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ABSTRACT | The substantial growth of Internet-of-Things tech-

nology and the ubiquity of smartphone devices has increased

the public and industry focus on speech emotion recognition

(SER) technologies. Yet, conceptual, technical, and societal

challenges restrict the wide adoption of these technologies in

various domains, including, healthcare, and education. These
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challenges are amplified when automated emotion recognition

systems are called to function “in-the-wild” due to the inherent

complexity and subjectivity of human emotion, the difficulty of

obtaining reliable labels at high temporal resolution, and the

diverse contextual and environmental factors that confound

the expression of emotion in real life. In addition, societal and

ethical challenges hamper the wide acceptance and adoption

of these technologies, with the public raising questions about

user privacy, fairness, and explainability. This article briefly

reviews the history of affective speech processing, provides

an overview of current state-of-the-art approaches to SER, and

discusses algorithmic approaches to render these technologies

accessible to all, maximizing their benefits and leading to

responsible human-centered computing applications.

KEYWORDS | Affect; deep learning; emotion; ethics; prosody;

real-life monitoring; responsible design; speech analysis.

I. I N T R O D U C T I O N
Affective technologies enable computers to identify, pro-
cess, and simulate human affect. They lie at the inter-
section of engineering, computer science, psychology, and
cognitive science. Human affect experiences and displays
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may vary in several ways, including their duration, inten-
sity, and specificity, and can play an important role in
regulating human cognition, psychology, and interpersonal
interactions. Since human affect is inherently multimodal,
affective computing technologies typically rely on observ-
able signals, such as facial expressions, body language,
and/or speech characteristics.

The focus of this article is on affective speech
technologies—technologies that process and character-
ize speech signals to identify experienced and expressed
affect. We briefly review the history of affective speech
processing and provide evidence from speech science that
explains the modulation of affect in speech. Following that,
we outline knowledge-driven approaches to the quantita-
tive analysis of speech affect, as well as more recent work
on data-driven affect representations. Motivated by the
increasing prevalence of ambulatory speech technologies,
we discuss applications of affective speech technologies in
domains such as healthcare and education, and the associ-
ated technical challenges. These include building general-
izable models and personalizing the models to individuals,
for example, to enhance their technology-mediated user
experiences. Finally, we outline sociotechnical challenges
in affective speech technologies, which includes preserv-
ing privacy, being inclusive, ensuring equitable outcomes,
and promoting transparency through the explainability
of system behavior for improving human–AI interaction
in decision-making. We also discuss ethical issues that
arise from the wide use of these technologies outside the
laboratory in real-world settings (see Fig. 1).

II. B R I E F H I S T O R Y
Psychological sciences have proposed various conceptual
frameworks for modeling affect. Affect refers to a broad
range of experiences that people can have and embodies
both emotions and moods. Emotion is a short-term, often
intense, experience that is typically directed at a source [1]
and is only part of affect. Emotion representation usually
relies on either a discrete representation of (basic) emo-
tions (e.g., anger, fear, and happiness) or a continuous rep-
resentation of arousal/valence/dominance [2]. In contrast
to emotion, mood is a state of mind that tends to be less
intense than an emotion and does not necessarily need a
stimulus. Overall, moods last longer than emotions. Mood
can be measured with psychologically validated scales that
are designed in the context of general applications, such
as the Pick-A-Mood scale [3], and clinical applications [4],
[5], such as the Hamilton Depression Scale (HamD) [6]
and the Young Mania Rating Scale (YMRS) [7].

Different emotions are characterized by unique speech
patterns [8]. Scientific studies on emotional speech pro-
duction have focused on the premise that a speaker’s
emotional state influences the neuromuscular control of
vocal organs—both the voice source and the suprala-
ryngeal articulators, such as the tongue, jaw, and the
lips—and the resulting aeroacoustic mechanisms and (sig-
nal) consequences. Many classic studies have analyzed

the acoustic characteristics, in particular, the expressed
prosodic and spectral aspects of emotional speech [9],
[10], [11]. Speech patterns of pitch and amplitude mod-
ulation and segmental duration (prosody) carry affective
information [11]. For example, fundamental frequency
(F0) tends to increase in highly activated emotional speech
compared to neutral speech [12]. Thus, we can quan-
tify speaker affect by encoding certain characteristics that
can be amenable to objective measurement in the speech
signal.

Fewer studies have analyzed direct articulatory details
of emotional speech production. Studies using flashpoint
tracking using electromagnetic articulography have shown
more peripheral or advanced tongue positions than neu-
tral speech articulation and have demonstrated that the
movement range of the jaw is larger for angry speech
compared to neutral, sad, or happy speech [13], [14],
[15]. Prior work has also revealed the relationship between
the variability of an articulator and the linguistic critical-
ity of the articulator in emotional speech [16]. A more
complete view of the dynamic vocal tract afforded by
real-time magnetic resonance imaging has enabled fur-
ther detailed analysis of speech-emotional articulation that
reveals both speaker-dependent and speaker-independent
variation patterns [17]. For example, sad speech, a low
arousal emotion, tends to show a smaller opening for low
vowels in the front cavity than the high arousal emotions
more consistently than the other regions of the vocal tract.
Happiness depicts significantly shorter vocal tract length
than anger and sadness in most speakers. Together, these
acoustic and articulatory studies underscore the inher-
ent variability expected in emotional speech expressions
within and across [18], [19], which needs to be contended
with by computational methods and models.

