introduction

Crucial to a successful exploitation of advances of the quantum revolution is the understand-
ing of quantum entanglement. Entanglement is the physical phenomenon, the medium, and,
most importantly, the resources that enable quantum technologies. Estimating the degree of
entanglement over different models of generic (random) states has been a subject of intense
study in the past decades. Existing results mainly focus on entanglement entropy based estim-
ation using, for example, von Neumann entropy [1–15], quantum purity [9, 10, 16–21], and
Tsallis entropy [22, 23] as entanglement indicators. These results concern, in the setting of
bipartite systems, the statistical behavior of entanglement entropies over generic state models
of the well-known Hilbert–Schmidt ensemble [1–8, 16, 17, 22, 23] and Bures-Hall ensemble
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[9–11, 18–21], as well as the emerging fermionic Gaussian ensemble [12–15]. Besides entrop-
ies, another type of entanglement indicator is the capacity of entanglement, which was pro-
posed in [24] as the analog of heat capacity of a thermal system. Entanglement capacity com-
plements entropies in characterizing the entanglement, where distinct behavior between the
two types of entanglement indicators has been numerically observed in [25]. In quantum
information theory, capacity is directly related to fidelity susceptibility and quantum Fisher
information [26]. It is also a useful quantity to diagnose phase transitions relevant to quantum
field theory [27]. In particular, the limiting capacity is identified as a critical value to distin-
guish integrable systems from chaotic systems [28]. Despite the importance of entanglement
capacity, results in the literature are rather limited. Under the Hilbert–Schmidt ensemble, the
average capacity for small dimensional systems have been obtained in [26], whereas the aver-
age of a related but mathematically simpler notion of annealed capacity [29] has been com-
puted in [27]. Special cases of the average capacity under the fermionic Gaussian ensemble
have been studied recently in [14, 28].

Toward understanding the statistical behavior of entanglement capacity, we compute the
average capacity over the widely used models of generic states. Our main results include
the exact yet explicit formulas of average capacity over the Hilbert–Schmidt and Bures-Hall
ensembles. We also derive the corresponding limiting values of capacity when the dimensions
of the two subsystems approach infinity. The results of this work are obtained by making use
of recent progress on the underlying random matrix ensembles as well as the associated ortho-
gonal polynomials and special functions. Numerical simulations are performed to verify the
derived results and to show the usefulness of average capacity as an entanglement indicator.

The rest of the paper is organized as follows. In section 2 we formulate the problem of
interest before presenting the main results. Particularly, the exact capacity formulas under the
Hilbert–Schmidt ensemble and Bures-Hall ensemble are summarized respectively in proposi-
tions 1 and 2, where the asymptotics of capacity are given in corollary 1. Section 3 is devoted
to the proofs of the main results. We summarize the key findings and outline potential future
works in section 4. Relevant summation identities are listed and discussed in appendix.

2. Problem formulation and main results

Before discussing entanglement indicators of entropies and capacity, we outline the density
matrix formalism [30], introduced by von Neumann, that gives rise to the concept of bipartite
systems and generic states. Consider a composite quantum system consisting of two subsys-
tems A and B of Hilbert space dimensions m and n (with m⩽ n), respectively. A generic state
of the bipartite system is written as a linear combination of the random coefficients ci,j and the
complete bases of subsystems A and B as

|ψ⟩=
m∑
i=1

n∑
j=1

ci,j|iA⟩⊗ | jB⟩, (1)

where the coefficients ci,j follow independent and identically distributed standard complex
Gaussian random variables. The corresponding density matrix of the full system is

ρ= |ψ⟩⟨ψ| (2)

with the natural probability constraint

tr(ρ) = 1. (3)

2
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As opposed to a deterministic state of fixed coefficients ci,j, the generic states are ensembles of
random states useful in probing and estimating the holistic statistical performance of a system.

The defining feature of the bipartite system is the operation of partial trace (of the full
density matrix) leading to a reduced density matrix that models the entanglement between the
two subsystems. Different models of generic states are specified by different ways the partial
trace is taken. If we directly take the partial trace over the density matrix (2) of the larger
system B,

ρA = trB(ρ), (4)

the resulting eigenvalue distribution2 (entanglement spectrum) of the reduced density mat-
rix (4) is known as the Hilbert–Schmidt ensemble [1, 30]

fHS (λ)∝ δ

(
1−

m∑
i=1

λi

) ∏
1⩽i<j⩽m

(λi−λj)
2

m∏
i=1

λαi , (5)

where δ(·) is the Dirac delta function and

α= n−m (6)

denotes the dimension difference of the two subsystems. The Bures-Hall ensemble is a variant
of the Hilbert–Schmidt ensemble in that its state is a superposition of the state (1) as

|φ⟩= |ψ⟩+(U⊗ I) |ψ⟩, (7)

where U is an m×m unitary random matrix with the measure proportional to
det(I+U)2β+1 [9]. We now take the partial trace over the new density matrix ρ= |φ⟩⟨φ|,
the entanglement spectrum of the reduced density matrix ρA = trB(ρ) is the Bures-Hall
ensemble [18, 30]

fBH (λ)∝ δ

(
1−

m∑
i=1

λi

) ∏
1⩽i<j⩽m

(λi−λj)
2

λi+λj

m∏
i=1

λβi , (8)

where

β = n−m− 1
2
. (9)

Note that the above defined Bures-Hall ensemble is also known as the generalized Bures-
Hall ensemble, where the one induced from the Bures metric corresponds to the special case
β =−1/2.

Both the Hilbert–Schmidt ensemble (5) and the Bures-Hall ensemble (8) are supported in
the set {

0⩽ λm < .. . < λ1 ⩽ 1,
m∑
i=1

λi = 1

}
, (10)

which, in particular, reflects the probability conservation (3). In principle, one may construct
various other models of generic states in the space of density matrices [30]. The main reasons
that the considered ensembles (5) and (8) stand out as the most important ones are discussed
below.

