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ABSTRACT

We propose a novel explainable machine learning (ML)
model that identifies depression from speech, by modeling
the temporal dependencies across utterances and utilizing the
spectrotemporal information at the vowel level. Our method
first models the variable-length utterances at the local-level
into a fixed-size vowel-based embedding using a convolu-
tional neural network with a spatial pyramid pooling layer
(vowel CNN). Following that, the depression is classified at
the global-level from a group of vowel CNN embeddings that
serve as the input to another 1D CNN (depression CNN). Dif-
ferent data augmentation methods are designed for both the
training of vowel CNN and depression CNN. We investigate
the performance of the proposed system at various temporal
granularities when modeling short, medium, and long anal-
ysis windows, corresponding to 10, 21, and 42 utterances,
respectively. The proposed method reaches comparable per-
formance with previous state-of-the-art approaches and de-
picts explainable properties with respect to the depression
outcome. The findings from this work may benefit clinicians
by providing additional intuitions during joint human-ML
decision-making tasks.

Index Terms— Mental health, speech vowel, knowledge-

driven, convolutional neural network, data augmentation
1. INTRODUCTION

Depression is a mental health (MH) condition with worldwide
prevalence [1]. Depression diagnosis and treatment is chal-
lenging due the lack of access to MH care resources and so-
cial stigma [2]. Speech-based machine learning (ML) systems
have shown promising results in identifying depression due
to their ability to learn clinically-relevant acoustic patterns,
such as monotonous pitch and reduced loudness [3]. In ad-
dition, these systems can potentially increase accessibility to
MH care resources, since they can run locally on users’ smart-
phone devices. Various ML models including support vector
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machines (SVM), convolutional neural network (CNN), and
long short-term memory (LSTM) have been explored for de-
pression estimation [4]. However, the majority of these meth-
ods are designed independently of MH clinicians. Previous
research found that physiological and cognitive impairments
associated with depression can influence motor control and
consequently, affect the phonological loop [5], producing sig-
nificant energy variations in speech vowels [6]. Patients with
depression depict a reduced frequency range between vowel
formants and different formant dynamics compared to healthy
individuals [7]. Vowel-based features were found to outper-
form turn-level acoustic features for detecting depression [8].
Integrating such domain knowledge into the system could po-
tentially enhance the explainability of speech-based ML mod-
els for depression detection.

In complex and highly subjective decision-making tasks,
such as the ones pertaining to MH care, ML technologies
can potentially help clinicians via augmenting their ability to
make reliable decisions in a data-driven manner. An explain-
able ML model of depression estimation would allow clin-
icians to gain insights into the ML rationale and decision-
making processes, and contribute toward better calibrating
their trust to the model output [9]. Previously proposed con-
ceptual frameworks for building human-centered explainable
ML suggest that users may be able to develop a mental model
of the algorithm based on a collection of “how explanations”
that demonstrate how the model works based on multiple in-
stances [10]. In addition, it is important to provide both global
explanations that describe holistically how the model works,
and local explanations that demonstrate the relationship be-
tween inputs and outputs [11].

Here, we design an explainable ML model for depres-
sion classification based on speech. We leverage knowledge
from speech production indicating that depression can influ-
ence motor control and consequently the formant frequencies
and spectrotemporal variations at the vowel-level [12]. We
propose a vowel-dependent CNN (vowel CNN) with a spatial
pyramid pooling (SPP) layer that learns the spectrotempo-
ral information of short-term speech segments (i.e., 250ms)
throughout the utterance. The depression is estimated from
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a group of vowel CNN embeddings using a 1D CNN (de-
pression CNN). The vowel CNN captures depression infor-
mation at the local-level from parts of speech that are the-
oretically postulated to be most affected by the MH condi-
tion [12]. The SPP layer maps utterances of any size into a fix-
size embedding that contributes to generating explanations at
the utterance-level, which can provide a global view of the
depression outcome. To further improve the performance and
address challenges related to the small sample size, we use
two novel data augmentation methods that are applied dur-
ing the training of vowel CNN (i.e., addressing imbalance
between vowel distributions) and depression CNN (i.e., al-
leviating imbalance between healthy and depression classes).
Results indicate that the proposed system is comparable to
or better than previous depression classification systems, and
further provides explanations about its decision-making pro-
cess to the user. Ablation studies demonstrate the effective-
ness of considered augmentation methods.

