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1. Introduction and Quantum Interpolating Ensemble

Quantum information theory is based on probabilistic interpretations of quantum states to explain var-
ious quantum effects. The density matrix formalism introduced by von Neumann [1] provides a natural
framework to describe density matrices of quantum states. The density matrix is a fundamental object
that encodes all the information of a quantum state. Among the different measures of density matrices,
the most well-known and physically relevant ones [2] are the Hilbert-Schmidt ensemble and the Bures-Hall
ensemble.

The Hilbert-Schmidt measure is formulated as follows. Consider a bipartite quantum system consisting
of two subsystems A and B in the Hilbert space H,, and H,, (with m < n), respectively. A random pure
state [1), defined as a linear combination of the complete basis of the subsystems, belongs to the composite
Hilbert space |[¢)) € Hp, ® Hy,. The reduced density matrix is obtained by partial tracing over the larger
system of the full density matrix p = |¢) (¢| as pa = Trp p. The resulting density of eigenvalues of p4 is
the Hilbert-Schmidt ensemble [2]

fasN) o (1->"x ) [ =22 (1.1)
i=1 i=1

1<i<j<m
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where §(-) is the Dirac delta function. The joint density (1.1) is also referred to as the Hilbert-Schmidt
(random matrix) ensemble, which is the eigenvalue density of a normalized Wishart matrix [3, 4]

GG
Tr (GGT) ’ (12

with G being an m x n complex Gaussian matrix. For the Bures-Hall ensemble, its random pure state |p)
is given by a superposition of the random pure state |¢) of the Hilbert-Schmidt measure as |p)  |[¢) +
(U® I,) |), where U is an m x m unitary matrix with the measure proportional to det (I,,, + U)2("_m).
The resulting density of eigenvalues of the reduced density matrix pa = Trp |p) (p| is the (generalized)

Bures-Hall ensemble [5, 6]
i ()\1 — )\j)Q " n—m—3
i=1 1<i<j<m =1

In random matrix theory, the Bures-Hall ensemble (1.3) is understood as the joint eigenvalue density of
the normalized product of the matrix I, + U with a complex Gaussian matrix G as [3,4]

(I, + UGG (I, + U
Tr ((Im L U)GGT (I, + UT)) '

(1.4)

The Hilbert-Schmidt ensemble (1.1) and the Bures-Hall ensemble (1.3) are supported in the probability
simplex

A:{Og/\m<...</\1§1,z/\i:1}, (1.5)

=1

which reflects the constraint Tr p4 = 1 of density matrices. Note also that the normalization constants
in the densities (1.1) and (1.3) are omitted.

The study of the Hilbert-Schmidt measure has received substantial attention, see, for example, the
results in [3, 7-25]. These results include information-theoretic studies of different entanglement en-
tropies [3,7-22] as well as applications to quantum information processing [23-25]. The relatively less-
studied Bures-Hall ensemble [4-6,26—-30] has gained renewed interest very recently [31-37]. This is partially
due to the recent breakthrough in probability theory in understanding various aspects of the Bures-Hall
ensemble [38-42]. Despite the distinct behavior of Hilbert-Schmidt ensemble and Bures-Hall ensemble, an
interesting question is whether one could propose an ensemble that interpolates between these two. This
question has also been motivated by the observation in [34] that the Bures-Hall ensemble tends to be
more conservative than the Hilbert-Schmidt ensemble in estimating entanglement entropies. Namely, the
Bures-Hall ensemble leads towards an estimate of less entangled states than the Hilbert-Schmidt ensem-
ble does. In this context, one tries to control the appropriate amount of entanglement as a resource for
quantum information processing by constructing new measures that interpolates between the two major
ensembles.
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In this work, we consider the following ensemble®, also supported in (1.5),

- )\i_Aj . a
f(A)=é6<1—§ Ai) [] /\Hr)\j()\f—)\f)”/\i, (1.6)
i=1

1<i<j<m i=1

termed the quantum interpolating ensemble, where 6 is assumed to be a positive real parameter and
a > —1. Clearly, the proposed ensemble (1.6) reduces to the Hilbert-Schmidt ensemble and the Bures-
Hall ensemble as special cases,

f(}\):{fBH(A) fOI‘Q:l7 a:n,mié.

fus(A) for0=2 a=n—m (1.7)

Namely, as 6 varies from # = 1 to § = 2, the quantum interpolating ensemble interpolates between the
Bures-Hall ensemble and the Hilbert-Schmidt ensemble. Due to Schur’s Pfaffian identity [43, 44]

11 Xi = A :Pf()‘i_)‘]) 7 (1.8)
Ai + A Ai A ) 1<ii<om

1<i<j<2m

the proposed ensemble (1.6) is described by a Pfaffian point process for any 6 > 0 except for the special
value § = 2 when the ensemble becomes a determinantal point process. Therefore, in the interested
interval 6 € [1,2] the new ensemble (1.6) corresponds to the transition from a Pfaffian point process
to a determinantal point process. It is also worth mentioning that besides the half integer values of a
for the Bures-Hall ensemble and the integer values of a for the Hilbert-Schmidt ensemble, the proposed
ensemble is valid for any a > —1. Therefore, in addition to 0, the parameter a can be also considered as
a deformation parameter that defines the interpolating ensemble.

With an interpolating ensemble being identified, a natural question is what will be the statistical
behavior of entanglement entropies over such an ensemble? Will the values of entropies also interpolate
between those of the Hilbert-Schmidt ensemble and the Bures-Hall ensemble? Before addressing these
information theoretic questions in Section 3, we first study, in a general form, key mathematical aspects
of the underlying #-deformed two-matrix model and the associated bi-orthogonal system, in Section 2.
The study includes the discovery of new structures of the resulting bi-moment matrix for any 6 that
give rise to recurrence relations of the bi-orthogonal polynomials for integer 6, generalizing a few known
results in the literature.

2. The 0-deformed Cauchy-Laguerre Two-matrix Model and Bi-orthogonal Systems

Instead of directly working with the interpolating ensemble of a Pfaffian point process, we will proceed
indirectly via the underlying #-deformed Cauchy-Laguerre two-matrix ensemble. The latter is more con-
veniently represented by a determinantal point process with the corresponding correlation functions and
bi-orthogonal polynomials given explicitly. In particular, we will present new results on the 6-deformed
bi-orthogonal system in this section, both for general 6§ > 0 and the specific case of 8 € N, which fill some
gaps in our understanding of the system.