2 We only concern the eigenvalue distribution of a reduced density matrix as the observables of interest, such as
entropies and capacity, are functions of the eigenvalues instead of eigenvectors.
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• The Hilbert–Schmidt ensemble corresponds to the simplest model of generic quantum
states, where no prior information of the states needs to be assumed. The randomness of the
states comes from the assumption of Gaussian distributed coefficients, which correspond
to the most non-informative distribution. Namely, the Hilbert–Schmidt ensemble can be
thought of as the baseline ‘Gaussian model’ universal in statistical modelling of an unknown
variable. Therefore, in the investigation of any quantum information processing task, it is
always desirable to make use of generic Gaussian states to benchmark the performance.

• The Bures-Hall ensemble is an improved variant of the Hilbert–Schmidt ensemble that
satisfies a few additional properties [30]. The Bures metric, that induces the Bures-Hall
ensemble of the special case β =−1/2, is the only monotone metric that is simultaneously
Fisher adjusted and Fubini-Study adjusted. Moreover, the Bures metric, related to quantum
distinguishability, is known to be the minimal monotone metric. It is also a function of fidel-
ity, which is a key performance indicator in quantum information processing. In addition,
the Bures-Hall ensemble enjoys the property that, without any prior knowledge on a dens-
ity matrix, the optimal way to estimate the density matrix is to generate a state at random
with respect to this measure [18]. As a result, it is often used as a prior distribution (Bures
prior) in reconstructing quantum states from measurements. It is also known that the generic
states from the Hilbert–Schmidt and Bures-Hall ensembles are physical in that they can be
generated in polynomial time [31].

Entanglement serves as a measure of the non-classical correlation between the subsystems
A and B of a bipartite system. The degree of entanglement can be estimated by entanglement
indicators, which are functions of the eigenvalues of a reduced density matrix. The most well-
known one is von Neumann entanglement entropy

S1 =−tr(ρA lnρA) =−
m∑
i=1

λi lnλi, S1 ∈ [0, lnm] , (11)

that has been studied under different generic state models in [1–5, 7–14] among other refer-
ences. The von Neumann entropy monotonically increases from the separable state

λ1 = 1, λ2 = . . .= λm = 0 (12)

when S1 = 0 to the maximally-entangled state

λ1 = λ2 = . . .= λm =
1
m

(13)

when S1 = lnm. Other major entanglement entropies include Rényi entropy, quantum purity,
and Tsallis entropy, which all satisfy the above monotonicity property [30].

The present work focuses on another promising entanglement indicator known as capacity
of entanglement [24]

C= tr
(
ρA ln

2 ρA
)
− tr2 (ρA lnρA) = S2 − S21, C ∈ [0,Cmax] , (14)

where

Sk = (−1)k
m∑
i=1

λi ln
kλi, k= 1,2, . . . , (15)

defines a family of linear spectral statistics indexed by k with S1 being the von Neumann
entropy (11). Unlike entropies, the capacity vanishes C= 0 in both separable (12) and
maximally-entangled (13) states, whereas it attains the maximum C= Cmax in some partially
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entangled states3. In the time evolution of quantum systems, the ability to detect the presence
of entanglement at earlier times than entropies could capture is a distinguishing characteristics
of capacity [25]. By the definition (14), the average of capacity

E[C] = E[S2]−E
[
S21
]

(16)

= E
[
tr
(
ρAK

2
)]

−E
[
tr2 (ρAK)

]
(17)

can be also understood as a measure of the fluctuation of the modular Hamiltonian [27]

K=− lnρA. (18)

Therefore, average capacity contains information on the width of the entanglement spectrum,
which is otherwise unavailable by inspecting average entropies.

We now present the main results of this work on the exact and asymptotic average capacity
under the Hilbert–Schmidt and Bures-Hall ensembles.

Proposition 1. For a bipartite system of dimensions m and n with the parameter α as defined
in (6), the average value of entanglement capacity (14) under theHilbert–Schmidt ensemble (5)
is given by

EHS[C] = Ψ0,α + a0ψ1(m+α+ 1)+ a1 (ψ0(m+α+ 1)−ψ0(α+ 1))+ a2, (19)

where the coefficients a0, a1, and a2 are given by

a0 =
(m− 1)(m+α− 1)
m(m+α)+ 1

(20)

a1 =
α(2m+α− 1)
m(m+α)

(21)

a2 = −
m
(
7m2 + 6αm− 4m− 2α+ 5

)
4(m+α)(m2 +αm+ 1)

− 1 (22)

and Ψ0,α is a special case of the summation

Ψa,b =
2(m+ a)!
(m+ b)!

m+a∑
k=1

(m+ b− k)!
(m+ a− k)!

1
k2
, a ∈ Z, b ∈ R, b⩾ a>−m. (23)

Here, ψ0(x) = d lnΓ(x)/dx and ψ1(x) = d2 lnΓ(x)/dx2 denote respectively the digamma func-
tion and trigamma function [32].

The proof of proposition 1 can be found in section 3.2. Note that for integer arguments the
digamma function and trigamma function admit respectively the finite summation forms

ψ0(l) =−γ+
l−1∑
k=1

1
k

(24)

and

ψ1(l) =
π2

6
−

l−1∑
k=1

1
k2

(25)

3 It is straightforward to verify that, for a given m, the value of Cmax can be obtained numerically as the maximum of
the function (1− x)x(ln(m− 1)− ln(1− x)+ lnx)2 in the interval x ∈ (0,1).
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with γ≈ 0.5772 being the Euler’s constant. It is also important to point out that the sum (23)
can be written in terms of a hypergeometric function of unit argument as

Ψa,b =
2(m+ a)
m+ b 4F3

(
1,1,1,1−m− a
2,2,1−m− b

∣∣∣1) , (26)

which in general may not be simplified to a closed-form expression. In the literature, the special
cases of (19) for small subsystem dimensions m,n⩽ 3 are obtained in [26]. Another related
result is the average formula of annealed capacity CA derived in [27]. The average of the
annealed capacity is defined as [29]

EHS[CA] = EHS[S2]−E2
HS[S1] , (27)

where, comparing to the average capacity (16), the second-order statistics EHS
[
S21
]
is replaced

by a mathematically simpler (squared) first-order statistics E2
HS[S1].

Before discussing the results over the Bures-Hall ensemble, we have the following remark.

