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1. Introduction

With improved algorithms and faster computer power, the focus is shifting

from simply analyzing a model for one set of input data, to characterizing its

behavior at ”nearby” sets of data. Moreover, the engineers must have an idea of

how the flow responds to changes in the parameters or assess the effect of input5

data uncertainty on the response of the system. Such and other scenarios lead

to the problem of solving an ensemble of flow equations. Some specific examples

are sensitivity studies [1], turbulence modeling for non-homogeneous flows [2],

combustion [3], numerical weather prediction [4, 5].

In this work, we consider solving an ensemble of incompressible Navier-

Stokes equations subject to perturbed initial conditions u0
j , body forces fj and

viscosity coefficients νj , j = 1, J :

∂tuj + uj · ∇uj −∇ · (νj(x)∇uj) +∇pj = fj(x, t) in Ω, (1)

∇ · uj = 0 in Ω, (2)

uj = gj(x, t) on ΓD, (3)

(−νj∇uj + pjI)n = SΓ (uj , pj) on ΓN , (4)

uj(x, 0) = u0
j (x) in Ω, (5)

where Ω denotes the flow domain, and Γ is its boundary. We assume that10

Γ is decomposed into non-overlapping Dirichlet ΓD and Neumann (open) ΓN

boundaries. The choice of the stabilization term SΓ (uj , pj) will be discussed in

the next section.

When solving (1)-(5), one can achieve unconditional stability with fully im-

plicit or implicit-explicit schemes [6]. However, this would require assembly and15

storage of J coefficient matrices at each time step. On the other hand, in the

case of νj = ν, one can treat the nonlinear term fully explicitly, and thereby

assemble a single coefficient matrix once for all. The resulting linear systems

could be solved efficiently using solvers for systems with multiple right-hand

sides, cf. [7, 8]. But this often induces a very restrictive timestep condition,20

especially on adaptively refined meshes.
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One alternative to the fully explicit approach was proposed in [9], which

considered the νj = ν = const case. The scheme was first order in time, and

suitable for low Re number flows. The idea was later extended to higher order

schemes and high Re flows in [10, 11, 12]. The common idea in all of these25

references is to split the nonlinear term into semi-implicit and fully explicit

parts, where the former is advected by lagged ensemble mean and the latter

is advected by lagged fluctuating velocity. The energy stability then can be

shown to hold under a timestep restriction involving the velocity fluctuations,

which should not be as restrictive as the fully explicit approach. The case of the30

multiple viscosity coefficients has been addressed in [13, 14, 15], which place an

additional condition on the magnitude of the viscosity variance.

Since the introduction of the Scalar Auxilary Variable (SAV) method for

gradient flows in [16], the development of unconditionally stable schemes with

explicitly treated nonlinear term has received a lot of interest in the litera-35

ture. Starting from the initial work of [17], a different variation of SAV-based

schemes for solving incompressible Navier-Stokes system have been proposed in

[18, 19, 20]. The underlying idea of the SAV-based schemes is to introduce an

additional ordinary differential equation (ODE) to the governing system for the

SAV, lag the whole nonlinear term and cancel it out in the stability analysis40

by having the same nonlinear term in the discrete scheme for the ODE of the

SAV. However, even though all the existing schemes are unconditionally stable,

to our best knowledge and experience, none of them could be viewed as robust.

While some schemes are not even guaranteed to produce positive or real-valued

approximations of scalar auxiliary variables, others have been observed to pro-45

duce non-convergent solutions. Note that if there was a robust SAV scheme,

then efficiently solving the system (1)-(5) for the νj = ν case would be immedi-

ate, as there will be a single matrix to assemble and to store with J right hand

sides. Such systems can efficiently be solved using block iterative solvers.

One remedy to address these deficiencies of the SAV schemes was put forth50

in a recent paper [21], for ensembles when ΓN = ∅. The addition of classical

Voigt regularization term [22, 23] was observed to improve the accuracy of the
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SAV methods, but the ODE for the auxiliary variable was not always solvable.

In this report, we synthesize the ideas developed in [18, 21, 14], and develop

SAV-ensemble calculation schemes that require only a single matrix assembly55

for all realizations and all time steps, are unconditionally stable without any

restricting assumptions on the variance of viscosities νj or the time steps, and

always produce positive values for the auxiliary variables.

