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1. Introduction and Quantum Interpolating Ensemble

Quantum information theory is based on probabilistic interpretations of quantum states to explain var-

ious quantum effects. The density matrix formalism introduced by von Neumann [1] provides a natural

framework to describe density matrices of quantum states. The density matrix is a fundamental object

that encodes all the information of a quantum state. Among the different measures of density matrices,

the most well-known and physically relevant ones [2] are the Hilbert-Schmidt ensemble and the Bures-Hall

ensemble.

The Hilbert-Schmidt measure is formulated as follows. Consider a bipartite quantum system consisting

of two subsystems A and B in the Hilbert space Hm and Hn (with m ≤ n), respectively. A random pure

state |ψ⟩, defined as a linear combination of the complete basis of the subsystems, belongs to the composite

Hilbert space |ψ⟩ ∈ Hm ⊗Hn. The reduced density matrix is obtained by partial tracing over the larger

system of the full density matrix ρ = |ψ⟩ ⟨ψ| as ρA = TrB ρ. The resulting density of eigenvalues of ρA is

the Hilbert-Schmidt ensemble [2]

fHS (λ) ∝ δ

(
1−

m∑
i=1

λi

) ∏
1≤i<j≤m

(λi − λj)
2

m∏
i=1

λn−m
i , (1.1)
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where δ(·) is the Dirac delta function. The joint density (1.1) is also referred to as the Hilbert-Schmidt

(random matrix) ensemble, which is the eigenvalue density of a normalized Wishart matrix [3, 4]

GG†

Tr
(
GG†

) , (1.2)

with G being an m×n complex Gaussian matrix. For the Bures-Hall ensemble, its random pure state |φ⟩
is given by a superposition of the random pure state |ψ⟩ of the Hilbert-Schmidt measure as |φ⟩ ∝ |ψ⟩+
(U⊗ In) |ψ⟩, where U is an m×m unitary matrix with the measure proportional to det (Im +U)

2(n−m)
.

The resulting density of eigenvalues of the reduced density matrix ρA = TrB |φ⟩ ⟨φ| is the (generalized)

Bures-Hall ensemble [5, 6]

fBH (λ) ∝ δ

(
1−

m∑
i=1

λi

) ∏
1≤i<j≤m

(λi − λj)
2

λi + λj

m∏
i=1

λ
n−m− 1

2
i . (1.3)

In random matrix theory, the Bures-Hall ensemble (1.3) is understood as the joint eigenvalue density of

the normalized product of the matrix Im +U with a complex Gaussian matrix G as [3, 4]

(Im +U)GG†(Im +U†)

Tr
(
(Im +U)GG†(Im +U†)

) . (1.4)

The Hilbert-Schmidt ensemble (1.1) and the Bures-Hall ensemble (1.3) are supported in the probability

simplex

Λ =

{
0 ≤ λm < . . . < λ1 ≤ 1,

m∑
i=1

λi = 1

}
, (1.5)

which reflects the constraint Tr ρA = 1 of density matrices. Note also that the normalization constants

in the densities (1.1) and (1.3) are omitted.

The study of the Hilbert-Schmidt measure has received substantial attention, see, for example, the

results in [3, 7–25]. These results include information-theoretic studies of different entanglement en-

tropies [3, 7–22] as well as applications to quantum information processing [23–25]. The relatively less-

studied Bures-Hall ensemble [4–6,26–30] has gained renewed interest very recently [31–37]. This is partially

due to the recent breakthrough in probability theory in understanding various aspects of the Bures-Hall

ensemble [38–42]. Despite the distinct behavior of Hilbert-Schmidt ensemble and Bures-Hall ensemble, an

interesting question is whether one could propose an ensemble that interpolates between these two. This

question has also been motivated by the observation in [34] that the Bures-Hall ensemble tends to be

more conservative than the Hilbert-Schmidt ensemble in estimating entanglement entropies. Namely, the

Bures-Hall ensemble leads towards an estimate of less entangled states than the Hilbert-Schmidt ensem-

ble does. In this context, one tries to control the appropriate amount of entanglement as a resource for

quantum information processing by constructing new measures that interpolates between the two major

ensembles.
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In this work, we consider the following ensemblea, also supported in (1.5),

f (λ) =
1

C
δ

(
1−

m∑
i=1

λi

) ∏
1≤i<j≤m

λi − λj
λi + λj

(
λθi − λθj

) m∏
i=1

λai , (1.6)

termed the quantum interpolating ensemble, where θ is assumed to be a positive real parameter and

a > −1. Clearly, the proposed ensemble (1.6) reduces to the Hilbert-Schmidt ensemble and the Bures-

Hall ensemble as special cases,

f (λ) =

{
fBH (λ) for θ = 1, a = n−m− 1

2

fHS (λ) for θ = 2, a = n−m
. (1.7)

Namely, as θ varies from θ = 1 to θ = 2, the quantum interpolating ensemble interpolates between the

Bures-Hall ensemble and the Hilbert-Schmidt ensemble. Due to Schur’s Pfaffian identity [43, 44]∏
1≤i<j≤2m

λi − λj
λi + λj

= Pf

(
λi − λj
λi + λj

)
1≤i,j≤2m

, (1.8)

the proposed ensemble (1.6) is described by a Pfaffian point process for any θ > 0 except for the special

value θ = 2 when the ensemble becomes a determinantal point process. Therefore, in the interested

interval θ ∈ [1, 2] the new ensemble (1.6) corresponds to the transition from a Pfaffian point process

to a determinantal point process. It is also worth mentioning that besides the half integer values of a

for the Bures-Hall ensemble and the integer values of a for the Hilbert-Schmidt ensemble, the proposed

ensemble is valid for any a > −1. Therefore, in addition to θ, the parameter a can be also considered as

a deformation parameter that defines the interpolating ensemble.

With an interpolating ensemble being identified, a natural question is what will be the statistical

behavior of entanglement entropies over such an ensemble? Will the values of entropies also interpolate

between those of the Hilbert-Schmidt ensemble and the Bures-Hall ensemble? Before addressing these

information theoretic questions in Section 3, we first study, in a general form, key mathematical aspects

of the underlying θ-deformed two-matrix model and the associated bi-orthogonal system, in Section 2.

The study includes the discovery of new structures of the resulting bi-moment matrix for any θ that

give rise to recurrence relations of the bi-orthogonal polynomials for integer θ, generalizing a few known

results in the literature.

2. The θ-deformed Cauchy-Laguerre Two-matrix Model and Bi-orthogonal Systems

Instead of directly working with the interpolating ensemble of a Pfaffian point process, we will proceed

indirectly via the underlying θ-deformed Cauchy-Laguerre two-matrix ensemble. The latter is more con-

veniently represented by a determinantal point process with the corresponding correlation functions and

bi-orthogonal polynomials given explicitly. In particular, we will present new results on the θ-deformed

bi-orthogonal system in this section, both for general θ > 0 and the specific case of θ ∈ N, which fill some

gaps in our understanding of the system.

aOn the level of matrix models, a related ensemble has been discussed in [4, Eq. (24)].
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2.1. General θ > 0 case

We first introduce the two-matrix model, the joint eigenvalue density of which is expressed in terms of

two sets of real, positive eigenvalues {x1, . . . , xn} and {y1, . . . , yn} by the formula [45]

p(x1, . . . , xn; y1, . . . , yn)

=
1

(n!)2Zn

n∏
j=1

xaj e
−xj

n∏
k=1

ybke
−yk

∏
1≤j<k≤n(xk − xj)(yk − yj)∏n

j,k=1(xj + yk)

∏
1≤j<k≤n

(
xθk − xθj

) (
yθk − yθj

)
=

1

(n!)2Zn

n∏
j=1

xaj e
−xj

n∏
k=1

ybke
−yk det

j,k=1,...,n

(
1

xj + yk

)
det

1≤j≤n
0≤k≤n−1

(
xkθj
)

det
1≤j≤n

0≤k≤n−1

(
ykθj
)
, (2.1)

for ℜ(θ) > 0 and all ℜ(a, b) > −1. The specialization

b = a+ 1 (2.2)

of the above density leads to the desired two-matrix model of the unconstrained interpolating ensem-

ble (3.5). It turns out that the general case ℜ(a, b) > −1 can be treated as conveniently as this special

case b = a + 1, we will therefore consider the former case here in Section 2. The normalization of the

joint density function is
∫
Rn

+×Rn
+
dnx dny p(x; y) = 1 through Zn(a, b; θ). Henceforth, we will use the

abbreviated and commonly used notation

β =
a+ b+ 1

θ
= α+ 1. (2.3)