20n the level of matrix models, a related ensemble has been discussed in [4, Eq. (24)].
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2.1. General 8 > 0 case

We first introduce the two-matrix model, the joint eigenvalue density of which is expressed in terms of
two sets of real, positive eigenvalues {x1,...,z,} and {y1,...,y,} by the formula [45]

p(xla"wxn;yla"'vyn)

ISR = SR S | (P (e — ;) (yr — y;5)
= )2z, [Ta5e [T vke™ FIsesy ’ : [T (af—29) (W —))
j=1 k=1

[T} eei (25 + k) \<iZhen
1 - - 1
= de= be=v  det det KO)  det i 2.1
(n2Z, H €Te H Y€ j,k:le,...,n <mj T yk) 1§J¢Sn (37] ) 1§f§n (llj ) ) (2.1)
Jj=1 k=1 0<k<n-—1 0<k<n—1

for R(#) > 0 and all R(a,b) > —1. The specialization
b=a+1 (2.2)

of the above density leads to the desired two-matrix model of the unconstrained interpolating ensem-
ble (3.5). It turns out that the general case R(a,b) > —1 can be treated as conveniently as this special
case b = a + 1, we will therefore consider the former case here in Section 2. The normalization of the
joint density function is [p. <RI d"zd™yp(x;y) = 1 through Z,(a,b;0). Henceforth, we will use the

abbreviated and commonly used notation

b+1
ﬂ:%:oﬂrl. (2.3)
Associated to the 0-deformed Cauchy-Laguerre two-matrix model is the following bi-variate density
function
xa/ybe—x—y
w(x,y) = ——, z,y € (0,00). 2.4
(z,y) Tty y € [0,00) (2.4)

One can define an inner product over polynomial spaces Up,>oll,[z] using the weight (2.4). Let f,g €
Un>oIl, [x] then

—z—y

e
Tty

(f.g) = / dedy’—— 2y () g(y"). (2.5)

2

1
The #-deformed bi-orthogonal systems with respect to the above weight function are two sequences of
normalized bi-orthogonal polynomials { P, (x), Qn(y)}52, satisfying the orthogonality relation

<Pm7 Qn> = 6m,n- (26)
The monic system {Pn(x), On(y) 152, is related via

Pn(z), (2.7)

L

Qn(y) = \/EQ'IL

), (2.8)

where the normalization constant is
(n!))?I'(n + B)?
2n+ BT 2n+p+1)

b == (Py, Qn) =071 - L(a+1+6n)(b+ 1+ 60n). (2.9)
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In addition, it will be seen that simpler forms for our results can be obtained if expressed in terms of a
third system, the hybrid polynomials {p,(x), gn(y)}5%,

Tla+1+6n)T'(n+p)
=(=1)"n! 2.1
Pule) = (1) o), (210)
L(b+14+6n)(n+p).
W) = (—1)n! (). 2.11
Qn(y) = (=1)"n T@n+ B) qn(y) (2.11)
The resulting finite bi-moment matrix or Gram matrix is defined by
L= ()jler Liw=(,4"), jk €20 (212)

The bi-moment elements have evaluation, by Eq. (2.4) Lemma 2.3 of [45],
Fa+1+65)T(+1+06k)
a+b+1+00+k)

It is a basic result that the normalization of the joint density function can be expressed as the determinant
of the bi-moment matrix, see Lemma 2.1, Eq. (2.1) of [45]
Zn(a,b;0) = det (Ljg)- (2.14)

0<j<n—1
0<k<n—1

I x(a,b;0) =

= I ;(b,a;0), j,k=01,.... (2.13)

This can also be evaluated, using a variety of methods such as the Cauchy double-alternant formula, and

is given by
n—1 j+ﬂ*1 n—1 n—1
Zn(a,b;0) =60~ " ! Fa+1+6 T(b+ 1+ 0k). 2.15
(a,5:6) [T IIFJ+n+ﬂ_1II s 1-+6j) T N )

In addition to the determinantal formula (2.14), it becomes clear that every aspect of the bi-orthogonal
system admits determinantal representations involving bordered bi-moment matrices. Our first example
is also a known result, see Remark 2.7 of [45],

Io’o Io,nfl 1

1
Pala)=-det| 111 (216)
! In,O In,n 1T
Ioo ... Ipn
1 : :
Qu(y) = -~ det S . (2.17)
n In 1,0 - Infl,n
1 y"

Using the Cauchy double-alternant formula, one can compute the explicit expansion of the hybrid poly-
nomials in the monomial basis, see Proposition 2.6 of [45],

2)! T(n+1+p3)
Pn(z;a,b;0) = 2ll(n—l)'F(l+5)F(a+1+9l)’

(2.18)

- y)! T(n+1+5)
In(y; 0, b;6) = ;l'n DT+ AT 1+ay ~ Prlyibaid). (2.19)
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Now denote the column vectors of monomials = (2*)>0, ¥y = (y*)r>0" and the vectors of normalized
bi-orthogonal polynomials P = (Py(2))k>0, Q@ = (Qk(¥))k>0. These basis vectors are related by lower
triangular matrices Sp, Sg

P=Spz, Q=Squ, (2.20)

which have explicit entries as implied by (2.18), (2.19). From (2.20) we have the L-U decomposition of
the bi-moment matrix

1=5;! (s;)T = (8hsp) . (2.21)

Thinking of the action of a multiplication operator on the normalized polynomial basis, it is clear
that it can be written generally as

P = XP, yQT =QTY 7T, (2.22)

for some lower Hessenberg multiplication matrices X, Y . Taking the bi-moment matrix as a semi-infinite
matrix I := (I ) k>0 and defining the shift matrix A := (§,;11 %) x>0 similarly we can relate some of
the notions we have already introduced. Firstly, we note that the monomial bases are the right and left
eigenvectors of the shift matrix and its transpose

Ax = zx, yT AT = yyt. (2.23)
Therefore, the multiplication matrices X ,Y admit the L-U decomposition
X =SpAS;', Y =S8pAS," (2.24)
We now provide explicit evaluations of the multiplication matrices X,Y for a generic 6.

Proposition 2.1. Let ®(a,b) > —1 and R(0) > 0. Forn > 0, 0 < m < n+ 1, the lower Hessenberg
matriz X, in the monic basis, has non-zero elements

IFa+14+6n)'(n+ Br2m+1+ B)
T(a+146m)I'(m+ B)T'(2n+ B)

n - n r+1 T(n+r+B8)T(a+1+60(r+1))
X ;1(_1) (T+ﬁ><r> (r+1m) C(m+2+7r+pB)(a+1+0r) ) (2.25)

Xnm(a,b) = (—-1)"

T

and the lower Hessenberg matriz Y has elements given by Yy, 1 (a,b) = X, m(b,a). Note that X, 41 =1
and X,m =0 for any m >n+ 1.

Proof. Writing out the components of (2.22) and by using orthogonality, one has

e Y
hon Xm = dz dy——22 0P, (22)0,, (v?). 2.26
= [, et P )2 ) (2.26)

2
T

bWhether these vectors are finite or semi-infinite depends on the context.
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We seek to evaluate this using the bordered determinant (see Remark 2.7 of [45]) for Q,, first and then
expand P,, afterwards. Thus, we find the right-hand-side of (2.26) is given by

1o,

1 :
L et : , (2.27)
Zm .. Im—l,l

.. [ du(z, y) 2P (2f)y?