This paper is organized as follows. In Section 2, we introduce the notations

and discuss the open boundary conditions. In Section 3, we derive the numerical60

schemes and discuss their stabilities. In Section 4, we present the solution

method of our schemes. We will then test our schemes in Section 5 and wrap

up the manuscript with conclusions in Section 6.

2. Preliminaries

2.1. Notations65

Given an ensemble of realizations g1(x), ..., gJ(x) of a quantity g(x), we define

the fluctuation in j−th member as

g
′

j(x) = gj(x)− g(x),

and its maximum value by

g∞ = max
1≤j≤J

sup
x∈Ω

gj(x).

The normal component of stress tensor and its modification will be denoted

by

σ(uj , pj) := −νj∇uj · n+ pjn, σ̂(uj , pj) = σ(uj , pj)−
uj · n

2
uj .

The L2(Ω) norm and inner product will be denoted by ‖·‖ and (·, ·), while the L2

inner product over ΓD and ΓN will be denoted by (·, ·)D and (·, ·)N , respectively.

For simplicity of the presentation, we assume no-slip boundary condition on ΓD

in the stability analysis. In this setting, the appropriate velocity and pressure

spaces are defined as

X :=
{
v ∈

(
H1 (Ω)

)d
: v = 0 on ΓD

}
, Q := L2(Ω).
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We use as the norm on X, the seminorm ‖∇ · ‖L2 .

The dual space X∗ = H−1
D (Ω) is equipped with norm

‖f‖−1,∗ = sup
v∈X

〈f, v〉

‖∇v‖
,

where 〈·, ·〉 refers to a duality pairing.

To simplify the notations, we assume that the approximation is continuous

in space.

Explicitly skew-symmetrized nonlinear term will be denoted by

b1(u, v, w) := (u · ∇v, w) +
1

2
(∇ · u,w · v).

Integration by parts formula shows that

b1(u, v, w) = (u · n, v · w)Γ − b1(u,w, v), (6)

which in particular implies that

b1(u, v, v) =
(u · n

2
, |v|2

)
Γ
. (7)

2.2. Open boundary conditions70

Open boundary conditions (4) are often used to truncate a big physical

domain to make the problem tractable, or when the flow domain is unbounded,

such as in jet flows. The review of the topic for incompressible flows can be found

in [24, 25, 26]. Our choice of SΓ used in this work was proposed and benchmarked

in [27, 28]. It belongs to a family of velocity-penalization boundary conditions,75

and has been also successfully tested in physiological regimes as well [26].

To discuss our choice of open boundary condition, for 0 < ε � 1 we introduce

a smoothed Heaviside function and its opposite:

Θ1(x) : =
1

2

(
1 + tanh

x

ε

)
' H(x),

Θ0(x) : =
1

2

(
1− tanh

x

ε

)
' 1−H(x).

(8)

In this paper, we will consider schemes based on the following open boundary

condition:

SΓ (uj , pj) := −
Θ0 (uj · n)uj · n

2
uj on ΓN , (9)
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where it is assumed that the velocity uj is properly non-dimensionalized. Oth-

erwise, Θ0

(
uj ·n
U0

)
must be used in (9), for some reference speed U0.80

To understand the boundary condition (9), let us partitition ΓN into outflow

and backflow regions:

ΓN = Γ+
j,N ∩ Γ−

j,N , where

Γ+
j,N := {x ∈ ΓN : (uj · n) (x) > 0} and Γ−

j,N := {x ∈ ΓN : (uj · n) (x) ≤ 0} .

Then (9) is equivalent to

(−νj∇uj + pjI)n '




0, if x ∈ Γ+

j,N ,

−uj ·n
2 uj , if x ∈ Γ−

j,N ,

hence an alternative name, directional do-nothing condition [29].

The open boundary condition in the weak formulation will be implemented

via the following trilinear term:

b2(u, v, w) := −
1

2
((u · n)Θ0(u · n), v · w)N .