Remark. Substituting m→ m+ a and n→ m+ b in the identity (A3), the sum Ψa,b in (23)
can be rewritten by the sum

2
m+a∑
k=1

ψ0(k+ b− a)
k

+CF, (28)

where CF denotes the closed-form terms in (A3). The sum in (28) is known as an unsimplifiable
basis [5, 7, 8, 10, 11, 14, 15], which in general is not summable into a closed-form expression,
cf (26). However, in the special cases of given integers a and b with b⩾ a, the sum (28) per-
mits closed-form evaluation as a result of the identity (A4). This corresponds to the case of a
fixed dimension difference α= n−m, where the average capacity (19) admits more explicit
expressions. The cases α= 0,1,2 are provided respectively in below as examples

EHS[C] = − (m+ 1)2

m2 + 1
ψ1(m+ 1)− 11m2 − 4m+ 9

4(m2 + 1)
+
π2

3
(29)

EHS[C] = − (m+ 1)(m+ 2)
m2 +m+ 1

ψ1(m+ 2)− 11m2 + 7m+ 12
4(m2 +m+ 1)

+
π2

3
(30)

EHS[C] = − m+ 3
m+ 1

ψ1(m+ 3)+
2(ψ0(m+ 3)−ψ0(3))
m(m+ 1)(m+ 2)

− 11m2 + 29m+ 28
4(m+ 1)(m+ 2)

+
π2

3
. (31)

We also note that the choice of the sum (23) over the one in (28) facilitates the study of the
asymptotic capacity as discussed in section 3.4.

For the Bures-Hall ensemble, the corresponding result is given by the following proposition.

Proposition 2. For a bipartite system of dimensions m and n with the parameter β as defined
in (9), the average value of entanglement capacity (14) under the Bures-Hall ensemble (8) is

EBH[C] = Ψ0,β +Ψ2β,β + b0ψ1(m+β+ 1)+ b1 (ψ0(m+β+ 1)−ψ0(β+ 1))+ b2, (32)

where the coefficients b0, b1, and b2 are given by

b0 =
2(m− 1)(m+β)(m+ 2β)

(2m+ 2β+ 1)(m2 + 2βm+m+ 2)
+ 1 (33)

b1 =
2β2

m(m+ 2β+ 1)
(34)

6
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b2 = − π2

2
− 1 (35)

and Ψa,b is defined in (23).

The proof of proposition 2 is in section 3.3. For half-integer arguments we have the finite sum
representations for the polygamma functions in (32) as

ψ0

(
l+

1
2

)
=−γ− 2ln2+ 2

l−1∑
k=0

1
2k+ 1

(36)

ψ1

(
l+

1
2

)
=
π2

2
− 3

l−1∑
k=1

1
k2

− 4
2l−1∑
k=l

1
k2
. (37)

We also note that unlike the cases (29)–(31), here the result (32) may not be reduced to a
closed-form expression for a fixed β. This is due to the half-integer nature of β, in which the
sum in (28) does not lead to a closed-form expression.

Based on the exact capacity formulas (19) and (32), the corresponding limiting behavior
for large dimensional subsystems m and n can also be obtained. The results are summarized
in the following corollary.

Corollary 1. For a bipartite system of dimensions m and n in the asymptotic regime

m→∞, n→∞, with a fixed n−m, (38)

the average entanglement capacity under the Hilbert–Schmidt ensemble (19) and the Bures-
Hall ensemble (32) approach to the limit

EHS[C]−→
π2

3
− 11

4
(39)

and the limit

EBH[C]−→
π2

6
− 1, (40)

respectively.

The proof of corollary 1 is provided in section 3.4. Note that the limiting values (39) and (40)
are independent of α and β as defined in (6) and (9), respectively. It is also worth mentioning
that for the average annealed capacity (27) under the Hilbert–Schmidt ensemble, the limiting
behavior derived in [27] turns out the same as (39), i.e.

EHS[CA]−→
π2

3
− 11

4
. (41)

This is because their difference

EHS[CA]−EHS[C] = EHS
[
S21
]
−E2

HS[S1] = VHS[S1] , (42)

which is the variance of von Neumann entropy (64), vanishes in the regime (38) as a result
of the limiting behavior of polygamma functions (126) and (127). For the same reason, since
the variance VBH[S1] under the Bures-Hall ensemble as shown in (85) also vanishes in the
limit (38), the resulting average annealed capacity converges to the corresponding asymptotic
value (40), i.e.

EBH[CA]−→
π2

6
− 1. (43)

7
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Therefore, the average capacity and average annealed capacity under each considered
ensemble are described by the same universal limit despite having distinct finite-size formulas.
We also point out that, in the same asymptotic regime (38), the average capacity (per dimen-
sion) under the fermionic Gaussian ensemble of equal dimension subsystems m= n has been
derived as [28]

EFG[C]−→
π2

8
− 1, (44)

which is conjectured [14] to hold true for arbitrary subsystem dimensions m⩽ n. The limiting
value (44) is argued to serve as a phase transition indicator between integrable and chaotic
systems [28]. It would be interesting to see if a similar argument can be stated to interpret the
obtained limits (39) and (40).

As a direct consequence of corollary 1 and the known asymptotic behavior of average
entropy in the limit (38), cf (63), (84), and (126), (127),

EHS[S1] = lnm+ o

(
1
m

)
(45)

EBH[S1] = lnm+ o

(
1
m

)
, (46)

the relative rate of growth between the average capacity and the average entropy, relevant to
quantum field theory [26], can now be rigorously found as

EHS[C]
EHS[S1]

(38)−→ 0 (47)

EBH[C]
EBH[S1]

(38)−→ 0, (48)

where the result (47) under the Hilbert–Schmidt ensemble has been suggested in [26].
To illustrate the obtained main results, we plot in figure 1 the formulas (19), (32), and

(39)–(40) as a function of subsystem dimension m when fixing α and β as compared with
numerical simulations. The left-hand side and right-hand side subfigures correspond to the
cases of the Hilbert–Schmidt and Bures-Hall ensembles, respectively. We observe that as the
dimension differences α and β increase, the corresponding average capacity (19) and (32)
approach to the respective limiting values (39) and (40) more slowly. In other words, the finite-
size capacity formulas are more useful when α and β are large, and otherwise the asymptotic
capacity values serve as good-enough approximations. By comparing the two subfigures, it is
also observed that the average capacity under the Bures-Hall ensemble attains a larger value for
a given subsystem dimensions. By the variance of the modular Hamiltonian interpretation (17)
of the capacity, this observation implies that the width of the spectrum of Bures-Hall ensemble
is on average wider than that of the Hilbert–Schmidt ensemble. The numerical simulations as
represented by the scatters, each obtained over 106 realizations of random density matrices,
match quite well with the analytical results as expected.

