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Abstract

Numerical approximation of stochastic Stokes-Darcy equations usually requires repeated sam-
pling of the random hydraulic conductivity tensor and then simulating flow ensembles. In this
setting, we propose an efficient, second order, ensemble algorithm for fast computation of the
whole set of realizations of the stochastic Stokes-Darcy model corresponding to different random
hydraulic conductivity tensor samples. The ensemble algorithm only requires the solution of
two linear systems that have the same constant coefficient matrices for all realizations. We give
a complete long time stability and convergence analysis for the method. Numerical experiments
are presented to support theoretical results and demonstrate the application of the method.

Keywords: Stokes-Darcy equations, uncertainty quantification, ensemble algorithm, finite
element method, partitioned method

1. Introduction

Effective simulations of the coupling of groundwater flows (in porous media) and surface
flows are required in many engineering and geological applications. One of the major difficulties
is that the hydraulic conductivity tensor X can not be accurately determined and uncertain-
ties have to be taken into account using stochastic models. This leads to another challenge in
numerical simulations as the numerical approximation of stochastic PDEs usually requires solu-
tion of a (usually relatively large) number of realizations corresponding to different parameter
samples, which can be prohibitively expensive. To reduce the computational cost, many uncer-
tainty quantification (UQ) methods have been developed and extensively studied, among which
the ensemble-based nonintrusive methods are particularly popular because legacy codes can be
directly utilized without much modifications, e.g. variants of the Monte Carlo method such as
the multilevel Monte Carlo method [2] and quasi Monte Carlo method [41], alternative sam-
pling methods such as centroidal Voronoi tessellations [55] and Latin hypercube sampling [30],
non-intrusive polynomial chaos methods [29, 54], stochastic collocation methods [1, 64, 53, 6].
This direction of research has been focused on reducing the number of samples points required
up to a certain accuracy. On the other hand, the problem of designing algorithms to compute
ensembles more efficiently has only recently been addressed. A new direction of research is
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to speed up the ensemble computation by developing efficient ensemble algorithms. This was
first studied by Jiang and Layton in [35, 36, 34] where an ensemble algorithm that results in
one common coefficient matrix for all realizations was devised for computing time-dependent
Navier-Stokes equations. This feature of the algorithm allows the use of iterative solvers such
as Block CG [12] or Block GMRES [26], to greatly reduce the computing time and required
memory. For example, in [39], the proposed stabilized SAV ensemble algorithm with a block
GMRES solver for solving the corresponding linear system with multiple right hand sides was
able to save 82% of the CPU time when compared with a traditional nonensemble method for
computing an ensemble of 100 realizations of the Navier-Stokes flow problem. [40] provides a
detailed numerical investigation of ensemble methods with block iterative solvers for evolution
problems. Some recent developments on the ensemble algorithms for different flow problems
can be found in [5, 13, 14, 15, 19, 20, 21, 22, 23, 27, 31, 32, 33, 37, 38, 40, 46, 47, 48, 49, 61, 62].
In [37], an efficient ensemble algorithm was proposed for fast computation of multiple realiza-
tions of the stochastic Stokes—Darcy model with a random hydraulic conductivity tensor. The
algorithm results in J linear systems with the same coefficient matrix instead of J linear systems
with J different coefficient matrices at each time step. Even though it is efficient, the method
of [37] is only first order accurate.

In this paper, we extend the method in [37] to an efficient, second order, ensemble algorithm
for fast computation of multiple realizations of the stochastic Stokes-Darcy interface model with
random hydraulic conductivity, based on the second order in time Backward-differentiation
(BDF2) timestepping. We give comprehensive stability analysis and error analysis of the higher
order method in Sects. 3 and 4, respectively.

The Stokes-Darcy equations are well studied to model the coupling between the surface
fluid flow and the groundwater flow in porous media, see for example [3, 7, 8, 9, 10, 11, 42,
44, 50, 51, 57, 45]. Let Dy denote the surface fluid flow region and D, the porous media flow
region, where Dy, D, C R%(d = 2,3) are both open, bounded domains. These two domains
lie across an interface, I, from each other, and D; N D, = 0, Df N Dp = I, see Figure 1. The
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Figure 1: A sketch of the porous median domain D,, fluid domain Dy, and the interface I.

Stokes-Darcy model is: Find fluid velocity wu(z,t), fluid pressure p(z,t), and hydraulic head
¢(z,t) that satisfy

w —vAu+Vp = fi(z,t),V-u=0, in Dy,
Sopr — V- (K(x)Ve) = fp(x,t), in D,, (1.1)
¢<x70) = ¢0(ZL‘), in Dp and U(I’,O) = Uo(l'), in Df>
¢(x,t) =0, in 0D, \I and u(z,t) =0, in ODf\I.



Let ny/, denote the outward unit normal vector on I associated with Dy/,, where ny = —n,,.
The coupling conditions across I are conservation of mass, balance of forces and the Beavers-
Joseph-Saffman condition on the tangential velocity:

u-ng—KVe¢-n,=0and p—vns-Vu-ny=g¢pon I,

—v Vu-ny = \/O‘BJiKsu 7; on I, for any tangential vector 7; on I,

see [4, 56]. Here, g, K, v and Sy are the gravitational acceleration constant, hydraulic conduc-
tivity tensor, kinematic viscosity and specific mass storativity coefficient, respectively, which
are all positive. K is assumed to be symmetric positive definite (SPD).

In this paper we study a second order ensemble algorithm for computing an ensemble of the
Stokes-Darcy systems to account for uncertainties in initial conditions, forcing terms and the
hydraulic conductivity tensor. Herein we consider computing an ensemble of J Stokes-Darcy
systems corresponding to J different parameter sets (ug, ¢?, fris foin KC), 5 =1,...,J,

t—VA’U/j—i—ij :ff,j(l’,t), V'Uj :0, n Df,
SOQSJ’J -V (ICJ(.CE)V(ZSJ) = fp,j(xvt)7 n Dpv (1'2)
¢j(x,t) =0, in 0D,\I and u;j(x,t) =0, in IDs\I,

where we assume there are uncertainties in initial conditions u°(x), ¢°(x), forcing terms f(z,t), f,(z, )
and the hydraulic conductivity tensor /C(z), and (ug-), qb?, fris fojs IC;) is one of the samples drawn
from the respective probabilistic distributions.

The second order ensemble algorithm we propose for computing multiple realizations of the
Stokes-Darcy model reads

Algorithm 1. Find (u}*™', pi*!, i) € Xy x Qp x X, satisfying V (v,q,¢) € Xy x Qp x X,

([ 3u™T — 4+t
( J 2AZ J v —|—V(V n+1 vvf+2/nz n+l A U Tl)dS

+ 3 [ = w2 - uy-1> w7 ds — (57,9 0),

+ CI<U7 2¢;L - ¢§L*1) (f?j% ) o
\(Q7 V- U?—H)f = O;

(sub-problem 1)

2At
+9((K; = K)V(2¢7 — ¢} 1), V@/)) —er((2uf — ™), 0) = g(fy7 )y,

where

390+ — 497 + 91 i
S : — + g(KVeitt, v
90 ( v g(kve; Ol (sub-problem 2)

S
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_ apJs d
77i,j - = = an 77z Z 771,]'
T; * K:jTi



The efficiency of the algorithm is obvious. First, this algorithm decouples the original
problem into two smaller sub-physics problems, which results in two smaller linear systems to
be solved at each time step reducing both storage and computational time. They can also be
run in parallel to further reduce computational time. More importantly, for both subproblems,
all realizations have the same coefficient matrix, which allows the use of efficient block solvers,
e.g, block CG [12], block GMRES [26], or direct solvers such as LU factorization, to solve the
linear systems at greatly reduced computational cost.