Associated to the θ-deformed Cauchy-Laguerre two-matrix model is the following bi-variate density

function

w(x, y) =
xaybe−x−y

x+ y
, x, y ∈ [0,∞). (2.4)

One can define an inner product over polynomial spaces ∪n≥0Πn[x] using the weight (2.4). Let f, g ∈
∪n≥0Πn[x] then

⟨f, g⟩ :=
∫
R2

+

dx dy
e−x−y

x+ y
xaybf(xθ)g(yθ). (2.5)

The θ-deformed bi-orthogonal systems with respect to the above weight function are two sequences of

normalized bi-orthogonal polynomials {Pn(x), Qn(y)}∞n=0 satisfying the orthogonality relation

⟨Pm, Qn⟩ = δm,n. (2.6)

The monic system {Pn(x),Qn(y)}∞n=0 is related via

Pn(x) =
1√
hn

Pn(x), (2.7)

Qn(y) =
1√
hn

Qn(y), (2.8)

where the normalization constant is

hn := ⟨Pn,Qn⟩ = θ−1 (n!)2Γ(n+ β)2

Γ(2n+ β)Γ(2n+ β + 1)
Γ(a+ 1 + θn)Γ(b+ 1 + θn). (2.9)
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In addition, it will be seen that simpler forms for our results can be obtained if expressed in terms of a

third system, the hybrid polynomials {p̃n(x), q̃n(y)}∞n=0

Pn(x) = (−1)nn!
Γ(a+ 1 + θn)Γ(n+ β)

Γ(2n+ β)
p̃n(x), (2.10)

Qn(y) = (−1)nn!
Γ(b+ 1 + θn)Γ(n+ β)

Γ(2n+ β)
q̃n(y). (2.11)

The resulting finite bi-moment matrix or Gram matrix is defined by

I := (Ij,k)
n−1
j,k=0 , Ij,k := ⟨xj , yk⟩, j, k ∈ Z≥0. (2.12)

The bi-moment elements have evaluation, by Eq. (2.4) Lemma 2.3 of [45],

Ij,k(a, b; θ) =
Γ(a+ 1 + θj)Γ(b+ 1 + θk)

a+ b+ 1 + θ(j + k)
= Ik,j(b, a; θ), j, k = 0, 1, . . . . (2.13)

It is a basic result that the normalization of the joint density function can be expressed as the determinant

of the bi-moment matrix, see Lemma 2.1, Eq. (2.1) of [45]

Zn(a, b; θ) = det
0≤j≤n−1
0≤k≤n−1

(Ij,k) . (2.14)

This can also be evaluated, using a variety of methods such as the Cauchy double-alternant formula, and

is given by

Zn(a, b; θ) = θ−n

n−1∏
j=1

j!

2
n∏

j=1

Γ(j + β − 1)

Γ(j + n+ β − 1)

n−1∏
j=0

Γ(a+ 1 + θj)

n−1∏
k=0

Γ(b+ 1 + θk). (2.15)

In addition to the determinantal formula (2.14), it becomes clear that every aspect of the bi-orthogonal

system admits determinantal representations involving bordered bi-moment matrices. Our first example

is also a known result, see Remark 2.7 of [45],

Pn(x) =
1

Zn
det

 I0,0 . . . I0,n−1 1
... . . .

...
...

In,0 . . . In,n−1 x
n

 , (2.16)

Qn(y) =
1

Zn
det


I0,0 . . . I0,n
... . . .

...

In−1,0 . . . In−1,n

1 . . . yn

 . (2.17)

Using the Cauchy double-alternant formula, one can compute the explicit expansion of the hybrid poly-

nomials in the monomial basis, see Proposition 2.6 of [45],

p̃n(x; a, b; θ) =
n∑

l=0

(−x)l

l!(n− l)!

Γ(n+ l + β)

Γ(l + β)Γ(a+ 1 + θl)
, (2.18)

q̃n(y; a, b; θ) =
n∑

l=0

(−y)l

l!(n− l)!

Γ(n+ l + β)

Γ(l + β)Γ(b+ 1 + θl)
= p̃n(y; b, a; θ). (2.19)
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Now denote the column vectors of monomials x = (xk)k≥0, y = (yk)k≥0
b and the vectors of normalized

bi-orthogonal polynomials P = (Pk(x))k≥0, Q = (Qk(y))k≥0. These basis vectors are related by lower

triangular matrices SP ,SQ

P = SPx, Q = SQy, (2.20)

which have explicit entries as implied by (2.18), (2.19). From (2.20) we have the L-U decomposition of

the bi-moment matrix

I = S−1
P

(
S−1
Q

)T
=
(
ST
QSP

)−1
. (2.21)

Thinking of the action of a multiplication operator on the normalized polynomial basis, it is clear

that it can be written generally as

xP =XP , yQT = QTY T , (2.22)

for some lower Hessenberg multiplication matrices X,Y . Taking the bi-moment matrix as a semi-infinite

matrix I := (Ij,k)j,k≥0 and defining the shift matrix Λ := (δj+1,k)j,k≥0 similarly we can relate some of

the notions we have already introduced. Firstly, we note that the monomial bases are the right and left

eigenvectors of the shift matrix and its transpose

Λx = xx, yTΛT = yyT . (2.23)

Therefore, the multiplication matrices X,Y admit the L-U decomposition

X = SPΛS
−1
P , Y = SQΛS

−1
Q . (2.24)

We now provide explicit evaluations of the multiplication matrices X,Y for a generic θ.

Proposition 2.1. Let ℜ(a, b) > −1 and ℜ(θ) > 0. For n ≥ 0, 0 ≤ m ≤ n + 1, the lower Hessenberg

matrix X, in the monic basis, has non-zero elements

Xn,m(a, b) = (−1)n
Γ(a+ 1 + θn)Γ(n+ β)Γ(2m+ 1 + β)

Γ(a+ 1 + θm)Γ(m+ β)Γ(2n+ β)

×
n∑

r=m−1

(−1)r(r + β)

(
n

r

)(
r + 1

r + 1−m

)
Γ(n+ r + β)Γ(a+ 1 + θ(r + 1))

Γ(m+ 2 + r + β)Γ(a+ 1 + θr)
, (2.25)

and the lower Hessenberg matrix Y has elements given by Yn,m(a, b) = Xn,m(b, a). Note that Xn,n+1 = 1

and Xn,m = 0 for any m > n+ 1.

Proof. Writing out the components of (2.22) and by using orthogonality, one has

hmXn,m =

∫
R2

+

dx dy
e−x−y

x+ y
xa+θybPn(x

θ)Qm(yθ). (2.26)

bWhether these vectors are finite or semi-infinite depends on the context.
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We seek to evaluate this using the bordered determinant (see Remark 2.7 of [45]) for Qm first and then

expand Pn afterwards. Thus, we find the right-hand-side of (2.26) is given by

1

Zm
det


. . . I0,l . . .

...

. . . Im−1,l . . .

. . .
∫
dµ(x, y)xθPn(x

θ)yθl . . .


l=0,...,m

, (2.27)

where dµ(x, y) = w(x, y) dx dy. The relevant integral has the evaluation∫
dµ(x, y)xθPn(x

θ)yθl =
n∑

r=0

(−1)n−r

(
n

r

)
Γ(a+ 1 + θn)Γ(n+ β)Γ(n+ r + β)

Γ(a+ 1 + θr)Γ(r + β)Γ(2n+ β)
Ir+1,l. (2.28)

Expanding the determinant along the last row and using the fact that the above r-sum is independent of

the column index l except for the last factor, we now require the evaluation of the determinant

1

Zm
det


. . . I0,l . . .

...

. . . Im−1,l . . .

. . . Ir+1,l . . .


l=0,...,m

. (2.29)

This determinant has the same structure as the standard bi-moment determinant except the last row is

out of sequence with the first m rows. Therefore, it is evaluated as

m∏
s=0

Γ(b+ 1 + θs)
m−1∏
t=0

Γ(a+ 1 + θt)Γ(a+ 1 + θ(r + 1)) det

(
1

Ak +Bl

)
k,l=0,...,m

, (2.30)

where Ak = a+ 1
2 + θk, k = 0, ...,m− 1, Am = a+ 1

2 + θ(r+1) and Bl = b+ 1
2 + θl, l = 0, ...,m. We thus

arrive at a standard Cauchy double alternant form, which can be computed using

∏
0≤k<l≤m

(Ak −Al) = θm(m+1)/2(r + 2−m)m

m−1∏
l=1

l!, (2.31)

∏
0≤k<l≤m

(Bk −Bl) = θm(m+1)/2
m∏
l=1

l!, (2.32)

m∏
k,l=0

(Ak +Bl) = θ(m+1)2 (r +m+ 1 + β)!