Before presenting the proof of the main results of this work in the next section, we intend
to address the important question whether the average capacity is able to represent the typical
behavior of capacity. In general, we say that an entanglement indicator, such as an entropy or
capacity, is typical when its variance is insignificant in value and, furthermore, the variance
is diminishing as the dimension increases. This question has been addressed for von Neu-
mann entropy over different generic state models [1, 4, 6, 12, 13], where its mean value was
found to be typical for relatively large dimensions. Since analytically capturing the variance
of capacity is difficult, we perform some numerical simulations under both Hilbert–Schmidt

8
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Figure 1. Average capacity under HS and BH ensembles: analytical results versus sim-
ulations. The solid lines are drawn by the exact capacity formulas (19) and (32), while
the dash-dot horizontal lines represent the limiting values of capacity (39) and (40).
The corresponding scatters, as denoted by the symbols of circle, plus sign, asterisk, and
triangle, are obtained from numerical simulations.

and Bures-Hall ensembles in figure 2, where the subsystem dimensions m= 10,20,30,40,50
with different values of α and β are considered. The numerically computed variances are rep-
resented by the scatters, each of which is obtained over 106 realizations of the corresponding
density matrices. It is observed from the figure that the values of the variance are rather small,
which are also decreasing as the dimension increases. At the same time, the average capacity
is increasing instead of decreasing as seen in figure 1. These observations seem to indicate that
the average capacity may represent the typical behavior of the capacity random variable (14)
well especially when the system dimensions are large.

3. Derivation of average capacity formulas

In this section, we provide detailed derivations of the claimed results in the previous section.
We first present a lemma in section 3.1 that relates the average capacity computation to aver-
ages over some induced ensembles. The resulting average capacity expressions of the Hilbert–
Schmidt ensemble in proposition 1 and the Bures-Hall ensemble in proposition 2 are derived
in section 3.2 and section 3.3, respectively. The limiting values of capacity in corollary 1 are
computed in section 3.4. For convenience, we also summarize the main contribution of this
work in table 1 below.

9
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Figure 2. Variance of capacity under HS and BH ensembles: numerical simulations.

Table 1. Main results.

Average capacity Exact Asymptotic

Under Hilbert–Schmidt ensemble Equation (19) π2

3 − 11
4

Under Bures-Hall ensemble Equation (32) π2

6 − 1

3.1. Average capacity relation

To compute the average capacity (16) is essentially to compute the average E[S2] as the second
moment E

[
S21
]
is known under the Hilbert–Schmidt ensemble (63), (64) and the Bures-Hall

ensemble (84) and (85). As shown in the following lemma, the averages of E[S2] can be con-
verted to these of the induced entropies

Tk =
m∑
i=1

xi ln
k xi, k= 1,2, . . . , (49)

over certain induced ensembles, whose density functions of an arbitrary eigenvalue are avail-
able.

Lemma 1. The averages of S2 defined in (12) over the Hilbert–Schmidt ensemble (5) and the
Bures-Hall ensemble (8) are related to the averages of T2 in (49) over the respective induced
ensembles (65) and (86) as

E[S2] =
1
d
E[T2] + 2ψ0(d+ 1)E[S1]−ψ2

0(d+ 1)−ψ1(d+ 1), (50)

10
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where

d=

{
mn, Hilbert–Schmidt ensemble
1
2m(2n−m− 1), Bures-Hall ensemble

(51)

Proof. The starting point of the proof is the relation [1, 5, 10, 11] between the
ensembles (5), (8) and the corresponding induced ones (65), (86)

f(λ)hd(r)dλdr= g(x)dx (52)

under the change of variables

λi =
xi
r
, i= 1, . . . ,m, (53)

where

hd(r) =
1

Γ(d)
e−rrd−1, r ∈ [0,∞), (54)

is the density of the trace

r=
m∑
i=1

xi (55)

with the parameter d given by (10) as obtained in [5, 11]. The relation (52) implies that r is
independent of λ, and is hence independent of Sk for each k. To exploit this fact, one rewrites
S2 by using the change of variables (53) as, see [5, 11],

S2 =
1
r
T2 + 2S1 lnr− ln2 r. (56)

Consequently, by multiplying with the density (54) of an appropriate choice of the parameter
d so as to utilize the relation (52), we have

E[S2] =
ˆ
λ

(
1
r
T2 + 2S1 lnr− ln2 r

)
f(λ)dλ

ˆ
r
hd+1(r)dr (57)

=
1
d
E[T2] +

2
d
E[r lnr]E[S1]−

1
d
E
[
r ln2 r

]
, (58)

where the expectation of S1 lnr factorizes due to the independence. The averages over the
density of trace (54) are easily computed, see for example [5, 11], as

E[r lnr] = dψ0(d+ 1) (59)

E
[
r ln2 r

]
= d

(
ψ2
0(d+ 1)+ψ1(d+ 1)

)
. (60)

This completes the proof of lemma 1.

