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shared coefficient matrices across different realizations for the magnetohydrodynamics equations. The
viscous terms are treated by a standard perturbative discretization. The nonlinear terms are discretized
fully explicitly within the framework of the generalized positive auxiliary variable approach (GPAV).
Artificial viscosity stabilization that modifies the kinetic energy is introduced to improve accuracy of the
GPAV ensemble methods. Numerical results are presented to demonstrate the accuracy and robustness
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1 Introduction

Magnetohydrodynamics (MHD) flow describes electrically conducting fluid moving through a magnetic
field. It has important applications in fusion technology, submarine propulsion system, liquid metals in
magnetic pumps, and so on. The mathematical model comprises the Navier-Stokes equations for fluid flow
and Maxwell’s equations for electromagnetics. In practical applications, the problem parameters such as
viscosity and magnetic resistivity, external body forcing and initial conditions, are invariably subject to
uncertainty. To quantify the impact of uncertainty and develop high-fidelity numerical simulations, one
usually computes the flow ensembles in which the MHD equations are solved repeatedly with different
inputs. The aim of this article is to develop efficient second-order accurate ensemble algorithms that are
unconditionally stable and suitable for long-time simulations. Therefore we consider solving J times the
following MHD equations: for j = 1, 2, ..., J ,
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uj,t + uj · ∇uj − sBj · ∇Bj − νj∆uj +∇pj = fj in Ω × (0, T ),

∇ · uj = 0, in Ω × (0, T ),

Bj,t + uj · ∇Bj −Bj · ∇uj − γj∆Bj +∇λj = ∇× gj in Ω × (0, T ),

∇ ·Bj = 0, in Ω × (0, T ),

uj(x, 0) = u0
j (x), in Ω, Bj(x, 0) = B0

j (x), in Ω.

(1)

Here uj is the fluid velocity, pj the pressure, Bj the magnetic field and λj is a Lagrange multiplier
corresponding to the solenoidal constraint on Bj [1]. The body force fj(x, t) and ∇× gj are given, s is
the coupling number, νj is the kinematic viscosity, and γj is the magnetic resistivity. Dirichlet boundary
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conditions will be imposed for both uj and Bj , though the numerical methods are also applicable to
other boundary conditions including ∇ × Bj = 0 on ∂Ω. Note that we have adopted an equivalent
formulation of the MHD equations, cf. [1–4].

Ensemble methods have been extensively developed for solving the Navier-Stokes equations and re-
lated fluid models [5–14]. The central idea in these ensemble methods is a perturbative time discretization
that utilizes the ensemble mean corrected by explicit treatment of the fluctuations in time marching of
each realization. As a result, at each time step the coefficient matrix of the resulting linear systems is iden-
tical for all realizations, saving both storage and computational cost. Moreover, under some constraint on
the time-step and the size of fluctuations it is shown that the ensemble algorithms are long-time stable. A
similar ensemble method is developed in [15] and [16] for solving a reduced MHD system at low magnetic
Reynolds number. Based on the Elsasser formulation [17] and the perturbative time discretization, a
first-order decoupled and unconditionally stable ensemble algorithm is proposed and analyzed in [1, 4]
for solving the full MHD model. An artificial eddy viscosity term is employed to ensure unconditional
stability. Due to the usage of Elsasser variables, the method appears to be limited to the case of Dirichlet
boundary conditions.

Further computational efficiency gains can be achieved by fully explicit discretization of the nonlinear
terms so that the exact same coefficient matrix is shared across different time steps in ensemble simu-
lations. This approach would often incur a CFL condition that hinders the efficiency of the algorithm
for long-time simulation or for problems involving multiple scales. One remedy is the introduction of
a Lagrange multiplier for enforcement of the underlying energy estimate (energy dissipation or conser-
vation). This idea leads to recent development of the so-called Invariant Energy Quadratization (IEQ)
method [18–21], and the Scalar Auxiliary Variable (SAV) approach [22,23] for solving phase field models.
Extensions of these methods are reported in [24–27] on the design of linear, decoupled, unconditionally
stable numerical schemes for solving general nonlinear equations satisfying an energy law. Based on the
SAV approach proposed in [24], a stabilized SAV ensemble algorithm is developed in [28] for parameter-
ized flow problems where superior accuracy is observed thanks to a penalization of the kinetic energy
causing the high frequency mode to quickly roll-off in the energy spectrum [29]. Stability and error
analysis of a SAV method for the MHD equations is recently conducted in [30].