1=0,...,m

where du(x,y) = w(z,y) dx dy. The relevant integral has the evaluation

/ dp(z, y)z’ P (a)y® = > (-7 Ij1s (2.28)

(n) I(a+1+60n)'(n+B)T(n+r+pB)
r=0

r) T(a+1+0r)C(r+ B)(2n+p6)

Expanding the determinant along the last row and using the fact that the above r-sum is independent of
the column index [ except for the last factor, we now require the evaluation of the determinant

Io;
1 :
—— det ~ . (2.29)
Zim R S R
N P 1=0,...,m

This determinant has the same structure as the standard bi-moment determinant except the last row is
out of sequence with the first m rows. Therefore, it is evaluated as

m

Hr(b+1+as)ﬁ T(a+ 14 60t)(a+1+6(r +1))det

e E— , (2.30)
s=0 t=0 <Ak + Bl)k,z—o,...,m

where A = a—i—%—i—@k‘,k =0,...m—1, A, = a—i—%—i—@(r—i—l) and B, =b+ % +01,1=0,...,m. We thus
arrive at a standard Cauchy double alternant form, which can be computed using

m—1
I (Ax—A4) =020+ 2—m), T 1, (2.31)
0<k<i<m =1
m
II Bx— By =02, (2.32)
0<k<I<m =1
i c(r+m+ 148 (m+1—2+ )
A+ By) = om0 . 2.33
,HO( s+ B) (r+B)! E (1—2+0) (233)
Lastly, using the normalization (2.15) we deduce (2.25) after some simplification. |

This concludes our discussion of the Cauchy-Laguerre bi-orthogonal system for generic values of 6.
We now move on to the specialization of positive integer valued 6, where the recurrence relations can be
explicitly deduced.
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2.2. Integer 0 case

Our main task here is to elucidate some structures that apply to the Cauchy-Laguerre bi-orthogonal
system when one generalizes from 6 = 1 to arbitrary positive integers. Such structures are not expected
to hold in the generic case R(0) > 0 but are useful in many applications including the considered one
in quantum information theory. We give a proof of finite order recurrence relations for the general bi-
orthogonal system {pn, ¢n}o2, for all positive integers § € N with respect to the general weight function
(2.4). In addition, we will provide explicit examples for 6 = 1, 2.

The essence of our proof is a generalization of the approach employed in [39] from the rank one shift
condition to a rank-f condition. This first result is an identity that applies to the bi-moment matrix I,
and its corresponding consequences for the multiplication matrices X,Y .

Lemma 2.1. Let ®(a,b) > —1 and 0 € N. Furthermore, define the semi-infinite column vectors ag =
(T(a+6—s40k))k>0, Bs = T'(b+1+ s+ 0k))r>o and 75 = Spas, s = SoBs, s € Ng. The
multiplication matrices satisfy the following rank-0 decomposition
6—1
X —e™YT =) (-1)*mn!. (2.34)
s=0

Proof. A key observation on the bi-moment evaluation (2.13) is that = + y divides 2% — e™?y? without

remainder when 6 € N and therefore
0—1
Iiprg— €T = (~1)°T(a—s+0(k+1)T(b+ 1+ s+ 6l). (2.35)

s=0
Employing semi-infinite matrices I := (It ;)k,>0 and the shift matrix A := (dx41,1)%,1>0, this is written
as the rank-0 decomposition

0—1
AT — ™ TIAT =) " (—1)*a.Bl. (2.36)

s=0
Upon premultiplying (2.36) by Sp and postmultiplying by Sg , and recalling the L-U decomposition of
the bi-moment matrix (2.21) as well as the multiplication matrices X,Y (2.24), we deduce (2.34). O

In order to proceed further towards the recurrence relations, it is necessary to construct rank-6 an-
nihilators, along the lines that was done in [39] for 8 = 1, for the right-hand side of (2.34). This can be
achieved recursively in 6 steps, however we show the explicit details for § = 1,2 only.

Theorem 2.1. For R(a,b) > —1 and 0 = 1, the hybrid polynomials py(x), §n(x) satisfy the third order
recurrence relations

T (@n1Pn+1(T) + @n,0Pn (7)) = Tn2Pnt2(T) + 10 1Pt 1(2) + 70,000 (T) + 70 —1Pn—1(2), (2.37)
and

Y (n,1Gn+1(Y) + n00n(Y) = Sn2@n+2(Y) + Sn1@ns1(Y) + $n,000(Y) + 5n,—1Gn—1(Y), (2.38)
where

Up,1 = Qp,0 = 1 (239)
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and the coefficients r,(a,b) are given by

(n+2)(a+n+2)(B+n+1)

T T T B mt2)(B+2n+3) (2.40)
C (n+2a+n+2)(B+n+1) (n+1)(a+n+1)(8+n)
Tn,a1 = - ) (241)
’ B+2n+3 B+ 2n
™o = (n+2)(a+n+2)(8+n+1) (MM_;) +(n+1(a+n+1)(8+n)
S nb+n)(B+n—1) (2.43)

(B+2n—1)(8+2n)
(2.44)

and sy, i(a,b) =1 k(b a).

Theorem 2.2. For R(a,b) > —1 and 0 = 2, the hybrid polynomials p,(x), §n(x) satisfy the fourth order
recurrence relations

T (an72ﬁn+2 (z) + an,lﬁnJrl(x) + an,Oﬁn(@)

= 7Tn,3Pn+3(2) + Tn2Dn12(%) + 70 1Pn41(T) + 700D (T) + 70 —1Pn-1() (2.45)
and
Y (an2Gn+2(y) + an1@n+1(Y) + an,0Gn(y))
= 8n,30n+3(Y) + Sn2Gn+2(Y) + Sn,1Gn+1(Y) + Sn,00n (V) + Sn,—1Gn-1(y), (2.46)
where
1 2(2n 42+ ) 1

n2=s5—a"73 On R — 2.47
2 t3+ 8 T nt14B)n+3+8)) ™ T m+1+p (2.47)

and the coefficients ry, 1,(a,b) are given by (2.60) to (2.64) below, and s, (a,b) = ry, (b, a).

Proof. For any vector 7, we construct the semi-infinite diagonal matrix D, so that m = D,1. From
the knowledge that the unit vector 1 (or any constant vector) is left-annihilated by A — I'd we can left-
annihilate the s = 0 term on the right-hand side of (2.34) by premultiplying with (A — Id) D;Ol. To
annihilate the remaining s = 1 term we need to calculate (A — Id) D;Ol Dy, 1 =: 1. A simple calculation
gives the components of ¥ as

Ti,n  Tntl

Y = n=0,1,..., (2.48)

)
To,n TO,n+1

assuming m , # 0. Our required second left-annihilator is therefore (A — Id) D;l and so the composite
operator is the second order difference operator

(A—1d)D,' (A —1d) D] (2.49)

This recursion can be repeated up to 8 levels leaving us with a #-order difference operator in the general
case, modulo the non-vanishing condition given above. Before we compute this our final step in deriving
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the recurrence relation for P, is to put some of these pieces together. Let us act on the first equation of
(2.22) with this operator - doing so on the left-hand side gives

z(A—Id)D,' (A - Id) D, P, (2.50)
whereas acting on the right-hand side gives
(A—1Id)D,' (A—1d) D XP =: AP, (2.51)

which defines a banded matrix A. This banded matrix has non-zero elements only for 41 super-diagonals
above the diagonal - the 6-order difference operator adds 6 super-diagonals to the initial single one of the
lower Hessenberg X - and a single sub-diagonal - this operator does not add any additional sub-diagonals
to the upper Hessenberg matrix Y'7. The analogous result for Q is

yQ" D, (A" —Id) D' (A" — Id) =: Q" B, (2.52)
where

= — B Tt S 001, i # 0. (2.53)
TIo,n To,n+1
For 6 = 2, the second order difference operator acting on P has n-th component

7T0,n+1

7T0,n+1
Poyo+ P,
To,n+2T1,n+1 — T0,n+17T1,n+2 TOn+1T1,n — T0,nT1,n+1

+

T0,n+1 (7T0,n7f1,n+2 - 7T0,n+27T1,n)
Pot1 (2.54)
(Wo,n+1771,n - 7T0,n771,n+1) (770,71+27T1,n+1 - 7To,n+17T1,n+2)
and on Q,