Scientific findings from the field of speech production
have informed engineering approaches for quantifying
emotions expressed in speech. F0, which is a measure
of pitch (i.e., the vibration frequency of the vocal folds),
is a widely used measure that tends to depict differ-
ences between emotional speech and neutral speech [12].
Anger and happiness depict increased F0 compared to
neutral emotions [20], but these findings are confounded
by the emotion elicitation method, recording conditions,
and linguistic content of an utterance. The variation of
F0 over linguistic categories, such as accents (i.e., sylla-
bles with prominence) [21], vowels and consonants [22],
[23], or stressed and unstressed syllables [22], has been
also extensively examined. For example, happiness and
anger depict the largest F0 range over sentence and word
accents, while fearful and neutral emotions depict the
lowest F0 range [21]. Other work has also demonstrated
the presence of emotional content in various parts of the
pitch contour, such as the end (i.e., final rise), or the
relevance of the direction of the pitch contour in convey-
ing emotion [24]. Additional speech characteristics, such
as voice level, voice quality, articulation precision, and
spectral parameters, have been investigated in the context
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Fig. 1. Schematic overview of current and future speech emotion technologies: transitioning from speech science, quantitative analysis, and

representation learning to trustworthy real-life user experiences.

of emotional speech [24]. Grounded in these findings,
a large set of studies on emotional speech synthesis have
attempted to encode emotion in a speech via controlling
the prosodic parameters [25], [26].

The expression of emotions in speech sounds and one’s
ability to perceive those emotions from the speech are
fundamental to human communication [27]. A speaker
can express their emotion via modulating the acoustic
properties of their speech, while a listener can potentially
perceive this modulation of acoustic properties and infer
the emotion of the speaker. Prior studies have conducted
perceptual experiments in which listeners were asked to
identify the perceived emotions in speech signals with
results indicating that listeners were able to identify the
intended emotions at rates significantly higher than chance
levels [28], but still there is a mismatch between what was
intended and what was perceived [29]. This mismatch can
become more pronounced in speakers that suffer from clin-
ical conditions, such as neurological disorders [30], [31].
Research has also explored the ability to infer emotion
that transcends different languages and cultures [32] with
evidence both in favor and against this proposition [33].
While some researchers view emotion as a universal con-
struct given the biological basis of the emotional expe-
rience, wide evidence supports the presence of cultural
differences in emotion expression and perception [34],
[35]. Given the fundamental role of emotion in human
communication, the expression and perception of emotion
have been the matter of investigation in diverse domains of
human interaction, such as adult–child interaction, medi-
cal encounters, clinical therapy, and job interviews [36].

III. C U R R E N T S TAT E
This section reviews the current state of speech emo-
tion recognition (SER) technologies. It first discusses the
collection, curation, and annotation of emotion speech
corpora (see Section III-A). It further outlines technical
approaches to modeling emotions from speech, includ-
ing feature design and representation learning methods
(see Section III-B).

A. Construction of Affective Speech Corpora:
From in-Lab to in-the-Wild Datasets

Datasets with clear and varied emotional content are
generally either directly collected [38], [44], [45], [60]

or curated based on existing digital resources [47], [52],
as summarized in Table 1. Prior review studies have
provided a detailed overview of existing datasets built
for the task of SER that includes a speech from various
languages [61], [62]. The benefits of direct collection
methods follow from the controlled nature of the environ-
ment, the clearly defined elicitation protocols, and even
the predefined lexical content. These controls provide an
opportunity to highlight the (expressions of) emotionally
relevant content while mitigating the effects of unwanted
variability. However, the reality is that, in deployed envi-
ronments, unwanted and confounding variability is perva-
sive. This has led researchers to embrace curation meth-
ods. In these methods, the data have no centralized col-
lection location or platform. However, the data curated
are generally performative (i.e., either podcasts [47] or
YouTube videos [52]), rather than from natural dialogs,
again raising the specter of mismatch with respect to an
intended use case. There exist datasets that are collected in
natural contexts, for example, those focused on the overlap
between mental health and emotion [63]. However, due to
privacy concerns, datasets of this type are rarely publicly
available.

Therefore, there is a mismatch that exists between
publicly available datasets and natural conversational use
cases. This mismatch forces us to rethink the interplay
between algorithm development and data collection, and
could lead us to advocate for truly natural data collection
protocols. However, the practices of data collection are
themselves a reaction to the challenges in obtaining truly
representative data. If we move into real-world recording
environments, in which individuals interact naturally and
without constraints, we must be prepared to answer a new
set of questions: 1) how do we record data in the real
world from a practical and ethical standpoint? 2) how do
we obtain annotations for data that may be infused with
both contextual and cultural variability? and 3) how do
we measure progress as a field?

An alternative to the above is to rethink how we
annotate and use publicly available collections of data.
These collections contain not only emotionally expressive
data but also environmental data. Emotional data can
be augmented with environmental data to expose SER
classifiers to ambient conditions that are more likely in
real-world environments [64], [65], [66] and allow for
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Table 1 Overview of Most Commonly Used Speech Datasets of Emotion

data encoding differences [67]. Commonly used examples
include the Dataset for Environmental Sound Classification
(ESC) [68], Audio Set [69], and DEMAND [70]. A sim-
ilar aim can be accomplished by signal manipulations,
such as speeding up the audio (e.g., with pyAudio [71])
or introducing reverberation effects (e.g., with Pedal-
board [72]). However, even when datasets that enable
augmentation to promote robustness to environmental
differences are available, models constructed based on this
data may still need to handle variations due to differ-
ences in the recording devices themselves (e.g., different
channel characteristics of the microphones [5]). Further-
more, the methods designed to augment datasets may
themselves change how evaluators interpret the emotional
information [73].

Beyond the collection of audio data, the inherent ambi-
guity in the signals expressing emotion makes it an open
question as how to obtain reliable labels to support affec-
tive speech technologies. Affect annotations can be con-
ducted in a holistic (i.e., characterizing the overall emotion
content of an utterance) or continuous (i.e., characterizing
emotion over a continuous time scale) manner. Acted
speech data are typically assigned to the predefined emo-
tion that was originally intended during the elicitation
method. In order to verify the reliability of the emotional
content, prior work has proposed to obtain perceptual
ratings for each utterance and consider as valid only the
utterances that depict high interannotator agreement [42].
Evoked and natural emotion elicitation methods further
require human annotations that can be obtained either
via self-assessment or third-party labels. The annotation
of affect is an inherently complex task that is con-
founded by the unique experiential, cultural, and technical
background of the one who is called to perceive

emotion [74], especially when it comes to continuous
ratings [75], [76].

