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1. Introduction

With improved algorithms and faster computer power, the focus is shifting
from simply analyzing a model for one set of input data, to characterizing its
behavior at ”nearby” sets of data. Moreover, the engineers must have an idea of
how the flow responds to changes in the parameters or assess the effect of input
data uncertainty on the response of the system. Such and other scenarios lead
to the problem of solving an ensemble of flow equations. Some specific examples
are sensitivity studies [1], turbulence modeling for non-homogeneous flows [2],
combustion [3], numerical weather prediction [4, 5].

In this work, we consider solving an ensemble of incompressible Navier-
Stokes equations subject to perturbed initial conditions u?, body forces f; and

viscosity coefficients v;,j =1, J:
875’&]' +u;-Vu; — V- (Uj(l‘)vu]') + Vp; = fj(x,t) in Q,
V- U; = 0in Q7
uj = gj(z,t) on I'p,

(—v;Vu; + p;I)n = Sr (uj,p;) on 'y,

~—~ o~~~ ~~ o~
N N

uj(z,0) = u(;(x) in €,

where ) denotes the flow domain, and IT" is its boundary. We assume that
I is decomposed into non-overlapping Dirichlet I'p and Neumann (open) I'y
boundaries. The choice of the stabilization term Sr (u;,p;) will be discussed in
the next section.

When solving (1)-(5), one can achieve unconditional stability with fully im-
plicit or implicit-explicit schemes [6]. However, this would require assembly and
storage of J coefficient matrices at each time step. On the other hand, in the
case of v; = v, one can treat the nonlinear term fully explicitly, and thereby
assemble a single coefficient matrix once for all. The resulting linear systems
could be solved efficiently using solvers for systems with multiple right-hand
sides, cf. [7, 8]. But this often induces a very restrictive timestep condition,

especially on adaptively refined meshes.
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One alternative to the fully explicit approach was proposed in [9], which
considered the v; = v = const case. The scheme was first order in time, and
suitable for low Re number flows. The idea was later extended to higher order
schemes and high Re flows in [10, 11, 12]. The common idea in all of these
references is to split the nonlinear term into semi-implicit and fully explicit
parts, where the former is advected by lagged ensemble mean and the latter
is advected by lagged fluctuating velocity. The energy stability then can be
shown to hold under a timestep restriction involving the velocity fluctuations,
which should not be as restrictive as the fully explicit approach. The case of the
multiple viscosity coefficients has been addressed in [13, 14, 15], which place an
additional condition on the magnitude of the viscosity variance.

Since the introduction of the Scalar Auxilary Variable (SAV) method for
gradient flows in [16], the development of unconditionally stable schemes with
explicitly treated nonlinear term has received a lot of interest in the litera-
ture. Starting from the initial work of [17], a different variation of SAV-based
schemes for solving incompressible Navier-Stokes system have been proposed in
[18, 19, 20]. The underlying idea of the SAV-based schemes is to introduce an
additional ordinary differential equation (ODE) to the governing system for the
SAV, lag the whole nonlinear term and cancel it out in the stability analysis
by having the same nonlinear term in the discrete scheme for the ODE of the
SAV. However, even though all the existing schemes are unconditionally stable,
to our best knowledge and experience, none of them could be viewed as robust.
While some schemes are not even guaranteed to produce positive or real-valued
approximations of scalar auxiliary variables, others have been observed to pro-
duce non-convergent solutions. Note that if there was a robust SAV scheme,
then efficiently solving the system (1)-(5) for the v; = v case would be immedi-
ate, as there will be a single matrix to assemble and to store with J right hand
sides. Such systems can efficiently be solved using block iterative solvers.

One remedy to address these deficiencies of the SAV schemes was put forth
in a recent paper [21], for ensembles when I'y = (). The addition of classical

Voigt regularization term [22, 23] was observed to improve the accuracy of the
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SAV methods, but the ODE for the auxiliary variable was not always solvable.
In this report, we synthesize the ideas developed in [18, 21, 14], and develop
SAV-ensemble calculation schemes that require only a single matrix assembly
for all realizations and all time steps, are unconditionally stable without any
restricting assumptions on the variance of viscosities v; or the time steps, and
always produce positive values for the auxiliary variables.