In this article we propose two linear, second-order accurate, unconditionally stable ensemble methods
with shared coefficient matrix across different realizations and time steps for solving the MHD model. The
parameters are treated by the usual perturbative method. We employ the Generalized Positive Auxiliary
Variable framework (GPAV) from [25] in the discretization of the nonlinear terms. The advantages of the
GPAV method include: linearity of the algebra equation for the scalar variable; provable positivity of the
scalar variable; and flexibility in handling complex boundary conditions. These Lagrange multiplier type
approaches often suffer from poor accuracy especially for long time simulation of advection-dominated
flow, cf. [31] for a careful benchmark comparison study of the SAV approach. This drop in accuracy is
also discussed and demonstrated in the numerical tests from [25]. In [32] a post-processing procedure is
introduced to improve accuracy of the SAV method for the Cahn-Hilliard equation. In our method we
adopt the stabilization technique of artificial viscosity that proves robust and efficient in past studies
[28,29]. The stabilization introduces a penalty term in the kinetic energy which leads to a quick roll-off of
the under-resolved modes in the energy spectrum thus curtailing the inertial range and making the system
more computable, cf. [29]. This mechanism is well-known in the Navier-Stokes-α model for large eddy
simulation of turbulence [33,34]. We perform extensive numerical tests to gauge the accuracy, efficiency
and robustness of the proposed ensemble methods. Error analysis of the proposed numerical schemes is
currently beyond scope of this article. Recent work on error analysis of finite element methods for MHD
equations can be found in [35,36]. See also [37,38] for convergence analysis of numerical approximations
to the Navier-Stokes equationswith nonsmooth initial data under low-regularity conditions.

To start, we define the ensemble mean and the fluctuation of the viscosity terms νnj and the electric
potential γnj at timestep n respectively

ν̄n =
1

J

J
∑

j=1

νnj and γ̄n =
1

J

J
∑

j=1

γnj , (mean)

ν′nj = νnj − ν̄n and γ′nj = γnj − γ̄n, (fluctuation)

ν′max = max
j

max
x∈Ω

|ν′nj (x)| and γ′max = max
j

max
x∈Ω

|γ′nj (x)|,
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where in our considerations νnj = νj , γ
n
j = γj are constants and tn = n∆t (n = 0, 1, 2, ...). Define

vn+1/2 =
1

2
(vn+1 + vn), ṽn+1/2 = 2vn−1/2 − vn−3/2, (2)

v∗n+1/2 =
3

2
vn − 1

2
vn−1, ṽn+1 = 2vn − vn−1. (3)

We define a shifted energy of the form

Ej(t) = E[uj ,Bj ] =

∫

Ω

1

2
|uj |2dΩ +

∫

Ω

s

2
|Bj |2dΩ + C0, (4)

where E[uj ,Bj ] is the total kinetic energy of the system, which for physical examples is bounded from
below, and C0 is an arbitrarily small positive constant chosen in such a way that Ej(t) > 0 for 0 ≤ t ≤ T .
Next, let F be any one-to-one increasing differentiable function with F−1 = G such that

{

F (χ) > 0, χ > 0, (5)

G (χ) > 0, χ > 0. (6)

The scalar variable Rj(t) is defined by

Rj(t) = G (Ej), (7)

Ej(t) = F (Rj). (8)

With Ej as in (4), Rj(t) then satisfies

F
′(Rj)

dRj

dt
=

∫

Ω

uj ·
∂uj

∂t
dΩ +

∫

Ω

sBj ·
∂Bj

∂t
dΩ. (9)