3.2. Average capacity over Hilbert–Schmidt ensemble

We now prove proposition 1. To compute the average capacity over the Hilbert–Schmidt
ensemble

EHS[C] = EHS[S2]−EHS
[
S21
]
, (61)

we first note that its second term

11
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EHS
[
S21
]
= VHS[S1] +E2

HS[S1] , (62)

is known in the literature, where

EHS[S1] = ψ0(mn+ 1)−ψ0(n)−
m+ 1
2n

(63)

and

VHS[S1] =−ψ1 (mn+ 1)+
m+ n
mn+ 1

ψ1 (n)−
(m+ 1)(m+ 2n+ 1)

4n2(mn+ 1)
(64)

have been obtained in [1, 3] and [4, 5], respectively. By lemma 1, computing the first term
EHS[S2] in (61) boils down to computing EHS[T2] as the average EHS[S1] in (50) is avail-
able (63). To computeEHS[T2] requires an arbitrary eigenvalue density pHS(x) of the so-defined
induced4 Hilbert–Schmidt ensemble

gHS (x)∝
∏

1⩽i<j⩽m

(xi− xj)
2

m∏
i=1

xαi e
−xi , xi ∈ [0,∞), (65)

given by [5]

pHS(x) =
(m− 1)!

(m+α− 1)!
xαe−x

((
L(α+1)
m−1 (x)

)2
− L(α+1)

m−2 (x)L(α+1)
m (x)

)
, (66)

where we recall that the parameterα denotes the dimension difference (6). In (66), the function
L(α)k (x) is the Laguerre orthogonal polynomial of degree k,

L(α)k (x) =
k∑
i=0

(−1)i
(
α+ k
k− i

)
xi

i!
(67)

that satisfies the orthogonality relation [33, 34]ˆ ∞

0
xαe−xL(α)k (x)L(α)l (x)dx=

(α+ k)!
k!

δkl (68)

with δkl being the Kronecker delta function.
We now have

EHS[T2] = m
ˆ ∞

0
x ln2 x pHS(x)dx (69)

=Am−1,m−1 −Am−2,m, (70)

where As,t denotes the integral

As,t =
m!

(m+α− 1)!

ˆ ∞

0
xα+1e−x ln2 x L(α+1)

s (x)L(α+1)
t (x)dx. (71)

The above integral (71) can be evaluated by using the identityˆ ∞

0
xqe−x ln2 x L(a)s (x)L(b)t (x)dx

= (−1)s+t
min(s,t)∑
k=0

(
q− a
s− k

)(
q− b
t− k

)
Γ(q+ 1+ k)

k!

(
Ω2

0 +Ω1
)
, (72)

where we denote

4 This new ensemble is induced by the change of measures (52).

12
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Ωj = ψj(q+ 1+ k)+ψj(q− a+ 1)+ψj(q− b+ 1)

−ψj(q− a− s+ 1+ k)−ψj(q− b− t+ 1+ k). (73)

The identity (72) is obtained by taking twice derivatives with respect to q of an integral identity
of Schrödinger [35]

ˆ ∞

0
xqe−xL(a)s (x)L(b)t (x)dx= (−1)s+t

min(s,t)∑
k=0

(
q− a
s− k

)(
q− b
t− k

)
Γ(q+ 1+ k)

k!
, (74)

valid for ℜ(q)>−1, which is a generalization of the orthogonality relation (68).
With the specialization a= b= α+ 1 and q= α+ 1 in (72), after resolving the indeterm-

inacy in the limit ε→ 0 by using

Γ(−l+ ϵ) =
(−1)l

l!ϵ

(
1+ψ0(l+ 1)ϵ+ o

(
ϵ2
))

(75)

ψ0(−l+ ϵ) = − 1
ϵ

(
1−ψ0(l+ 1)ϵ+ o

(
ϵ2
))

(76)

ψ1(−l+ ϵ) =
1
ϵ2
(
1+ o

(
ϵ2
))
, (77)

the two integrals in (70) are evaluated into finite summations of the forms
n∑

k=1

kcψbj (k+ a), j= 0,1, (78)

and
m∑
k=1

(n− k)!
(m− k)!

1
kj
, j= 0,1,2, (79)

where a,b,c are non-negative integers. By using the relevant summation identities of the
type (78) listed in [7] and the type (79) in (A1), (A2), we obtain

Am−1,m−1 =
2m!m
(n− 1)!

m∑
k=1

(n− k)!
(m− k)!

1
k2

+mn
(
ψ2
0(n+ 1)+ψ1(n+ 1)

)
+ 2n(ψ0(n−m+ 1)−ψ0(n+ 1)) (80)

and

Am−2,m =
(
n2 + n−m2 +m

)
ψ0(n−m+ 1)− n(n+ 1)ψ0(n+ 1)

+
1
2
m(2n+ 3m− 1). (81)

Finally, substituting the results (63), (64), (50), (51) and (80), (81) in (61) completes the proof
of proposition 1.

3.3. Average capacity over Bures-Hall ensemble

Here, we prove proposition 2. The second term

EBH
[
S21
]
= VBH[S1] +E2

BH[S1] (82)

of the average capacity over the Bures-Hall ensemble

13
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EBH[C] = EBH[S2]−EBH
[
S21
]

(83)

has been recently computed [9–11] as shown in (84) and (85) below.

EBH[S1] = ψ0

(
mn− m2

2
+ 1

)
−ψ0

(
n+

1
2

)
(84)

VBH[S1] =−ψ1

(
mn− m2

2
+ 1

)
+

2n(2n+m)−m2 + 1
2n(2mn−m2 + 2)

ψ1

(
n+

1
2

)
. (85)

By lemma 1, now the task is to calculate the averageEBH[T2] over the ensemble gBH (x) induced
from the change of measures (52), which is given by [9–11]

gBH (x)∝
∏

1⩽i<j⩽m

(xi− xj)
2

xi+ xj

m∏
i=1

xβi e
−xi , xi ∈ [0,∞). (86)

It was recently discovered in [36] that the correlation functions of the induced ensemble (86)
can be written in terms of these of the Cauchy-Laguerre biorthogonal ensemble [37]. In par-
ticular, the needed density of an arbitrary eigenvalue is [36]

pBH(x) =
1
2m

(K01(x,x)+K10(x,x)) , (87)

where the kernels K01(x,y) and K10(x,y) admit the integral representations [37]

K01(x,y) = x2β+1
ˆ 1

0
t2β+1Hβ(ty)Gβ+1(tx)dt (88)

K10(x,y) = y2β+1
ˆ 1

0
t2β+1Hβ+1(tx)Gβ(ty)dt. (89)

Here, the functions

Hq(x) = G1,1
2,3

(
−m− 2β− 1;m
0;−q,−2β− 1

∣∣∣x) (90)