Self-assessment provides one’s perspective about their
emotion. It is useful and widely adopted but many times
suffers from subjectivity and recall bias [77] and may
differ from third-party labels [78]. One common type
of self-assessment is ecological momentary assessment
(EMA) [79], [80], which occurs within the data collection
period (e.g., usually a few times per day when obtaining
longitudinal data) and, thus, attempts to minimize recall
bias and maximize ecological validity. Third-party labels
give a spectator’s perspective about the target’s emotion
and are usually obtained by experts or via crowdsourcing.
These focus on the expression of emotion that is observ-
able and are confounded by the reliability or expertise of
annotators, the temporal segmentation of the data, knowl-
edge of context, and the potential temporal misalignment
among annotators. When obtaining labels via third-party
annotations or self-reports, one should also be mindful of
multicultural differences in decoding emotions since indi-
viduals tend to resort to stereotype knowledge and norms
that are prone to their sociocultural background when
decoding subtle emotional expressions [81]. A metareview
on culturally specific elements of emotion perception can
be found in [74].

The study of interannotator agreement in third-party
annotations of affect has been another important focal
point of the research community. Existing work pro-
vides evidence of an overall moderate interannotator
agreement when rating affect [82], [83], which can be
mitigated by various “good practices,” such as recruit-
ing annotators with motivation and prior experience,
constructing a well-defined annotation manual, provid-
ing annotators with an overall view of the content
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that they will be assigned to, and learning/integrating
annotator-specific distortions in the data analysis [75],
[84]. Several approaches have been proposed to model
annotator-specific distortions that might yield from
differences in the reaction time and emotional percep-
tion. Mariooryad and Busso [85] compensated for differ-
ences in reaction time among annotators by estimating
an annotator-specific time shift via maximizing the
mutual information between the signal-based behaviors
and the time-continuous annotations. Following that,
Gupta et al. [84] investigated a comprehensive model of
annotator-specific distortions in both space and time that
were approximated as a linear filter. Trigeorgis et al. [86]
further examined a method that temporally aligns the
annotations with embeddings learned from the data,
which was also compared against conventional time align-
ment approaches, such as the dynamic time wrapping
(DTW) and the canonical correlation analysis (CCA).
Khorram et al. [87] introduced a convolutional neural net-
work (CNN) that simultaneously aligns and predicts labels
in an end-to-end manner. Ramakrishna et al. [88] pro-
posed a multidimensional annotation fusion that jointly
models the various affective dimensions leading to more
accurate ground truth estimates (again treated as latent
variable distorted by the annotators) and is applicable to
both global and time series annotation fusion problems.

As new datasets and new annotation schemes come
online, there are questions that arise surrounding metric
design and progress tracking. There are two predominant
metrics in the field: unweighted average recall (UAR) and
concordance correlation coefficient (CCC) for discrete and
continuous outcomes, respectively. The predominance of
these two metrics, and of the common emotion recogni-
tion datasets, provides an opportunity to create a central
repository for results. This will allow the field to have a
straightforward method for tracking progress and evalu-
ating newly proposed approaches. However, the challenge
with this centralization lies in the assumption that these
datasets and metrics are the most appropriate for the
field. Available datasets mostly include utterances from
high-resource languages, while it would be important to
establish benchmarks for low-resource languages as well.
In addition, evaluation metrics, such as UAR and CCC,
were constructed with the assumption of a deterministic
label (i.e., either discrete or continuous). As we move to
more natural and ambiguous expressions of emotion, the
relevance of a single label may become overly restrictive,
which, in turn, may necessitate the creation of new metrics
or new styles of evaluation (e.g., soft labels [89], [90]).
In addition, with the advent of new social challenges,
it would be important to consider other metrics, such as
the inclusiveness of sociodemographic and linguistic char-
acteristics of speakers in the dataset and the consideration
of evaluation metrics beyond performance, such as fairness
and explainability.

Alternative annotation schema may also address emo-
tional ambiguity. We describe emotion with words, so it

is natural to expand the vocabulary to cover more specific
emotions. For example, Lotfian and Busso [47] employed a
secondary set of eight emotions in addition to the primary
emotion words to encode emotional ambiguity in natural-
istic speech, but much larger sets are sensible depending
on the use case. Associated challenges in constructing the
word set include how annotators and end-users perceive
words, how to size the set while considering redundancy
and specificity, and which types of words are relevant
to the expressed emotion. Challenges with annotation
include metrics for both modeling and annotation, ways
to handle label sparsity, how to encode complex expres-
sions along with annotator uncertainty, and what anno-
tators attune to; for example, further investigation needs
to be conducted on whether annotators may focus on
overt prosody, intent, or suspected internal emotion—each
requiring progressively more context.

B. Modeling of Emotion From Speech: From
Feature Design to Deep Learning Representations

Early methods of modeling emotion relied on the design
of knowledge-driven features that capture acoustic pat-
terns of emotion modulation in speech. Affect conveyed
in the voice has been empirically documented by the
measurement of parameters of phonation and articu-
lation [91], [92]. Examples include parameters in the
time domain (e.g., speech rate), the frequency domain
(e.g., F0 and formant frequencies), the amplitude domain
(e.g., intensity or energy), and the spectral distribu-
tion (e.g., Mel-frequency cepstral coefficients (MFCCs)
and relative energy in different frequency bands). These
descriptors are typically combined with statistical mea-
sures to summarize temporal trajectories into a fixed-
sized vector. In an early exploratory work, Lee et al. [93]
demonstrated that emotion patterns are the most promi-
nent in vowel sounds, whose spectral features yielded
increased emotion classification performance compared to
the spectral features computed on the entire speech sig-
nal. Bone et al. [94] proposed an unsupervised rule-based
framework using knowledge-driven acoustic features to
quantify the level of arousal in an utterance. More recently,
a group of voice and speech scientists convened at an inter-
disciplinary meeting in Geneva and devised an effective
subset of voice parameters with theoretical significance,
named “The Geneva Minimalistic Acoustic Parameter Set
(GeMAPS).” Features included in GeMAPS capture the
speech energy content and its relative change across fre-
quency bands that are theoretically stipulated and practi-
cally demonstrated to relate to emotion [95]. In order to
promote reproducible research, many of the above efforts
have been publicly disseminated in open-source toolboxes,
such as the openSMILE [96] and COVAREP [97], yielding
off-the-shelf acoustic descriptors of emotion that can be
readily used.