3. Numerical schemes

3.1. First order scheme

Define the scalar auxiliary variables by

Ej =
‖uj‖

2

2
+ C0, R2

j = Ej , ξj =
R2

j

Ej
= 1, j = 1, · · · , J. (10)

Motivated by an earlier paper [14] on ensemble calculations, we consider the

following perturbation of the momentum equation (1) and the open boundary

condition (9):

∂tuj + ξjuj · ∇uj − νj∆uj − τ ν̂∆∂tuj +∇pj = fj (11)

and

(−νj∇uj − ν̂τ∇∂tuj + pjI)n︸ ︷︷ ︸
:=σ1(uj ,pj)

= −ξj
Θ0 (uj · n)uj · n

2
uj on ΓN , (12)
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where ν̂ := ν∞ + α, α > 0.

Upon multiplying (11) by a test function v ∈ H1 (Ω) and integrating by85

parts, we obtain

(∂tuj , v) + ξj

2∑

i=1

bi(uj , uj , v) + νj (∇uj ,∇v) + τ ν̂ (∇∂tuj ,∇v)

− (pj ,∇ · v) + 〈σ1(uj , pj), v〉D = 〈fj , v〉 .

(13)

Thus the equation for Rj can be written as

2Rj∂tRj = (∂tuj , uj)

= (∂tuj , uj) + ξj

2∑

i=1

bi (uj , uj , uj)−
〈gj · n

2
gj , gj

〉
D

− ξj

〈
Θ1 (uj · n)uj · n

2
, |uj |

2

〉

N

( now use (13) with v = uj) (14)

= −ξjνj‖∇uj‖
2 − τξj ν̂∂t

‖∇uj‖
2

2
− ξj

〈
Θ1 (uj · n)uj · n

2
, |uj |

2

〉

N

− 〈σ̂1(uj , pj), gj〉D + (fj , uj) ,

where σ̂1(uj , pj) := σ1(uj , pj)+
gj ·n
2 gj . Note that when fj = gj = 0, integrating

(14) over time from 0 to t, we get the unconditional stability of the SAV ensemble

scheme (13)-(14):

(
R2

j (t) + τξj ν̂
‖∇uj‖

2

2

)
−

(
R2

j (0) + τξj ν̂
‖∇u0

j‖
2

2

)
(15)

=− ξj

t∫

0

[
νj‖∇uj‖

2 +

〈
Θ1 (uj · n)uj · n

2
, |uj |

2

〉

N

]
ds.

Now we will use the equations (13)-(14) to derive the first-order scheme. Dis-

cretizing the equation (13) with the test functions from XD gives

(
un+1
j − un

j

τ
, v

)
+ ξn+1

j

2∑

i=1

bi(u
n
j , u

n
j , v) + νj

(
∇un

j ,∇v
)
−
(
pn+1
j ,∇ · v

)

+ν̂
(
∇
(
un+1
j − un

j

)
,∇v

)
=
〈
fn+1
j , v

〉
.

(16)
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We consider the following approximation of (14):

|Rn+1
j |2 − |Rn

j |
2

τ
= −ξn+1

j νj‖∇un+1
j ‖2 − ν̂

ξn+1
j ‖∇un+1

j ‖2 − ξnj ‖∇un
j ‖

2

2

− ξn+1
j

〈
Θ1

(
un
j · n

)
un
j · n

2
, |un+1

j |2

〉

N

−
〈
σ̂1

(
ûn+1
j , p̂n+1

j

)
, gn+1

j

〉
D
+
(
fn+1
j , ûn+1

j

)
︸ ︷︷ ︸

:=A0

−ξn+1
j

〈
σ1

(
ũn+1
j , p̃n+1

j

)
, gn+1

j

〉
D
+ ξn+1

j

(
fn+1
j , ũn+1

j

)
︸ ︷︷ ︸

:=ξn+1

j A1

+
(
1− ξn+1

j

)
|A0|+

(
1− ξn+1

j

)
|A1|,

(17)

where

un+1
j := ûn+1

j + ξn+1
j ũn+1

j , un+1
j : = ûn+1

j + ũn+1
j , pn+1

j := p̂n+1
j + ξn+1

j p̃n+1
j ,

Rj(t
n+1) '

Rn+1
j +Rn

j

2
. (18)

We emphasize that the additional terms
(
1− ξn+1

j

)
|A0| and

(
1− ξn+1

j

)
|A1|90

are consistent terms, and are meant to ensure the positivity of the scalar aux-

iliary variables. The idea was originally put forth in [18], although our imple-

mentation is much simpler.