(r + β)!

m+1∏
l=1

(m+ l − 2 + β)!

(l − 2 + β)!
. (2.33)

Lastly, using the normalization (2.15) we deduce (2.25) after some simplification.

This concludes our discussion of the Cauchy-Laguerre bi-orthogonal system for generic values of θ.

We now move on to the specialization of positive integer valued θ, where the recurrence relations can be

explicitly deduced.
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2.2. Integer θ case

Our main task here is to elucidate some structures that apply to the Cauchy-Laguerre bi-orthogonal

system when one generalizes from θ = 1 to arbitrary positive integers. Such structures are not expected

to hold in the generic case ℜ(θ) > 0 but are useful in many applications including the considered one

in quantum information theory. We give a proof of finite order recurrence relations for the general bi-

orthogonal system {p̃n, q̃n}∞n=0 for all positive integers θ ∈ N with respect to the general weight function

(2.4). In addition, we will provide explicit examples for θ = 1, 2.

The essence of our proof is a generalization of the approach employed in [39] from the rank one shift

condition to a rank-θ condition. This first result is an identity that applies to the bi-moment matrix I,

and its corresponding consequences for the multiplication matrices X,Y .

Lemma 2.1. Let ℜ(a, b) > −1 and θ ∈ N. Furthermore, define the semi-infinite column vectors αs =

(Γ(a + θ − s + θk))k≥0, βs = (Γ(b + 1 + s + θk))k≥0 and πs := SPαs, ηs := SQβs, s ∈ N0. The

multiplication matrices satisfy the following rank-θ decomposition

X − eπiθY T =
θ−1∑
s=0

(−1)sπsη
T
s . (2.34)

Proof. A key observation on the bi-moment evaluation (2.13) is that x+ y divides xθ − eπiθyθ without

remainder when θ ∈ N and therefore

Ik+1,l − eπiθIk,l+1 =
θ−1∑
s=0

(−1)sΓ(a− s+ θ(k + 1))Γ(b+ 1 + s+ θl). (2.35)

Employing semi-infinite matrices I := (Ik,l)k,l≥0 and the shift matrix Λ := (δk+1,l)k,l≥0, this is written

as the rank-θ decomposition

ΛI− eπiθIΛT =
θ−1∑
s=0

(−1)sαsβ
T
s . (2.36)

Upon premultiplying (2.36) by SP and postmultiplying by ST
Q, and recalling the L-U decomposition of

the bi-moment matrix (2.21) as well as the multiplication matrices X,Y (2.24), we deduce (2.34).

In order to proceed further towards the recurrence relations, it is necessary to construct rank-θ an-

nihilators, along the lines that was done in [39] for θ = 1, for the right-hand side of (2.34). This can be

achieved recursively in θ steps, however we show the explicit details for θ = 1, 2 only.

Theorem 2.1. For ℜ(a, b) > −1 and θ = 1, the hybrid polynomials p̃n(x), q̃n(x) satisfy the third order

recurrence relations

x (an,1p̃n+1(x) + an,0p̃n(x)) = rn,2p̃n+2(x) + rn,1p̃n+1(x) + rn,0p̃n(x) + rn,−1p̃n−1(x), (2.37)

and

y (an,1q̃n+1(y) + an,0q̃n(y)) = sn,2q̃n+2(y) + sn,1q̃n+1(y) + sn,0q̃n(y) + sn,−1q̃n−1(y), (2.38)

where

an,1 = an,0 = 1 (2.39)
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and the coefficients rn(a, b) are given by

rn,2 = − (n+ 2)(a+ n+ 2)(β + n+ 1)

(β + 2n+ 2)(β + 2n+ 3)
, (2.40)

rn,1 =
(n+ 2)(a+ n+ 2)(β + n+ 1)

β + 2n+ 3
− (n+ 1)(a+ n+ 1)(β + n)

β + 2n
, (2.41)

rn,0 = (n+ 2)(a+ n+ 2)(β + n+ 1)

(
1

β + 2n+ 2
− 1

2

)
+ (n+ 1)(a+ n+ 1)(β + n)

−n(a+ n)(β + n− 1)

(
1

β + 2n− 1
+

1

2

)
, (2.42)

rn,−1 =
n(b+ n)(β + n− 1)

(β + 2n− 1)(β + 2n)
, (2.43)

(2.44)

and sn,k(a, b) = rn,k(b, a).

Theorem 2.2. For ℜ(a, b) > −1 and θ = 2, the hybrid polynomials p̃n(x), q̃n(x) satisfy the fourth order

recurrence relations

x (an,2p̃n+2(x) + an,1p̃n+1(x) + an,0p̃n(x))

= rn,3p̃n+3(x) + rn,2p̃n+2(x) + rn,1p̃n+1(x) + rn,0p̃n(x) + rn,−1p̃n−1(x) (2.45)

and

y (an,2q̃n+2(y) + an,1q̃n+1(y) + an,0q̃n(y))

= sn,3q̃n+3(y) + sn,2q̃n+2(y) + sn,1q̃n+1(y) + sn,0q̃n(y) + sn,−1q̃n−1(y), (2.46)

where

an,2 =
1

2n+ 3 + β
, an,1 =

2(2n+ 2 + β)

(2n+ 1 + β)(2n+ 3 + β)
, an,0 =

1

2n+ 1 + β
, (2.47)

and the coefficients rn,k(a, b) are given by (2.60) to (2.64) below, and sn,k(a, b) = rn,k(b, a).

Proof. For any vector π, we construct the semi-infinite diagonal matrix Dπ so that π = Dπ1. From

the knowledge that the unit vector 1 (or any constant vector) is left-annihilated by Λ − Id we can left-

annihilate the s = 0 term on the right-hand side of (2.34) by premultiplying with (Λ− Id)D−1
π0

. To

annihilate the remaining s = 1 term we need to calculate (Λ − Id)D−1
π0
Dπ11 =: ψ. A simple calculation

gives the components of ψ as

ψn =
π1,n
π0,n

− π1,n+1

π0,n+1
, n = 0, 1, . . . , (2.48)

assuming π0,n ̸= 0. Our required second left-annihilator is therefore (Λ− Id)D−1
ψ and so the composite

operator is the second order difference operator

(Λ− Id)D−1
ψ (Λ− Id)D−1

π0
. (2.49)

This recursion can be repeated up to θ levels leaving us with a θ-order difference operator in the general

case, modulo the non-vanishing condition given above. Before we compute this our final step in deriving
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the recurrence relation for Pn is to put some of these pieces together. Let us act on the first equation of

(2.22) with this operator - doing so on the left-hand side gives

x (Λ− Id)D−1
ψ (Λ− Id)D−1

π0
P , (2.50)

whereas acting on the right-hand side gives

(Λ− Id)D−1
ψ (Λ− Id)D−1

π0
XP =: AP , (2.51)

which defines a banded matrixA. This banded matrix has non-zero elements only for θ+1 super-diagonals

above the diagonal - the θ-order difference operator adds θ super-diagonals to the initial single one of the

lower Hessenberg X - and a single sub-diagonal - this operator does not add any additional sub-diagonals

to the upper Hessenberg matrix Y T . The analogous result for Q is

yQTD−1
η0

(
ΛT − Id

)
D−1
ψ

(
ΛT − Id

)
=: QTB, (2.52)

where

ψn = −η1,n
η0,n

+
η1,n+1

η0,n+1
, n = 0, 1, . . . , η0,n ̸= 0. (2.53)

For θ = 2, the second order difference operator acting on P has n-th component

π0,n+1

π0,n+2π1,n+1 − π0,n+1π1,n+2
Pn+2 +

π0,n+1

π0,n+1π1,n − π0,nπ1,n+1
Pn

+
π0,n+1 (π0,nπ1,n+2 − π0,n+2π1,n)

(π0,n+1π1,n − π0,nπ1,n+1) (π0,n+2π1,n+1 − π0,n+1π1,n+2)
Pn+1 (2.54)

and on Q,

− η0,n+1

η0,n+2η1,n+1 − η0,n+1η1,n+2
Qn+2 −

η0,n+1

η0,n+1η1,n − η0,nη1,n+1
Qn

− η0,n+1 (η0,nη1,n+2 − η0,n+2η1,n)

(η0,n+1η1,n − η0,nη1,n+1) (η0,n+2η1,n+1 − η0,n+1η1,n+2)
Qn+1. (2.55)

In the case at hand we compute the components of π0,π1 and η0,η1 to be

π0,n =
n!√
hn

Γ(a+ 1 + 2n)Γ(β + n)

Γ(β + 2n)
(a+ 1 + 2n(n+ β)) , (2.56)

π1,n =
n!√
hn

Γ(a+ 1 + 2n)Γ(β + n)

Γ(β + 2n)
, (2.57)

η0,n =
n!√
hn

Γ(b+ 1 + 2n)Γ(β + n)

Γ(β + 2n)
, (2.58)

η1,n =
n!√
hn

Γ(b+ 1 + 2n)Γ(β + n)

Γ(β + 2n)
(b+ 1 + 2n(n+ β)) . (2.59)

We thus arrive at the recurrences for our hybrid system (2.45) and (2.46). There are two observations to

make about these results. Firstly, the method generates an overall common factor for the a coefficients,

which is subsequently present in all the r-coefficients, and our results have this factor removed. For θ = 2

it is a (−1)n(a + 1 + 2(n + 1)(n + 1 + β)) which is non-zero for ℜ(a) > −1, ℜ(β) > −1, and n ∈ Z≥0.