The field of SER has progressed tremendously with
the advent of deep learning methods since learning dis-
criminative representations is at the core of advancing
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the observed performances. In one of the early works
in this domain, Mao et al. [98] proposed the learning of
affective speech directly from the speech spectrogram. The
authors leveraged a variant of a sparse autoencoder with
reconstruction penalization to learn local invariant fea-
tures from all the unlabeled samples. The learned features
further served as the input to a discriminative learning task
with a loss function that encouraged saliency, orthogonal-
ity, and discrimination for emotion recognition. Following
that, Trigeorgis et al. [99] proposed an end-to-end learn-
ing framework of emotion classification from raw speech.
Raw speech segments of 6-s length served as the input
to a set of 1-D convolution and max-pooling operations.
The temporal evolution within each segment was further
modeled via a general-purpose bidirectional long short-
term memory (LSTM) network. After training the LSTM,
the authors found that the corresponding cell activation
was associated with prosodic features (e.g., loudness and
F0). Other approaches have demonstrated that integrating
temporal context in the short term (i.e., modeling the
multitemporal evolution of frame-level representations)
and the long term (i.e., aggregating those learned features
into a compact utterance-level representation) can benefit
emotion classification [100], [101].

Benchmarking SER deep learning algorithms is natu-
rally challenging due to the aforementioned complexity
in collecting data and labels (see Section III-A). In order
to illustrate key components of SER research, we list as
an example those SER works conducted on the IEMOCAP,
MSP-Podcast, and MSP-IMPROV, which are commonly used
in previous deep learning studies (see Table 2). We provide
a list of key research with the corresponding accuracy
that is obtained across various settings, including the
choice of machine learning types (e.g., supervised, semisu-
pervised, and multitask), input speech features (e.g.,
Wav2Vec [102], raw waveform, and log-mel spectrogram),
target labels, and used evaluation metrics. Although this
summary is not exhaustive, it provides a glimpse into the
states and accuracy numbers obtained for modern SER
research. Note that the majority of state-of-the-art results
are obtained by utilizing variants of transformer-based
architectures of pretrained speech representations (e.g.,
Wav2Vec [102] and HuBERT [103]). Interested readers
can refer to a more comprehensive review of deep repre-
sentation learning for affective speech processing provided
by Lee et al. [104]. Despite the promising results, deep
learning methods are still susceptible to the small-scale
emotion speech datasets (i.e., relatively to larger scale
datasets used in conventional speech processing and com-
puter vision tasks), the limited generalizability of the
representations in other domains, and the lack of explain-
ability, as will be discussed in Section IV.

IV. W H AT ’ S N E X T
The SER community has considerably matured over the
last few years. Yet, in order for emotion speech technolo-
gies to truly make a positive societal impact, they need

to progress so that they can be effectively and responsi-
bly integrated into everyday lives. To achieve this, it is
important to reorient the focus of the field toward three
directions: 1) conducting data collection efforts that are
aligned with the focal use case and devising new annota-
tions strategies for the collected data (see Section IV-A);
2) addressing engineering challenges that hamper the
generalizability of emotion recognition systems to multiple
use cases while, at the same time, ensuring a personalized
experience for each user (see Section III-B); and 3) identi-
fying societal challenges related to affective speech tech-
nologies, modifying, or redesigning these technologies
to address these challenges with a focus on benefiting
humans, allowing users to effectively calibrate their trust
in speech emotion technologies, and effectively dissem-
inating emotion speech technologies via raising public
awareness regarding their benefits while, at the same
time, listening to potential public skepticism or criticism
(see Section IV-C).

A. Application-Specific Data Collection,
Annotation, and Modeling

One’s ability to effectively manage emotions is critical
to healthy psychological and social development. Thus,
affective speech technologies have become increasingly
popular foci in the context of mental health, including
mood (e.g., depression), developmental [e.g., autism spec-
trum disorder (ASD)], and neurological (e.g., Parkinson’s)
disorders. Traditionally, the monitoring of mental health
conditions is performed at low temporal resolution via
third-party evaluations based on clinician and caregiver
reports, in addition to self-reports. The enhanced capability
and affordability of ambulatory sensing devices have led
to an increasing focus on speech-based mental health
monitoring algorithms [122]. If designed effectively and
responsibly, these algorithms can unobtrusively track one’s
condition, explore its longitudinal variation in real life, and
even predict the onset or episodes of mental health degra-
dation [123]. These can potentially result in novel insights
regarding mental health disorders, promote more person-
alized treatment, and increase the engagement of users
and patients [124]. In the following, we will overview
prior work on affective speech technologies for mental
health by exemplifying our discussion on three different
cases of health conditions, including depression, ASD, and
Parkinson’s disease.

Depression is a serious but common mental health
condition that affects one’s feelings, thoughts, and daily
functioning [125]. Patients with depression have been
characterized by distinct vocal prosodic patterns, such
as decreased speech loudness, slowed speech rate, and
monotonous pitch [126], [127]. Beyond the ease of acqui-
sition, an additional advantage of audio-only analysis—
without accessing the linguistic or other accompanying
visual cues—is the increased potential for privacy. Thus,
the automated assessment and tracking of markers of

6 PROCEEDINGS OF THE IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Texas A M University. Downloaded on June 14,2023 at 11:44:22 UTC from IEEE Xplore.  Restrictions apply. 