3.2. Second order scheme

To discuss the second order scheme, we consider the following perturbation

of the momentum equation (1) and the open boundary condition (9):

∂tuj + ξjuj · ∇uj − νj∆uj − τα∆∂tuj − τ2ν∞∆∂ttuj +∇pj = fj (19)

and

(
−νj∇uj − ατ∇∂tuj − ν∞τ2∇∂ttuj + pjI

)
n

︸ ︷︷ ︸
:=σ2(uj ,pj)

= −ξj
Θ0 (uj · n)uj · n

2
uj on ΓN .

(20)

To be formally second order accurate, we will pick α = h in numerical simula-95

tions, where h is the mesh diameter.
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Upon multiplying (19) by a test function v ∈ H1 (Ω) and integrating by

parts, we obtain

(∂tuj , v) + ξj

2∑

i=1

bi(uj , uj , v) + νj (∇uj ,∇v) + τα (∇∂tuj ,∇v)

+τ2ν∞ (∇∂ttuj ,∇v)− (pj ,∇ · v) + 〈σ2(uj , pj), v〉D = 〈fj , v〉

(21)

Then the equation for Rj can be written as

2Rj∂tRj = (∂tuj , uj)

= (∂tuj , uj) + ξj

2∑

i=1

bi (uj , uj , uj)−
〈gj · n

2
gj , gj

〉
D

− ξj

〈
Θ1 (uj · n)uj · n

2
, |uj |

2

〉

N

( now use (21) with v = uj) (22)

= −ξjνj‖∇uj‖
2 − τξjα∂t

‖∇uj‖
2

2
− ξj

〈
Θ1 (uj · n)uj · n

2
, |uj |

2

〉

N

− τ2ν∞ (∇∂ttuj ,∇uj)− 〈σ̂2(uj , pj), gj〉D + 〈fj , uj〉 ,

where σ̂2(uj , pj) := σ2(uj , pj) +
gj ·n
2 gj . Unlike the first order case, setting

fj = gj = 0, and integrating (22) over time from 0 to t, we do not quite100

get the unconditional stability. Here, the ”hyperbolic” regularization term

τ2ν∞ (∇∂ttuj ,∇uj) spoils the game. Nonetheless, we can still obtain a second-

order discrete scheme that is unconditionally stable, as will be derived below.

To this end, let u∗,n+1 := 2un − un−1 and

Dtu
n+1 =

3un+1 − 4un + un−1

2τ
, Dttu

n+1 =
un+1 − 2un + un−1

τ2
.

The Navier-Stokes part of the discrete system is obtained from (19) by restricting

the test functions to XD:

(
Dtu

n+1
j , v

)
+ ξj

2∑

i=1

bi(u
∗,n+1
j , u∗,n+1

j , v) + νj

(
∇u∗,n+1

j ,∇v
)

(23)

+ατ
(
∇Dtu

n+1
j ,∇v

)
+ τ2ν∞

(
∇Dttu

n+1
j ,∇v

)
−
(
pn+1
j ,∇ · v

)
=
〈
fn+1
j , v

〉

As in [18], we approximate ξj at the time level n + 3
2 via a second order

extrapolation. To this end, we let

R
n+3/2
j : =

3

2
Rn+1

j −
1

2
Rn

j ,
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u
n+3/2
j : =

3

2
un+1
j −

1

2
un
j ,

2Rj(t
n+1) '

3

2
Rn+1

j +Rn
j −

1

2
Rn−1

j = R
n+3/2
j −R

n+1/2
j ,

E
[
u
n+3/2
j

]
=

‖u
n+3/2
j ‖2

2
+ C0 ,

ξ(t) ' ξ
n+3/2
j =

R
n+3/2
j

E
[
u
n+3/2
j

] ,

E
n+3/2

j : =
‖∇un+1

j ‖2 + ‖∇(2un+1
j − un

j )‖
2

4
,

Dn+1
j : =

‖∇(un+1
j − 2un

j + un−1
j )‖2

4
.