The layout of this paper is as follows. Section 2 gives mathematical preliminaries and de-
fines notation. In Section 3 we prove the long time stability of the proposed method under a
time step condition and two parameter conditions. In Section 4, we give a complete conver-
gence analysis for the proposed method and prove that it is second order convergent in time.
Numerical examples are given in Section 5 to illustrate our theoretical results and demonstrate
the application of our ensemble algorithm incorporated with the Monte Carlo method and the
sparse grid method respectively. Section 6 provides final conclusions.

2. Notation and Preliminaries

We denote the L*(1) norm by | - ||; and the L?*(Dy,) norms by || - || /; the corresponding
inner products are denoted by (-, -)/,. Further, we denote the H*(Dy/,) norm by || - la (D, )
The following inequalities will be used in the proofs, [44].

1@l < CDOA MMVl Nlulls < C(Dp)y/llullfl[Vully, (2.1)

where C(Dy,) = O(\/Lg/p), Ly = diameter(Dy ).
Define the function spaces:

Velocity @ X;:={ve (Hl(Df))d cv=0o0n 0D\I},

Pressure : @ := {qELz(Df) :/qu:O},
Q
Hydraulic Head : X, :={¢ € H'(D,):¢=0on 9D,\I}.

To discretize the Stokes-Darcy problem in space by the finite element method, we choose
conforming velocity, pressure, hydraulic head finite element spaces based on an edge to edge
triangulation (d = 2) or tetrahedralization (d = 3) of the domain Dy, with maximum element
diameter h:

XPcXp, QycQp XX,
The continuity across the interface I between the finite element meshes in the two subdomains
is not assumed. The finite element spaces (X J}}, Q?) are assumed to satisfy the usual discrete inf-
sup /LBB" condition for stability of the discrete pressure, see [24] for more on this condition.
Taylor-Hood elements, [24], are one such choice used in the numerical tests in Section 5.
We will also consider the discretely divergence-free space:

th = {u, € X}L 2 (qn, V-up)p =0, Vg € Q?}
Define

cr(u, ) = g/lgbu-ﬁf ds.
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Let Cp s and Cp,, be the Poincaré constants of the indicate_d domains a,rid l;:mm(m) be th§ mini-
mum eigenvalue of the mean hydraulic conductivity tensor K(z). Define kyin = mingeq, kmin(7)
and two parameter-dependent constants

Csl9C(Dy)C(Dp)]*

412 ’

Cppg*[C(Dy)C(Dy)]*
Ak? '

min

C) = Cy =

We have the following estimates for the coupling term c¢;(u, ¢).

Lemma 1. For any (u,¢) € X; x X, and any €1, €3, a1, 51 > 0,
1 €
ler(u, ¢)] < —||¢>||§ + —1201||V¢||§ + arv||Vaull3, (2.2)

ler(u, @)] < Ie IIUI|f+ 52 OV} + Bigkminl Vo3, (2.3)
1

PROOF. See page 4 of [37].

The fully discrete approximation of (1.2) is:
Algorithm 2. Find ( ?Zl,pﬁ;l, qb"“) € X} xQyx X) satisfyingV (vn, qn, ) € X} xQfx X,

((3umit —du?, +ult -
< h 2Ajt7h LI v(Vuliit, Vo) + Z/m LT (op - T) ds
f

+ / (i = 70) (20, — Wl ) (on - ) ds — (D)1 V - )
i I

+ CI(Uh7 2¢;L,h - ¥y, h ) (f;};&? h) f
\ (Qha V- u?:ltl)f =0,

(sub-problem 1)

2At

+9((K; = K)V (205, — ¢, 1), Vibu)p — cr(2uf), — uly n) = g(fo 't n)p.
(sub-problem 2)

3 n+1 4¢nh 7}21 B
950 ( i @Dh) + (K, Vi),
P

3. Stability Analysis

Let | - |5 denote the 2-norm of either vectors or matrices. Let kjnin(®), kmin(z) be the
minimum eigenvalue of the hydraulic conductivity tensor K;(z), K(z) respectively, and ()
be the spectral radius of the fluctuation of hydraulic conductivity tensor C;(z) — K(z). Since
both Kj(z) and K(x) are symmetric, |KC;(x) — K(z)]z = pj(z). We then define the following

quantities that will be used in our proof.

nig " = max|n(e) = (@)l ™ = maxn, AN =mindi(@),  Kjmin = 1000 Kjnin (@),

— ] . L . — 1 L . / —
kmin = nin kj,mzna km@n = min kmzn(l‘)7 pj,ma;t max p] maz(x)7 Pmaz = MAX pj,maw‘
J €Dy €Dy J



We prove long time stability of Algorithm 2 under a time step condition and two parameter
conditions

At < min (1 — Q1 — a?)ﬁ%l%mm <1 — P — P2 — Spmw) %SOV fomin (3 1)
< &, az, gcopcmyn ¢
i ];:min
R (3:2)

Theorem 1 (Long time stability of Algorithm 2). If the two parameter conditions in (3.2)
hold, and there exist oy, ag, B1, fa in (0,1) such that the time step condition (3.1) also holds,
then Algorithm 2 is long time stable: for any N > 1,

1 _ _ 24At*Cy
3 (RS 2, = 1)+ 250 IO + 26 — 65 12) + 22 IVl
8At C R AmMmin R
7 — [ Vul; ||f+Athm/ N7 ds+AtZ’7ZT/(ugh—l.n)2 ds
i 1
24ALC) ) , <8At01 > ,
A + 390l ) IV + At + 9o ) IV 3.3
( o W ) IV + 0 (S50 1 g ) 190352 33
< Atz ay +At2 2 Ll + 20— o)
gSo 24AE*Cy 8AL2CYy
220 (o}l + 26— 12) + Tuw;,hu% v
1

+ Athmm/ ih -T2 ds + Atz i /(u?,h -75)? ds
I

24ALC SALC! ,
b ot (220 sapt ) INOLlE + At (S50 4 gl ) VORI

2
00 gSoart

PROOF. Setting v, = ul}', ¥ = ¢7}" in Algorithm 2 and adding all three equations yields

1

g (i 2+ 2 =) 4At(uu]h||f+||2u]h ) e 2
g AV 3 [ At R ) ds +j—i‘;(n¢”+1||2+||2¢”“ Sl)
950 2 GL|12 950 | nt1 n—1|2 o Al n+1
I (gl + 1267 — 055 12) + S0kt — 205 + 05 1+ 9KV Vo,
+er(u %172¢;h_ j,ﬁ) CI(QUgh_Unh17 ﬁrl)
= U 4 o = 32 [ g = A 055 R ) ds
= 9((K; = K)V (29}, — ¢731), V¢”+1) : (3.4)



Note that

( 7217 2¢ ¢ ) CI(QUJ h — u?hlv Qs??l—l)
= [ ( ?—}tlv 2¢ ) - CI( ?—ftlv ¢n+1)] [ ( ;L—;L_lv ¢n+1) - CI(Quj - Uj h 7¢n+1)]
= —c( ?—ftlv ¢n+1 - 2¢?,h + ¢j,h ) + CI( — 2ugy, + U]h 7¢;hf:1)- (3.5)