Lee et al.: Engineering View on Emotions and Speech

Table 2 Examples of Recent Deep Learning Approaches for Speech Emotion Recognition

depression from vocal acoustics have received wide inter-
est from the speech community, exemplified in exten-
sive survey papers [127], [128], and publicly available
datasets, such as the Distress Analysis Interview Corpus
(DAIC) [129] and data included in the Audio-Visual Emo-
tion Challenge (AVEC) 2017 and 2019 challenges [130],
[131]. Early work on automatic depression assessment
has examined prosody, source features, formants, and
spectral measures that serve as the input to machine
learning classifiers for estimating the presence or sever-
ity of depression [132], [133], [134], [135]. Expanding
upon this work, other studies have focused on longitu-
dinal mood monitoring via smartphone devices in order
to track depression symptom severity for individuals with
bipolar disorder [5], [63], [136] and major depressive
disorder [137]. Efforts have also focused on multimodal
approaches that incorporate linguistic and visual informa-
tion to vocal acoustics [138]. More recent work inves-
tigated end-to-end representation learning that relies on
learning depression-specific patterns in the speech spec-
trogram. For example, DepAudioNet was introduced as an
effective deep learning method that modeled short-term
temporal and spectral correlations within the speech
spectrogram with a CNN, followed by capturing tempo-
ral correlations across speech frames via an LSTM net-
work [139]. Grounded in evidence that depression can
affect phoneme-level variations in speech [140], AudVow-
elConsNet learned spectrogram-based features related to
depression based on the consonant and vowel regions of
speech [141]. Temporal dependencies at the frame level
(or vowel level), the word level, and the sentence level

were further modeled in a hierarchical manner via atten-
tion mechanisms [142], [143].

ASD is a heterogeneous condition characterized by dif-
ficulties with social communication and social interac-
tion, and restricted and repetitive patterns in behaviors,
interests, and activities [144]. A core symptom of ASD
involves segmental and suprasegmental speech atypical-
ity that primarily resides in the pragmatic and affec-
tive aspects of prosody, manifested in monotonous pitch,
deficits in speech volume control and vocal quality, and
atypical stress patterns [145], [146], [147]. Research on
speech-based automated ASD assessment has examined
prosodic measures [148], [149] and spectral parame-
ters [150], as well as various representation learning meth-
ods [151], [152]. Another line of work has focused on the
early detection of ASD for infants and toddlers via inves-
tigating spectral parameters (e.g., spectral flatness) and
phonation characteristics (e.g., jitter and shimmer) [153],
[154], [155]. Beyond assessment or early detection, affec-
tive computing technologies can quantify potential dis-
ruptions in affect-related processes of individuals with
ASD, including the relation between voice and face in
affective expression and perception in ASD under various
interaction contexts [156]. Insights from this analysis can
contribute to novel therapy mechanisms and interventions
via identifying specific parts of an interaction that can
be beneficial to a patient with ASD and tailoring therapy
sessions to a patient via predicting beneficial interaction
strategies on a moment-to-moment basis [157], [158].

Parkinson’s disease is a neurological disorder that
is characterized by uncontrollable or unintended
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movement [159]. Given that speech production relies
on the sophisticated movement of vocal organs, it is often
impacted in patients with Parkinson’s disease and revealed
in speech cues such as imprecise articulation and breathy
or hoarse voice quality [160], [161]. Thus, prior work has
focused on classifying between patients with Parkinson’s
disease and their healthy counterparts based on speech
intelligibility metrics [162], [163], speech dysphonia
measures that quantify time- and amplitude-based speech
periodicity and variations of this periodicity [164], and
prosodic and vocal fold excitation parameters [165].
In addition, patients with Parkinson’s disease often depict
monotonous pitch and loudness, which can result in
the corresponding speech being perceived as “sad,” a
condition also referred to as “dysathria” [166]. Prior work
further provides evidence of impairment in emotional
expression and recognition for patients with Parkinson’s
disease, who tend to be less accurate than healthy
individuals in the recognition of negative emotions [31],
a finding that also applies to the perception of negative
emotions from voice [30]. The expressive quality of speech
is also affected. Patients with Parkinson’s disease have
difficulty expressing emotional prosody [167], [168],
a finding that has been corroborated via perceptual user
studies [169] and experiments of automatic speech-based
emotion recognition [170]. Given this evidence of
impaired emotion perception and expression, affective
speech technologies can offer methods for supporting
disease screening and progression monitoring of patients
with Parkinson’s disease via investigating changes in
emotional speech, potentially focusing on improvements
in the variability of pitch and loudness after therapy and
medication intake.

Beyond healthcare, affective speech technologies can be
used in other domains, such as education and decision
support. In the field of education, tracking student affect
can contribute toward an emotionally aware and per-
sonalized learning experience that can effectively support
the instructor by suggesting real-time adjustments to the
class content and activities [171], [172], [173], [174].
In team science, monitoring individual and team affect can
improve our understanding of specific types of behaviors
that are beneficial or detrimental to team functioning and,
thus, help mitigate interpersonal conflict [175], [176].
A recent line of work focuses on quantifying subtle socioe-
motional behaviors in teams, such as microaggressions and
microaffirmations, via conversational markers, and inves-
tigating their association to team affect and performance,
especially in the context of diverse teaming [177]. Given
that emotions constitute pervasive drivers of decision-
making [178], prior work highlights the important of mod-
eling user affect in decision support [179]. The importance
of modeling situational factors, such as affect, is becoming
even more prevalent in recent decision support paradigms
that involve interactions between human users and AI
algorithms [180], [181], which are already confounded by
various human- and system-related factors [182].