Using the identity

(
3

2
Rn+1

j +Rn
j −

1

2
Rn−1

j

)(
3

2
Rn+1

j − 2Rn
j +

1

2
Rn−1

j

)
= |R

n+3/2
j |2 − |R

n+1/2
j |2,

and by approximating the term

∂t
‖∇uj‖

2

2
= (∂t∇uj ,∇uj)

via the BDF2 discretization, we consider the following approximation of (22):

∣∣∣Rn+3/2
j

∣∣∣
2

−
∣∣∣Rn+1/2

j

∣∣∣
2

τ
= −ξ

n+3/2
j νj‖∇un+1

j ‖2 − αξ
n+3/2
j Dn+1

j

− α
(
ξ
n+3/2
j E

n+3/2

j − ξ
n+1/2
j E

n+1/2

j

)

− ξ
n+3/2
j

〈
Θ1

(
u∗,n+1
j · n

)
u∗,n+1
j · n

2
, |un+1

j |2

〉

N

(24)

−
〈
σ̂
(
ûn+1
j , p̂n+1

j

)
, gj
〉
D
+
〈
fn+1
j , ûn+1

j

〉
︸ ︷︷ ︸

:=A0

−ξ
n+3/2
j

〈
σ
(
ũn+1
j , p̃n+1

j

)
, gj
〉
D
+ ξ

n+3/2
j

〈
fn+1
j , ũn+1

j

〉
︸ ︷︷ ︸

:=ξ
n+3/2
j A1

+
(
1− ξ

n+3/2
j

)
|A0|+

(
1− ξ

n+3/2
j

)
|A1|.

Notice that the contribution of the τ2 term in (19) to the energy equation

is simply omitted in (24), which does not introduce any inconsistency into the105
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system. Moreover, in the definitions of A0 and A1, we have approximated σ̂2

and σ2 with σ̂ and σ, respectively.

Remark 3.1. The presence of the second α-stabilizing term in equations (17)

and (24) might seem redundant. Note that for the ensemble equation with

νj = ν∞, the alpha-regularization term is needed for the SAV scheme to con-110

verge. And, due to the coupled nature of system, the entire ensemble system

also requires that term. Our numerical tests also confirmed these arguments.

3.3. Stability

Theorem 3.2. Assuming fj = gj = 0, both schemes (16)-(17), and (23)-(24)

are unconditionally stable.115

Proof 3.3. Under our assumptions, the ”energy” equation for the first order

scheme becomes

|Rn+1
j |2 − |Rn

j |
2

τ
= −ξn+1

j νj‖∇un+1
j ‖2 − ν̂

ξn+1
j ‖∇un+1

j ‖2 − ξnj ‖∇un
j ‖

2

2

− ξn+1
j

〈
Θ1

(
un
j · n

)
un
j · n

2
, |un+1

j |2

〉

N

.

(25)

Multiplying both sides by τ and summing over the timesteps from n = 0 to N−1

gives

|RN
j |2 + τξNj ν̂

‖∇uN
j ‖2

2
= |R0

j |
2 + τξ0j ν̂

‖∇u0
j‖

2

2

−τ

N−1∑

n=0

ξn+1
j

(
νj‖∇un+1

j ‖2 +

〈
Θ1

(
un
j · n

)
un
j · n

2
, |un+1

j |2

〉

N

)

=⇒ |RN
j |2 + τξNj ν̂

‖∇uN
j ‖2

2
≤ |R0

j |
2 + τ ν̂

‖∇u0
j‖

2

2
.

(26)

The stability of the second order scheme is established in a similar way. The

”energy” equation of the scheme simplifies down to

∣∣∣Rn+3/2
j

∣∣∣
2

−
∣∣∣Rn+1/2

j

∣∣∣
2

τ
=− ξ

n+3/2
j

(
νj‖∇un+1

j ‖2 +Dn+1
j

)

−α
(
ξ
n+3/2
j E

n+3/2

j − ξ
n+1/2
j E

n+1/2

j

)
(27)
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−ξ
n+3/2
j

〈
Θ1

(
u∗,n+1
j · n

)
u∗,n+1
j · n

2
, |un+1

j |2

〉

N

.