Secondly, note that the difference operators defined by the left-hand sides of the recurrences (2.45) and

(2.46) are identical and symmetrical with respect to a, b.
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Finally, the rn, sn coefficients can be deduced in a number of ways, such as employing the explicit

series form for the polynomials and peeling off the leading terms from the highest degree (n + 3) down

in four successive iterations, or by acting upon the X matrix with the second-order difference operator

(2.54). Either way we find

rn,3 = − (n+ 3)(a+ 2n+ 5)(a+ 2n+ 6)(β + n+ 2)

(β + 2n+ 3)(β + 2n+ 4)(β + 2n+ 5)
, (2.60)

rn,2 =
(n+ 3)(a+ 2n+ 5)(a+ 2n+ 6)(β + n+ 2)

(β + 2n+ 3)(β + 2n+ 5)

− (n+ 2)(a+ 2n+ 3)(a+ 2n+ 4)(β + n+ 1)

(β + 2n+ 1)(β + 2n+ 3)
, (2.61)

rn,1 = − (n+ 1)(a+ 2n+ 1)(a+ 2n+ 2)(β + n)(β + 2n+ 2)

2(β + 2n)(β + 2n+ 1)

+
(n+ 2)(a+ 2n+ 3)(a+ 2n+ 4)(β + n+ 1)(β + 2n+ 2)

(β + 2n+ 1)(β + 2n+ 3)

− (n+ 3)(a+ 2n+ 5)(a+ 2n+ 6)(β + n+ 2)(β + 2n+ 2)

2(β + 2n+ 3)(β + 2n+ 4)
, (2.62)

rn,0 =
(n+ 3)(a+ 2n+ 5)(a+ 2n+ 6)(β + n+ 2)(β + 2n)

6(β + 2n+ 3)

− (n+ 2)(a+ 2n+ 3)(a+ 2n+ 4)(β + n+ 1)(β + 2n)

β + 2n+ 3

(
1

β + 2n+ 1
+

1

2

)
+
(n+ 1)(a+ 2n+ 1)(a+ 2n+ 2)(β + n)

β + 2n+ 3

(
2β + 4n+ 3

β + 2n+ 1
+

1

2
(β + 2n)

)
−n(a+ 2n− 1)(a+ 2n)(β + n− 1)

β + 2n+ 3

(
β + 2n+ 1

β + 2n− 1
+

1

6
(β + 2n)

)
, (2.63)

rn,−1 = − n(b+ 2n− 1)(b+ 2n)(β + n− 1)

(β + 2n− 1)(β + 2n)(β + 2n+ 1)
. (2.64)

Independently of the r-coefficients, the s-coefficients were computed and found to verify the symmetry

relation sn,l(a, b) = rn,l(b, a).

From the workings in the above proof one sees the structures of the recurrence relations in the general

case of θ ∈ N as summarized in the following corollary.

Corollary 2.1. Let θ ∈ N and ℜ(a, b) > −1. The hybrid polynomials satisfy the recurrence relations

x
θ∑

k=0

an,kp̃n+k(x) =
θ+1∑
l=−1

rn,lp̃n+l(x) (2.65)

and

y
θ∑

k=0

an,k q̃n+k(y) =
θ+1∑
l=−1

sn,lq̃n+l(y), (2.66)

with sn,l(a, b) = rn,l(b, a).
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For any given θ ∈ N, explicit expressions of the recurrence coefficients can be obtained in a similar manner

as in Theorems 2.1 and 2.2 but with increasingly more effort for a larger θ.

In concluding this section we give a special result of interest on the recurrence relation of the θ-

deformed bi-orthogonal polynomials (3.27a) corresponding to the Hilbert-Schmidt ensemble, i.e., when

θ = 2 in addition to the specialization (2.2). This result is useful in the computation of higher order

moments of entanglement entropies. Namely, upon the specialization of Theorem 2.2 with θ = 2, b = a+1

and using the application-wise more convenient notation

pj(x) = (−1)j
√
2p̃j(x), (2.67)

we arrive at the following corollary.

Corollary 2.2. The θ-deformed bi-orthogonal polynomials pj in (3.27a) for θ = 2, b = a+ 1 satisfy the

fourth order recurrence relations

x (a2pj+2 (x) + a1pj+1 (x) + a0pj (x))

= r3pj+3 (x) + r2pj+2 (x) + r1pj+1 (x) + r0pj (x) + r−1pj−1 (x) , (2.68)

where the coefficients are explicitly given by

a2 =
2aj + 3a+ 2j2 + 6j + 5

a+ 2j + 4
(2.69)

a1 = −
2(a+ 2j + 3)

(
2aj + 3a+ 2j2 + 6j + 5

)
(a+ 2j + 2)(a+ 2j + 4)

(2.70)

a0 =
2aj + 3a+ 2j2 + 6j + 5

a+ 2j + 2
(2.71)

r3 =
(j + 3)(a+ j + 3)

(
2aj + 3a+ 2j2 + 6j + 5

)
a+ 2j + 4

(2.72)

r2 =
a3 + 6a2j + 12a2 + 12aj2 + 46aj + 41a+ 8j3 + 46j2 + 82j + 42

(2aj + 3a+ 2j2 + 6j + 5)
−1

(a+ 2j + 2)(a+ 2j + 4)
(2.73)

r1 =
(a+ 2j + 3)

(
2aj + 3a+ 2j2 + 6j + 5

) (
2a2 + 6aj + 9a+ 6j2 + 18j + 10

)
(a+ 2j + 2)(a+ 2j + 4)

(2.74)

r0 =
a3 + 6a2j + 6a2 + 12aj2 + 26aj + 11a+ 8j3 + 26j2 + 22j + 6

(2aj + 3a+ 2j2 + 6j + 5)
−1

(a+ 2j + 2)(a+ 2j + 4)
(2.75)

r−1 =
j(a+ j)

(
2aj + 3a+ 2j2 + 6j + 5

)
a+ 2j + 2

. (2.76)

The corresponding recurrence relation of the dual polynomial (3.27b) can be also similarly found.

3. Applications to Quantum Information Theory

In this section, we study a special case, relevant to quantum information theory, of the above discussed

bi-orthogonal system that gives rise to the interpolating ensemble of interest. We first outline the corre-

sponding correlation kernels before showing a new result on the kernel factorizations. We then perform

analytical and numerical study on the average behavior of entanglement entropies over the interpolating

ensemble.
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3.1. Entanglement entropies and correlation kernels

For the quantum bipartite system introduced in Section 1, the degree of entanglement of subsystems

A and B is estimated by entanglement entropies, which are functions of the eigenvalues (entanglement

spectrum) of a given ensemble. Any function that satisfies a list of axioms can be considered as an

entanglement entropy. In particular, an entropy should monotonically change from the separable state

λ1 = 1, λ2 = · · · = λm = 0, (3.1)

to the maximally-entangled state

λ1 = λ2 = . . . λm =
1

m
. (3.2)

A standard one we consider here is quantum purity [2]

SP =
m∑
i=1

λ2i , (3.3)

supported in SP ∈ [1/m, 1], which attains the separable state and maximally-entangled state when SP = 1

and when SP = 1/m, respectively. Quantum purity (3.3) is an example of polynomial entropies, whereas

a well-known non-polynomial entropy is von Neumann entropy [2]

SvN = −
m∑
i=1

λi lnλi. (3.4)

The von Neumann entropy (3.4) is supported in SvN ∈ [0, lnm] that achieves the separable state and

maximally-entangled state when SvN = 0 and when SvN = lnm, respectively. Statistical information

of entanglement entropies is encoded through their moments: the first moment (average value) implies

the typical behavior of entanglement, the second moment (variance) specifies the fluctuation around the

typical value, and the higher order moments (such as skewness and kurtosis) describe the tails of the

distributions. We focus on the average entanglement entropies in this work, whereas the study of higher

order moments would make full use of the results derived in Section 2.