70,n+1 10,n+1

Qn+2
Non+2M ,n+1 — 1M0,n+171,n4+2 No,n+1M,n — Non"1,n+1

10,n41 (M0,n"1,n+2 — No,n+271,n)
— 41 (2.55)
(M0,n4+1M0,n = 0,0 M1,04+1) (10,0420 ,n41 = 10,n+171,n+2)
In the case at hand we compute the components of 7y, w1 and 71, m; to be
_on! T(a+1+2n)I(B+n)
B/ Y CE )

n! T(a+1+2n)T(6+n)
Vhy I'(B+2n) ’
o — n! T(b+1+2n)(5+ n)7 (2.58)

Vhn I'(B+2n)
~on! T(b+1+2n)I(B+n)

T Ve T+ )
We thus arrive at the recurrences for our hybrid system (2.45) and (2.46). There are two observations to
make about these results. Firstly, the method generates an overall common factor for the a coefficients,
which is subsequently present in all the r-coefficients, and our results have this factor removed. For 8 = 2
itisa (=1)"(a+1+2(n+1)(n+ 1+ B)) which is non-zero for R(a) > —1, R(5) > —1, and n € Z>,.
Secondly, note that the difference operators defined by the left-hand sides of the recurrences (2.45) and

(2.46) are identical and symmetrical with respect to a,b.

(a+1+2n(n+p)), (2.56)

(2.57)

Tin =

(b+1+2n(n+p)). (2.59)



May 24, 2023 14:59 WSPC/INSTRUCTION FILE WW

Quantum Interpolating Ensemble 11

Finally, the 7,, s, coefficients can be deduced in a number of ways, such as employing the explicit
series form for the polynomials and peeling off the leading terms from the highest degree (n + 3) down
in four successive iterations, or by acting upon the X matrix with the second-order difference operator
(2.54). Either way we find

r ,__(n+3)(a+2n+5)(a+2n+6)(3+n+2) )
n,3 = (B+2n+3)(B+2n+4)(f+2n+5) ) .

(n+3)(a+2n+5)(a+2n+6)(B+n+2)

2 (B+2n+3)(3+2n+5)
(n+2)(a+2n+3)a+2n+4)(B+n+1) (2.61)
(B+2n+1)(B+2n+3) ’ '
L _(m+D(a+2n+1(a+2n+2)(B+n)(8+2n+2)
e 2(8+2n)(B+2n+1)
+(n+2)(a+2n+3)(a+2n+4)(5+n+1)(ﬁ+2n+2)
(B+2n+1)(B+2n+3)
(n+3)(a+2n+5)(a+2n+6)(B+n+2)(B+2n+2) (2.62)
2(8+2n+3)(B+2n+4) ’ ‘
_ (n+3)(a+2n+5)(a+2n+6)(8+n+2)(8+2n)
o = 6(6 1 2n + 3)
_(n+2)(a+2n+3)(a+2n+4)(5+n+1)(ﬁ+2n)( 1 +1>
B+2n+3 B+2n+1 2
(n+Da+2n+1)(a+2n+2)(B+n) (286+4n+3 1
* B+2n+3 (ﬂ+2n+1 +2(ﬂ+2n)>
nla+2n—1)(a+2n)(+n—-1) (B+2n+1 1
- B)i2n+;( )<6+2n—1+6(ﬁ+2n)>’ (2.63)
R nb+2n—1)b+2n)(8+n—1) (2.64)

(B+2n—1)(B+2n)(B+2n+1)

Independently of the r-coefficients, the s-coefficients were computed and found to verify the symmetry
relation s, (a,b) = ry (b, a). O

From the workings in the above proof one sees the structures of the recurrence relations in the general
case of 6 € N as summarized in the following corollary.

Corollary 2.1. Let € N and R(a,b) > —1. The hybrid polynomials satisfy the recurrence relations

% 0+1
X Z an,kﬁn-&-k(x) = Z Tn,lf)n-&-l(x) (265)
k=0 l=—1
and
7 0+1
Yy Z an,kdn-‘rk (y) = Z Sn,l(jn-i-l(y)v (2'66)
k=0 I=-1

with $pi(a,b) = ry (b, a).
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For any given 6 € N, explicit expressions of the recurrence coefficients can be obtained in a similar manner
as in Theorems 2.1 and 2.2 but with increasingly more effort for a larger 6.

In concluding this section we give a special result of interest on the recurrence relation of the 6-
deformed bi-orthogonal polynomials (3.27a) corresponding to the Hilbert-Schmidt ensemble, i.e., when
6 = 2 in addition to the specialization (2.2). This result is useful in the computation of higher order
moments of entanglement entropies. Namely, upon the specialization of Theorem 2.2 with § = 2, b = a+1
and using the application-wise more convenient notation

pj(z) = (=1)7v2p,(x), (2.67)

we arrive at the following corollary.

Corollary 2.2. The 0-deformed bi-orthogonal polynomials p; in (5.27a) for @ =2, b= a+1 satisfy the
fourth order recurrence relations
x (agpj+2 () + a1pjt1 () + aop; (z))
= r3pj+3 (z) + ropjte (2) + r1pj1 () + ropj (x) + roipj—1 (2), (2.68)
where the coefficients are explicitly given by

_ 2aj+3a+2j246j+5

2.69
2 at2j+4 (2.69)
2(a+2j +3) (2aj + 3a + 252 + 65 + 5)
a; = — " " (270)
(a+2j+2)(a+2j+4)
2047 +3a+ 252465 +5
ag = aj) + 3a + j + 67 + (2.71)
a+275+2
i +3)(a+7+3)(2a) +3a+252+65+5
y,_ GE3)(a+j+3) (25430422 +6j+5) (2.72)
a+25+4
. a® + 6a%j + 12a% + 12a52 + 46aj + 41a + 852 + 4652 + 825 + 42 (2.73)
2 = — .
(2aj 4+ 3a+ 252+ 65 +5) " (a+2j +2)(a+2j +4)
(a+2j+3)(2aj +3a+ 252+ 65 +5) (2a* + 6aj + 9a + 652 + 185 + 10) (2.74)
r = .

(a+2j+2)(a+2j+4)

. a® + 6a%j + 6a® + 12aj2 + 26aj + 11a + 853 + 2652 + 225 + 6 (2.75)
0= — .
(2aj +3a+ 252+ 65 +5)" " (a+2j +2)(a+ 2j +4)
i(a+7)(2aj +3a+2j%2+65+5
,, _dlatd) (205 +3a+257 +6j+5) (2.76)
a+2j5+2

The corresponding recurrence relation of the dual polynomial (3.27b) can be also similarly found.