This paper is organized as follows. In Section 2, we introduce the notations
and discuss the open boundary conditions. In Section 3, we derive the numerical
schemes and discuss their stabilities. In Section 4, we present the solution
method of our schemes. We will then test our schemes in Section 5 and wrap

up the manuscript with conclusions in Section 6.

2. Preliminaries

2.1. Notations
Given an ensemble of realizations g1 (), ..., g7 () of a quantity g(z), we define

the fluctuation in j—th member as

g;(z) = gj(z) — g(x),

and its maximum value by

= max Ssu i\x).
Joo 133’916893( )

The normal component of stress tensor and its modification will be denoted
by
2
The L?(Q2) norm and inner product will be denoted by [-|| and (-, -), while the L?

o(uj,p;) := —vjVu; -n+p;n, o(uj,pj) = o(uj,pj) — uj.

inner product over I'p and T'y will be denoted by (-, -)p and (-, -) v, respectively.
For simplicity of the presentation, we assume no-slip boundary condition on I' p
in the stability analysis. In this setting, the appropriate velocity and pressure
spaces are defined as

d

X = {ve (H' ()" :v=00n FD}, Q= L*(Q).

4
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We use as the norm on X, the seminorm ||V - || 2.

The dual space X* = HBl(Q) is equipped with norm

(f,v)
—1,% = SUP =,

where (-, ) refers to a duality pairing.
To simplify the notations, we assume that the approximation is continuous
in space.

Explicitly skew-symmetrized nonlinear term will be denoted by
b (u,v,w) := (u- Vo, w) + %(V Su,w - v).
Integration by parts formula shows that
bi(u,v,w) = (v-n,v-w)p — b1 (u, w,v), (6)
which in particular implies that

by (u,v,v) = (%,MQ)P. (7)

2.2. Open boundary conditions

Open boundary conditions (4) are often used to truncate a big physical
domain to make the problem tractable, or when the flow domain is unbounded,
such as in jet flows. The review of the topic for incompressible flows can be found
in [24, 25, 26]. Our choice of St used in this work was proposed and benchmarked
in [27, 28]. It belongs to a family of velocity-penalization boundary conditions,
and has been also successfully tested in physiological regimes as well [26].

To discuss our choice of open boundary condition, for 0 < € < 1 we introduce
a smoothed Heaviside function and its opposite:

O1(z): = % (1 + tanhg) ~ H(x), @

)
o
—~
&
I

% (1 - tanhg) ~1—H(x).

In this paper, we will consider schemes based on the following open boundary

condition:

_"—"nuj on Ty, 9)
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where it is assumed that the velocity u; is properly non-dimensionalized. Oth-

erwise, O (u[’JOn) must be used in (9), for some reference speed U.

To understand the boundary condition (9), let us partitition I'y into outflow
and backflow regions:

I'n :F;NHF;N, where
I‘IN ={z €Ty :(uy; -n)(z) >0} and I'; = {zr €T'n: (u; -n)(z) <0}.

Then (9) is equivalent to

0, ifx € F;FN,
(—v;Vu; +pl)n ~ ’
—ug—'nuj, ifxEF;N,

hence an alternative name, directional do-nothing condition [29].
The open boundary condition in the weak formulation will be implemented

via the following trilinear term:

ba(u, v, w) := —%((u ‘n)O¢(u-n),v-w)y.