Since
F(Rj)

Ej
= 1 for all j, we may write

F
′(Rj)

dRj

dt
=

∫

Ω

[

uj ·
∂uj

∂t
+ sBj ·

∂Bj

∂t

]

dΩ +

[

F (Rj)

Ej
− 1

] [
∫

Ω

uj ·
(

νj∆uj −∇pj + fj

)

dΩ (10)

+

∫

Ω

sBj ·
(

γj∆Bj −∇λj +∇× gj

)

dΩ

]

+
F (Rj)

Ej

[
∫

Ω

uj · [Bj · ∇Bj − uj · ∇uj ]dΩ −
∫

Ω

uj · [Bj · ∇Bj − uj · ∇uj ]dΩ

+

∫

Ω

sBj · [Bj · ∇uj − uj · ∇Bj ]dΩ −
∫

Ω

sBj · [Bj · ∇uj − uj · ∇Bj ]dΩ

]

=

∫

Ω

[

uj ·
∂uj

∂t
+ sBj ·

∂Bj

∂t

]

dΩ

−
∫

Ω

uj ·
(

νj∆uj −∇pj +
F (Rj)

Ej
[Bj · ∇Bj − uj · ∇uj ] + fj

)

dΩ

−
∫

Ω

sBj ·
(

γj∆Bj −∇λj +
F (Rj)

Ej
[Bj · ∇uj − uj · ∇Bj ] +∇× gj

)

dΩ

+
F (Rj)

Ej

[
∫

Ω

uj · [Bj · ∇Bj − uj · ∇uj + νj∆uj −∇pj + fj ]dΩ

+

∫

Ω

sBj · [Bj · ∇uj − uj · ∇Bj + γj∆Bj −∇λj +∇× gj ]dΩ

]

Note that all the additional terms above amount to adding zero to (9). Using integration by parts we
get the equality

∫

Ω

uj · [Bj · ∇Bj − uj · ∇uj + νj∆uj −∇pj + fj ]dΩ (11)

+

∫

Ω

sBj · [Bj · ∇uj − uj · ∇Bj + γj∆Bj −∇λj +∇× gj ]dΩ

= −
∫

Ω

(νj |∇uj |2 + sγj |∇Bj |2)dΩ +

∫

Ω

(fj · uj + s(∇× gj) ·Bj)dΩ +

∫

Γ

BS(uj ,Bj)dΓ,
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where BS(uj ,Bj) represents the forcing terms on the boundary, defined as

BS(uj ,Bj) =

∫

Γ

(

− 1

2
|uj |2uj −

s

2
|Bj |2uj + νj∇uj · uj − pjuj (12)

+ s(Bj · uj)Bj + sγj∇Bj ·Bj − sλjBj

)

· n̂ dΓ

and n̂ is the unit normal vector to the boundary. We use this equality and write

F
′(Rj)

dRj

dt
=

∫

Ω

[

uj ·
∂uj

∂t
+ sBj ·

∂Bj

∂t

]

dΩ (13)

−
∫

Ω

uj ·
(

νj∆uj −∇pj +
F (Rj)

Ej
[Bj · ∇Bj − uj · ∇uj ] + fj

)

dΩ

−
∫

Ω

sBj ·
(

γj∆Bj −∇λj +
F (Rj)

Ej
[Bj · ∇uj − uj · ∇Bj ] +∇× gj

)

dΩ

+
F (Rj)

Ej

[

−
∫

Ω

(νj |∇uj |2 + sγj |∇Bj |2)dΩ +

∫

Ω

(fj · uj + s(∇× gj) ·Bj)dΩ

+

∫

Γ

BS(uj ,Bj)dΓ

]

+

[

1− F (Rj)

Ej

]

∣

∣

∣

∣

∣

∫

Ω

(fj · uj + s(∇× gj) ·Bj)dΩ +

∫

Γ

BS(uj ,Bj)dΓ

∣

∣

∣

∣

∣

,

As will be seen later, we consider this reformulation (including the addition of the terms within absolute
value brackets) as a means of constructing numerical schemes that inherit unconditional stability with
respect to the modified energy F (Rj) and guaranteed positivity of a computed scalar variable ξj to be
defined.