3. Applications to Quantum Information Theory

In this section, we study a special case, relevant to quantum information theory, of the above discussed
bi-orthogonal system that gives rise to the interpolating ensemble of interest. We first outline the corre-
sponding correlation kernels before showing a new result on the kernel factorizations. We then perform
analytical and numerical study on the average behavior of entanglement entropies over the interpolating
ensemble.
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3.1. Entanglement entropies and correlation kernels

For the quantum bipartite system introduced in Section 1, the degree of entanglement of subsystems
A and B is estimated by entanglement entropies, which are functions of the eigenvalues (entanglement
spectrum) of a given ensemble. Any function that satisfies a list of axioms can be considered as an
entanglement entropy. In particular, an entropy should monotonically change from the separable state

AM=1 ==X, =0, (3.1)
to the maximally-entangled state
1
AM=d=... A =—. (3.2)
m
A standard one we consider here is quantum purity [2]
Sp = Z A2, (3.3)
i=1

supported in Sp € [1/m, 1], which attains the separable state and maximally-entangled state when Sp = 1
and when Sp = 1/m, respectively. Quantum purity (3.3) is an example of polynomial entropies, whereas
a well-known non-polynomial entropy is von Neumann entropy [2]

Son ==Y _Ailn ). (3.4)
=1

The von Neumann entropy (3.4) is supported in Syx € [0,Inm] that achieves the separable state and
maximally-entangled state when Syn = 0 and when S,x = Inm, respectively. Statistical information
of entanglement entropies is encoded through their moments: the first moment (average value) implies
the typical behavior of entanglement, the second moment (variance) specifies the fluctuation around the
typical value, and the higher order moments (such as skewness and kurtosis) describe the tails of the
distributions. We focus on the average entanglement entropies in this work, whereas the study of higher
order moments would make full use of the results derived in Section 2.

Moment computation over an ensemble with the probability constraint 6 (1 — Y ;" ;) is typically
performed over an ensemble without the constraint [9,11,13-15,34-37]. As will be seen, the unconstrained
version of the interpolating ensemble (1.6) is given by

1 Ti— T
h(x) =~ H i (If — x?) Hx?e_‘”i, (3.5)
¢ 1<i<j<m Tl T i=1
where z; € [0,00), ¢ = 1,...,m. This ensemble has been recently proposed in [45] in connection to a

f-deformed Cauchy-Laguerre two-matrix model. In the case when # = 1, the corresponding ensembles
have been studied in [38-42]. We now move on to the moment relations of entanglement entropies between
the proposed ensemble (1.6) and its unconstrained version (3.5). Firstly, the density g4(r) of the trace

T‘:Zl‘i7 re [0,00), (36)
i=1
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of the unconstrained ensemble (3.5) is obtained as
ga(r) = / h(x)d ('r - sz> H dz;
z i=1 i=1
c dil/ m
=—er FOOTT ax
¢’ A i=1
1

= We_Trd_17 (3.7
where we have used the change of variables
Ti=TN, 1=1,...,m, (3.8)
and the resulting Jacobian calculation leads to the normalization I'(d) with
d:%(m0—9+2a+2). (3.9)
The above calculation implies that the density h(x) can be factored as
h(x) ﬁ dz; = f(A)ga(r) drﬁ dA;, (3.10)
i=1 =1

i.e., the random variable r is independent of each A; (hence independent of Sp and Syy). Similar factoriza-
tions also exist for the Hilbert-Schmidt ensemble [9] and the Bures-Hall ensemble [34, 36, 37]. Introducing
the corresponding quantum purity of the unconstrained ensemble

Tp =Y a2, (3.11)

the k-th moment of quantum purity Sp is represented as
Ey[S5] = /A s f0 [T dn
i=1

Tk N
:/Ar;;f()\)g d)\i/rgd-i-Qk(T)dT

__I'd) T v
= m/)\/rTé F(N)ga(r) drg dA;
= I&Eh [TE], (3.12)

where we have used the change of variables (3.8) and the independence property (3.10). Therefore,
computing the k-th moment of Sp can be converted to computing the k-th moment of Tp. In particular,
the first moments are related by

1

Ef[SP] = m

En[Tp]. (3.13)
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We now introduce von Neumann entropy of the unconstrained ensemble

m
TvN = Z ZT; In ZTi, (314)
i=1
that leads to the identity
Son = Inr — r 1Ty, (3.15)

then the first moment relation is similarly obtained as

]Ef[SvN]:/ SN f(A HdA /9d+1 r)dr

(I(;(i)l) (/ng rlnrdr—// Ton f(N)galr derA)

1
=tho(d+1) — gEh[TvN] ) (3.16)
where we have also used
/ e "r* nrdr = T'(a)io(a), R(a) >0 (3.17)
0

with ¢g(z) = dInT'(z)/dz denoting the digamma function [46]. For a positive integer I, the digamma
function admits the following useful identities

-1
D=-v+> % (3.18a)
k=1
1 Lo
Yo <z+2>=—7—21n2+2kz_0%ﬂ, (3.18b)

where v ~ 0.5772 is Euler’s constant.

Computing the k-th moment of the above defined entropies requires the k-point correlation function
of the unconstrained ensemble (3.5), which is recently shown to follow a Pfaffian point process of a 2k x 2k
antisymmetric matrix [45],

AKll(xi x) ZKOl(l‘i JJ))
Z1,...,2E) o< Pf T B , 3.19
pk( 1 k) (—2K01(9Uj7$i) AKOO(miamj) ik ( )

where the kernels

AKoo(z,y) = Koo(z,y) — Koo(y, 2), (3.20a)
YKoi(z,y) = Koi(z,y) + Kio(y, 2), (3.20b)
AKll(x’y) = Kll(xay) - Kll(y7x)a (320C)

are written in terms of those of the #-deformed Cauchy-Laguerre bi-orthogonal ensemble Koo(z,y),
Ko (z,y), Kio(z,y), and Ki1(z,y). As a result, the computation of various statistical quantities of the



May 24, 2023 14:59 WSPC/INSTRUCTION FILE WW

16  Wei and Witte

quantum interpolating ensemble can be performed over those kernels. The kernels can be expressed via
the following Fox H-functions [45]

ol (—a—m,1);(m,1) 0
Hy(x) = HY <(071 ) ’tx , (3.21a)
21 (—a—m,1);(m,1) 0
Caln) = Has ((0, 1), (~4,0); (~a, 1) a”). (3:21b)
as
1
Koolz,) =0 [ 4 Hy(0) Hua () dt, (3.222)
0
1
Koy (z,y) = 022+ / t*Hy(y)Gapr () dt, (3.22b)
0
1
Kio(z,y) = 052+ / £ Ho1 (2)Gay) dt, (3.220)
0
1 xayaJrl
K (2, y) = 0(y)2! / 192G ()G (y) dE — , (3.224)
0 r+y
where the definition
o= @ _1 (3.23)

follows from the notation (2.3). In general, the Fox H-function is defined through the following contour
integral [47)

m,n (al’Al)v""(anvAn);(an+1aAn+1)""a(apaAp) )
H 3.24
P <(blvBl) (bmaB );(bm+1vBm+1)""a(vaBq>‘x ( )
+BS)H F(l—aijjs)

Jj=1 —s
x~%ds, (3.25)
2772/ HJ i1 U@ + Ay s)HJ —m1 L (L —b; — Bjs)
where the contour £ separates the poles of I (b; + B;s) from the poles of I' (1 — a; — A;s). In the special
case Ay = -+ = A, = 1and By = --- = B; = 1, the Fox H-function reduces to the Meijer G-
function [47]. The integral forms of the kernel functions (3.22a)—(3.22d) are useful for the computation of

mean entropies, whereas several other distinct representations of the kernel functions exist [36,40-42,45].
In particular, we present the following bi-orthogonal polynomial forms [45] useful for a later discussion

m—1
Koo(z,y) = Y pr ( (%), (3.26a)
k=0
] a+1 —v
Koi(z,y) = faeim/o ﬁKoo(%U) do, (3.26b)
K atrig-y [ WY p d 3.26
w(z,y) =y /0 1w oo(w,z) duw, (3.26c)
—v a+1 —w
Kii(z,y) = 2% e~ y/ / T — ——— Koo (v, w) dvdw — w(z, y), (3.26d)
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where the normalized bi-orthogonal polynomials

9k+a+2) (k+a+1)(j—k)k

- i k+]1"(k +j+a+ 1) (3.27a)
_: k+a+D(k+a+U(—@%V |
=§5 D905+ a+ D0k +j + a + 1)y* (3.27b)

are orthogonal with respect to the b = a + 1 specialization of the weight function (2.4) as given by
the orthogonality condition (2.6). Here, we are using slightly different notations of the bi-orthogonal
polynomials, cf. (2.18) and (2.19), which are simply related by (2.67).