3. Numerical schemes

3.1. First order scheme

Define the scalar auxiliary variables by

R2
+ Co, R} = Ej, gj:ﬁzl’ j=1,---,J.  (10)
J

Jlus 1>

E; = 5
Motivated by an earlier paper [14] on ensemble calculations, we consider the
following perturbation of the momentum equation (1) and the open boundary

condition (9):
Oruj + &uy - Vuy — viAu;y — Tf/\AatUj +Vp; =f; (11)

and

O (uj -n)u;-n

(—VjVUj —ﬁTVBtuj -l-p]I)n 5

uj on 'y, (12)

=01 (u;,p;)



where U := vy + a,a > 0.
85 Upon multiplying (11) by a test function v € H'(Q) and integrating by

parts, we obtain
2
(Opuj,v) +&; Z bi(uj, u;,v) + vj (Vuj, Vo) + 70 (Vou;, Vv)
i=1 (13)
- (pj>v : U) + <Jl(uj7pj)7v>p = <fj7v> .

Thus the equation for R; can be written as

2Rj8tRj = (8tuj, Uj)

jn

2
g
:(6tuj,uj)+£iji(uj,uj,uj)—< 5 gj’9j>D
i=1

_§j<@1 (uj-n)uj-n

5 ) |uj2>N( now use (13) with v = ;)  (14)

o V2 ©1 (u; -n)u; -n
Z—ijjHVujllz—TijatH QJH —€j< - J2 L fu|?
N

—(01(uj,p5),95) p + (fjw5),

where 71 (uj,p;) == o1(uj,p;) + 25~ g;. Note that when f; = g; = 0, integrating
(14) over time from 0 to ¢, we get the unconditional stability of the SAV ensemble
scheme (13)-(14):

012
(20 +reo! Tl - <R3<0> srgpl Ll ) (15)
t
=& [ [l + (08 ) T
P N

Now we will use the equations (13)-(14) to derive the first-order scheme. Dis-
cretizing the equation (13) with the test functions from Xp gives

2

ntl _ g n
(uy — ) LY )+ (T, Vo) — (9 )
i=1

(16)

+0 (V (uf ! —uf) Vo) = (fi ).
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We consider the following approximation of (14):

+12 2 +1 n+1(2 1|2
[RF1° - [RY ——g’?“uj”Va’?“H?—ag? [Vui ™| = & IVag|

. J J 2

_entl ©: (u? 'n) uj omo
fj B 7|Uj |
N

- <J1 (Amrlaﬁ;lﬂ) gjnﬂ> (an A?H) (17)

=Ap
_E;Hrl <(71 ( n+175;b+1) g;L+1> + §n+1 (fn+1 ~n+1)

=€ Ay

+ (=) Ao+ (1 — ) Al

where
+1 . sn+l +lrntl —ntl . +1 +1  n+l +1 +1 +1
= @ gt = et =
R 4+ R?
Rt~ L — 7 (18)

2

We emphasize that the additional terms (1 — f;”l) |Ao| and (1 — §;’+1) | A4 ]
are consistent terms, and are meant to ensure the positivity of the scalar aux-
iliary variables. The idea was originally put forth in [18], although our imple-

mentation is much simpler.

2. Second order scheme

To discuss the second order scheme, we consider the following perturbation

of the momentum equation (1) and the open boundary condition (9):
Oyuj + &juy - Vuy — v;Auy — TaAdyu; — T2VOOAatt’U,j +Vp; = f; (19)
and

(v Vu; — arVou; — veeT*Vyu; + p;l) n 5;

=02 (u;,p;)

(20)

To be formally second order accurate, we will pick a = h in numerical simula-

tions, where h is the mesh diameter.



Upon multiplying (19) by a test function v € H' (Q) and integrating by
parts, we obtain
2
(Oruj,v) +¢&; Z bi(uj, uj,v) + vj (Vuj, Vo) + 7o (Vosuj, Vo)
i=1 (21)
+T2VOO (Vattuj7 VU) - (pj7 = U) + <0-2(ujapj)’ U)D = <.fj7v>

Then the equation for R; can be written as

2Rj8tRj = (@uj, Uj)

2
g;i-n
= (3tujvuj)+5j;bz’ (uj, s, ;) — <Jng,9j>D
—§& <®1(u]2n)u]n’ |uj|2> ( now use (21) with v =u;)  (22)
N
Vu,||? O1 (u;-n)u; -n
— VP - rggaa Il g (Sl n
N