Applying estimates (2.2) and (2.3) with ¢; =

g%), €2 = At, and using the inequality (a +
20 + ¢)? < 4a® + 8b* + 4c* we have

cr(upyt = 2ufy, +uly o) — el ¢t = 207, + o)

n AtCl . R .
Z =gl = 2t s = =g IV 3T = 2+ Wi = Aighmin VO,
gSo n n At Cl n n n— n
— Sal = 200+ 9 — SR IV — 265+ 5 — eV
gS
n At02 .
> — g k! = 2+ 0 G = =5 (VG + 81Vl + 41Vt 1)
SO At Cl
_ kmmvn—HZ g n+1_2 2 4vn+12 8V” )
Brgbminll VOS5 — R NOTE = 200 + G531 — 3 (VORI + 81V

+4[Ve3, ) — vl Vugt. (3.6)

Applying Cauchy-Schwarz and Young’s inequalities to the source terms, for any as > 0, B >
0 we have

(f}zj&? n+1)f + g(fn-i-l n-‘rl)
<A A L+ gl fpr g
< CpgllFFT IV gty + gCPpr"“HpHWﬁ"“Hp

CP n n 9C% n n
< . fl\ff“\|f+a21/|!Vu 7+ N ==l Ml + Boghminl V54 13- (3.7)

The other two terms on the right hand side of (3.4) can be bounded as follows. Using the
inequality (2a — b)? < 6a? + 3b%, for any € > 0,

93 / (e — )((2uly — w1 - 7) (it - ) ds
<Z/|77W 771|| ((2uf), —u R )(u”Jrl |ds
< 3oy [ )Rt 7] s

/mam L ) 77/mam ) )
<Z[ /1 (2ujp —ufy ) - 7)” ds + —o— /I(U?I - 7;) dS}

3 3 max . max R
< [Engm /I<u;§h 7)2 ds + ”2 /l(u;fhl 2 ds+ i /I<u;{;1-n)2 ds], (3.8)

€




and
-9 ((]Cj - ’é)v(zqﬁ?,h - ¢]h ) V¢n+1)

/ VO ol — KoV (267, — 6 da

<g / (@) V6 5|V (267, — 670 da

P

< 9P / Vo o[V (260 — ¢ da
< gﬂ},maxllv(%ﬁh — IV
3 n 39pmam " gpmax n
S L Tuvmnz Dl |7 g2 (39)

Since all terms in (3.8) need to be bounded by >, 77" [, ( ”Zl -7;)? ds, we need to minimize
(% + % + £) to make the time step condition sharp. This term achieves its minimum 3 when
¢ = 3. Similarly, we need to take e = 3 in (3.9). Then (3.8) and (3.9) become

= [ =@ =) A R ds (3.10)

. mazx . 3 max .
< Z { ’m“x/ LT ds + 7712 /](uzgl T2 ds + 7]@2 /I(u?;jl 7)? ds}

and
— g ((K; = K)V (265, — 6731), Vi3 (3.11)

n 9P 39,0 a "
< gpimlle,hﬂ% ;WW 2+ =2 [Vl 2.

Using above estimates, equation (3.4) becomes

1 n n n
o (4 2t = 12) — o (fally =+ 1263, — ) (312)
16ALC, § 12A1Cy , . .
+ (- —ay — ——W[IVu T+ —; (HV UG = VgLl
51’/ 51
4AtC n;nzn /ma@ n R
+ 2 (vl = 1) + 3 }/ijf-n)? s
1
# B [t a as [ ap ) DIE S (LR
i I I I
—min —min /max
> [/(ugh-af ds—/(u;;I ds} +Z [ - - ]/(u%l.ay ds
i I I I
95’ n n n 950 /11 n e
220 (g 2 + 23 — oall2) — S (Ul + 1263 — 35" 12)
16AtC, 3
+ (1 - 51 - 52 - . pmax)gkmzn||v¢n+1”2

92 SO a%l%min kmm



12At01 39pmax na1 n 4Atcl gp;na:r n n—1
«+(gSCﬁ + )WV%‘*HZ—HV¢ﬂM9—%(Q%a%+- 5 ) UVl = 11V e5 )
n+1|| g Pp H n+1||2
5 1ok

To obtain stability, we need

16AtCY pmin 16AtC, 3¢
>0, - M >0, and 1 — ) — By — — — =T > ().
B%V - 3 nl - 51 62 9250a%kmin kmzn -

(3.13)

1—0&1—042—

Recall that oy, as, f1, B, At,nm*", pl  are all positive, we then have the following con-
straints on these parameters.

O<ap <1, O0<ay<l, 0<pri <1, 0<py<l, (3.14)
Praz _ 1 m™ _ 1

< = - 3.15
kmin 37 ﬁmzn N 3’ ( )

(2

— — 2 ]-_ 3pmal 25 min
At < min{(1 o1 — )iy A=h—fe )alg ok } (3.16)

1602 ’ 166’1

(3.15) leads to the two parameter conditions in (3.2), and (3.16) leads to the time step condi-
tion (3.1) required for stability. Now if the time-step condition (3.1) and the two parameter
conditions in (3.2) hold, (3.12) reduces to

1 n n n
4At(”u +1||f+ ”2U . _uj,hHQ) 4At(‘|u]h||f+ ||2Ugh _Ujh ||3f)

12AtC . . AAC! .
7 —— IV 117 = Vupall) + Blg(llvjhllf IV, I7)

U ntl | = no = U nel ~
| fot o as = fagemas) o S5 | e mas— [t a )

gS(] gSO

+ I (0TI + 1267 = Gnall2) — 22 (2 + 11263 — 675 2)

12At01 4At01 gpmaz 2 n—1112
+ ( gS 062 gS()Oé% + )(HV¢ h”p_ HV(bj,h Hp)

3 max U v
+ 00man) (195512~ 9 63,02) + (

n+1|| g Pp ” n+1H2
5 Blimin

Summing up (3.17) from n = 1 to N — 1 and multiply through by 2At to get

(3.17)

1 B 3 24At*CYy
§(Hu§YhH? + 126, — ul 7M7) + —(H¢ M2+ 11207, — o I2) + 5—%||Vu§,vh|!?«
SA2CYy

min n;,nun o
7 ||V \|f+Ath / uj', - T)? ds+AtZ /](U;Vhl 7)? ds

24AtC 8AtC}
At 2 - 2
ro (220 3W%M)HV@hu o (35 m%m)nv¢ 2

0&1
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N-1 N-1
C’I% gC? 1
f n P, n
< At § ||ff+1||f+At E BTN oo a4 5 (legall + 1126 — w5all7)
n:1 min

95 24A#2C SALC
—°(||¢}7h||§+ 1265 = 9alls) + =51V Uz} + ——5— Va5, I}
2 st Bt
+ Atz mn/ up, %) ds+ Aty 77@‘3 /I(u;{h ()2 ds
24AC) 8ALCH
At +3 nllz+ At 2. 3.18
- ( et 300l ) IV + 8 (S ) IV 2 (3.18)

4. Error Analysis

In this section, we analyze the error of Algorithm 2. We assume the following regularity on
the true solution of the Stokes-Darcy equations.

u; € L0, T; H*YY(Dy)), up € L2(0,T; H*YY(Dy)), w0 € L*(0,T; L*(Dy)),
¢; € L0, T; H"(D,)), ¢j0 € L*(0,T; H™(Dy)), ¢ € L*(0,T; L*(Dy)),
pj € L*(0,T; H**Y(Dy)).