Gq(x) = G2,1
2,3

(
−m− 2β− 1;m
0,−q;−2β− 1

∣∣∣x) (91)

are the Meijer G-function, which in general is defined by the contour integral [38]

Gm,n
p,q

(
a1, . . . ,an;an+1, . . . ,ap
b1, . . . ,bm;bm+1, . . . ,bq

∣∣∣x)

=
1
2πı

ˆ
L

∏m
j=1Γ(bj+ s)

∏n
j=1Γ(1− aj− s)x−s∏p

j=n+1Γ(aj+ s)
∏q

j=m+1Γ(1− bj− s)
ds, (92)

with the poles of Γ(1− aj− s) being separated by the contour L from the poles of Γ(bj+ s).
By using the fact that the Meijer G-function in (90) can be written as a terminating hypergeo-
metric function [36, 37]

G1,1
2,3

(
−m− 2β− 1;m
0;−q,−2β− 1

∣∣∣x) =
Γ(m+ 2β+ 2)

Γ(m)Γ(q+ 1)Γ(2β+ 2) 2F2

(
m+ 2β+ 2,1−m
q+ 1,2β+ 2

∣∣∣x)
=

m−1∑
k=0

Γ(m+ 2β+ 2+ k)(−x)k

Γ(q+ 1+ k)Γ(2β+ 2+ k)Γ(m− k)k!
(93)

14
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and the following integral of the Meijer G-function [38]
ˆ 1

0
xa−1Gm,n

p,q

(
a1, . . . ,an;an+1, . . . ,ap
b1, . . . ,bm;bm+1, . . . ,bq

∣∣∣ηx)dx

= Gm,n+1
p+1,q+1

(
1− a,a1, . . . ,an;an+1, . . . ,ap
b1, . . . ,bm;bm+1, . . . ,bq,−a

∣∣∣η) , (94)

the integrals over t of the kernels (88) and (89) can be evaluated first. This leads to

K01(x,y) =
m−1∑
k=0

Γ(m+ 2β+ 2+ k)(−y)k

Γ(β+ 1+ k)Γ(2β+ 2+ k)Γ(m− k)k!
Fβ+1(x) (95)

K10(x,y) =
m−1∑
k=0

Γ(m+ 2β+ 2+ k)(−x)k

Γ(β+ 2+ k)Γ(2β+ 2+ k)Γ(m− k)k!
Fβ(y), (96)

where we denote

Fq(x) = G2,2
3,4

(
−k,−m;m+ 2β+ 1

2β+ 1,2β+ 1− q;0,−k− 1

∣∣∣x) . (97)

With the above results, we now have

EBH[T2] = m
ˆ ∞

0
x ln2 x pBH(x)dx (98)

=
1
2

ˆ ∞

0
x ln2 xK01(x,x)dx+

1
2

ˆ ∞

0
x ln2 xK10(x,x)dx (99)

=
1
2

(
d
dγ2

ˆ ∞

0
xγK01(x,x)dx

)∣∣∣
γ=1

+
1
2

(
d
dγ2

ˆ ∞

0
xγK10(x,x)dx

)∣∣∣
γ=1

, (100)

where, upon substituting (95) and (96) in (100), the calculation proceeds by first invoking the
Mellin transform of Meijer G-function [38]ˆ ∞

0
xs−1Gm,n

p,q

(
a1, . . . ,an;an+1, . . . ,ap
b1, . . . ,bm;bm+1, . . . ,bq

∣∣∣ηx)dx

=
η−s

∏m
j=1Γ(bj+ s)

∏n
j=1Γ(1− aj− s)∏p

j=n+1Γ(aj+ s)
∏q

j=m+1Γ(1− bj− s)
(101)

before taking the required derivatives and setting γ= 1. We insert the resulting expression
into (50) and (83), the average capacity is obtained as

EBH[C] = 2
m∑
k=1

(
ψ0(k)+ψ0(2β+ k)+ψ0(β+ k)

m+ 2β+ k
− ψ0(k)
β+ k

− ψ0(k)
2β+ k

)
− (ψ0(β+ 1)−ψ0(β+m+ 1))2 − (ψ0(2β+ 1)−ψ0(m+ 2β+ 1))2

+ 2(ψ0(m+β+ 1)+ψ0(m+ 2β+ 1))(ψ0(m+ 2β+ 1)−ψ0(2m+ 2β+ 1))

− 2(ψ0(β+ 1)+ψ0(2β+ 1)−ψ0(m+β+ 1)− 2ψ0(m+ 2β+ 1)+ψ0(2m+ 2β+ 1))

×ψ0(m+ 1)+ψ1(β+ 1)+ψ1(2β+ 1)−ψ1(m+ 2β+ 1)−ψ1(m+β+ 1)

× 5m2 + 10mβ+ 5m+ 4β2 + 4β+ 2
(2m+ 2β+ 1)(m2 + 2mβ+m+ 2)

+
2β2 (ψ0(m+β+ 1)−ψ0(β+ 1))

m(m+ 2β+ 1)
. (102)
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In obtaining the above result (102), we have also used some summation identities of the
types (78) and (79) listed in appendix as well as in [7] after resolving the indeterminacy by
using (75)–(77).

The remaining task is to represent each of the five summations in (102),
m∑
k=1

ψ0(k)
m+ 2β+ k

(103)

m∑
k=1

ψ0(2β+ k)
m+ 2β+ k

(104)

m∑
k=1

ψ0(β+ k)
m+ 2β+ k

(105)

m∑
k=1

ψ0(k)
β+ k

(106)

m∑
k=1

ψ0(k)
2β+ k

(107)

into the summation Ψa,b in (23) as reproduced below

Ψa,b =
2(m+ a)!
(m+ b)!

m+a∑
k=1

(m+ b− k)!
(m+ a− k)!

1
k2
. (108)

Namely, we will show that the sums (103)–(107), despite of no closed-form evaluations, can
all be rewritten in the same form (108). Firstly, the sum (103) is processed by using (A5) before
applying (A3) that results in

m∑
k=1

ψ0(k)
m+ 2β+ k

=−
m∑
k=1

ψ0(m+ 2β+ k)
k

+CF (109)

=− m!
(2m+ 2β)!

m∑
k=1

(2m+ 2β− k)!
(m− k)!