— TVeo (VOyuj, Vug) — (G2(uy,p5), 95) p + (w5

where Ga(uj,p;) = o2(uj,p;) + £g;. Unlike the first order case, setting
w f; = g; = 0, and integrating (22) over time from 0 to ¢, we do not quite

get the unconditional stability. Here, the ”hyperbolic” regularization term

Vs (VOituj, V) spoils the game. Nonetheless, we can still obtain a second-

order discrete scheme that is unconditionally stable, as will be derived below.
To this end, let u* "+ := 24" — ™! and

3un+1 _ 4un + unfl
= Dttun+1 =

unJrl _ 2un + unfl
2T ’ T ’

2

Dtu’n+1

The Navier-Stokes part of the discrete system is obtained from (19) by restricting

the test functions to Xp:

2
(Dt v) + ¢ Z bi(u;’"H, u;’"H, v) +v; (Vu;’"+17 Vv) (23)
i=1

+at (VDtu;”rl, Vo) 4 m%vs (VDttu;-‘“, Vo) — (p?“, Vo) = <ff+1,v>

As in [18], we approximate §; at the time level n + % via a second order
extrapolation. To this end, we let

n+3/2__§ ’(H»l_l n
R .—2RJ 2R

J 7



_n43/2 3 _ay1 1o,
1
n+1 n+1 n n—1 _ pn+3/2 n+1/2
2R, (") = R R} - SRy = BT g
,n+3/2 2
U
E [H;z+3/2} _ H 5 [ 4Gy,
R(L-‘r3/2
n+3/2 J
O T A E——
J E {ﬂ?w/z}
s _ VIR + V@R — )P
J T 4 ’
pen V@ = 2 e
i : 1 .

Using the identity
3 n+1 n 1 n—1 3 n+1 n 1 n—1Y\ _ n+3/22 n+1/2,2
<2Rj + RY — iRj ) <2Rj — 2R} + §Rj = |Rj | — |Rj |,

and by approximating the term

o, IVl

9 = (8tVUj,VUj)

via the BDF2 discretization, we consider the following approximation of (22):

n+3/22 'rH~1/22
5] - R

&PV~ agy Dy

p J
n+3/2=n+3/2 n+1/2 n+1/2
—a(grlET - g
6, (lﬁ’n+1 . n) Wit n
+3/2 J J _
g < 5 7|u7“|2> (24)
N
~ (~n+1 —n+l +1 ~n+l
=@ @5 g5), + (T
:=Ap
+3/2 ~ +3/2 ~
fjn / <o'( n+17ﬁ?+1) g]>D+€n / <fn+1 n+1>
::ST."+3/2A1
J

+ (1= 10 + (1= 7))

Notice that the contribution of the 72 term in (19) to the energy equation

s is simply omitted in (24), which does not introduce any inconsistency into the

10



system. Moreover, in the definitions of Ag and A, we have approximated o5

and o9 with ¢ and o, respectively.

Remark 3.1. The presence of the second a-stabilizing term in equations (17)
and (24) might seem redundant. Note that for the ensemble equation with
w  Vj = Voo, the alpha-regularization term is needed for the SAV scheme to con-
verge. And, due to the coupled nature of system, the entire ensemble system

also requires that term. Our numerical tests also confirmed these arguments.

3.3. Stability

Theorem 3.2. Assuming f; = g; = 0, both schemes (16)-(17), and (23)-(24)

us are unconditionally stable.