For functions v(z,t) defined on (0,7"), we define the continuous norm

N0k = [Vl Lm0k (DY), T € {f5 D}

Given a time step At, let t,, = nAt, T = NAt, v = v(x,t,) and define the discrete norms

0<n<N

N 1/m
ol ook, = max [[v"|grp,) and (o]l ., = (ZHUHHE’“(DT)AIS> , re{f.p}
n=0

We assume the finite element spaces satisfy the approximation properties of piecewise poly-
nomials on quasiuniform meshes

inf Jlo — vally < OB fulpens e [HHUDpY, (A1)
mex!
190 = ol < CH bl o, e [HHUDpY,  (42)
qhmg,} lg = anlly < CR* Mgl o1 Vg € H**(Dy), (4.3)
Bl =ty < CH A ms, v e HM(D,),  (44)
w;ig)f(g V(@ = ¥n)ll, < Ch™|Y || gm+1(,) Vi € H™ (D), (4.5)

where the generic constant C' > 0 is independent of the mesh size h. An example for which
both the LBB" stability condition and the approximation properties are satisfied is the finite
elements (P 1—FP—P1), I > 1, [24, 25, 43]. Define e, = ul —uly, el = ¢ — ¢, where
ul = uj(r,t,), p} = pi(z,t,), ¢} = ¢j(z,t,). We prove the convergence of Algorithm 2 under a
time step condition and two parameter conditions:

10



— o — 27 (1= By — By — (3 + 0)maz) a2 Sy
At < min (1—ay 2042)5115%”’ ( Io 2 (2 )kmm) 0 : Vkpmin 5
CPp Chy 4g°[C(Dy)C(Dy)]
(4.6)
Imax ﬁzmzn / l;:min

< < . 4.7
777, _ 3 Y pma.’z 3 ( )
Theorem 2 (Error Estimate). For any j = 1,...,J, if the two parameter conditions in

(4.7) hold, and there exist oy, s, 51, By in (0,1), and o > 0 such that the time-step condition
(4.6) also holds, then there is a positive constant C' independent of the time step At and mesh
size h such that

24At202 gSO 24At201
—H ull7 + 5 IVesull; + = llesolls + { 3Atgo0 + ——— | Vel
1

S(]Oé%
24At Cy 8AL2C,
< g(He},que +12¢5, — €5ullF) + THWM!? 7 — IVeSll?
1
+Z3Atn’m”/ ds+ZAtn'W/I( 0 -T)? ds +—(H L2+ 112t — €2,012)

24A*C 8AL*C
+ (3Atgp;nax + gTal> ||V e; ¢||2 <Atgp;nam + gTJ) ||V e; ¢||2 + Ch2k+2”“gt”2k+1 r

+ Oh2m+2||¢jyt“g,m+l,p + Ch28+2”|pj’|’2,m+1,f + CAt4||uj,ttt||2,o,f + CA#“Uj,tt”zl,f

2 - 2
+ CAIjell3.0, + COL 1 Djatllzr p + CH* sl i s + CP™ N105 115 001, (4.8)
Corollary 1. Assume that |}, [|, €], |, [[Vej, [l [IVe§ [l llej o)l llefsll 1Ve) o[l and [[Ved ]
are all O(h*) accurate or better. Choosing (P, P, Py) elements for (X},Q% X)), we have

24AL2C,

1 gSO 24At201
Sl + 2SIV + BRI I2 + (380 + 2 52"
1

950041

PROOF. (of Theorem 2) For Vv, € th,‘v’wh € X;,VAZH € Q?, the true solution (u;,p;, ¢;)
satisfies

3un Tt — 4y 4 7t
( J 2Azjf I, +1/(V ntl Vvhf+2/17” V(v - 7;) ds

— (T =NV ), +cf(vh,2¢;-‘—¢? D= on)g + €5 (un),

) IVel,||Z < C(h* + AtY) .

3¢+ — dgn + ¢! )
gSO ( : Atj 4 7wh + g(Kjv¢?+17 th)p - CI<2u}I - u;l 17 2bh)
p
= g3 n)p + €5 (). (4.9)
The consistency errors € f Yup), " €5 Fl(3y,) are defined by
3ultt —4u? + !
et (on) = ( ’ ZAZ L — o | —er(on, @7 = (207 — ¢771),
!
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30" — 47 + o7t -
el (Wn) == gSo ( ’ 2AZ L— — M |+ (U] m— (2u) - wl ™), ).
p

Subtracting Algorithm 2.2 from (4.9) gives, for Vv, € th,W/zh € X;’,VAZ“ € Q}},

3eitl —4en et
( = LIy |+ (Ve Vo) erZ/m P T (v - T) ds
f

2At
+ Z/ Nij — i) o~ eﬁl) T (vp - T)] ds — ( FARE VAR VA vh) + cr(vn, 2€5 4 — GZ;I)

= — Z/(nz}j - 772) ([U;H‘l _ (QUJ? - u?_l)] ‘%\i)(vh . ﬁ-\z) ds + En—i—l( )

3@7.L+1 4e”  + e — C
95 ( et y, ) +g(RVeSE Vi), + 9((K; = K)V(2€f, — €551), Vo),
p

2At
—cr(2€], — et ) = —g((K; = K)V(¢7 ™ — (207 — ¢771)), Vbu ), + €15 (40n). (4.10)
We define
e?,j;l — un-i—l _ u;z—}&b-l — ( ;L-i—l Un-i—l) (Un—H _ un-i—l) ,u?—qjl + gn—uH’
e;z;gl — ¢?+1 - ¢§L;1 — (¢;1+1 - q)gl+1) ((I);l+1 o ;lerl) — M;L;gl 4 é—nJrl

where U™ CD?H be an interpolation of u}”’l and gb?“ in th and X;L correspondingly.
Then (4.10) can be rewritten as

3 n+1 4 nu+ n—1
( S 2§t Su Jon |+ v(VERT, V) f—i—Z/m LT (on - T ds
!

+Z/ Mig — 1) (267, — &) - Til(vn - 7o) ds — (P77 = N™H Vo) 4 er(on, 265, — €75 7)

== 3 [ s =m0 = 2 =) Rl - R) ds+ 7 )

Buint —Apy, + ! 5)
- ( - Lo | = v(Vpgdt Vo) g — Z/m it 7 (on - 7)) ds
!

oAt
- Z / (Mg — ) (205 — 1537) - Tl (on - T) ds — erlvn, 2055 — 1 50), (4.11)
35”“ A6 + &7y il
( ~ " ) + g(RVEL, Vun),
+9((K; = K)V (2875 — €551), Vn)p — (267, — €77 0n)
_ 3 n+1 Ayn, + n—1
~9((; = )V (6} — (2] ¢?-1>, Vi), + iy () - ( R ,w)
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gV V), — g((Ky — K)V (205 — 1185 1), V) + 1 (20, — w1y bn).