With Dirichlet boundary conditions, a Crank-Nicolson scheme for 1 becomes

Algorithm 1. Given un
j , B

n
j , p

n
j and λnj , find un+1

j , Bn+1
j , pn+1

j and λn+1
j satisfying

(

un+1
j − un

j

∆t

)

= −ξj
(

ũ
n+1/2
j · ∇

)

ũ
n+1/2
j + sξj

(

B̃
n+1/2
j · ∇

)

B̃
n+1/2
j + ν̄n∆u

n+1/2
j (14)

+ ν′nj ∆ũ
n+1/2
j −∇pn+1/2

j + f
n+1/2
j ,

∇ · un+1
j = 0, (15)

(

Bn+1
j −Bn

j

∆t

)

= ξj

(

B̃
n+1/2
j · ∇

)

ũ
n+1/2
j − ξj

(

ũ
n+1/2
j · ∇

)

B̃
n+1/2
j + γ̄n∆B

n+1/2
j (16)

+ γ′nj ∆B̃
n+1/2
j −∇λn+1/2

j +∇× g
n+1/2
j ,

∇ ·Bn+1
j = 0, (17)

ξj =
F (Rn+1

j )

E(ūn+1
j , B̄n+1

j )
, (18)

E(ūn+1
j , B̄n+1

j ) =
1

2
∥ūn+1

j ∥2 + s

2
∥B̄n+1

j ∥2 + C0, (19)

F (Rn+1
j )− F (Rn

j )

∆t
=

∫

Ω

u
n+1/2
j ·

(

un+1
j − un

j

∆t

)

dΩ +

∫

Ω

sB
n+1/2
j ·

(

Bn+1
j −Bn

j

∆t

)

dΩ (20)

−
∫

Ω

u
n+1/2
j ·

[

− ξj

(

ũ
n+1/2
j · ∇

)

ũ
n+1/2
j + sξj

(

B̃
n+1/2
j · ∇

)

B̃
n+1/2
j

+ ν̄n∆u
n+1/2
j + ν′nj ∆ũ

n+1/2
j −∇pn+1/2

j + f
n+1/2
j

]

dΩ

−
∫

Ω

sB
n+1/2
j ·

[

ξj

(

B̃
n+1/2
j · ∇

)

ũ
n+1/2
j − ξj

(

ũ
n+1/2
j · ∇

)

B̃
n+1/2
j
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+ γ̄n∆B
n+1/2
j + γ′nj ∆B̃

n+1/2
j −∇λn+1/2

j +∇× g
n+1/2
j

]

dΩ

+ ξj

[

−
∫

Ω

(

νj |∇ū
n+1/2
j |2 + sγj |∇B̄

n+1/2
j |2

)

dΩ +

∫

Ω

f
n+1/2
j · ūn+1/2

j dΩ

+

∫

Ω

s(∇× g
n+1/2
j ) · B̄n+1/2

j dΩ +

∫

Γ

BS(ū
n+1/2
j , B̄

n+1/2
j )dΓ

]

+ (1− ξj)

∣

∣

∣

∣

∫

Ω

f
n+1/2
j · ūn+1/2

j dΩ +

∫

Ω

s(∇× g
n+1/2
j ) · B̄n+1/2

j dΩ +

∫

Γ

BS(ū
n+1/2
j , B̄

n+1/2
j )dΓ

∣

∣

∣

∣

.

Here ūn+1
j , ū

n+1/2
j , B̄n+1

j and B̄
n+1/2
j are second order approximations of un+1

j , u
n+1/2
j , Bn+1

j , and

B
n+1/2
j that will be defined later.