Proof 3.3. Under our assumptions, the "energy” equation for the first order
scheme becomes

n+1|2 2 n+1 —n—+1(2 —n||2
|[R;|° — |RY| & Ivuy |1 = & IVag ||

=&y lIvay ) - v

T TN J 2
(25)
_ gn-&-l <®1 (u? ) n) u;} ‘n |u7}+1|2>
J 2 1 :
N
Multiplying both sides by T and summing over the timesteps fromn =0 to N —1
gives
N2 vVl *NH2 02 ox *UH2
R ["+7¢; = |R;[" + &V
. o @1(u--n)u’?~n .
Y (v +< LR (26)
n=0 N
=N ||2 0|2
R _Vus
— |R§V|2 fN ” H < \R?\Q + TVM

The stability of the second order scheme is established in a similar way. The

Zenergy” equation of the scheme simplifies down to

2 2
n+3/2 n+1/2
R R

=& (Va1 + Dy

= - J
n+3/2=n+3/2 n+1/2 n+1/2
—a(fj B P ) (27)

11



J 2 u]

1 *,n+1
S) (u"f’”Jr . n) wr" n
7£n+3/2 < 1 J J ‘—n+1‘2
; , .
N

Multiplying both sides of (27) by T and summing over the timesteps from n =0
to N — 1 gives

2, IVTIP

‘R;.V“/Q‘ + eV - ‘RI/Q‘ + 7] . (28)

N-1 0, (u*- ntl, n) wmtn
- 2GR v P + Dyt 4 < g |u”+1|2>
n=0 N

+
[Va) 322
2

Ivay/?)?

2
’R§V+3/2’ n TijH/Q :

2
‘R;m‘ =+ T§J1~/20¢

120 4. Solution algorithm

Herein we describe an efficient procedure for solving the proposed schemes.
For the sake of brevity, we only concentrate on the second order scheme (23)-
(24).

Using the decomposition (18), we solve for (u n“ﬁ?“)

~n-+1 n—1
3uj — 4u;’ + u;
2T

,v) + Voo (V (ﬁ?“ —2u} + u?_l) ,Vv)

+; (Vv (3A”+1 — 4uj + u?_l) ,Vv) +v; (Vu;’nﬂ, Vv)

— (V) = (i) (29)
(0.7 =0,
ﬂ?“ = gj”'l onIp,

and for (u"*1, pntl):

317?+1 2 xn+1 xn+l 3a ~n+1
il +Zbi(uj u; ,v)—i—?(Vuj ,Vv)

+Voo (Vﬂ;’“,Vv) — (f)?“,v . v) =0,

(¢, V-ui*t) =0, (30)

ﬂnJrl

; =0onlp.

12



E7‘1,4»3/2

2
We then obtain H?‘H and E?H/z, E [ﬂ?%/ﬂ =1 ” + Cp and using

n+3/2,2
5;”3/2 = %, algebraically compute \R?+3/2|2 from (24):
j
—n —n+3/2
So = vl VEZ 4 o (BT 4 DY) Aol + [Ar] - Ay
O, (u;’"+1 ~n) uj’"“ ‘n e
+ 5 ;™| ;
N
n —n+1/2
S :zafjJrl/zEjJr / + |Ao| + Ao + |Aa], (31)
n+1/2 2
s R3[4 sy

! FE [ﬂ?+3/2] + 750 .

5. Numerical experiments

125 The simulations are performed using the FreeFem++ [30] package, with the
(P2, P1) used to approximate the velocity and pressure spaces, respectively. We
only tested the second order scheme and all the linear systems are solved using

direct solvers.

5.1. Flow around a cylinder

Our first test is on a two dimensional channel flow around a cylinder, a
well-known benchmark problem taken from Shéfer and Turek [31]. The domain
for the problem is a 2.2 x 0.41 rectangular channel with a cylinder of radius
0.05 centered at (0.2,0.2) (taking the bottom left corner of the rectangle as the
origin). The cylinder, top and bottom of the channel are prescribed no slip

boundary conditions, and the time dependent inflow profile is

6 .
= 0a1® sin(7t/8)y(0.41 — y) ,

u2(07yat) = U2(2.2,y,t) =0.