Moment computation over an ensemble with the probability constraint δ (1−
∑m

i=1 λi) is typically

performed over an ensemble without the constraint [9,11,13–15,34–37]. As will be seen, the unconstrained

version of the interpolating ensemble (1.6) is given by

h (x) =
1

C ′

∏
1≤i<j≤m

xi − xj
xi + xj

(
xθi − xθj

) m∏
i=1

xai e
−xi , (3.5)

where xi ∈ [0,∞), i = 1, . . . ,m. This ensemble has been recently proposed in [45] in connection to a

θ-deformed Cauchy-Laguerre two-matrix model. In the case when θ = 1, the corresponding ensembles

have been studied in [38–42]. We now move on to the moment relations of entanglement entropies between

the proposed ensemble (1.6) and its unconstrained version (3.5). Firstly, the density gd(r) of the trace

r =

m∑
i=1

xi, r ∈ [0,∞), (3.6)
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of the unconstrained ensemble (3.5) is obtained as

gd(r) =

∫
x

h(x)δ

(
r −

m∑
i=1

xi

)
m∏
i=1

dxi

=
C

C ′ e
−rrd−1

∫
λ

f(λ)
m∏
i=1

dλi

=
1

Γ (d)
e−rrd−1, (3.7)

where we have used the change of variables

xi = rλi, i = 1, . . . ,m, (3.8)

and the resulting Jacobian calculation leads to the normalization Γ(d) with

d =
m

2
(mθ − θ + 2a+ 2). (3.9)

The above calculation implies that the density h(x) can be factored as

h(x)
m∏
i=1

dxi = f(λ)gd(r) dr
m∏
i=1

dλi, (3.10)

i.e., the random variable r is independent of each λi (hence independent of SP and SvN). Similar factoriza-

tions also exist for the Hilbert-Schmidt ensemble [9] and the Bures-Hall ensemble [34, 36,37]. Introducing

the corresponding quantum purity of the unconstrained ensemble

TP =
m∑
i=1

x2i , (3.11)

the k-th moment of quantum purity SP is represented as

Ef

[
Sk
P

]
=

∫
λ

Sk
P f(λ)

m∏
i=1

dλi

=

∫
λ

T k
P

r2k
f(λ)

m∏
i=1

dλi

∫
r

gd+2k(r) dr

=
Γ(d)

Γ(d+ 2k)

∫
λ

∫
r

T k
P f(λ)gd(r) dr

m∏
i=1

dλi

=
Γ(d)

Γ(d+ 2k)
Eh

[
T k
P

]
, (3.12)

where we have used the change of variables (3.8) and the independence property (3.10). Therefore,

computing the k-th moment of SP can be converted to computing the k-th moment of TP. In particular,

the first moments are related by

Ef [SP] =
1

d(d+ 1)
Eh[TP] . (3.13)
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We now introduce von Neumann entropy of the unconstrained ensemble

TvN =
m∑
i=1

xi lnxi, (3.14)

that leads to the identity

SvN = ln r − r−1TvN, (3.15)

then the first moment relation is similarly obtained as

Ef [SvN] =

∫
λ

SvN f(λ)
m∏
i=1

dλi

∫
r

gd+1(r) dr

=
Γ(d)

Γ(d+ 1)

(∫
r

gd(r)r ln r dr −
∫
λ

∫
r

TvN f(λ)gd(r) dr
m∏
i=1

dλi

)

= ψ0(d+ 1)− 1

d
Eh[TvN] , (3.16)

where we have also used ∫ ∞

0

e−rra−1 ln r dr = Γ(a)ψ0(a), ℜ(a) > 0 (3.17)

with ψ0(x) = d lnΓ(x)/ dx denoting the digamma function [46]. For a positive integer l, the digamma

function admits the following useful identities

ψ0(l) = −γ +
l−1∑
k=1

1

k
(3.18a)

ψ0

(
l +

1

2

)
= −γ − 2 ln 2 + 2

l−1∑
k=0

1

2k + 1
, (3.18b)

where γ ≈ 0.5772 is Euler’s constant.

Computing the k-th moment of the above defined entropies requires the k-point correlation function

of the unconstrained ensemble (3.5), which is recently shown to follow a Pfaffian point process of a 2k×2k

antisymmetric matrix [45],

ρk(x1, . . . , xk) ∝ Pf

(
∆K11(xi, xj) ΣK01(xi, xj)

−ΣK01(xj , xi) ∆K00(xi, xj)

)
1≤i,j≤k

, (3.19)

where the kernels

∆K00(x, y) = K00(x, y)−K00(y, x), (3.20a)

ΣK01(x, y) = K01(x, y) +K10(y, x), (3.20b)

∆K11(x, y) = K11(x, y)−K11(y, x), (3.20c)

are written in terms of those of the θ-deformed Cauchy-Laguerre bi-orthogonal ensemble K00(x, y),

K01(x, y), K10(x, y), and K11(x, y). As a result, the computation of various statistical quantities of the
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quantum interpolating ensemble can be performed over those kernels. The kernels can be expressed via

the following Fox H-functions [45]

Hq(x) = H1,1
2,3

(
(−α−m, 1); (m, 1)

(0, 1); (−q, θ), (−α, 1)

∣∣∣txθ) , (3.21a)

Gq(x) = H2,1
2,3

(
(−α−m, 1); (m, 1)

(0, 1), (−q, θ); (−α, 1)

∣∣∣txθ) , (3.21b)

as

K00(x, y) = θ

∫ 1

0

tαHa(x)Ha+1(y) dt, (3.22a)

K01(x, y) = θx2a+1

∫ 1

0

tαHa(y)Ga+1(x) dt, (3.22b)

K10(x, y) = θy2a+1

∫ 1

0

tαHa+1(x)Ga(y) dt, (3.22c)

K11(x, y) = θ(xy)2a+1

∫ 1

0

tαGa+1(x)Ga(y) dt−
xaya+1

x+ y
, (3.22d)

where the definition

α =
2(a+ 1)

θ
− 1. (3.23)

follows from the notation (2.3). In general, the Fox H-function is defined through the following contour

integral [47]

Hm,n
p,q

(
(a1, A1), . . . , (an, An); (an+1, An+1), . . . , (ap, Ap)

(b1, B1), . . . , (bm, Bm); (bm+1, Bm+1), . . . , (bq, Bq)

∣∣∣x) (3.24)

=
1

2πı

∫
L

∏m
j=1 Γ (bj +Bjs)

∏n
j=1 Γ (1− aj −Ajs)∏p

j=n+1 Γ (aj +Ajs)
∏q

j=m+1 Γ (1− bj −Bjs)
x−s ds, (3.25)

where the contour L separates the poles of Γ (bj +Bjs) from the poles of Γ (1− aj −Ajs). In the special

case A1 = · · · = Ap = 1 and B1 = · · · = Bq = 1, the Fox H-function reduces to the Meijer G-

function [47]. The integral forms of the kernel functions (3.22a)–(3.22d) are useful for the computation of

mean entropies, whereas several other distinct representations of the kernel functions exist [36, 40–42,45].

In particular, we present the following bi-orthogonal polynomial forms [45] useful for a later discussion

K00(x, y) =
m−1∑
k=0

pk
(
xθ
)
qk
(
yθ
)
, (3.26a)

K01(x, y) = xae−x

∫ ∞

0

va+1e−v

x+ v
K00(y, v) dv, (3.26b)

K10(x, y) = ya+1e−y

∫ ∞

0

wae−w

y + w
K00(w, x) dw, (3.26c)

K11(x, y) = xaya+1e−x−y

∫ ∞

0

∫ ∞

0

vae−v

y + v

wa+1e−w

x+ w
K00(v, w) dv dw − w(x, y), (3.26d)
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where the normalized bi-orthogonal polynomials

pj (x) =

j∑
k=0

√
2(−1)k+jΓ(k + j + α+ 1)xk

Γ(θk + a+ 1)Γ(k + α+ 1)(j − k)!k!
, (3.27a)

qj (y) =

j∑
k=0

√
2(−1)k+j(θj + a+ 1)Γ(k + j + α+ 1)yk

Γ(θk + a+ 2)Γ(k + α+ 1)(j − k)!k!
, (3.27b)

are orthogonal with respect to the b = a + 1 specialization of the weight function (2.4) as given by

the orthogonality condition (2.6). Here, we are using slightly different notations of the bi-orthogonal

polynomials, cf. (2.18) and (2.19), which are simply related by (2.67).