Human affect in the above settings might be com-
plex and multifaceted, thus requiring domain-appropriate
strategies for data capturing, annotating, and modeling.
It is recommended that one collaborates with domain
experts across all stages, from the original research design
to the actual technology implementation, and in an iter-
ative manner that allows for fine-tuning and potentially
redesigning the technology. It is also necessary that one
relies on existing theoretical models and conceptual foun-
dations so that the technology is developed in tandem with
the specific needs of the stakeholders. Obtaining insights
into the data and affect-specific patterns is also essential.
This can be achieved via analyzing knowledge-driven mea-
sures related to segmental and suprasegmental informa-
tion in association with the considered outcomes and by
seeking interpretable explanations from potentially com-
plex representation learning models. Since affect does not
depict similar temporal manifestations to other conditions,
such as the ones related to mental health (e.g., depres-
sion is a condition that slowly changes over time, while
emotions are short-term experiences), it is important that
one considers appropriate temporal frameworks for the
analysis of the data and the evaluation of the systems,
and takes into account the interaction across potentially
distinct temporal scales. Given the sensitivity and high
stakes associated with the aforementioned applications,
the research community as a whole should define appro-
priate operational thresholds in conjunction with stake-
holders and policy makers. Toward this direction, it is
valuable to create common benchmarks publicly available
to researchers, and render data (as permitted) and algo-
rithms readily available in public repositories.

B. Engineering Challenges in Affective Speech
Technology for Real-Life Applications

1) Promoting Robustness and Generalizability: With the
advent of speech technologies in various applications,
it becomes more and more important to learn generaliz-
able representations that can respond to novel situations
not observed in the training data and handle cross-domain
mismatch. In fact, prior work in SER has investigated vari-
ous supervised, semisupervised, and unsupervised learning
methods to effectively transfer learned speech emotion
representations among domains, even in the presence of
limited labeled data (see Table 2). In terms of super-
vised learning, previous studies have explored the effect
of feature normalization and supervised domain adap-
tation, such as adaptive and incremental support vector
machines. For instance, Abdelwahab and Busso [183]
proposed an adversarial learning framework that is com-
posed of an emotion classifier and a domain classifier.
The domain module of the network learns a represen-
tation that confuses a competent domain classifier. This
leads to models that perform better in the target domain
without impacting the performance in the source domain.
Gideon et al. [184] proposed a continuous domain adapta-
tion method designed to create representations that “meet
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in the middle” between disparate datasets. The domain
adaptation leveraged Earth movers distance between rep-
resentations from source and target domains to aid in the
learning process [184]. Other approaches have proposed
to leverage dependencies in speech information between
interconnected attributes, such as emotion, gender, and
speaker identity, working off the assumption that learning
speech variations across multiple constructs can result in
more generalizable representations [114], [185], [186].
Metric learning approaches that model relative differences
between emotions in the learned feature embedding have
been also investigated as few-shot learning approaches
generalizing emotion representations with few labeled
samples [187]. In a most recent effort, EmoNet was assem-
bled from 26 SER corpora (∼65 hours data) and was built
to serve as a generalizable multicorpus SER model [188].
Transfer learning methods can have a significant impact
on real-life affect recognition, where labels are noisy and
difficult to obtain. An interesting future direction would be
to leverage the ample amount of labeled data from in-lab
datasets to pretrain affect recognition models that can be
readily and effectively translated into real-world situations
with minimal or no supervision.

2) Personalizing the User Experience: The large-scale
acquisition of speech data is redefining the delivery of
affect recognition technologies. Combined with AI capa-
bilities, affective speech technologies can now target users
in a personalized manner and address their needs in the
context of specific circumstances. The motivation for per-
sonalization is conceptually grounded in psychological sci-
ences arguing large interindividual variability in the ways
that emotions are experienced and expressed [18], [189].
For instance, King and Emmons [190] found that individ-
uals who are overall more ambivalent about expressing
their emotions are less likely to actually express their
felt emotions, a finding that could potentially be reflected
in their speech patterns. On the basis of the hypothe-
sis that emotional dispositions are core characteristics of
personality dimensions [18], other studies have explored
personality differences in emotions. Indicatively, Ng and
Diener [191] found that individuals who score high in
neuroticism have a stronger feeling of more negative emo-
tions compared to their counterparts, while those who
score high in extraversion have a higher feeling of positive
emotions. Such evidence from the field of psychology has
motivated affective computing researchers to study per-
sonalized models for affect recognition. It is recommended
that affective computing researchers overview studies from
psychological sciences in tandem with the model develop-
ment since the integration of domain-specific information
might contribute to the reliability and interpretability of
the final personalized models.

Recent studies have examined various approaches for
effectively recognizing emotions from each user. Rahman
and Busso [192] examined an unsupervised feature adap-
tation scheme that aims to reduce the mismatch between

features corresponding to a general model (i.e., trained
for all users) and the ones corresponding to a target
user. Li and Lee [193] proposed a personalized attention
mechanism via constructing a personal profile embedding
that compares the psycholinguistic attributes of the target
speaker to the other speakers from a large-scale dataset.
Vryzas et al. [194] leveraged transfer learning methodolo-
gies to tailor the learning of speech-based emotion recog-
nition models. Models were pretrained on in-domain data
from all speakers or on publicly available out-of-domain
data and subsequently fine-tuned on the target speaker.

Personalized models can be particularly beneficial in
mood monitoring allowing the assessment and manage-
ment of mood disorders. Karam et al. [195] examined
the use of speech patterns associated with mood tran-
sitions, varying from a healthy euthymic state to states
characterized by mania or depression, using structured
(i.e., weekly clinical interactions) and unstructured (i.e.,
calls recording participants’ speech outside the clini-
cal interaction) speech recordings. Khorram et al. [196]
demonstrated that the prediction of depression from these
data could be made significantly more accurate by first
personalizing the models using speaker embedding fea-
tures. Arevian et al. [109] also proposed a longitudinal
speech tracking system that recorded speech data from
individuals with mental health conditions over the span
of four months, which were used to develop a machine
learning system for clinical state tracking based on acoustic
and lexical measures. Yan et al. [197] leveraged multi-
modal data, including speech, to track daily changes in
affect over the span of eight weeks. Findings indicate
that subject-dependent normalization of affect labels can
help improve the performance of the machine learning
models, and the leveraging of previously collected data
from an individual can contribute to the reliable estimation
of affect in future time points.