Uy (07 Y, t) = U1(2-27 Y, t)

1w The open boundary conditions (9) are used for the outflow. In order to test
the robustness of our algorithm with respect to the location of the open bound-

ary, we also simulated the problem on a truncated domain, where the right

13
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Figure 1: The finite element meshes used in flow around a cylinder experiment.

x-boundary is located at x = 1. The reference results for this in the case of the

1

7005 are given in [32] for the Dirichlet outflow.

full domain problem with v =

Here we chose three ensemble members. The viscosities are v, = ﬁ,
Vo = ﬁ, V3 = ﬁ and o = h. We compare the results of the v; case with the
reference values. The finite element meshes used in the simulations are shown
in Fig. 1 with mesh size h = 0.0216741. The timestep is At = 0.004.

We compute values for the maximal drag cqmaez and lift ¢; e, coefficients
on the cylinder boundary, and the pressure difference Ap(t) between the front
and back of the cylinder at the final time 7" = 8. The time evolutions of the
these quantities are given in Fig. 2, and in both cases we get almost identical
results. A slight difference is observed in the evolution of ¢; towards the end
of the simulation, which can be attributed to the well-known sensitivity of this
quantity to perturbations. The maximum lift and drag coefficients and pressure
drop for the simulations are given in Table 1. In general, we observe results that
are close to the reference values.

The velocity field plots at times t = 6,8 are presented in Fig. 3 for both
simulation domains, which show the expected vortex street and close agreement
between the results of both domains.

As a qualitative reference, we can compare our results with those of [33]

where the do-nothing outflow boundary condition was used. It would be inap-

14
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Figure 2: From left to right: the drag and lift coefficients ¢4, ¢; and pressure difference between

front and back of the cylinder Ap for flow past a cylinder with full domain and half domain

Table 1: Drag, Lift and pressure drop values

domain size Cdmaz | H(Cdmaz) Clmaz t(c1,maz) Ap
full domain 2.94934 3.944 0.476601 5.708 —0.103358
half domain 2.94928 3.936 0.489891 5.66 —0.104599
Dirichlet) [32] 2.95092 | 3.93625 | 0.47788 5.6925 —0.1116
(No-traction) [33] | 2.9513 4.0112 0.47837 | 5.6928 | —0.026382

propriate to use the solution of [32] for comparison, as the prescribed Dirichlet
type parabolic outflow profile is less physical. For instance, [32] predicts that at
t = 8 the last eddy will remain on the left hand side of x = 2.2 completely, while
following the previous alternating pattern from upstream, it is unrealistic that
both eddies near the top and bottom walls will vanish at the same position at
x = 2.2. In both of our simulations, the last eddy is cut through by the outflow

boundary, which agrees with the results in [33].

5.2. Channel flow with a contraction and two outlets

Our next experiment is for a complex 2D flow through a channel with a
contraction and two outlets, one on the top of the channel and the other at the
end of the channel. The finite element mesh with 16,672 DOF used in the test
is shown in Fig. 4. Even though this flow occurs at Re = 1000, we found it to
be a very challenging test problem for SAV schemes.

15
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Figure 3: Speed contours at ¢t = 6 (top) and at ¢ = 8 (bottom)

Figure 4: The finite element mesh used in Channel flow with a contraction and two outlets.
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Here we again ran the algorithm with three ensemble members on the time
interval (0,4), with v; = 0.001, v, = 0.003 and v3 = 0.005. The velocity

boundary conditions are:

g1=(4y(1—9),0)", g2 = (1 +&)(4y(1 —y),0)", g5 = (1 — &) (4y(1 — y),0)"

at the inlet, open boundary condition at the top and right boundaries and no-
slip on the remaining walls. Initial conditions u{ ,,u$ ,,u3 , are obtained by

solving the Stokes equations in the same domain with perturbed body forces
f1=¢(0,0)", fo = e(cos(may + t),sin(n(z +y) +t))* and

fz = e(sin(m(z +y) +t), cos(mxy + )T

with e = 1072,

We tested the result with two different values of a: &« = h and a = 0. The
speed contours for both cases are given in Fig. 6 and Fig. 7, respectively. While
the ensemble scheme with the a = h gives results that qualitatively match the
references plots of [34], the simulations with @ = 0 did not produce physically
accurate solutions. Concretely, at ¢ = 4 the jet has not yet reached the outflow
boundary and also seems to assume an incorrect profile. Similar lagging behavior
is observed at t = 1.