Before presenting the main results on the average entropies, we provide in the following lemma a

generalization of the kernel factorization property from θ = 1 as reported in [41] to an arbitrary θ. This

property is useful in simplifying the k-point densities for the higher moment calculations as demonstrated

in [36, 37] for the case θ = 1.

Lemma 3.1. For any θ > 0, the correlation kernels (3.26a)–(3.26d) can be factorized

K00(x, y) +K00(y, x) = u(x)u(y), (3.28a)

K01(x, y)−K10(y, x) = v(x)u(y), (3.28b)

K11(x, y) +K11(y, x) = −v(x)v(y), (3.28c)

as the product of the functions

u(x) = θ

m−1∑
k=0

(−1)kΓ(k + α+m+ 1)xθk

Γ(θk + a+ 2)Γ(k + α+ 1)Γ(m− k)k!
, (3.29a)

v(x) = e−xxa − θx2a+1
m−1∑
k=0

(−1)kΓ(k + α+m+ 1)Γ(−θk − a, x)xθk

(θk + a+ 1)Γ(k + α+ 1)Γ(m− k)k!
, (3.29b)

where Γ(a, x) =
∫∞
x
ta−1e−t dt denoting the incomplete Gamma function.

Proof. The starting point of the proof is the bi-orthogonal polynomial forms of the kernels (3.26a)–

(3.26d). To show (3.28a), we first represent (3.26a) via (3.27a) and (3.27b) as

K00(x, y) =
m−1∑
k=0

m−1∑
i=0

θ(−1)i+kxθkyθi

Γ(θi+ a+ 2)Γ(θk + a+ 1)Γ(i+ α+ 1)Γ(k + α+ 1)i!k!

×
m−1∑
j=i

(2j + α+ 1)
Γ(j + i+ α+ 1)Γ(j + k + α+ 1)

Γ(j − i+ 1)Γ(j − k + 1)
(3.30)

=

m−1∑
k=0

m−1∑
i=0

θ(−1)i+kxθkyθi

Γ(θi+ a+ 2)Γ(θk + a+ 1)Γ(i+ α+ 1)Γ(k + α+ 1)i!k!

×Γ(i+ α+m+ 1)Γ(k + α+m+ 1)

(i+ k + α+ 1)Γ(m− i)Γ(m− k)
, (3.31)
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where the last step is obtained by Lemma 4.1 in [40]. We then have

K00(x, y) +K00(y, x) (3.32)

=
m−1∑
k=0

m−1∑
i=0

θ2(−1)i+kxθkyθi

Γ(θi+ a+ 2)Γ(θk + a+ 2)Γ(i+ α+ 1)Γ(k + α+ 1)i!k!

×Γ(i+ α+m+ 1)Γ(k + α+m+ 1)

(i+ k + α+ 1)Γ(m− i)Γ(m− k)

(
i+ k +

2(a+ 1)

θ

)
, (3.33)

=
m−1∑
k=0

θ(−1)kΓ(k + α+m+ 1)xθk

Γ(θk + a+ 2)Γ(k + α+ 1)Γ(m− k)k!

×
m−1∑
i=0

θ(−1)iΓ(i+ α+m+ 1)yθi

Γ(θi+ a+ 2)Γ(i+ α+ 1)Γ(m− i)i!
= u(x)u(y), (3.34)

which establishes (3.28a). To show (3.28b), we insert (3.26a) into (3.26b) and (3.26c) that gives

K01(x, y)−K10(y, x)

=

∫ ∞

0

xavae−x−v

x+ v
(vK00(y, v)− xK00(v, y)) dv

=
m−1∑
k=0

m−1∑
i=0

θ(−1)i+kΓ(i+ α+m+ 1)Γ(k + α+m+ 1) (Γ(m− i)Γ(m− k)i!k!)
−1
yθi

(i+ k + α+ 1)Γ(θi+ a+ 2)Γ(θk + a+ 2)Γ(i+ α+ 1)Γ(k + α+ 1)

×
∫ ∞

0

xavae−x−v

x+ v
vθk ((θi+ a+ 1)v − x(θk + a+ 1)) dv

=
m−1∑
i=0

θ(−1)iΓ(i+ α+m+ 1)e−xxayθi

Γ(θi+ a+ 1)Γ(i+ α+ 1)Γ(m− i)i!

m−1∑
k=0

(−1)kΓ(k + α+m+ 1) (Γ(m− k)k!)
−1

(i+ k + α+ 1)(θk + a+ 1)Γ(k + α+ 1)

−
m−1∑
i=0

θ2(−1)iΓ(i+ α+m+ 1)x2a+1yθi

Γ(θi+ a+ 2)Γ(i+ α+ 1)Γ(m− i)i!

m−1∑
k=0

(−1)kΓ(k + α+m+ 1)Γ(−θk − a, x)xθk

(θk + a+ 1)Γ(k + α+ 1)Γ(m− k)k!

=

(
e−xxa − θx2a+1

m−1∑
k=0

(−1)kΓ(k + α+m+ 1)Γ(−θk − a, x)xθk

(θk + a+ 1)Γ(k + α+ 1)Γ(m− k)k!

)

×
m−1∑
i=0

θ(−1)iΓ(i+ α+m+ 1)yθi

Γ(θi+ a+ 2)Γ(i+ α+ 1)Γ(m− i)i!
= v(x)u(y),

where the second to last equality is obtained by the identity

m−1∑
k=0

(−1)kΓ(k + α+m+ 1)

(i+ k + α+ 1)(θk + a+ 1)Γ(k + α+ 1)Γ(m− k)k!
=

1

θi+ a+ 1
. (3.35)

This identity is established by the fact that the sum can be written in terms of a unit argument terminating

hypergeometric function of Saalschützian type [46] as

4F3

(
1−m,

α+ 1

2
, α+m+ 1, i+ α+ 1;

α+ 3

2
, α+ 1, i+ α+ 2; 1

)
, (3.36)
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which in general admits [46]

4F3(−n, b, c, d; b+ 1, c− l, d−m; 1) =
n!(b− c+ 1)l(b− d+ 1)m
(b+ 1)n(1− c)l(1− d)m

, 0 ≤ l +m ≤ n,

with

(a)n =
Γ(a+ n)

Γ(a)
, (3.37)

denoting the Pochhammer’s symbol. This completes the proof of (3.28b). To show (3.28c), we in-

sert (3.26a) into (3.26d) that leads to

K11(x, y) +K11(y, x)

= xayae−x−y

(∫ ∞

0

∫ ∞

0

vawae−v−w

(x+ w)(y + v)
(ywK00(v, w) + xvK00(w, v) dw dv)− 1

)
=

m−1∑
k=0

m−1∑
i=0

θ(−1)i+kΓ(i+ α+m+ 1)Γ(k + α+m+ 1) (Γ(m− i)Γ(m− k))
−1

(i+ k + α+ 1)Γ(θi+ a+ 2)Γ(θk + a+ 1)Γ(i+ α+ 1)Γ(k + α+ 1)i!k!

×xayae−x−y

∫ ∞

0

∫ ∞

0

vawae−v−w
(
yvθkwθi+1 + xwθkvθi+1

)
(x+ w)(y + v)

dw dv − xayae−x−y

=
m−1∑
k=0

θ(−1)kΓ(k + α+m+ 1)Γ(−θk − a, x)xθk+2a+1yae−y

Γ(k + α+ 1)Γ(m− k)k!

×
m−1∑
i=0

(−1)iΓ(i+ α+m+ 1)

(i+ k + α+ 1)(θi+ a+ 1)Γ(i+ α+ 1)Γ(m− i)i!

+
m−1∑
k=0

θ(−1)kΓ(k + α+m+ 1)Γ(−θk − a, y)yθk+2a+1xae−x

Γ(k + α+ 1)Γ(m− k)k!

×
m−1∑
i=0

(−1)iΓ(i+ α+m+ 1)

(i+ k + α+ 1)(θi+ a+ 1)Γ(i+ α+ 1)Γ(m− i)i!