2. PREVIOUS WORK
End-to-end ML models can effectively detect one’s MH con-

dition from speech. Ma et al. designed an end-to-end system
(DepAudioNet) that uses a 1-dimensional CNN to encode au-
dio features and a LSTM network to model the encoded au-
dio embeddings [13]. Sardari et al. utilized a convolutional
autoencoder on the raw speech signal to identify depression
[14]. Romero et al. introduced an ensemble learning ap-
proach by training 50 CNN models with different initializa-
tions to address the challenge of local optimal [15]. Other
recent methods, such as the SpeechFormer, use a hierarchical
framework to modeling spectral variations within and across
speech frames, phonemes, words, and utterances [16].

Data augmentation can contribute to effectively classify-
ing depression with limited labelled data. As part of CNN-
Augm, Lam et al. augmented the speech transcripts based
on the topic of the clinical interview via manually identifying
the most common topics, and added speech samples related
to each topic to form an augmented dataset [17]. Ravi et al.
used different frame-width and frame-shift parameters to ob-
tain data samples at various time-frequency resolutions [18].
Other speech augmentation methods include feature perturba-
tion [19], altering the raw speech signal [20, 21], or generat-
ing new data via a GAN-based structure [22].

The contributions of this work are as follows: (1) In con-
trast to the majority of deep learning models on depression
estimation that are not explainable [13, 14, 16], we propose
a local explanation of the ML decision via modeling speech
patterns at the vowel-level; (2) We extend the limited prior
work on explainable ML for depression classification [23]
by further providing a global explanation of the decision at
the utterance-level via introducing the SPP layer that can
model utterances of variable length; and (3) We investigate
an oversampling-based and perturbation-based augmenta-
tion methods to mitigate the imbalanced distributions of the
different vowels and healthy/depression classes.

3. PROPOSED METHODOLOGY

Our system includes three modules: (1) Vowel segmentation
module with data augmentation (Section 3.1), which evenly
samples 250ms segments from English vowels (/a/, /e/, /i/, /o/,
/u/, or not a vowel); (2) Vowel classification module (Section
3.2), that includes a vowel CNN trained based on the balanced
vowel segments, and can take variable-length utterances as
input due to the SPP layer; and (3) Depression classification
module with data augmentation (Section 3.3), that trains the
depression CNN using the vowel CNN embeddings.

3.1. Vowel segmentation module with data augmentation
Here, we prepare the training data (i.e., 250ms speech seg-

ments with vowel labels) for the vowel CNN, similar to [23].
The most common vowel (/a/) occurs over 10 times more than
less frequent vowels (e.g., /u/) due to the phonation patterns
in the English language. This can hamper the vowel clas-
sification module from effectively learning vowel-dependent
patterns. Thus, we design a sampling-based data augmen-
tation method by dynamically determining the overlap be-
tween segments. If the current segment (0-250ms) belongs
to 'not a vowel’, a regular overlap length corresponding to
half of the analysis window (250ms * 0.5 = 125ms)is ap-
plied. However, if the current segment is labeled as the com-
monly occurring vowel /a/, the overlap length is reduced to
75ms (250ms * 0.3 = 75ms) so that more segments can be
sampled around this vowel. The overlap ratio for each vowel
is equal to the vowel frequency in the training data and re-
mains unchanged during sampling. A demonstration of how
it works for each vowel is provided in Table 1. A segment
is finally assigned to a vowel based on whether the vowel is
fully or partially included within this segment, similar to [23].

3.2. Vowel classification module
The purpose of this module is to train the vowel CNN that as-

signs a 250ms segment, as determined in Section 3.1, into a
vowel label (i.e., /a/, /e/, /i/, /o/, /u/, not a vowel). Compared
with the vanilla 2D CNN used in previous work [23], the SPP
layer increases the model’s flexibility by allowing different
embedding shapes after the convolutional layers. We use the
log-Mel spectrogram as the feature for every 250ms segment.
The feature extraction process is completed using the Librosa
library [24] and the other parameters include a 512-sample
FFT window length, 128-sample hop length, and 128 Mel
bands. This leads to a spectrogram patch with size (128, 28)
for every segment. The vowel CNN includes three convolu-
tional blocks, each block consists of a convolutional, acti-
vation, batch normalization, and max-pooling layer. A SPP
layer and two fully connected (FC) layers are further added
after all the convolutional blocks. We show the detailed vowel
CNN structure in Table 2. We use Pytorch [25] to implement
this model and minimize the cross-entropy loss. A batch size
64 and an Adam optimizer with a learning rate of 0.001 and
12 regularization of 0.001 are also applied.

3.3. Depression classification module with augmentation
This module utilizes the fixed-size embeddings at the utter-
ance level extracted from the vowel CNN and classifies de-
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Table 1. Overlap between current and next 250ms segments in the vowel classification module per type of vowel.

Vowel in current segment lal lel il o/ u/ not a vowel
Overlap ratio (between current and next segment) 0.3 0.08 0.1 0.03 0.02 0.5
Start/end time of next segment (ms) 75-325 20-270 25-275 7.5-257.5 5-255 125-375

Table 2. The structure and hyper-parameters of the 2D CNN model that conducts vowel classification.