C. Responsible Affective Speech Technology

Intelligent ambulatory technologies have witnessed pub-
lic backlash and wide skepticism due to the ethical and
societal challenges associated with their design and imple-
mentation [198]. Based on existing conceptual models that
describe factors of trust in automation [199], this section
will overview best practices and recommendations that can
render affective speech technologies trustworthy.

1) Preserving Privacy and Security: Affect in speech coex-
ists with various types of personal identifiable informa-
tion (PII), such as one’s identity, age, perceived gender,
and health status [200]. Thus, data and models pertain-
ing to affective speech technologies might lead to unin-
tended leaking of PII without the user’s knowledge or
consent [201]. The increasing public awareness of digi-
tal exposure [202] has motivated researchers to pursue
research on privacy preservation in speech processing to
ensure that the processing and analysis of one’s voice
occur such that undesired or unintended information
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cannot be derived by the user, the system, or another third
party [201], [203]. One potential approach to enhance
PII preservation is via voice anonymization that typically
encodes the voice characteristics of the speaker, the infor-
mation that is spoken (i.e., linguistic content), and the
co-occurring paralinguistic information that can be related
to affect (i.e., intonation, rhythm, and vocal stress). These
methods aim to alter the speaker’s identity while preserv-
ing the linguistic and paralinguistic information [204],
[205]. However, disentangling speaker information from
segmental and suprasegmental information is not always
straightforward since the latter is heavily affected by the
idiosyncratic characteristics of one’s voice. Initial studies
have employed voice conversion to transform components
of speech such as the spectral envelope [206]. Other
approaches involve end-to-end systems that learn transfor-
mations of the speech waveform or spectrogram so that
they minimize the automatic speech recognition (ASR) loss
and maximize the speaker classification loss, implemented
via adversarial learning approaches [207], [208], [209].
Recent research also focuses on replacing the identity of
the original speaker with that of another speaker [204],
[210], [211].

A limited number of recent studies have evaluated
the ability of privacy-preserving anonymization tech-
niques to preserve affect information. For example,
Nortel et al. [212] replaced the speaker identity in one’s
voice with another speaker and found that this can
preserve emotion information, yielding 15% degrada-
tion in emotion classification accuracy. Dias et al. [213]
investigated hashing and homomorphic speech transfor-
mations that resulted in a 2%-3% degradation in clas-
sifying between neutral and angry speech. Feng and
Narayanan [214] examined data transformation methods
that allow inference of only desired affective attributes
while suppressing others, as well as adaptive noise injec-
tion methods to suppress other PII attributes, such as
gender from affect labels [215]. Tsouvalas et al. [216]
studied a federated learning approach that was found to
effectively remove speaker-dependent information while
preserving the emotion recognition accuracy. Adversarial
learning has been examined both in terms of learning
privacy-enhanced emotion representations [217] and gen-
erating anonymized speech signals while preserving their
emotional information [218]. Feng and Narayanan [137]
proposed an effective set up of federated learning for SER,
including differential privacy schemes to protect against
attribute inference attacks [219].

It is becoming increasingly clear that privacy preserva-
tion should be a guiding principle when designing and
deploying affective speech technologies. Yet, the interplay
between PII and affect in speech prevents many of the
existing and frequently used methods, such as adversar-
ial learning, to succeed in the task of affect-preserving
privacy mitigation. In addition, elements of privacy
preservation should be considered along the well-known
“personalization-privacy” paradox, which suggests that

personalized services require users to continuously pro-
vide a wide variety of sensitive personal data, which
increases their concerns about loss of privacy [220].
While prior work indicates a number of factors affect-
ing users’ tendency to share their data, such as past
privacy violations and users’ need for control [221],
additional research at the intersection of engineering,
engineering technology management, and human factors
is required to better understand how to balance the
personalization-privacy relationship and how these two
factors influence users’ acceptance of speech-based affect
recognition technologies.

2) Ensuring Inclusiveness and Equity: Evidence by recent
studies indicates that machine learning algorithms can
learn sociodemographic attributes from the data, even
if those are not explicitly encoded in the input of the
algorithm [222], [223], [224]. This can systematically dis-
criminate against certain subgroups of individuals, particu-
larly ones belonging to sensitive populations (e.g., racially
minoritized groups, older adults, and non-English speak-
ers) for which enough data are not always available. In the
case of speech, information about language/dialectal back-
ground and biological sex is inherently embedded in
those signals; therefore, speech-based emotion recogni-
tion can naturally learn such sensitive information and
use it in biased ways when taking decisions. Sensitive
groups might depict distinct distribution from their coun-
terparts due to biological reasons. For example, prior
work has found significant main effects for biological sex
and race in certain vocal tract dimensions [225], which
can impact the corresponding acoustic measures. One’s
talking style might also be different depending on their
socioeconomic status (SES) and social identity [226] that
are associated with sociodemographic attributes. Sensi-
tive groups may further employ different technological
equipment (e.g., microphones) when recording speech in
ambulatory settings, potentially due to differences in SES.
This can result in the diverse quality of recordings that
might bias the learned speech representations. Finally,
the majority of work in SER typically focuses on high-
resource languages, such as English, Mandarin, French,
and German. Thus, inclusiveness should be also consid-
ered in the context of low-resource languages that do not
typically receive much attention by the community and
are rarely included in benchmarks, either via training ML
models from scratch or by applying transfer learning and
metalearning approaches [227], [228].