Letting vy, = &7 Ly = 5;;1 in (4.11) and adding the two equations yields

1 1
7}+1 ) n+1 f 2 _ 1} 2 2em n—1/2

n n 7 gSO n n n
+ ]V “||f+2/772 Ry ds S0 ez 4 2gg - €l
gSO n 2 2 n —1 2 gSO n+1 o 2 n n—1 2 ’CV n+1 n+1
+CI(§?:II,2§” —53”;1)—01(257-Z - &t 5“1)

Ju 57,0

—Z/m WL, — €20 R -7 ds+ (0 = N,V - &),

H T =285, 6

=3 g = W™ = 2o g™ R 7 ds 7Y

3/~Ln+1 4:unu + lunu n n n n ~ n =
( oar G | (Ve VG f_Z/m it TE T ds

f
—Z/ g — 1) (205, — 15, t) - Tt - T) ds — er(€7at, 20y — 1yt

— (K = K)VIL = (207 — 6], V&L, + i (E8Y) — g(KVi ! VeEsh,

Cip \Sie 5¢
- g((/Cj - ]C)V<2Mj,¢ - M] ® ) vémﬂ) + CI<2/“l’ju N?ula gjnf)
_ . . Bt —duly + iyt
—9((K; = K)V (285 — €51). VL), — 95 ( A ie. Gt (4.12)
p
Using the same techniques in the stability proof (see (3.5) and (3.6)), we have
01(5?1—51726% - ) CI(an - ju 7§n+1)
=cr (5"“ —25% &) =Gt G - 260, + €75
n n n—1 C n n n—
> = I = 260+ 1 — A0 (VGG + SIVELIG + 41 1)
2 n+1)2 950 gntl no12 At C n+1)2 2
~ BuaFin VL1 = SROEEE" = 265, + 511 — o TGS + IV
+AIVES) — awlIVET (4.13)

Next we bound the terms on the right hand side of (4.12).

n+1 n n—1 n+1
R A TR R el — 4Gy T i e
2At T ; 2At i
p

e R e
Qo V 20t ! !

Ccl%p952|’3Mn+1 4'uj¢+'uj¢ H2 62
BZ min 2At

Ghminl VES

13



tn+1

ccz, 1 CC2 gS? 1
< Y " dt v n+1 2 — —rpJYU / ) 2 dt
N QalV At / ||lu] t”f * VH Hf 62 min At n—1 H;uj@,th

B 7. n
jgk:mmHVE pal[& (4.14)

(VM;L-H \V/ n—i—l) (]CVM;L an+1)

n n n ﬁ2 1. n
< C(IVuG 7 + IVt )+3VHV£]-,TII? = IFminl VG I (4.15)
By trace theorem, we obtain
—er(E00h, 20y — i) + e (20, — 1t ) (4.16)
n n— n n— Qs n /82 1. n
< C(IVQ@uGy = 157 + 1V @ugy — i HI15) + gVIIijJlllfv = 9kminl VG
n - n — /82 7.
< C(IVHE G+ IV G + IV 12 + IVt E) + Ve T + 7 Iminl VES -
The pressure term can be bounded as follows.
( n+1 )\n—i-l V- n+1)f Hpn+1 >\n+1Hf+ hats HV n—l—le' (4'17)

Next we bound the consistency errors.

i) < O N | eIV - (20 - 6 IR + 2ol ve;
tn+1 tn+1
< CAP / a2 d + CAP / 1965l de + 2o VE 2. (4.18)
tn—1 tn—1
n n 3¢7'1+1 B 4¢" + gbn_l n n n n— 52 1. n
e < O P - |+ I - 20 = I + gk V€
tn+1 tn+1 /B
ch/ |y¢,,ttt|y§dt+cm3/ IVusallf e + 2k VT (119)
tn—1 tn—1
Following the discussion for (3.10) and (3.11), we have
X [ s - m g - g G R (4.20)
5 n/max 1 5 377/me 1
< Z |: lmam/ . Ti) ds + 12 /I( ZL—L . Ti) ds + 24— 5 /({’n—l— ) 3:| ,
and

s n n n gp;na.r n— 3gp;na$ n
— 9(0C; = R)V(28, = €151, V) < 9Pt V1% + Lo |05 |2+ s g2
(4.21)

14



By (2.1) and Poincaré inequality, we have, for any o; > 0

and

=3 [ (g™ 20— RAGE R s (122
<l I = 2 =) A A ds

max n n n— N2 o . .y
< Zn’ {201 /((UjH — (2uf — u] ). 7-@-) ds + 71 i (fj’;rl 'Ti) ds]

ngmam n+1 n n—1\(2 Ol imax n+l =~\2
<3|t = o -+ G [t R s
< 3 S Py~ (20— )+ G [ ds
— | 1 I
-CP,fCQ(Df) 'max 3 . 01 max n+l =—~\2
< oy i At gzl dt+7771 (& - T)" ds|,
i L 1 tn—1 I

-3 e )RR o 123

<Zn’m‘””/|[<2uju ) Al 7)) ds
<D R I R (Gt

1 /max —1 01 max n+1 =\2
<> _gni 20 = I+ G [t 72 ds
_C (Df)OPf max 1 max n+l =~
2T, M IV 2u = 15,5 + 5 /(g 7)° ds
-40 D CP max 01 max n ~
< 3 [FEDORL e (0 3 19 1) + P [t -7 ]

For any o9 > 0

D3 / T R 7 ds (4.24)

1 - ~
< Tt - 7)? ds + o / (et Ry ds}

_40'2

1 maa: n n ~
<3|l o e R s

-C( )Cpfmax n+1 1. ~)2
< 30 | Vi o [l R s
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For any o > 0, we have

gk — )41 — (207 — g171)), Ve, (4.25)
<g / V(@ — 267 — g0 )|alK; — Klo| VEX, di

P

<g / D)V — o) o Ve da

P

< 90, / V(0 — (260 — ) LI VEN ] da

P

< 9Pmaa V(057 = (207 — &7~ NILIVES Il

gp;’n(ll' mn n 77— 9 n
< 7HV<¢]’+1 - <2¢j - ¢j 1))”;20 + §9P;1ax”v€j;1”§

tn+1

Cgp;naas n
LT / I965ll2dt + 2 96t IV,

tn—1

Similarly,

=000 = ROV iy~ 1351, 9E5 ", < g [ 9@, — el — KRV Yade (426)

P

<g [ BV, - WLV ads

P

< 9P /D Vul, — )| VENy d
P

< 9PmaalIV 2155 — 155 ) IVES

gpmaa: n— g n
< = IV @G — 1550+ 59PmalVES

4gpmax e
<T(IIWJ¢H2+I|W ||)+ gpmazHV ipnl

Combining all these estimates, we have the following inequality

TL n n 1 n n n—
T I+ 1265 = €001 — (Nl + 11260, — €621

16C: . 12AtC! . i
(11— —an— a2 wenip 4 BRI (e gen 2y
51V 51
4At0 mzn /ma:p n P
S (VeI — VeI )+ 3 (0= o = (3 ™) /I@],:l 72 ds

+Z i ([ e as- [ )+Z n’m(/ A ds = [l R as)

950 n+1 2 n+1 n 950 /1 en 2 n n—112

+ I 12+ 1265 — €Ll — SRR + 128 — €55112)
160 pmax mn

- ((1 B Bl - /82 - AtQQSO'Em;ZO‘%) B (3 * )kmm) gkmmHV +1||2
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3, 12AtCY grt 2 n 12 1, VAN 05t n 12 12
(590 + gt ) (VG2 = 19611 + Qgpw+gsoa (19512 - 19625 12)

cC3, 1 CC955 1 [ ntl _ yn

S Tawr A 1470217 dt+5glé+ﬂ/ 15,9, dt + — ||p =N
ntl tntl et

+0At3/ 1 Hu]',ttt|!fcdt+CAt3/ 1 ||Vuj,tt\|fvdt+C’At3/ 1 H%ttt”idt
n— th— -

tn+1

+0At3/ IVGallzdt + C (Va7 + Ve EHE) + CUIVES G+ IV 1+ 1V 6l
-

CP C ) max tn+1 )CP max n
#9511 + 32 LTt [ @l e 3 SO
tn—1
+ 30 O <||wj,u||§+||wj,u1||§)+—U o [ ol
P tn—1
4gp;na:p \VIT: 2 \V4 n—12 4.97
+ 20m (17,2 + 191551 2). (427