Layer Conv block 1 Conv block 2 Conv block 3 SPP Fully-connected (FC) Output
conv kernel (3, 1) conv kernel (3, 1) conv kernel (3, 1) 128 units
Layer setting 64 filters, ReLU 64 filters, ReLU 64 filters, ReLU 3 levels ReLU 6 units
pooling kernel (2, 1) pooling kernel (2, 1) pooling kernel (2, 1)
output dim (64, 63, 28) (64, 30, 28) (64, 14, 28) 1344 128 6

pression for each speaker via soft voting. Because the vowel
CNN can take an arbitrary-sized input, we extract a 128-
dimensional vowel embedding by taking the output of the
first FC layer for each utterance (Table 2). Based on this 128-
dimensional embedding, we train a depression CNN model,
which takes a group of embeddings as input, resulting from
consecutive utterances, and outputs the depression prediction
probability for this group of utterances. Taking decisions
based on a set of utterances groups may contribute to a global
explanation on how the ML model works. Before training
the depression CNN, we generate an augmented training set
using a novel data augmentation method. Inspired by “Keep-
Augment” [26], our method augments the embeddings X of
a given speaker to a revised embedding set Z. We randomly
select a subset X,, of embeddings from n consecutive utter-
ances and obtain a 128-dimensional saliency measure of each
utterance via the output of the activation function of the vowel
CNN. The sum of the absolute value of the saliency measures
is further calculated. We then substitute the embeddings of a
random subset of these utterances with a constant number c,
without substituting the utterance embeddings with the high-
est saliency measures, thus protecting utterances with rich
spectrotemporal information. A detailed description of this
procedure is in Algorithm 1. The parameters of the augmen-
tation include n = 10, 21, 42 (number of utterances included
as an input in the depression CNN), pos = 8,16, 32 (number
of samples added to the training set if the original sample has
depression label), neg = 4, 8,16 (number of samples added
to the training set if the original sample has a non-depression
label), p = 1,2,6 (number of utterances that are perturbed
for a group of utterances), » = 21 (number of utterances
with high saliency values that are protected), and ¢ = 0.001
(constant value to replace embedding value).

The augmented dataset consists of (n, 128)-dimensional
samples, where n is the number of utterances and 128 is the
dimension of the vowel embeddings. The structure of the de-
pression CNN is in Table 3. This model minimizes the cross-
entropy loss, trained using a batch size of 16, and an Adam
optimizer with 0.001 learning rate and 0.01 12-regularization.
For a test speaker, we segment the speech into windows of n
utterances without overlap and perform soft voting.

Algorithm 1 Data augmentation in the augmented depression
classification module
Input: vowel CNN f, utterance embeddings X and depres-
sion label y, window size n, # augmented positive (nega-
tive) samples pos (neg); # utterances perturbed p; # utter-
ances protected 7, constant ¢
Output: set Z of augmented data
Z <+ {} > Initialize the augmented set
> Define number of augmented samples based on label
if y = 1 then
aug-num = pos
else
aug-num = neg
end if
for i from 0 to aug_num do
Randomly select subset X,, of n consecutive utterance
embeddings from X
Get saliency measure for each utterance in X, via f
Create X, with the r highest saliency utterances in X,
Create X, via randomly selecting p utterances from
X\ X, )
Create X, via substituting the X, embeddings with ¢

Create perturbed utterance embeddings X/n = X;) U
K\ Xp)

Z — ZU{(X4:9)}
end for
return Z

Table 3. The structure and hyper-parameters of final classifi-
cation CNN in augmented depression classification module.

Layer Conv block 1 Conv block 2 FC Output
kernel 7 kernel size 7
layer Setting 32 filters 32 filters 64 units 2 units
ReLU ReLU ReLU
pool size 2 pool size 2
Output dim (32, 18) (32, 6) 64 2

3.4. Evaluation

We measure the vowel classification performance of the vowel
CNN (Section 3.2) and depression classification performance
of the depression CNN (Section 3.3). We also explore the
acoustic descriptors that correlate with the system’s output.
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Table 4. Vowel classification F1-score.

kel K ol g et Macro
vowel F1

random

; 04 05 034 033 0.66 0.48
oversampling
augmented
vowel CNN 0.66 041 051 036 035 0.69 0.50