Given this evidence, the interest within the speech com-
munity in developing equitable speech-processing tech-
nologies has increased over the years. Here, the term
“equitable” does not only refer to nondiscriminatory treat-
ment but to a treatment that ensures that all individ-
uals receive the same opportunity to reach a specific
objective. Prior work suggests the presence of sociodemo-
graphic bias in ASR [229], [230], and voice biometrics
and speaker recognition [224], [231]. Particularly, for the
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case of speech-based emotion recognition, recent work has
explored the effect of age and gender on the automated
recognition of emotional valence and activation [222],
[232]. Sagha et al. [222] found that it is easier to rec-
ognize valence in younger speakers, followed by female
speakers. Gorrostieta et al. [232] found that it is more dif-
ficult to recognize emotion activation in females compared
to male speakers and investigated various methods (i.e.,
adversarial learning, fairness-aware optimization) for debi-
asing the data. Gender bias has been examined in terms
of acoustic, linguistic, and visual measures for emotion
recognition [223], with text and audio being the least
biased unimodal models, and video being the most biased,
especially for happiness and frustration. Booth et al. [233]
obtained similar results when using multimodal measures
for the task of job hireability estimation based on video
data; acoustic measures were found to be the least biased
between female and male speakers, followed by linguistic
and visual measures.

Despite the recent interest in equitable speech tech-
nologies, existing work on these technologies has been
mostly developed in engineering labs and in isolation
from the people and communities that they serve. It is
important to adopt a holistic view and iterative design
when building affective speech technologies. First and
foremost, it is necessary to involve stakeholders in all
stages of the model-building process so that their feedback
is incorporated along the way. It is also important to rely
on diverse research and development teams who can bring
different perspectives based on their own background and
experiences. Finally, it is necessary to monitor for potential
biases throughout all stages of the technology-building
process (i.e., data collection, analysis, model design, train-
ing, evaluation, and deployment) and rectify those when
needed. Additional recommendations on creating inclusive
AI technologies for human-centered applications can be
found in [234] and [235].

3) Promoting Explainability for Calibrating User Trust:
The large-scale deployment of speech emotion systems
is bounded by the stakeholder’s ability to explain the
corresponding technology, especially when it comes to
sensitive human-centered tasks, such as the ones per-
taining to mental health, team science, and education.
While much research has been done on designing explain-
able AI (XAI) and evaluating XAI with respect to user
needs, this work is mostly focused on general machine
learning that has been evaluated predominantly in com-
puter vision and natural language processing [236], [237],
[238]. In addition, the majority of work on explainability
involves low-level technical explanations that might not
be meaningful or relatable to the stakeholders. In tandem
with XAI developments, it is important to consider recent
findings from the field of human–computer interaction
(HCI) that advocates for new XAI paradigms, such as
ones that leverage contrastive explanations with coun-
terfactual examples and contextual information [106],

and incorporate value-sensitive design and participatory
design [239]. Explainable emotion speech technologies
should be developed in an iterative manner by clearly
defining the system goals and design requirements (e.g.,
what to explain) and evaluating the system outcomes
with the target users (e.g., clinician and patient) in terms
of system usability and performance, human-XAI perfor-
mance, overall user understanding, and appropriate user
trust calibration [240]. In particular, for SER, a reason-
able approach would be to integrate knowledge-driven
information that reflects anticipated changes in speech
characteristics resulting from the emotional content [241].

4) Considering the Ethical Implications: As affective
speech technologies advance, a critical issue to address
is the ethical and moral challenges associated with those,
a domain of inquiry that is still in its infancy. Grounded
in work from normative and applied ethics, research and
development should be concerned about giving these tech-
nologies ethical principles and enabling them to function
in a responsible manner for identifying and potentially
resolving ethical dilemmas that are met as part of their
decision-making process [242]. Since affective speech
technologies are dealing with sensitive human-centered
challenges, researchers designing and implementing those
systems should be at the forefront of making sure that
their design maximizes benefits, minimizes harm to the
users, and abides with the morals of society. As the field
progresses, it is important for the affective computing
community to work with researchers from ethics and phi-
losophy for identifying the ethical principles and guidelines
that would help mitigate these issues. It is also necessary
to raise public awareness of legitimate concerns, engage in
conversations with the stakeholders (e.g., users and indus-
try), and support policy makers toward a societal and legal
framework in which the end-users can keep pace with the
current developments and are not inadvertently negatively
affected by those. The research community should further
be proactive in getting involved in regulatory and legis-
latory efforts, such as the European Union’s (EU) AI Act
(AIA) [243] and the “Blueprint for an AI Bill of Rights” by
the U.S. White House [244], in order to assist in creating
an inclusive process for self-certification and government
oversight of AI algorithms, define transparency require-
ments, and identify “acceptable” and “unacceptable” qual-
ities and performance thresholds of the AI systems.

V. C O N C L U S I O N
This article summarized the history and current state-of-
the-art of technologies for recognizing emotions expressed
in speech (i.e., SER). We presented findings from speech
production research on how emotion influences the neu-
romuscular control of the vocal organs and, thus, speech
articulation patterns and discussed how these findings
have influenced the design of acoustic parameters that
quantify the effect of emotion on speech phonation and
articulation. Following that, we outlined the efforts of the
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research community on curating and annotating emotion
speech corpora and the challenges associated with this pro-
cedure, especially when it comes to capturing expressions
and perceptions of emotions in real life. We also sum-
marized modeling efforts that rely on knowledge-driven
feature design and more recent representation learning
approaches via deep learning. Noting advances in the
field, moving from laboratory measurement to represent-
ing emotion expressed/perceived in natural real-world
“in-the-wild” settings, we highlighted promising applica-
tions in health and education domains underscoring the
importance of context-specific emotional speech data to

be collected and modeled. Finally, we outlined challenges
and engineering approaches related to responsibly and
ethically integrating these technologies in real-life appli-
cations through a variety of means for ensuring trustwor-
thiness, such as preserving a user’s privacy and mitigating
PII leaks, promoting their explainability to stakeholders,
and enabling these technologies to work in an equitable
manner for all people.
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