−θx2a+1
m−1∑
k=0

(−1)kΓ(k + α+m+ 1)Γ(−θk − a, x)xθk

(θk + a+ 1)Γ(k + α+ 1)Γ(m− k)k!

×θy2a+1
m−1∑
i=0

(−1)iΓ(i+ α+m+ 1)Γ(−θi− a, y)yθi

(θi+ a+ 1)Γ(i+ α+ 1)Γ(m− i)i!
− xayae−x−y

= −

(
e−xxa − θx2a+1

m−1∑
k=0

(−1)kΓ(k + α+m+ 1)Γ(−θk − a, x)xθk

(θk + a+ 1)Γ(k + α+ 1)Γ(m− k)k!

)

×

(
e−yya − θy2a+1

m−1∑
k=0

(−1)kΓ(k + α+m+ 1)Γ(−θk − a, y)yθk

(θk + a+ 1)Γ(k + α+ 1)Γ(m− k)k!

)
= −v(x)v(y),

where the second to last equality is obtained by applying twice the identity (3.35). This completes the

proof of Lemma 3.1.
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3.2. Average entropies over interpolating ensemble

With the above preparations, we now state the results on the average entropies over the interpolating

ensemble. Our first result is the formula of average purity as summarized in the following proposition.

Proposition 3.1. The average value of quantum purity (3.3) under the quantum interpolating ensem-

ble (1.6), for any θ > 0 and a > −1, is given by

Ef [SP] =
m−1∑
k=0

(−1)k+m−1θ(θk + a+ 2)2

2d(d+ 1)(m− 1− k)!k!
Aθ(k), (3.38)

where

Aθ(k) =
Γ
(
k + 2(a+2)

θ

)
Γ
(
k +m+ 2(a+1)

θ

)
Γ
(
k + 1 + 2

θ

)
Γ
(
k + 2(a+1)

θ

)
Γ
(
k +m+ 2(a+2)

θ

)
Γ
(
k + 1 + 2

θ −m
) . (3.39)

Before proving Proposition 3.1, two remarks on its special cases are in order.

Remark 3.1. In the special case θ = 1, a = n−m−1/2 that corresponds to the Bures-Hall ensemble (1.3),

by recognizing A1(m− 2) and A1(m− 1) as the only non-vanishing terms in (3.39) with

A1(k) =
(k + 2n− 2m+ 2)(k + 2n− 2m+ 1)Γ(k + 3)

(k + 2n−m+ 2)(k + 2n−m+ 1)Γ(k + 3−m)
, (3.40)

the expression (3.38) simplifies to

Ef [SP] =

m−1∑
k=m−2

2(−1)k+m−1(k + n−m+ 3/2)2

m(2n−m)(2mn−m2 + 2)(m− 1− k)!k!
A1(k)

=
2n(2n+m)−m2 + 1

2n (2mn−m2 + 2)
.

This recovers the mean purity formula of the Bures-Hall ensemble recently reported in [34, 35, 37].

Remark 3.2. In the special case θ = 2, a = n−m that corresponds to the Hilbert-Schmidt ensemble (1.1),

by recognizing A2(m− 1) as the only non-vanishing term in (3.39) with

A2(k) =
(k + n−m+ 1)Γ(k + 2)

(k + n+ 1)Γ(k + 2−m)
, (3.41)

the expression (3.38) simplifies to

Ef [SP] =

m−1∑
k=m−1

(−1)k+m−1(2k + n−m+ 2)2

mn(mn+ 1)(m− 1− k)!k!
A2(k)

=
m+ n

mn+ 1
.

We recover the mean purity formula of the Hilbert-Schmidt ensemble obtained in [7].

We now prove the Proposition 3.1.
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Proof. The essential task is to compute Eh[TP], which, after inserting into the moment relation (3.13),

will establish the Proposition 3.1. The required single eigenvalue density h1(x) of the unconstrained

ensemble (3.5) can be read off from the correlation function (3.19) that corresponds to a Pfaffian of a

2× 2 matrix as

h1(x) =
1

m
ρ1(x) =

1

2m
(K01(x, x) +K10(x, x)) . (3.42)

The computation now boils down to computing two integrals

Eh[TP] = m

∫ ∞

0

x2h1(x) dx

=
1

2

∫ ∞

0

x2K01(x, x) dx+
1

2

∫ ∞

0

x2K10(x, x) dx. (3.43)

The starting point to calculate the above integrals is the fact that the contour form (3.24) of the Fox

H-function (3.21a) admits a finite number of single poles, which by residue calculation gives a finite sum

Hq(x) =
m−1∑
k=0

(−1)kΓ(k + α+m+ 1)
(
txθ
)k

Γ(k + α+ 1)Γ(θk + q + 1)(m− 1− k)!k!
. (3.44)

Therefore, we have∫ ∞

0

x2K01(x, x) dx (3.45)

=

∫ ∞

0

θx2a+3

∫ 1

0

tαHa(y)Ga+1(x) dt dx (3.46)

=

m−1∑
k=0

θ(−1)kΓ(k + α+m+ 1)

Γ(k + α+ 1)Γ(θk + a+ 1)(m− 1− k)!k!

∫ ∞

0

xθk+2a+3

∫ 1

0

tα+kGa+1(x) dt dx (3.47)

=
m−1∑
k=0

(−1)k+m−1θ(θk + a+ 1)(θk + a+ 2)

2(m− 1− k)!k!
Aθ(k) (3.48)

where the integrals over t and x in (3.47) are evaluated respectively by the identity [47]∫ 1

0

xρ−1Hm,n
p,q

(
(a1, A1), . . . , (an, An); (an+1, An+1), . . . , (ap, Ap)

(b1, B1), . . . , (bm, Bm); (bm+1, Bm+1), . . . , (bq, Bq)

∣∣∣ηx) dx (3.49)

= Hm,n+1
p+1,q+1

(
(1− ρ, 1), (a1, A1), . . . , (an, An); (an+1, An+1), . . . , (ap, Ap)

(b1, B1), . . . , (bm, Bm); (bm+1, Bm+1), . . . , (bq, Bq), (−ρ, 1)

∣∣∣η) , (3.50)

and the Mellin transform of the Fox H-function [47], cf. (3.24),∫ ∞

0

xs−1Hm,n
p,q

(
(a1, A1), . . . , (an, An); (an+1, An+1), . . . , (ap, Ap)

(b1, B1), . . . , (bm, Bm); (bm+1, Bm+1), . . . , (bq, Bq)

∣∣∣ηx) dx (3.51)

=
η−s

∏m
j=1 Γ (bj +Bjs)

∏n
j=1 Γ (1− aj −Ajs)∏p

j=n+1 Γ (aj +Ajs)
∏q

j=m+1 Γ (1− bj −Bjs)
. (3.52)
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In the same manner, the second integral in (3.43) is evaluated to∫ ∞

0

x2K10(x, x) dx =
m−1∑
k=0

(−1)k+m−1θ(θk + a+ 2)(θk + a+ 3)

2(m− 1− k)!k!
Aθ(k). (3.53)

Putting together (3.13), (3.43), (3.48), and (3.53), we complete the proof of Proposition 3.1.

The next result on the average von Neumann entropy is presented in the following proposition.

Proposition 3.2. The average value of von Neumann entropy (3.4) under the quantum interpolating

ensemble (1.6), for any θ > 0 and a > −1, is given by

Ef [SvN] = ψ0(d+ 1)−
m−1∑
k=0

(−1)k+m−1 (θk + a+ 3/2)

d(m− 1− k)!k!
Bθ(k), (3.54)

where

Bθ(k) =
Γ
(
k + 2a+3

θ

)
Γ
(
k +m+ 2a+2

θ

)
Γ
(
k + 1 + 1

θ

)
Γ
(
k + 2a+2

θ

)
Γ
(
k +m+ 2a+3

θ

)
Γ
(
k + 1 + 1

θ −m
)(ψ0

(
k +

2a+ 3

θ

)
+ψ0

(
k + 1 +

1

θ

)
− ψ0

(
k +m+

2a+ 3

θ

)
− ψ0

(
k + 1 +

1

θ
−m

)
+θ

(
ψ0(θk + a+ 2)− θk + a+ 1

θk + a+ 3/2

))
. (3.55)

Proof. The main task is to compute the average Eh[TvN], which, after inserting into the moment rela-

tion (3.16), establishes Proposition 3.2. By employing the single eigenvalue density (3.42), this task boils

down to computing two integrals

Eh[TvN] =
1

2

∫ ∞

0

x lnxK01(x, x) dx+
1

2

∫ ∞

0

x lnxK10(x, x) dx. (3.56)

We first compute the integral ∫ ∞

0

xβK01(x, x) dx, β > 0, (3.57)

by using the results (3.44), (3.49), and (3.51) as∫ ∞

0

xβK01(x, x) dx =
m−1∑
k=0

(−1)k+mΓ (k + α+m+ 1)

2θ(m− 1− k)!k!Γ (k + α+ 1)Γ(θk + a+ 1)

× Γ(s)Γ(s− α)Γ(k + α− s+ 1)Γ(θs− a− 1)

Γ(s+m)Γ(s− α−m)Γ(k + α− s+ 2)
, (3.58)

where α is given by (3.23) and we denote

s = β − 1 + k +
2a+ 3

θ
. (3.59)
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Fig. 1. Average purity (3.38) as a function of subsystem dimensions: the impact of θ-deformation. The two solid curves

represent the cases of the standard ensembles (1.7) with no deformations and the other curves represent the cases of the
deformed ensemble (1.6). In all cases, we consider equal subsystem dimensions m = n.