Multiplying both sides of (27) by τ and summing over the timesteps from n = 0

to N − 1 gives

∣∣∣RN+3/2
j

∣∣∣
2

+ τξ
N+3/2
j αE

N+3/2

j =
∣∣∣R1/2

j

∣∣∣
2

+ τξ
1/2
j α

‖∇u
1/2
j ‖2

2
(28)

−τ
N−1∑

n=0

ξ
n+3/2
j

(
νj‖∇un+1

j ‖2 +Dn+1
j +

〈
Θ1

(
u∗,n+1
j · n

)
u∗,n+1
j · n

2
, |un+1

j |2

〉

N


 .

=⇒
∣∣∣RN+3/2

j

∣∣∣
2

+ τξ
N+3/2
j α

‖∇u
N+3/2
j ‖2

2
≤
∣∣∣R1/2

j

∣∣∣
2

+ τξ
1/2
j α

‖∇u
1/2
j ‖2

2
.

4. Solution algorithm120

Herein we describe an efficient procedure for solving the proposed schemes.

For the sake of brevity, we only concentrate on the second order scheme (23)-

(24).

Using the decomposition (18), we solve for (ûn+1
j , p̂n+1

j ):

(
3ûn+1

j − 4un
j + un−1

j

2τ
, v

)
+ ν∞

(
∇
(
ûn+1
j − 2un

j + un−1
j

)
,∇v

)

+
α

2

(
∇
(
3ûn+1

j − 4un
j + un−1

j

)
,∇v

)
+ νj

(
∇u∗,n+1

j ,∇v
)

−
(
p̂n+1
j ,∇ · v

)
=
(
fn+1
j , v

)
, (29)

(
q,∇ · ûn+1

j

)
= 0 ,

ûn+1
j = gn+1

j on ΓD ,

and for (ũn+1, p̃n+1):

(
3ũn+1

j

2τ
, v

)
+

2∑

i=1

bi(u
∗,n+1
j , u∗,n+1

j , v) +
3α

2

(
∇ũn+1

j ,∇v
)

+ν∞
(
∇ũn+1

j ,∇v
)
−
(
p̃n+1
j ,∇ · v

)
= 0 ,

(
q,∇ · ũn+1

j

)
= 0 , (30)

ũn+1
j = 0 on ΓD .

12



We then obtain un+1
j and u

n+3/2
j , E

[
u
n+3/2
j

]
=

∥

∥

∥
u
n+3/2
j

∥

∥

∥

2

2 + C0 and using

ξ
n+3/2
j =

|Rn+3/2
j |2

E
[

u
n+3/2
j

] , algebraically compute |R
n+3/2
j |2 from (24):

S0 : = νj‖∇un+1
j ‖2 + α

(
E

n+3/2

j +Dn+1
j

)
+ |A0|+ |A1| −A1

+

〈
Θ1

(
u∗,n+1
j · n

)
u∗,n+1
j · n

2
, |un+1

j |2

〉

N

,

S1 : = αξ
n+1/2
j E

n+1/2

j + |A0|+A0 + |A1| , (31)

ξ
n+3/2
j =

∣∣∣Rn+1/2
j

∣∣∣
2

+ τS1

E
[
u
n+3/2
j

]
+ τS0

.

5. Numerical experiments

The simulations are performed using the FreeFem++ [30] package, with the125

(P2, P1) used to approximate the velocity and pressure spaces, respectively. We

only tested the second order scheme and all the linear systems are solved using

direct solvers.

5.1. Flow around a cylinder

Our first test is on a two dimensional channel flow around a cylinder, a

well-known benchmark problem taken from Shäfer and Turek [31]. The domain

for the problem is a 2.2 × 0.41 rectangular channel with a cylinder of radius

0.05 centered at (0.2, 0.2) (taking the bottom left corner of the rectangle as the

origin). The cylinder, top and bottom of the channel are prescribed no slip

boundary conditions, and the time dependent inflow profile is

u1(0, y, t) = u1(2.2, y, t) =
6

0.412
sin(πt/8)y(0.41− y) ,

u2(0, y, t) = u2(2.2, y, t) = 0.

The open boundary conditions (9) are used for the outflow. In order to test130

the robustness of our algorithm with respect to the location of the open bound-

ary, we also simulated the problem on a truncated domain, where the right

13



Figure 1: The finite element meshes used in flow around a cylinder experiment.

x-boundary is located at x = 1. The reference results for this in the case of the

full domain problem with ν = 1
1000 are given in [32] for the Dirichlet outflow.