Before presenting the main results on the average entropies, we provide in the following lemma a
generalization of the kernel factorization property from 6 = 1 as reported in [41] to an arbitrary 6. This

property is useful in simplifying the k-point densities for the higher moment calculations as demonstrated
in [36,37] for the case 6 = 1.

Lemma 3.1. For any 0 > 0, the correlation kernels (3.26a)—(5.26d) can be factorized

Koo(z,y) + Koo(y, ©) = u(z)u(y), (3.28a)
Koi(z,y) — K1o(y, z) = v(@)u(y), (3.28b)
Kii(z,y) + Ki(y, z) = —v(z)v(y), (3.28¢)

as the product of the functions

Hmzjl D Tk +a+m+ 1)2%
F9k+a

AT (k + a+ ) (m — k)k!’ (3.29a)

=0
a0 F)xz“*l = (=D*T(k + a+m + )T (—0k — a, 2)x%*
0k +a+1)(k+a+1)T(m—k)k!

v(z)=e (3.29b)

k=0

where T'(a,z) = f:o te~le=tdt denoting the incomplete Gamma function.

Proof. The starting point of the proof is the bi-orthogonal polynomial forms of the kernels (3.26a)—
(3.26d). To show (3.28a), we first represent (3.26a) via (3.27a) and (3.27b) as

m—1m—1

% . Z Z 0( 1)z+km9k¢y91
00(, ) T(0i+a+ 2Tk +a+t0(i+at)D(k+at )ik

k=0 i=0
m—1 . . .
FG+i+a+)IN(j+k+a+1)
X 2i+a+1 — - 3.30
]z(j I A 3 Ry (3:30)
mzjlm L G(—1)ith g0k 00
= = T0i+a+2) IOk +a+ DI+ a+ 1Dk + a+ 1)ilk!
F(l+a+m+1) (k+a+m+1) (3.31)

(z+k+a+1)F(mfi)F(mfk) ’
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where the last step is obtained by Lemma 4.1 in [40]. We then have

Koo(z,y) + Koo(y, ) (3.32)

m—1m—1

ZZ L(0i+ a+2)

=0 =0

92( 1)z+k kaéz

WOk +a+2)T6+a+ DIk + a+ 1)dk!

Fi+a+m+DIk+a+m+1) (. 1 2(a+1) (3.33)
(i+k+a+1)F(m—i)I‘(m—k) 0 ’ '
=, —DFC(k 4+ o+ m + 1)2?
/T 9k + a+2)T(k+a+ D(m— k)k!
m—1
DT+ a+m+ 1)y’
= 3.34
% Z I( 91 + a+2)T(i+a+ ) (m— i)i! u(@)uly), (3:34)
which establishes (3.28a). To show (3.28b), we insert (3.26a) into (3.26b) and (3.26¢) that gives
Koi(z,y) — Kio(y, x)
e Y
= / ——— (vKoo(y,v) — 2Koo(v,y)) dv
0
= “”Zl Z+kl_‘(z+o¢+m+1) (k+a+m+1) (D(m —i)T(m — k)ilk!) " y¥
B = (ithk+a+I(Oi+a+2)T(0k+a+2)0(+a+I(k+a+1)
x/ T 0k (B4 a + 1o — 2(6k +a + 1)) dv
0 A
mzl O(—1)T(i +a+m+1e 2% ¢ (—1)*T(k+a+m+1)(T(m—k)k) "
— F(Hz+a+ DI+ o+ 1) (m —4)d! = (itk+a+ )k +a+1DI(k+a+1)
e 62 (— i+ a+m+ 1)g2atlydi e (- T(k+ a+m+ DIT(—0k — a, z)z%
— F(Hz + a+ 2 (@ 4+ o+ DI'(m —d)i! pars Ok +a+1)I(k+a+1)I(m — k)k!
_ 9x2a+1mzl DT (k 4 a4 m + 1)I(—0k — a, z)2*
prs Ok +a+1)T(k+a+1)T'(m—k)k!
m—1
TG +a+m+1)y’ B
% ; I'( 92 + a + 2)I‘(z +a+1)I(m — i)z’! = vl@)uly),
where the second to last equality is obtained by the identity
’f (~D)*C(k+ a+m+1) 1 (335)
(itk+at+1)(0k+a+1)I(k+a+1)I(m - k)k! CGita+1 '

This identity is established by the fact that the sum can be written in terms of a unit argument terminating
hypergeometric function of Saalschiitzian type [46] as

1 3
JFy (1—m,a;,a+m+1,i+a+1;a;,a+1,i+a+2;1>, (3.36)
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which in general admits [46]

nl(b—c+1)(b—d+ 1)y,
b+ Dn(l—c)(l—d)n

4F3(—n,b,c,d;b+1,c—1,d—m;1) = 0<l+m<n,
with

I'(a+n)

(a)n = W) (3.37)

denoting the Pochhammer’s symbol. This completes the proof of (3.28b). To show (3.28¢c), we in-
sert (3.26a) into (3.26d) that leads to

K (z,y) + K (y,«

v—w

— 2ye Y </ / ;—’—wwe*y o (ywKoo(v, w) + zvKoo(w,v) dw dv) — 1)
L (=)D + a+m+ DD(k+a+m+1) (T(m — )0(m — k)~
(i+k+a+1)TOi+a+2)I0k+a+ DI +a+ DIk + o+ 1)ilk!

OO/OO VPwle VW (yvekaiJrl + xw0k09i+1)
o Jo (z +w)(y +v)

i, O(—1)FT(k + a+m + DT (—0k — a, x)xf*+2at1yae—y
I'(k+a+1)'(m— k)k!

dwdv — 2%y%e 7Y

()Tl +a+m+1)
i+k+a+D)@i+a+ 1)+ o+ DI'(m —1d)il

s
Il
o
—

fl, O(—1)FT(k + a+m + DIT(—0k — a,y)yf*T2atlgoe—=

T Tk +a+ DD(m — k)&
xm‘l (—1)T(i + a+m+1)
— (i+tk+a+1)0i+a+1)I(i+ o+ 1)I(m — i)
2a+1i D*T(k+ a+m + 1D (—0k — a, x)2%
Ok +a+ DLk +a+ DI(m — kK
m—1 i . Y 01
X ByPot! (- 1)'F(ZJF04JF”'T+ DI(=0i — a, y)y — e Y
pare Bi+a+1)0E+a+ 1)T(m — i)
B _ pg2atl i DFT(k+a+m+ DT (—0k — a, )2
B — (Ok+a+DI(k+a+1)I(m — k)k!

m—1 k 01 0k
X <6yya _ 0y2a+1 ( 1) ]‘—‘(k4>Oé<FTn’+ 1)F( ok a7y)y ) — 7U(I)U(y),

—~ (Ok+a+ DIk + a+ 1)T'(m — k)E!

where the second to last equality is obtained by applying twice the identity (3.35). This completes the
proof of Lemma 3.1. O
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3.2. Awverage entropies over interpolating ensemble

With the above preparations, we now state the results on the average entropies over the interpolating
ensemble. Our first result is the formula of average purity as summarized in the following proposition.