For every n utterances that serve as the input of the depression
CNN, we extract 7 interpretable features related to depres-
sion: (1) speech percentage; (2) mean fundamental frequency
(mean FO); (3) standard deviation of fundamental frequency
(std FO); (4) mean jitter; (5) mean shimmer; (6) mean loud-
ness. These acoustic measures are obtained using the Librosa
library and the openSMILE toolkit [24, 27]. We then quan-
tify the association of each acoustic measure with the model
prediction, using the Pearson’s correlation.
4. EXPERIMENTS

4.1. Data description
We use the Wizard-of-Oz part of the Distress Analysis In-

terview Corpus (DAIC-WoZ) [28] that includes 142 clinical
interviews split into a training set (30 depression, 77 healthy),
a development set (12 depression, 23 healthy), and a test set
(labels are unknown to the public per the AVEC 2016 chal-
lenge) [4]. A participant is considered to have depression
if they have a PHQ-8 score equal to or larger than 10 [29].
We report the performance on the development set, consistent
with previous research.

4.2. Baseline methods
We use two baseline methods that have considered data aug-

mentation for depression estimation; the CNN-Augm [17],
which requires content information, and the Ensemble-CNN
et al. [15], which includes 50 CNN models rendering it chal-
lenging to run locally on wearable or portable devices and
difficult to explain. We also report results from DepAudioNet
[13] and SpeechFormer [16], as outlined in Section 2.

4.3. Results
We demonstrate the effect of data augmentation in the vowel

segmentation module (Section 3.1). We report the F1-score
of vowel classification on the development set using random
oversampling and our proposed vowel augmentation method
in Table 4. Our proposed method leads to significantly better
performance identified via a McNemar test (p < 0.001).

We also report the depression Fl-score and the macro
F1-score obtained using the proposed augmented depression
classification model (Section 3.3) (Table 5). The proposed
method provides competitive performance with different ut-
terance window sizes n, which adds extra flexibility in deci-
sion granularity (i.e., fine-grain decisions for n = 10; and
coarse-grain for n = 42). We verify the effectiveness of
the data augmentation method by removing the random re-
placement (i.e., set p = 0) and observe that the performance
declined for all the experimental settings (n = {42, 21, 10}).
Using n = 42 and p = 0, we obtain a macro-F1 at 0.64, a per-
formance slightly better than DepAudioNet, which applies a
sampling-based augmentation without replacement.

Table 5. Depression classification performance scores.

Method Precision Recall F1  Macro Fl
DepAudioNet (2016) [13] 0.35 1.0 0.52 0.61
CNN-Aug (2019) [17] 0.78 0.58 0.67 -

Ensemble-CNN (2020) [15] 0.55 0.79  0.65 0.73
SpeechFormer (2022) [16] - - - 0.69
Fraug (2022) [18] - - - 0.66
Proposed (n = 10) 0.55 0.50 0.52 0.64
Proposed (n = 21) 0.80 0.33 047 0.65
Proposed (n = 42) 0.70 0.58 0.64 0.73

Table 6. Pearson’s correlation between acoustic measures
and depression probability for different number n of input ut-
terances.

peiEZif:ge m;gn ;tg jitter ~ shimmer loudness
10 -0.119 0.396 0.043 0.13 -0.088 -0.324
21 -0.195 0.377 0.088 0.15 -0.138 -0.411
42 -0.122 0.236 0.151 0.113  -0.156 -0.213

Bold font indicates significant correlation (p < 0.05).

Finally, we report the association between acoustic at-
tributes and the probability of the depression classification
system (Section 3.4) in Table 6. Jitter and speech percent-
age are significantly associated with the depression proba-
bility, which might indicate that the proposed explainable
model captures perceptually intuitive information about de-
pression. Mean FO and loudness are the most significantly
correlated acoustic features with the model output for n = 10.
Prior work indicates that these features are not always corre-
lated with depression [30, 31], but are highly indicative of a
speaker’s demography, including gender [32]. This may in-
dicate that the model captures gender information, as a result
of the difference in depression prevalence between female
and male speakers (i.e., 16 out of the 45 female speakers and
14 out of 63 male speakers with depression). While prior
work evidences gender bias in this data [33], a more detailed
analysis is needed to fully understand this.

5. CONCLUSION

We explored an explainable ML that integrated vowel-based
information at the local level and modeled speech utterances
with variable lengths with an SPP layer at the global level.
A dynamic sampling-based data augmentation method was
designed to address the distribution difference among vowels.
Another data augmentation method with random substitutions
was applied to further mitigate the class imbalance between
patients with depression and healthy participants. Our pro-
posed system depicted better or comparable performance to
multiple baselines, along with increased explainability. How-
ever, the robustness of our system toward other physical,
physiological, and psychological disorders beyond depres-
sion remains unexplored. As part of our future work, we plan
to evaluate the proposed approach via user studies with MH
experts and consider confounding factors such as gender to
better disentangle their interplay with MH information.
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