To obtain convergence result, we need the third, sixth and eleventh terms on the left hand
side be non-negative, which implies 0 < a, g, 09, 81, B2 < 1, and

max

1-— 1
s 2 Pmes - (4.28)
nzmm 34+ oy Knin 340
For Yo, € (0,1),Yo; > 0,Yo > 0, we can derive that 2 72, 55 € (0,3). If the two
parameter conditions in (4.7) are satlsﬁed we have ,:jf , Z’”” € (0, ) It is easy to check there

exist oy € (0,1),01 > 0 such that 2 _mm = Lo and o > 0 such that Z;’M < 3%0 With the

3+O’1 ) min

time-step condition (4.6) also satlsﬁed (4.27) reduces to

n n n 1 n n n—

o (IR + 1265 =€) — T Ul + 1265, — €5 1R)

12A1Cy (0 . AALC .
T = IV = I1VERI7) + 7 = (IVE.I5 = IV 113
+Z n/ma:c(/ n+1-7/:i)2d8—/( . )+an (/ n ?Z)QdS—/(;Zlﬁ)zdS>

I I
gS n ntl _ gn 95 (1i¢n -
+ 0 (et 2 + N2t — €1l) — L en I + 12, — €25112)

3, 12AtCh n+1 9 n 1, 4ALC n 112 12
+ (o0t + gso%)(uv 2= IV I2) + zgpmaﬁgsoa (195,12 - 19€512)

tn+1 tn+1

CChy 1 2 CC%,955 1
e A dt + —=— — dt n+l _ \n+ly2
T v At /tnl lotinclly o + Bokimin At/tnl sl dt + “p ho Il

tn+1 tn+1

+ CAtS / ||U'j,ttt||§" dt -+ CAtS /
tn—1 1

tm—

tn+1

IVl dt + CAS / ||¢j,ttt||;idt

tn—1
tn+1

sl [ IVaal2dt+ € IV + Vi) + OV,
tn—1

4 IV
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tn+1

n n— (jF: (72(1) ) max
T2+ 191 2) + 30 SR 2 et [ Vgl
t

. n—
(2

(7 (7 4(7 1) (j Mnam n n
# 3 IR 3 S e (195 + 1957

i

C /
+ 9Pmaz At?; /
o

tn—1

1

IVl di+ e (2 4 9. (1.20)

Summing up from n =1 to n = N — 1 and multiplying through by 2At yields

24 At C, 8At*(C,
e5 e

DRI [ m ass > [ ayas+ g—S°<H£J¢|I2 + 26, — €5

1 .
S UGIIF + 11265 — &G 15) + IVEullF + —— V&L 7

24At2Cy 8At201> [veN-T |2

Atgp! —_— NOIZ+ ( Atgpl

+ (3 9Pmaz + gSoOz% ) ||V£j,¢Hp + ( 9Pmaz + g

24At2C, SA2C,
B e

rmaz maz gS
+ Z3At77 / Ti)? ds + ZNU /1( ju ) ds + —0(||§J¢>||2 + 12655 — &6l17)

1
< UGG + 1126 = Gallp) + IVEullF + ——— V&7

24N CH 8ALACH
3Atgp. _— \V/ 21 Atgp veo 12
+ ( 9Pmaz + 95005 ) H f d)H < 9Pmaz + 950 > H g] (b”

C]% 1 tntl CCP 982 g+l
At H R de —222 2 2 ¢ n+l _ \nly2
* Z{ ot [ Mgl e B [ gl e -

tn+1

+CA§/1 Hwﬁmﬁu+0Aﬁ/n
tn—l

tn—1

tn+1 tn+1

||Vuj,tt||fcdt+CAt3/ 1 H¢j¢tt|\§dt

tn—

tn+1

+0At3/ IVsaellp dt + C (IViG 17 + IVEGEHE) + CUVEGF + IVEG T + 1Vl
t

n—1

tn+1

. Cp C o (Df)CPs maz i, n
) +pr_l<>; an [ ||wmufdt+z—fz P |71 2
-

8(7 l) Cj max
30 SDICRL e (1,13 + 1915 15)

%

C /
+ 9Pmax At3 /
o

tn—1

tn+1

89pmax n
IV @l dt + =92 (|[V il 12 + [V 5 I2) } (4.30)

Using interpolation inequalities, we obtain

i 24NAt2Cy SAt2C,
(|| nIF 11265, — &) + T IVERIT + 7 —— V&G
max max — ~ g 0 _
+ Z SINT / ) ds + Z At /I (& 7 ds + =187 15 + 1267 — €5 7'117)
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24At*C} 8At201
3Atgp) = ) IVENIA Atgp! 2
+ ( gpmaz+ gSOOé% ) H €]7¢Hp+ gpmax+ g H H
1

24At2C2 8At Cg
B R
¥ Z:mm;m / (€ ) do 3 dufr JGROCE 7<||s;,¢u,% + 11281 — E%11)

2

24A1*Cy 8At*Cy
At / 2 At / 0 112 h2k+2
(300 + 25" )nvgmu (8008 + S GV IVELIE + OO

+ Oh2m+2||¢j,t||g,m+l,p + Ch2s+2|||pj|||2,m+1,f + CA#HUj,tttH;OJ + CAt4||Uj,tt||%717f
2 m 2
+ CAYdjuull3.0, + CADjulls1 , + CHlujlly sy, + CR™ [l

|”2,m+1,p‘

(4.31)

Applying the triangle inequality yields (4.8).

5. Numerical Illustrations

We present numerical experiments to test the proposed second order ensemble scheme herein.
First, using a known exact solution we confirm the predicted convergence rates from the theory.
In the second and third examples, we show how to combine our ensemble algorithm with the
Monte Carlo method and the sparse grid method respectively to solve the Stokes-Darcy system
with a random hydraulic conductivity tensor. The fourth example demonstrates the application
of our ensemble algorithm in a realistic flow problem.

5.1. Convergence test

For the first test we consider the model problem on D = [0,7] x [—1,1], where D, =
[0, 7] x [-1,0], and Dy = [0, 7] x [0,1]. We take apjs =1, v=1,g=1, 5 =1, and

J
kll 0]’ j:17""J’

K=K, =
o

where K is the random hydraulic conductivity tensor and K; is one of the samples of K. The
exact solution is given by

op = (e¥—eY)sin(z)e,

kj kgz . Tt
Uy = [7T sin(2my)cos(x), (—2k, —i-psm *(my))sin(z)] e,
ps = 0.