The explanation for this difference between two cases can be understood by
looking at the time evolution of £, given in Fig. 5. As it can be observed, in the
a = h case, all &’s are very close to 1. On the other hand, o = 0 simulations
produce the values of &;’s that are as low as 0.1. Thus, the o = 0 case predicts

advective term that is not as large as it should be.

5.3. Jet Impinging on a Wall

As a last test problem, a 2D jet impinging on a solid wall is tested with
our method. Due to the open boundaries and the physical instability of the
jet, the open boundary condition is critical to the successful simulation of this
flow. This problem has been studied with different Reynolds numbers in [35].

Here we will test the case of Re = 300 where the flows reach the steady state.
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Figure 5: &; for three ensemble members with a = h (left) and a = 0 (right)
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Figure 6: Plots of speed contour for v1 at t =1 (top) and t = 4 (bottom) with a = h .
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Figure 7: Plots of speed contour for v1 at ¢ =1 (top) and ¢t = 4 (bottom) with a = 0.
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Figure 8: The boundary conditions and the mesh (left); velocity field (right).

The same simulation set-up is used as in [35]. A fluid jet with diameter d is
impinging on a 2D wall with the dimension of —gd <zx< %d and 0 <y < 5d.
The bottom of the domain is a solid wall while the jet is coming in from the top
center of the domain, hence the inlet is —Ry < Ry and y = 5d, where Ry is the

radius of the jet (Ro = %) The jet velocity profile at the inlet is given as:

u =0,
v = -l {tanhl\;;f’") (H(x,0) — H(z, Ro) + tanh’ 15 (H(z, ~Ro) — H(x,0)] ,
d d

where Uy is the velocity scale (Uy = 1), € = 5d, and H(z,a) is the unit step
function, which is the unit value when & > a and zero otherwise. Herein we
considered three ensemble members with viscosities 11 = ﬁ, vy = ﬁ, V3 = ﬁ
and a = h. The boundaries on the left, right and the top excluding the inlet are
all open boundaries where our open boundary condition (9) will be applied. No-
slip boundary condition is used for the bottom wall. The domain, its boundary
description and the mesh with A = 0.37544 are shown in Figure 8. The time
step is At = 0.004.

For the Reynolds number we are running with (Re = 300), the flow reaches a
steady state. The simulation is ran until it ||%%|| < 1075, The vertical incoming

jet splits into two horizontal streams as it hits the bottom wall and proceed in

opposite directions parallel to the bottom wall until they exit the domain. In
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Table 2: Vertical force on the bottom wall

method fy
OBC from our algorithm —0.9875
OBC-B and OBC-C from [35] | —0.994
Traction-fee OBC from [35] —1.026

regions of the domain outside the jet stream the velocity appears to be negligibly
small. With our open boundary condition (9), the flow exits the domain without
any reflection or any instability, see Fig. 8. Qualitatively, an excellent match
can be observed between our results and the reference velocity field plot in [35].

We also computed the y-component of the force on the bottom wall and
compared with the results from [35], reported in the Table 2. Even with the

relatively coarse mesh, good quantitative agreements can be observed.

6. Conclusions

We have presented two robust ensemble algorithms for computing the Navier-
Stokes flow ensembles. Both algorithms (16)-(17), and (23)-(24) require a single
matrix assembly for all realizations and all time steps, and lead to linear systems
that have one common constant coefficient matrix with multiple right hand sides,
which can be solved at significantly reduced computational cost compared with
traditional, nonensemble algorithms for flow ensemble simulations. We proved
both algorithms are unconditionally stable without any timestep conditions or
assumption on the variance of the viscosities. We also presented three bench-
mark flow problems with open boundaries, which showed our algorithms are
robust and effective in preventing backflow instabilities producing physical and

accurate flow statistics.
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