Similarly, we also obtain∫ ∞

0

xβK10(x, x) dx =
m−1∑
k=0

(−1)k+mΓ (k + α+m+ 1)

2θ(m− 1− k)!k!Γ (k + α+ 1)Γ(θk + a+ 2)

× Γ(s)Γ(s− α)Γ(k + α− s+ 1)Γ(θs− a)

Γ(s+m)Γ(s− α−m)Γ(k + α− s+ 2)
. (3.60)

Taking the derivative of (3.58) and (3.60) with respect to β before setting β → 1 leads to the desired

expression for (3.56), which upon inserting into the moment relation (3.16) completes the proof of Propo-

sition 3.2.

Remark 3.3. In the special case θ = 1, a = n−m−1/2 that corresponds to the Bures-Hall ensemble (1.3),

the result (3.54) in Proposition 3.2 reduces to

Ef [SvN] =ψ0

(
mn− m2

2
+ 1

)
− ψ0

(
n+

1

2

)
+ ψ0(2n+ 1)− ψ0(2n−m+ 1) + ψ0(1)

− ψ0(m+ 1) +
2n− 1

2n
+

m−2∑
k=0

2(k + 1)(k + n−m+ 1)(k + 2n− 2m+ 1)

m(2n−m)(m− 1− k)(k + 2n−m+ 1)

=ψ0

(
mn− m2

2
+ 1

)
− ψ0

(
n+

1

2

)
.
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Fig. 2. Average purity (3.38) as a function of the parameters a and θ. The data points marked by diamond and square

shapes represent the special cases of the undeformed ensembles (1.7). In all cases, the subsystem dimension is m = 8.

This recovers the mean formula of von Neumann entropy under the Bures-Hall ensemble recently studied

in [34, 35].

Remark 3.4. In the special case θ = 2, a = n−m that corresponds to the Hilbert-Schmidt ensemble (1.1),

the mean formula of von Neumann entropy is well-known

Ef [SvN] = ψ0(mn+ 1)− ψ0(n)−
m+ 1

2n
, (3.61)

which was conjectured by Page [9] and later proved in [10,11]. By equating Proposition 3.2 in this special

case to the above result of Page, one arrives at the following non-trivial summation identity

1

mn

m−1∑
k=0

(−1)k+m−1
(
2k + n−m+ 3

2

)
Γ
(
k + 3

2

)
Γ(k + n+ 1)Γ

(
k + n−m+ 3

2

)
(m− 1− k)!k!Γ

(
k −m+ 3

2

)
Γ
(
k + n+ 3

2

)
Γ(k + n−m+ 1)

×

(
ψ0

(
k +

3

2

)
+ ψ0

(
k + n−m+

3

2

)
− ψ0

(
k + n+

3

2

)
− ψ0

(
k −m+

3

2

)

+2ψ0(2k + n−m+ 2)− 2(2k + n−m+ 1)

2k + n−m+ 3/2

)
= ψ0(n) +

m+ 1

2n
, (3.62)

a direct proof of which, however, seems difficult.
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Fig. 3. Average von Neumann entropy (3.54) as a function of subsystem dimensions: the impact of θ-deformation. The two

solid curves represent the cases of the standard ensembles (1.7) with no deformations and the other curves represent the
cases of the deformed ensemble (1.6). In all cases, we consider equal subsystem dimensions m = n.

3.3. Numerical results

We now perform some numerical studies of the average entanglement entropies over the interpolating

ensemble. We first focus on the result of average purity in Proposition 3.1. In Figure 1, we plot the

numerical values of average purity (3.38) as a function of the subsystem dimensions. For different values

of θ, we consider both the θ-deformed Hilbert-Schmidt ensemble assuming a = 0 and and the θ-deformed

Bures-Hall ensemble assuming a = −1/2 as shown in the left subfigure and the right subfigure, respec-

tively. Note that the choices of a imply equal subsystem dimensions m = n in both cases. The solid curves

in Figure 1 describe the behavior of the standard ensembles (1.7) with no deformations, whereas the other

curves represent the corresponding θ-deformed ones. It is observed that as the deformation parameter θ

increases, the values of average purity decrease monotonically resulting in estimations of entanglement

towards more entangled states. The observation suggests that the proposed interpolating ensemble (1.6)

is indeed able to continuously interpolate among the possible values of purity by varying the θ parame-

ter. It is also observed in Figure 1 that for a given θ the average purity under the Bures-Hall ensemble

tends to an estimate of more separable state (i.e., a larger purity value) than that of the Hilbert-Schmidt

ensemble. On the other hand, the differences are diminishing as the dimension increases. This behavior

has also been recently observed in [34].

Since the parameter a of the proposed ensemble (1.6) can be also considered as a deformation variable,

we wish to understand its impact on the quantum purity. In Figure 2, we plot the average purity (3.38) as

a function of the parameter a for different values of θ, where the dimension of subsystem is assumed to be

m = 8. The data points marked by diamond shape for θ = 1 and square shape for θ = 2 corresponds to the
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Fig. 4. Average von Neumann entropy (3.54) as a function of the parameters a and θ. The data points marked by diamond

and square shapes represent the special cases of the undeformed ensembles (1.7). In all cases, the subsystem dimension is
m = 8.

special case of Bures-Hall ensemble and Hilbert-Schmidt ensemble, respectively. It is observed in Figure 2

that as a increases, the values of average purity decrease monotonically indicating more entangled states.

In particular, for the cases θ = 1 and θ = 2, the average purity is seen to interpolate continuously among

the permissible values (1.7) of the parameter a.

We now turn to the numerical study of the von Neumann entropy in Proposition 3.2. In Figure 3,

we plot the average von Neumann entropy (3.54) as a function of the subsystem dimensions for different

values of θ. We consider both the θ-deformed Hilbert-Schmidt and Bures-Hall ensembles with the same

values of a as in Figure 1. It is seen that as the deformation parameter θ increases, the average von

Neumann entropy increases monotonically, which also results in estimations of entanglement towards

more entangled states as in Figure 1. In particular, the proposed interpolating ensemble (1.6) continuously

interpolates among the possible values of the von Neumann entropy. Similar to Figure 1, we also observe

in Figure 3 that the average von Neumann entropy under the Bures-Hall ensemble tends to an estimate

of more separable state (i.e., a smaller value of von Neumann entropy) than that of the Hilbert-Schmidt

ensemble. The differences, however, diminish as the dimension increases, which is in line with the recent

observation [34]. To understand the impact of parameter a, we plot in Figure 4 the average von Neumann

entropy (3.54) as a function of the parameter a for different values of θ. The dimension of subsystem is

also assumed to be m = 8. Similarly as observed in Figure 2, the values of average von Neumann entropy

increase monotonically indicating more entangled states as a increases. Finally, we point out that various

other numerical simulations have been performed, where the same relative behavior as discussed in above

four figures persists.
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4. Conclusions

In this work, we proposed and studied a generalized ensemble that interpolates between the two major

measures of density matrices - the Hilbert-Schmidt ensemble and the Bures-Hall ensemble. In particular,

we derived recurrence relations of the underlying bi-orthogonal polynomials of the ensemble useful in

computing different statistical quantities. As an application, we computed the average entanglement

entropies over the interpolating ensemble generalizing various known results in the literature. Numerical

simulations show that the proposed ensemble provides additional power in estimating the degree of

entanglement by varying the deformation parameters. Future work includes further study of the statistical

information of the ensemble such as higher order moments of entropies, fidelity, and volumes as well as

further study of the associated bi-orthogonal system.
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