We use Taylor-Hood elements for the approximation of the Stokes equations and the con-
tinuous piecewise quadratic finite elements for the Darcy equation. In order to check the
convergence order in time, we uniformly refine the mesh size h and time step size At from the
initial mesh size 1/4 and time step size At = h. In this test, we consider simulating J = 3
ensemble members: ki, = ki, = 1.11, k%, = k3, = 1.21,k}, = k3, = 2.21. The approximation
errors of for each ensemble member at t =T = 1 are listed in Table 1, Table 2 and Table 3, for
the velocity 7, the hydraulic head ¢ and the pressure p respectively, which confirm that our
ensemble algorithm is second order in time convergent.
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Table 1: Errors and convergence rates of the ensemble algorithm (J = 3) for At = h.

ho | @ =25 | rate | | @h— W) | rate | W0 — T | rate
1/4 | 83188 x 1072 | — |88179x 1072 | — |T7.9880x 1072 | —
1/8 [ 1.6315 x 1072 | 2.35 | 2.1455 x 1072 | 2.04 | 1.9388 x 1072 | 2.04
1/16 | 4.0994 x 1073 | 2.00 | 5.3771 x 1073 | 2.00 | 4.8592 x 1072 | 2.00
1/32 [ 1.0222 x 103 | 2.00 | 1.3376 x 10 | 2.00 | 1.2088 x 10~° | 2.01

h W)y — 7|f1 rate | W) — 7|?2 rate | |, — 7|f3 rate
1/4 179014 x 1071 | — [81385x 107! | — 1.3989 x 10° —
1/8 |2.0284 x 107! | 1.96 | 1.9754 x 1071 | 2.04 | 3.4797 x 107! | 2.01
1/16 | 4.9473 x 1072 | 2.04 | 4.9632 x 1072 | 2.00 | 8.7212 x 10~2 | 2.00
1/32 | 1.2399 x 1072 | 2.00 | 1.2346 x 1072 | 2.01 | 2.1695 x 102 | 2.01

Table 2: Errors and convergence rates of the ensemble algorithm (J = 3) for At = h.

h | llén—¢lls" | rate | Jgn —glls™” | rate | [on —olly” | rate
1/4 4.8649 x 101 — 4.8304 x 10! — 2.9751 x 10~ —
1/8 | 1.1966 x 1071 ] 2.02 | 1.1779 x 107" | 2.04 | 7.2564 x 102 | 2.03
1/16 | 2.9990 x 1072 ] 2.00 | 2.9520 x 1072 | 2.00 | 1.8150 x 102 | 2.00
1/32 | 7.4601 x 1073 | 2.01 | 7.3433 x 1073 | 2.01 | 4.5262 x 10=3 | 2.00

h | lon—ol7" [rate | [pn—¢l" |rate | |gn—gl]” | rate
1/4 | 1.1771 x 107°] — |9.7515 x 107! — 16.2569 x 107! —
1/8 2.8710 x 107! | 2.04 | 2.4257 x 10~ | 2.01 | 1.5260 x 10~ | 2.03
1/16 | 7.1954 x 1072 | 2.00 | 6.0673 x 10=2 | 2.00 | 3.8161 x 102 | 2.00
1/32 | 1.7464 x 1072 ] 2.04 | 1.5093 x 1072 | 2.01 | 9.4929 x 103 | 2.01

5.2. Random hydraulic conductivity tensor with the Monte Carlo method

We next consider using the presented ensemble algorithm for approximating stochastic
Stokes-Darcy equations with a random hydraulic conductivity tensor I(z,w) that depends
on spatial coordinates. Let (€2, F,P) be a complete probability space. Here € is the set of
outcomes, F € 2% is the o—algebra of events, and P : F — [0, 1] is a probability measure. The
stochastic Stokes-Darcy system considered reads: Find the functions u : Dy x [0,T] x  — R?
(d=2,3),p: Dy x[0,T] x Q2 —= R, and ¢ : D, x [0,T] x @ — R, such that it holds P — a.e. in

), or in other words, almost surely
w(x,t,w) — vAu(z,t,w) + Vp(z,t,w) = fr(z,t), V-u(z,t,w)=0, in Dy x
Sob(,t,0) = V - (K(w,w)Vo(a, t,0)) = f(a,1), in Dy x Q. (5.1)
¢(x,0) = ¢o(z), in D,, and u(z,0) = ug(z), in Dy,
o(x,t,w) =0, in OD,\I and u(z,t,w) =0, in ID,\I,

where f¢(x,t) € L*(Dy), fo(z,t) € L*(D,). The hydraulic conductivity K(z,w) is a stochastic
function, which is assumed to have continuous and bounded correlation function.
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Table 3: Errors and convergence rates of the ensemble algorithm (J = 3) for At = h.

h | llpn—pI5" [rate | Jlpn —pll77 Trate | [pn —pllF° | rate
/4 | 14030 x 10° | — [9.6278x 10" | — |6.3049x 10" | —
1/8 | 34136 x 101 | 2.04 | 2.3800 x 10" | 2.01 | 1.5011 x 101 | 2.07
1/16 | 8.5128 x 102 | 2.00 | 5.9756 x 102 | 1.99 | 3.7623 x 102 | 2.00
1/32 | 2.1176 x 107 | 2.01 | 1.4902 x 102 | 2.00 | 9.3580 x 107 | 2.01

We construct the random hydraulic conductivity tensor that varies in the vertical direction
as follows

- . k‘n(f, CU) 0
]C( w> o O kQQ(f, (JJ):| ’

and k1 (%, w) = kao(7,w) = k(Z,w) satisfy
N
log (h(.) — 05) = 1+ V() (T2 4 37 g (@Yol (52)
n=2

where

—(15]

|3
3
h

e

Cn = (\/?L)l/zexp(T), if n>1,
sin( LEJWI) if  n even,
Ly
SOn(J:) = n =
EALECN
cos( ) if  modd.
Ly

Here the random variables {Y,(w)}52, are independent, have zero mean and unit variance
and are uniformly distributed in the interval (—v/3,+v/3). In the following numerical test, for
Z € (0,d), we take the desired physical correlation length L. = 1/64 for the random field and
the parameter L, = max{d,2L.} and L = L./L,,.

We simulate the system over the time interval [0, 1], and the uniform triangulation with
mesh size h = 1/32 and uniform time partition with time step size At = h are used. We
generate a set of J random samples of K by the Monte Carlo sampling, and run our code for
simulating the ensemble of the system associated with the J realizations. First, we need to
check the rate of convergence with respect to the numbers of samples, J. As the exact solution
to the stochastic Stokes-Darcy system is unknown, we take the ensemble mean of numerical
solutions of Jy = 1000 realizations as our exact solution (expectation), which is denoted by
uy,. We also define u;, as the ensemble mean of J realizations. The numerical results with
J = 20,40, 80, 160, 320 realizations are listed in Table 4 and 5. Using linear regression, the
errors for d = 4 (d is the dimension of random parameters sapce) in Table 4 satisfy

||lun — w0~ 0.3051. 04823 ldn — b, ll0~ 1.7367.] 704845
and the errors for d = 8 in Table 5
||Uh - UJOH()% 0.3189J_0'4862, ||¢h — ¢J0||0% 2-3788J_0'4812,
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Figure 2: Ensemble simulations errors are O(1/v/.J) for u (left) and ¢ (right).

The values of ||-||o together with their linear regression models are plotted in Figure 2. It is
seen that the rate of convergence with respect to J is close to —0.5.

Table 4: Errors of ensemble simulations for d = 4.