Here we chose three ensemble members. The viscosities are ν1 = 1
1000 ,135

ν2 = 1
900 , ν3 = 1

800 and α = h. We compare the results of the ν1 case with the

reference values. The finite element meshes used in the simulations are shown

in Fig. 1 with mesh size h = 0.0216741. The timestep is ∆t = 0.004.

We compute values for the maximal drag cd,max and lift cl,max coefficients

on the cylinder boundary, and the pressure difference ∆p(t) between the front140

and back of the cylinder at the final time T = 8. The time evolutions of the

these quantities are given in Fig. 2, and in both cases we get almost identical

results. A slight difference is observed in the evolution of cl towards the end

of the simulation, which can be attributed to the well-known sensitivity of this

quantity to perturbations. The maximum lift and drag coefficients and pressure145

drop for the simulations are given in Table 1. In general, we observe results that

are close to the reference values.

The velocity field plots at times t = 6, 8 are presented in Fig. 3 for both

simulation domains, which show the expected vortex street and close agreement

between the results of both domains.150

As a qualitative reference, we can compare our results with those of [33]

where the do-nothing outflow boundary condition was used. It would be inap-

14



0 1 2 3 4 5 6 7 8
t

0.0

0.5

1.0

1.5

2.0

2.5

d
ra

g

Full domain
half domain

0 1 2 3 4 5 6 7 8
t

−0.4

−0.2

0.0

0.2

0.4

li
ft

Full domain
half domain

0 1 2 3 4 5 6 7 8
t

0.0

0.5

1.0

1.5

2.0

p
re

ss
u
re

 d
if
fe

re
n
ce

Full domain
half domain

Figure 2: From left to right: the drag and lift coefficients cd, cl and pressure difference between

front and back of the cylinder ∆p for flow past a cylinder with full domain and half domain

Table 1: Drag, Lift and pressure drop values

domain size cd,max t(cd,max) cl,max t(cl,max) ∆p

full domain 2.94934 3.944 0.476601 5.708 −0.103358

half domain 2.94928 3.936 0.489891 5.66 −0.104599

Dirichlet) [32] 2.95092 3.93625 0.47788 5.6925 −0.1116

(No-traction) [33] 2.9513 4.0112 0.47887 5.6928 −0.026382

propriate to use the solution of [32] for comparison, as the prescribed Dirichlet

type parabolic outflow profile is less physical. For instance, [32] predicts that at

t = 8 the last eddy will remain on the left hand side of x = 2.2 completely, while155

following the previous alternating pattern from upstream, it is unrealistic that

both eddies near the top and bottom walls will vanish at the same position at

x = 2.2. In both of our simulations, the last eddy is cut through by the outflow

boundary, which agrees with the results in [33].

5.2. Channel flow with a contraction and two outlets160

Our next experiment is for a complex 2D flow through a channel with a

contraction and two outlets, one on the top of the channel and the other at the

end of the channel. The finite element mesh with 16, 672 DOF used in the test

is shown in Fig. 4. Even though this flow occurs at Re = 1000, we found it to

be a very challenging test problem for SAV schemes.165
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Figure 3: Speed contours at t = 6 (top) and at t = 8 (bottom)
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Figure 4: The finite element mesh used in Channel flow with a contraction and two outlets.
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Here we again ran the algorithm with three ensemble members on the time

interval (0, 4), with ν1 = 0.001, ν2 = 0.003 and ν3 = 0.005. The velocity

boundary conditions are:

g1 = (4y(1− y), 0)T , g2 = (1 + ε)(4y(1− y), 0)T , g3 = (1− ε)(4y(1− y), 0)T

at the inlet, open boundary condition at the top and right boundaries and no-

slip on the remaining walls. Initial conditions u0
1,h, u

0
2,h, u

0
3,h are obtained by

solving the Stokes equations in the same domain with perturbed body forces

f1 = ε(0, 0)T , f2 = ε(cos(πxy + t), sin(π(x+ y) + t))T and

f3 = ε(sin(π(x+ y) + t), cos(πxy + t))T

with ε = 10−2.