1
k2

+CF (110)

=−1
2
Ψ0,m+2β +CF. (111)

As the same in (28), the closed-form terms are denoted by the shorthand notation CF, which
in general is different in each appearance. In the same manner, the sums (106) and (107) are
rewritten respectively as

m∑
k=1

ψ0(k)
β+ k

=−1
2
Ψ0,β +CF (112)

and
m∑
k=1

ψ0(k)
2β+ k

=−1
2
Ψ0,2β +CF. (113)

Additional ingredients in processing the sum (104) are the fact, cf (24),

ψ0(l+ n) = ψ0(l)+
n−1∑
k=0

1
l+ k

(114)

and the identity (A4), where the manipulation proceeds as
m∑
k=1

ψ0(2β+ k)
m+ 2β+ k

= −
m∑
k=1

ψ0(m+ 2β+ k)
2β+ k

+CF (115)
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= −
m∑
k=1

ψ0(2β+ k)+
∑m

i=1
1

2β+k+i−1

2β+ k
+CF (116)

= −
m∑
k=1

ψ0(2β+ k)
k

+
m∑
k=1

ψ0(m+ 2β+ k)
k

+CF (117)

= − 1
2
Ψ0,2β +

1
2
Ψ0,m+2β +CF. (118)

Similarly, for the remaining sum (105), we have
m∑
k=1

ψ0(β+ k)
m+ 2β+ k

= −
m∑
k=1

ψ0(m+ 2β+ k)
β+ k

+CF (119)

= −
m∑
k=1

ψ0(2β+ k)
β+ k

+CF (120)

=
m∑
k=1

ψ0(β+ k)
2β+ k

+CF (121)

=

m+2β∑
k=1

ψ0(k−β)

k
−

2β∑
k=1

ψ0(k−β)

k
+CF (122)

=
(m+ 2β)!
(m+β)!

m+2β∑
k=1

(m+β− k)!
(m+ 2β− k)!

1
k2

+CF (123)

=
1
2
Ψ2β,β +CF, (124)

where we used the closed-form identity (A6) in arriving at (123). Finally, inserting (111)–
(113), (118), and (124) into the capacity expression (102) leads to substantial cancellations,
where the remaining terms are given by (32). This completes the proof of proposition 2.

3.4. Asymptotic capacity

Computing the limiting capacity (39) and (40) in corollary 1 is a rather straightforward task,
which requires computing the limits in the regime (38) of the respective exact capacity (19)
and (32). One first computes the limit of the summation (23) as

Ψa,b
(38)−→ 2

m∑
k=1

1
k2

= 2ψ1(1) =
π2

3
, (125)

which is valid for any finite a and b. We also need the limiting behavior of polygamma func-
tions [32]

ψ0(x) = lnx− 1
2x

−
∞∑
l=1

B2l

2lx2l
, x→∞ (126)

ψ1(x) =
1+ 2x
2x2

+
∞∑
l=1

B2l

x2l+1 , x→∞, (127)

where the constant Bk is the kth Bernoulli number [32].
For the exact capacity under the Hilbert–Schmidt ensemble (19), we now have in the

limit (38),

a0 = 1+ o

(
1
m

)
(128)

a1 = o

(
1
m

)
(129)

a2 = − 11
4

+ o

(
1
m

)
(130)
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and

ψ1(m+α+ 1) = o

(
1
m

)
(131)

ψ0(m+α+ 1)−ψ0(α+ 1) =−ψ0(α+ 1)+ o(lnm) , (132)

where only the needed orders of expansions have been displayed. The above results lead to

EHS[C] =
π2

3
+

(
1+ o

(
1
m

))
o

(
1
m

)
+ o

(
1
m

)
(133)

× (−ψ0(α+ 1)+ o(lnm))− 4
11

+ o

(
1
m

)
, (134)

where by using the fact that

lim
m→∞

lnm
m

= 0 (135)

one arrives at the asymptotic result (39),

EHS[C]
(38)−→ π2

3
− 4

11
. (136)

Similarly, for the result under the Bures-Hall ensemble (32), we obtain in the limit (38),

b0 = 2+ o

(
1
m

)
(137)

b1 = o

(
1
m

)
(138)

and

ψ1(m+β+ 1) = o

(
1
m

)
(139)

ψ0(m+β+ 1)−ψ0(β+ 1) =−ψ0(β+ 1)+ o(lnm) . (140)

Consequently, we have

EBH[C] =
π2

3
+
π2

3
+

(
2+ o

(
1
m

))
o

(
1
m

)
+ o

(
1
m

)
(141)

× (−ψ0(α+ 1)+ o(lnm))− π2

2
− 1, (142)

which leads to the claimed result (40),

EBH[C]
(38)−→ π2

6
− 1. (143)

This completes the proof of corollary 1.

4. Conclusion and outlook

As an important step towards understanding the statistical distribution of entanglement capa-
city, we derived the exact and asymptotic average capacity formulas under the Hilbert–Schmidt
and Bures-Hall ensembles in this work. Key ingredients in obtaining the results are the ortho-
gonal polynomial systems of the underlying random matrices and the machinery to process
the resulting summations of special functions. Future works include computing higher-order

18



J. Phys. A: Math. Theor. 56 (2023) 015302 L Wei

statistics such as the variance of entanglement capacity under different random density models.
It will be also of interest to discover other variants of capacity, besides the annealed capacity,
that are described by the same limiting behavior, satisfy the monotonicity property from separ-
able to maximally-entangled states, or/and lead to closed-form formulas of capacity statistics.

Data availability statement

The data generated and/or analysed during the current study are not publicly available for
legal/ethical reasons but are available from the corresponding author on reasonable request.

Acknowledgment

The author wishes to thankYouyi Huang andKazumi Okuyama for correspondence. This work
is supported in part by the U.S. National Science Foundation (#2150486).