J 20 40 80 160 320
[un — up|E | 7.2759 x 102 | 5.0880 x 102 | 3.6869 x 10~ 2 | 2.6149 x 102 | 1.9078 x 10 2
||¢h — ¢JOHOE 4.0653 x 1071 | 2.8996 x 10~! | 2.0861 x 10~! | 1.4911 x 10~* | 1.0575 x 107!
Table 5: Errors of ensemble simulations for d = 8.
J 20 40 80 160 320
||uh — uJOH(];J 7.3894 x 1072 | 5.3546 x 1072 | 3.7709 x 1072 | 2.7129 x 102 | 1.9129 x 10~2
||q5h — ngOHOE 5.6037 x 107! | 4.0607 x 107! | 2.9005 x 107! | 2.0425 x 10~! | 14909 x 10~*

5.3. Random hydraulic conductivity tensor with the sparse grid method

In this section, we present numerical results for incorporating our ensemble algorithm with
the sparse grid method for approximating stochastic Stokes-Darcy equations with a random
hydraulic conductivity tensor K(x,w). The sparse grid method was first introduced by Smolyak
in 1963 [58], which constructs a multi-dimensional multilevel basis by a special truncation of
the tensor product expansion of a one-dimensional multilevel basis. In this article, we follow
the paper [28] by Heiss and Winschel and use Gaussian quadrature rule to construct the sparse
grids. Details about the construction can be found in [28] and the corresponding open source
sparse grid codes can be found in http://www.sparse-grids.de. This choice is only due to the
simplicity of implementation of the available codes. There are more efficient sparse grid methods
in the literature using nested quadrature rules. Interested readers are referred to [18, 17, 52,
60, 59, 63, 65] and an open source toolkit TASMANIAN (https://tasmanian.ornl.gov) for a
collection of robust libraries for high dimensional integration and interpolation.
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First, we take the ensemble mean of numerical solutions of Jy = 1000 realizations from
Monte Carlo method as our exact solution (expectation), which is denoted by u,,. By setting
the finite dimensional probability space with d = 4,8 and At = h = 1/8,1/16, we compute the
errors for SGEn method (the sparse grid method constructed by the Gaussian quadrature rule
which will be exact for polynomial up to total order 20 — 1 (accuracy level is [) for d-dimensional
integration+ ensemble algorithm) in Table 6-9. One can see that with only J =9 and J = 17
for accuracy level [ = 2 and d = 4,8, we can get a good approximation of the expected value
using the SGEn method. From Table 6-9, we also find that for different accuracy level [, SGEn
method needs fewer nodes while it gets good approximation.

Table 6: Errors of ensemble simulations with sparse grid for different level [ = 2,3,4,5, d=4, At =h =1/8

J 9 A1 137 385
[, — wyg||[F [ 4.4871 x 102 | 4.3580 x 1073 | 4.3612 x 103 | 4.3611 x 103
[dn — &, |E [ 24265 x 1072 | 2.3286 x 10 2 | 2.3303 x 102 | 2.3303 x 102
pn — psllZ | 12783 x 1072 | 1.2281 x 1072 | 1.2289 x 10 2 | 1.2289 x 10 °

Table 7: Errors of ensemble simulations with sparse grid for different level [ = 2,3,4,5, d=8, At =h =1/8

J 17 145 849 3905

[un — s ||E | 4.8139 x 1073 | 4.6550 x 103 | 4.6608 x 10~3 | 4.6608 x 103
b — dsol|E | 4.4427 x 1072 | 3.0052 x 102 | 3.0136 x 102 | 3.0136 x 102
pn — sy I [ 2.9915 x 102 | 2.5552 x 102 | 2.5645 x 102 | 2.5643 x 102

Table 8: Errors of ensemble simulations with sparse grid for different level | = 2,3,4,5, d=4, At =h =1/16

J 9 A1 137 385
[un — uygJE | 1.0053 x 1073 | 9.9534 x 10~ | 9.9549 x 10~ % | 9.9549 x 103
6 — dsllE | 5.1596 x 103 | 5.1079 x 102 | 5.1086 x 102 | 5.1086 x 10
pn — ps, I 127224 x 103 | 2.7591 x 102 | 2.7583 x 103 | 2.7584 x 102

Table 9: Errors of ensemble simulations with sparse grid for different level [ = 2,3,4,5, d=8, At =h =1/16

J 17 145 849 3905
[, — wg||[F [ 1.2441 x 102 | 1.3240 x 1073 | 1.3188 x 103 | 1.3189 x 1073
[dn — G| | 75489 x 102 | 7.5844 x 10°° | 7.5623 x 10 ° | 7.5631 x 10
[pn — pallZ | 7.3982 x 1073 | 7.3292 x 1073 | 7.3612 x 103 | 7.3622 x 102

23




5.4. Applicational simulation

Next, we apply our second order ensemble algorithm to a simplified simulation of the
subsurface flow in a karst aquifer. As shown in Fig. 3, the computational domain is a
unit square divided into the porous media domain D, and the free flow domain D;. Let
Dy be the polygon ABCDEFGHIJ where A = (0,1),B = (0,3/4),C = (0,1/2),D =
(1/4,1/2),E = (3/4,0), F = (1,0),G = (3/4,1/4),H = (1,1/4),1 = (1,1/2), J = (3/4,1/2)

and K = (1/2,3/4). Let D, = Q/Dy, Sy = BC, Sy = EF, and S, = HI.

S2

Dp

S1

Figure 3: An illustration of the problem domain for the numerical experiment.

Set T=1,a=1,v=1,¢g=1, z=0. The boundary condition data and source terms are

chosen to be 0 and let
(Uo,0) on Sy

u =21 (0,U) on S

(Ug,O)TOTL SQ
where U; are constants. We subdivide 2 into rectangle of height and width h = 1/M, where
M denotes a positive integer, and then subdivide each rectangle into two triangles by drawing
a diagonal. For this numerical experiment, we choose M = 16 and At = h. In the following,

we will provide the numerical results at 7' = 1 for the algorithm. We construct the random
hydraulic conductivity tensor as follows

k(Z,w) = ay+ exp {[Yl(w)cos(wy) + Y3(w)sin(my)] eF + [Ya(w)cos(mx) + Yy(w)sin(mx)] e_%} :

where 7 = (z,9)T, a9 = 1/100, and Y7,. .., Yy are independent and identically distributed with
zero mean and unit variance.

24



Figure 4: Plots of the ensemble mean for the higher order ensemble method (right) and traditional method
(left) for Uy = —2, Uy = —2, and Uy = 2 with k = 1072
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Figure 5: Plot of the variance of the higher order ensemble method (left) and traditional method (right) for
Q1=-2,Q2=-2,and Qg =4 with k = 1072,

In the test, we set U; = Uy = —2 and Uy = 4 so that the total inflow rate is equal to the
total outflow rate. The two graphs in Figure 4 and Figure 5 illustrate the mean and variance
of numerical solutions at the end time 7" = 1 for these tests. These phenomena are expected
due to the chosen inflow and outflow rates for the conduit. Compared to the solutions of the
traditional method, we can find they have the same general behavior of the flow while our
second order ensemble algorithm is much more efficient. Furthermore, the proposed method
also works well for the realistic parameter values,such as k = 1072 in the figures.

6. Conclusions

We developed a second order, efficient, decoupling ensemble algorithm for fast computation
of multiple realizations of the stochastic Stokes-Darcy model. The ensemble algorithm decouples
the original coupled system into two subproblems with two smaller linear systems to be solved

25



at each time step. For all realizations, these two linear systems have the same coefficient matrix
and one can use efficient iterative or direct solvers to greatly reduce the computational cost.
We proved the algorithm is long time stable and second order in time convergent under a time-
step condition and two parameter conditions. Several numerical experiments were presented to
show the algorithm is second-order in time convergent and demonstrate its application in UQ
applications by incorporating the ensemble algorithm with the Monte Carlo method and the
sparse grid method.
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