We tested the result with two different values of α: α = h and α = 0. The

speed contours for both cases are given in Fig. 6 and Fig. 7, respectively. While

the ensemble scheme with the α = h gives results that qualitatively match the

references plots of [34], the simulations with α = 0 did not produce physically170

accurate solutions. Concretely, at t = 4 the jet has not yet reached the outflow

boundary and also seems to assume an incorrect profile. Similar lagging behavior

is observed at t = 1.

The explanation for this difference between two cases can be understood by

looking at the time evolution of ξ, given in Fig. 5. As it can be observed, in the175

α = h case, all ξi’s are very close to 1. On the other hand, α = 0 simulations

produce the values of ξi’s that are as low as 0.1. Thus, the α = 0 case predicts

advective term that is not as large as it should be.

5.3. Jet Impinging on a Wall

As a last test problem, a 2D jet impinging on a solid wall is tested with

our method. Due to the open boundaries and the physical instability of the

jet, the open boundary condition is critical to the successful simulation of this

flow. This problem has been studied with different Reynolds numbers in [35].

Here we will test the case of Re = 300 where the flows reach the steady state.
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Figure 5: ξi for three ensemble members with α = h (left) and α = 0 (right)
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Figure 8: The boundary conditions and the mesh (left); velocity field (right).

The same simulation set-up is used as in [35]. A fluid jet with diameter d is

impinging on a 2D wall with the dimension of − 5
2d ≤ x ≤ 5

2d and 0 ≤ y ≤ 5d.

The bottom of the domain is a solid wall while the jet is coming in from the top

center of the domain, hence the inlet is −R0 ≤ R0 and y = 5d, where R0 is the

radius of the jet
(
R0 = d

2

)
. The jet velocity profile at the inlet is given as:





u = 0,

v = −U0

[
tanh

1− x
R0√
2 ε

d

(H(x, 0)−H(x,R0) + tanh
1+ x

R0√
2 ε

d

(H(x,−R0)−H(x, 0)
]
,

where U0 is the velocity scale (U0 = 1), ε = 1
40d, and H(x, a) is the unit step180

function, which is the unit value when x ≥ a and zero otherwise. Herein we

considered three ensemble members with viscosities ν1 = 1
300 , ν2 = 1

250 , ν3 = 1
350

and α = h. The boundaries on the left, right and the top excluding the inlet are

all open boundaries where our open boundary condition (9) will be applied. No-

slip boundary condition is used for the bottom wall. The domain, its boundary185

description and the mesh with h = 0.37544 are shown in Figure 8. The time

step is ∆t = 0.004.

For the Reynolds number we are running with (Re = 300), the flow reaches a

steady state. The simulation is ran until it ‖du
dt ‖ < 10−6. The vertical incoming

jet splits into two horizontal streams as it hits the bottom wall and proceed in190

opposite directions parallel to the bottom wall until they exit the domain. In
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Table 2: Vertical force on the bottom wall

method fy

OBC from our algorithm −0.9875

OBC-B and OBC-C from [35] −0.994

Traction-fee OBC from [35] −1.026

regions of the domain outside the jet stream the velocity appears to be negligibly

small. With our open boundary condition (9), the flow exits the domain without

any reflection or any instability, see Fig. 8. Qualitatively, an excellent match

can be observed between our results and the reference velocity field plot in [35].195

We also computed the y-component of the force on the bottom wall and

compared with the results from [35], reported in the Table 2. Even with the

relatively coarse mesh, good quantitative agreements can be observed.

6. Conclusions

We have presented two robust ensemble algorithms for computing the Navier-200

Stokes flow ensembles. Both algorithms (16)-(17), and (23)-(24) require a single

matrix assembly for all realizations and all time steps, and lead to linear systems

that have one common constant coefficient matrix with multiple right hand sides,

which can be solved at significantly reduced computational cost compared with

traditional, nonensemble algorithms for flow ensemble simulations. We proved205

both algorithms are unconditionally stable without any timestep conditions or

assumption on the variance of the viscosities. We also presented three bench-

mark flow problems with open boundaries, which showed our algorithms are

robust and effective in preventing backflow instabilities producing physical and

accurate flow statistics.210
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