Proposition 3.1. The average value of quantum purity (5.3) under the quantum interpolating ensem-
ble (1.6), for any 6 > 0 and a > —1, is given by

()R 10(0k 4 a + 2)°

BrlSel= 2 SaasDm—1—hw

Ag(k), (3.38)

k=0

where

U (k4 220 (ke m+ 252 T (k+1+ 2)

Aol = (k25T (km+ 2920 T (k414 2 —m)

(3.39)

Before proving Proposition 3.1, two remarks on its special cases are in order.
Remark 3.1. In the special case § = 1, a = n—m—1/2 that corresponds to the Bures-Hall ensemble (1.3),
by recognizing A;(m — 2) and A;(m — 1) as the only non-vanishing terms in (3.39) with

(k+2n —2m+2)(k +2n —2m + 1)['(k + 3)
(k+2n—m+2)(k+2n—m+1DI'(k+3—m)’

Ay (k) = (3.40)

the expression (3.38) simplifies to

m—1

(—=1)F+m=1(k +n —m+3/2)?

]Ef[SP]:kzzm:Qanf Y(2mn —m?2 +2)(m — 1 — k)!k! 1(k)

2n(2n+m) —m? +1
2n (2mn —m?2 +2)

This recovers the mean purity formula of the Bures-Hall ensemble recently reported in [34, 35, 37].

Remark 3.2. In the special case § = 2, a = n—m that corresponds to the Hilbert-Schmidt ensemble (1.1),
by recognizing As(m — 1) as the only non-vanishing term in (3.39) with

(k+n-—m+1I'(k+2)

Ay (k) = 41
2(k) k+n+)I(k+2—m)’ (341)
the expression (3.38) simplifies to
iy DkFm=1(2k +n —m + 2)2
E = A
s15] i mn(mn+ 1)(m — 1 — k)lk! 2(k)
B n
S omn+ 1

We recover the mean purity formula of the Hilbert-Schmidt ensemble obtained in [7].

We now prove the Proposition 3.1.
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Proof. The essential task is to compute E[Tp], which, after inserting into the moment relation (3.13),
will establish the Proposition 3.1. The required single eigenvalue density hi(x) of the unconstrained
ensemble (3.5) can be read off from the correlation function (3.19) that corresponds to a Pfaffian of a
2 X 2 matrix as

hl(.’IJ) = %pl(l') = % (K()l(l',.’lf) + K10($,$)) . (342)

The computation now boils down to computing two integrals
Ex[Tp] = m / T h1

1 oo
== / 22 Kop (z,2) da + = / 22 Kyo(z,2) da. (3.43)
2 Jo 2 Jo

The starting point to calculate the above integrals is the fact that the contour form (3.24) of the Fox
H-function (3.21a) admits a finite number of single poles, which by residue calculation gives a finite sum

el DDk +a+m+1) (tz )k (3.44)
kzork+a+1 FOk+q+1)(m—1—k)k! '
Therefore, we have
/ 22 Koy (z, ) da (3.45)
/ 2o+ / 1 Hy ()G 1 (2) dt A (3.46)
m—1

M

~D*T(k+a+m+1) /Oo 9k+2a+3/1 atk
ttkq, dtd 3.47
Fk+a+1) Ok +at+)(m—1-KW J, * ; +i(z)dtdz  (3.47)

_.o

3

— (=1)**™m=19(0k + a + 1)(0k + a + 2)
2(m — 1 — k)k!

Ag(k) (3.48)
k=0

where the integrals over ¢ and z in (3.47) are evaluated respectively by the identity [47]

1
p—1rrm,n (al,Al),"' (an7A ).(an-l-lvAn-O-l)v (apa
/0“”” Hyl ((bl,Bl),...,(b Bu): (bs1s Brnat)s- s (by ‘”x de (3.49)

m,n 1- 71) (alaAl) a(an ) (an lvAn 1),...,(@ 7A)
_ gt <( P +1 Ant UM 3.50
prlatl (b17Bl)7 (bm7B ) ( m—+15 m+1)7"',(banq)7(_pa 1) g ( )

and the Mellin transform of the Fox H-function [47], cf. (3.24),
00 Ar)y oy (@n, An); (@ng1, Ang) (a

5~ 1Hmn < (G‘l? 1) ) ) ) +1 +1)5- Py - 3.51
/0 23"\ (b1, B (b B (1, B by "7 (351
B ?7’51_[;»“1 (b; JFBS)HJ 1 T(1—a; — Ajs) (3.52)

?anI‘(aj + A S)HJ —m41 (l—bj—BjS)
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In the same manner, the second integral in (3.43) is evaluated to

o L (—1)Fm10(0k + a4 2)(0k + a + 3)
’K = Ap (k). 3.53
/0 2 Kao(w,2) 2(m — 1 — k)IK! o () (3:53)
k=0
Putting together (3.13), (3.43), (3.48), and (3.53), we complete the proof of Proposition 3.1. |

The next result on the average von Neumann entropy is presented in the following proposition.

Proposition 3.2. The average value of von Neumann entropy (5.4) under the quantum interpolating
ensemble (1.6), for any 6 > 0 and a > —1, is given by

L (— D)L Gk +a + 3/2)
m—1— k)l

Ef[Svn] = ¢o(d +1 By(k), (3.54)

k=0

where

2043 2042 1
Bo(k) = T (k4 283) T (k+m+ 292) T (k+ 1+ 3) )<wo(k+2a+3>

T (k+222)T (k+m+22)T (k+14 5 — 0

+ (k+1+ ) Yo <k+m+2a;3>—wo <k+1+;—m>

ok
o (¢0(9k+a+2) - M)) (3.55)

Proof. The main task is to compute the average Ep[Tyn], which, after inserting into the moment rela-
tion (3.16), establishes Proposition 3.2. By employing the single eigenvalue density (3.42), this task boils
down to computing two integrals

1 [ 1 [
En[Ton] = 5/ zlnxKo (z, z)dz + 5/ xlnzKig(z, x)de. (3.56)
0 0
We first compute the integral
/ P Koy (z,2)dz, B> 0, (3.57)
0

by using the results (3.44), (3.49), and (3.51) as
m—1
o —D)FMT (K + a+m +1)
PK dz = (
/0 " Ko (w,7) da k;2e(m—1—k)!k!r(k+a+1)r(9k+a+1)

" M) (s—a)l'(k+a—s+1I'Bs—a—1)
T(s+m)T(s—a—m(k+a—s+2)

, (3.58)

where « is given by (3.23) and we denote

2a+ 3

s=B—-1+k+ (3.59)
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Fig. 1. Average purity (3.38) as a function of subsystem dimensions: the impact of 6-deformation. The two solid curves
represent the cases of the standard ensembles (1.7) with no deformations and the other curves represent the cases of the
deformed ensemble (1.6). In all cases, we consider equal subsystem dimensions m = n.