Appendix. List of summation identities

In this appendix, we list the summation identities that have been utilized in this work. Among
other references, the identities can be found in [5, 7, 8, 11, 14] except for the last one (A6),
which was derived in [39, (B.17)]. Note that the identities of summations of the form (78)
are excluded here, which can be found, for example, in the appendices of [7]. For the listed
identities, it is sufficient for our purposes to assume that the parameters a,b are non-negative
real numbers and β is a positive half integer

m∑
k=1

(n− k)!
(m− k)!

=
n!

(m− 1)!
1

n−m+ 1
(A1)

m∑
k=1

(n− k)!
(m− k)!

1
k
=

n!
m!

(ψ0 (n+ 1)−ψ0 (n−m+ 1)) (A2)

m∑
k=1

(n− k)!
(m− k)!

1
k2

=
n!
m!

m∑
k=1

ψ0(k+ n−m)
k

+
n!
m!

(
1
2

(
ψ1(n−m+ 1)−ψ1(n+ 1)

+ψ2
0(n−m+ 1)−ψ2

0(n+ 1)
)
+ψ0(n−m)(ψ0(n+ 1)−ψ0(m+ 1)

−ψ0(n−m+ 1)+ψ0(1))

)
(A3)

m∑
k=1

ψ0(k+ a)
k+ a

=
1
2

(
ψ1(a+m+ 1)−ψ1(a+ 1)+ψ2

0(a+m+ 1)−ψ2
0(a+ 1)

)
(A4)
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m∑
k=1

ψ0(k+ a)
k+ b

= −
m∑
k=1

ψ0(k+ b)
k+ a

+ψ0(a+m+ 1)ψ0(b+m+ 1)−ψ0(a+ 1)ψ0(b+ 1)

+
1

a− b
(ψ0(a+m+ 1)−ψ0(b+m+ 1)−ψ0(a+ 1)+ψ0(b+ 1)) (A5)

2β∑
k=1

ψ0(k−β)

k
=

1
2
ψ1(β+ 1)+ψ0(β+ 1)(ψ0(2β+ 1)−ψ0(1))−

3
2
ψ1(1). (A6)
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[19] Osipov V, Sommers H-J and Życzkowski K 2010 Random Bures mixed states and the distribution

of their purity J. Phys. A: Math. Theor. 43 055302
[20] Borot G and Nadal C 2012 Purity distribution for generalized random Bures mixed states J. Phys.

A: Math. Theor. 45 075209
[21] Li S-H and Wei L 2021 Moments of quantum purity and biorthogonal polynomial recurrence J.

Phys. A: Math. Theor. 54 445204
[22] Malacarne L C, Mendes R S and Lenzi E K 2002 Average entropy of a subsystem from its average

Tsallis entropy Phys. Rev. E 65 046131

20

https://orcid.org/0000-0002-8065-0956
https://orcid.org/0000-0002-8065-0956
https://doi.org/10.1103/PhysRevLett.71.1291
https://doi.org/10.1103/PhysRevLett.71.1291
https://doi.org/10.1103/PhysRevLett.72.1148
https://doi.org/10.1103/PhysRevLett.72.1148
https://doi.org/10.1103/PhysRevE.52.5653
https://doi.org/10.1103/PhysRevE.52.5653
https://doi.org/10.1103/PhysRevE.93.052106
https://doi.org/10.1103/PhysRevE.93.052106
https://doi.org/10.1103/PhysRevE.96.022106
https://doi.org/10.1103/PhysRevE.96.022106
https://doi.org/10.1103/PhysRevD.100.105010
https://doi.org/10.1103/PhysRevD.100.105010
https://doi.org/10.1088/1751-8121/ab63a7
https://doi.org/10.1088/1751-8121/ab63a7
https://doi.org/10.1088/1751-8121/ac367c
https://doi.org/10.1088/1751-8121/ac367c
https://doi.org/10.1088/1751-8121/ab2675
https://doi.org/10.1088/1751-8121/ab2675
https://doi.org/10.1088/1751-8121/ab8d07
https://doi.org/10.1088/1751-8121/ab8d07
https://doi.org/10.1103/PhysRevE.102.062128
https://doi.org/10.1103/PhysRevE.102.062128
https://doi.org/10.1103/PhysRevB.103.L241118
https://doi.org/10.1103/PhysRevB.103.L241118
https://doi.org/10.1103/PRXQuantum.3.030201
https://doi.org/10.1103/PRXQuantum.3.030201
https://doi.org/10.1088/1751-8121/ac4e20
https://doi.org/10.1088/1751-8121/ac4e20
https://arxiv.org/abs/2211.16709
https://doi.org/10.1063/1.523763
https://doi.org/10.1063/1.523763
https://doi.org/10.1088/1751-8113/40/11/014
https://doi.org/10.1088/1751-8113/40/11/014
https://doi.org/10.1088/0305-4470/37/35/004
https://doi.org/10.1088/0305-4470/37/35/004
https://doi.org/10.1088/1751-8113/43/5/055302
https://doi.org/10.1088/1751-8113/43/5/055302
https://doi.org/10.1088/1751-8113/45/7/075209
https://doi.org/10.1088/1751-8113/45/7/075209
https://doi.org/10.1088/1751-8121/ac2a53
https://doi.org/10.1088/1751-8121/ac2a53
https://doi.org/10.1103/PhysRevE.65.046131
https://doi.org/10.1103/PhysRevE.65.046131


J. Phys. A: Math. Theor. 56 (2023) 015302 L Wei

[23] Wei L 2019 On the exact variance of Tsallis entanglement entropy in a random pure state Entropy
21 539

[24] Yao H and Qi X-L 2010 Entanglement entropy and entanglement spectrum of the Kitaev model
Phys. Rev. Lett. 105 080501

[25] Nandy P 2021 Capacity of entanglement in local operators J. High Energy Phys. JHEP07(2021)019
[26] de Boer J, Järvelä J and Keski-Vakkuri E 2019 Aspects of capacity of entanglement Phys. Rev. D

99 066012
[27] Okuyama K 2021 Capacity of entanglement in random pure state Phys. Lett. B 820 136600
[28] Bhattacharjee B, Nandy P and Pathak T 2021 Eigenstate capacity and Page curve in fermionic

Gaussian states Phys. Rev. B 104 214306
[29] Okuyama K 2021 Private communication
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