Similarly, we also obtain

m—1

[ee] k+m
5 B (=)L (k+a+m+1)
A xK”@“Nx_g%%mpﬁ—mmw@+a+nn%+a+m

L(s)I(s—a)l'(k+a—s+ 1)I'(0s —a)
IFs+ml(s—a—mT(k+a—s+2)

(3.60)
Taking the derivative of (3.58) and (3.60) with respect to 8 before setting 8 — 1 leads to the desired

expression for (3.56), which upon inserting into the moment relation (3.16) completes the proof of Propo-
sition 3.2. 0

Remark 3.3. In the special case § = 1, a = n—m—1/2 that corresponds to the Bures-Hall ensemble (1.3),
the result (3.54) in Proposition 3.2 reduces to

E¢[Svn] =to <mn — % + 1) — g <n + ;) +vo(2n+1) —o(2n —m + 1) + (1)

m—1 L2k +1)(k+n—m+1)(k+2n—2m+1)
( +Z m2n—m)(m —1—k)(k+2n—m+1)



May 24, 2023 14:59 WSPC/INSTRUCTION FILE WW

24 Wei and Witte

(6,a)-deformed Ensembles
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Fig. 2. Average purity (3.38) as a function of the parameters a and 0. The data points marked by diamond and square
shapes represent the special cases of the undeformed ensembles (1.7). In all cases, the subsystem dimension is m = 8.

This recovers the mean formula of von Neumann entropy under the Bures-Hall ensemble recently studied
in [34,35].

Remark 3.4. In the special case § = 2, a = n—m that corresponds to the Hilbert-Schmidt ensemble (1.1),
the mean formula of von Neumann entropy is well-known

m+1

E[Syn] = to(mn + 1) — 1po(n) — 5

(3.61)

which was conjectured by Page [9] and later proved in [10, 11]. By equating Proposition 3.2 in this special
case to the above result of Page, one arrives at the following non-trivial summation identity

1S DM 2kt n—m A+ DT (k+ TR +n+ )T (k+n—m+3)
(m—1—kWL(k—m+HT(k+n+3)T(k+n—m+1)

k=0

n
><<1/10 (k+2>+1/1o (k+nm+g) — o <k+n+;> — o (km+2>

2k+n—-—m+1)\
2k+n—m+3/2> = vo(n) +

m—+1

+2¢0(2k +n —m +2) — 5y

(3.62)

a direct proof of which, however, seems difficult.
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0-deformed HS Ensemble 26 #-deformed BH Ensemble
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Fig. 3. Average von Neumann entropy (3.54) as a function of subsystem dimensions: the impact of §-deformation. The two
solid curves represent the cases of the standard ensembles (1.7) with no deformations and the other curves represent the
cases of the deformed ensemble (1.6). In all cases, we consider equal subsystem dimensions m = n.

3.3. Numerical results

We now perform some numerical studies of the average entanglement entropies over the interpolating
ensemble. We first focus on the result of average purity in Proposition 3.1. In Figure 1, we plot the
numerical values of average purity (3.38) as a function of the subsystem dimensions. For different values
of 8, we consider both the #-deformed Hilbert-Schmidt ensemble assuming a = 0 and and the #-deformed
Bures-Hall ensemble assuming a = —1/2 as shown in the left subfigure and the right subfigure, respec-
tively. Note that the choices of a imply equal subsystem dimensions m = n in both cases. The solid curves
in Figure 1 describe the behavior of the standard ensembles (1.7) with no deformations, whereas the other
curves represent the corresponding #-deformed ones. It is observed that as the deformation parameter 6
increases, the values of average purity decrease monotonically resulting in estimations of entanglement
towards more entangled states. The observation suggests that the proposed interpolating ensemble (1.6)
is indeed able to continuously interpolate among the possible values of purity by varying the 6 parame-
ter. It is also observed in Figure 1 that for a given 6 the average purity under the Bures-Hall ensemble
tends to an estimate of more separable state (i.e., a larger purity value) than that of the Hilbert-Schmidt
ensemble. On the other hand, the differences are diminishing as the dimension increases. This behavior
has also been recently observed in [34].

Since the parameter a of the proposed ensemble (1.6) can be also considered as a deformation variable,
we wish to understand its impact on the quantum purity. In Figure 2, we plot the average purity (3.38) as
a function of the parameter a for different values of 8, where the dimension of subsystem is assumed to be
m = 8. The data points marked by diamond shape for # = 1 and square shape for # = 2 corresponds to the
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(6,a)-deformed Ensembles
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Fig. 4. Average von Neumann entropy (3.54) as a function of the parameters a and 6. The data points marked by diamond
and square shapes represent the special cases of the undeformed ensembles (1.7). In all cases, the subsystem dimension is
m = 8.

special case of Bures-Hall ensemble and Hilbert-Schmidt ensemble, respectively. It is observed in Figure 2
that as a increases, the values of average purity decrease monotonically indicating more entangled states.
In particular, for the cases 8 = 1 and 6 = 2, the average purity is seen to interpolate continuously among
the permissible values (1.7) of the parameter a.

We now turn to the numerical study of the von Neumann entropy in Proposition 3.2. In Figure 3,
we plot the average von Neumann entropy (3.54) as a function of the subsystem dimensions for different
values of . We consider both the #-deformed Hilbert-Schmidt and Bures-Hall ensembles with the same
values of a as in Figure 1. It is seen that as the deformation parameter 6 increases, the average von
Neumann entropy increases monotonically, which also results in estimations of entanglement towards
more entangled states as in Figure 1. In particular, the proposed interpolating ensemble (1.6) continuously
interpolates among the possible values of the von Neumann entropy. Similar to Figure 1, we also observe
in Figure 3 that the average von Neumann entropy under the Bures-Hall ensemble tends to an estimate
of more separable state (i.e., a smaller value of von Neumann entropy) than that of the Hilbert-Schmidt
ensemble. The differences, however, diminish as the dimension increases, which is in line with the recent
observation [34]. To understand the impact of parameter a, we plot in Figure 4 the average von Neumann
entropy (3.54) as a function of the parameter a for different values of . The dimension of subsystem is
also assumed to be m = 8. Similarly as observed in Figure 2, the values of average von Neumann entropy
increase monotonically indicating more entangled states as a increases. Finally, we point out that various
other numerical simulations have been performed, where the same relative behavior as discussed in above
four figures persists.
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4. Conclusions

In this work, we proposed and studied a generalized ensemble that interpolates between the two major
measures of density matrices - the Hilbert-Schmidt ensemble and the Bures-Hall ensemble. In particular,
we derived recurrence relations of the underlying bi-orthogonal polynomials of the ensemble useful in
computing different statistical quantities. As an application, we computed the average entanglement
entropies over the interpolating ensemble generalizing various known results in the literature. Numerical
simulations show that the proposed ensemble provides additional power in estimating the degree of
entanglement by varying the deformation parameters. Future work includes further study of the statistical
information of the ensemble such as higher order moments of entropies, fidelity, and volumes as well as
further study of the associated bi-orthogonal system.
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