Again for Dirichlet boundary conditions, a BDF2 scheme is

Algorithm 2. Given un−1
j , un

j , B
n−1
j , Bn

j , find un+1
j , Bn+1

j , pn+1
j and λn+1

j satisfying

(

3un+1
j − 4un

j + un−1
j

2∆t

)

= −ξj
(

ũn+1
j · ∇

)

ũn+1
j + sξj

(

B̃n+1
j · ∇

)

B̃n+1
j + ν̄n∆un+1

j (21)

+ ν′nj ∆ũn+1
j −∇pn+1

j + fn+1
j ,

∇ · un+1
j = 0, (22)

(

3Bn+1
j − 4Bn

j +Bn−1
j

2∆t

)

= ξj

(

B̃n+1
j · ∇

)

ũn+1
j − ξj

(

ũn+1
j · ∇

)

B̃n+1
j + γ̄n∆Bn+1

j (23)

+ γ′nj ∆B̃n+1
j −∇λn+1

j +∇× gn+1
j ,

∇ ·Bn+1
j = 0, (24)

ξj =
F (R

∗n+3/2
j )

E(ū
n+3/2
j , B̄

n+3/2
j )

, (25)

E(ū
n+3/2
j , B̄

n+3/2
j ) =

1

2
∥ūn+3/2

j ∥2 + s

2
∥B̄n+3/2

j ∥2 + C0, (26)

F (R
∗n+3/2
j )− F (R

∗n+1/2
j )

∆t
=

∫

Ω

un+1
j ·

(

3un+1
j − 4un

j + un−1
j

2∆t

)

dΩ

+

∫

Ω

sBn+1
j ·

(

3Bn+1
j − 4Bn

j +Bn−1
j

2∆t

)

dΩ (27)

−
∫

Ω

un+1
j ·

[

− ξj
(

ũn+1
j · ∇

)

ũn+1
j + sξj

(

B̃n+1
j · ∇

)

B̃n+1
j

+ ν̄n∆un+1
j + ν′nj ∆ũn+1

j −∇pn+1
j + fn+1

j

]

dΩ

−
∫

Ω

sBn+1
j ·

[

ξj

(

B̃n+1
j · ∇

)

ũn+1
j − ξj

(

ũn+1
j · ∇

)

B̃n+1
j

+ γ̄n∆Bn+1
j + γ′nj ∆B̃n+1

j −∇λn+1
j +∇× gn+1

j

]

dΩ

+ ξj

[

−
∫

Ω

(

νj |∇ūn+1
j |2 + sγj |∇B̄n+1

j |2
)

dΩ +

∫

Ω

fn+1
j · ūn+1

j dΩ

+

∫

Ω

s(∇× gn+1
j ) · B̄n+1

j dΩ +

∫

Γ

BS(ū
n+1
j , B̄n+1

j )dΓ

]

+ (1− ξj)

∣

∣

∣

∣

∫

Ω

fn+1
j · ūn+1

j dΩ +

∫

Ω

s(∇× gn+1
j ) · B̄n+1

j dΩ +

∫

Γ

BS(ū
n+1
j , B̄n+1

j )dΓ

∣

∣

∣

∣

.

Similarly ūn+1
j , ū

n+3/2
j , B̄n+1

j and B̄
n+3/2
j are second order approximations of un+1

j , u
n+3/2
j , Bn+1

j ,

and B
n+3/2
j to be defined later.
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In practice, (u0j , u
1
j , B

0
j , B

1
j ) may be found from the initial conditions and using an algorithm without

SAV, such as the aforementioned ensemble scheme in [1]. In our implementations, we used a primitive
(without ensemble) first order scheme to initialize as the computational cost of solving each perturbation
in these first steps is not significant.

The rest of the paper is outlined here. Section 2 gives mathematical preliminaries and defines notation.
In Section 3, we prove the long time stability of the proposed algorithm. Section 4 presents an efficient
way to implement our numerical algorithm. Section 5 numerically tests the proposed algorithm and
illustrates theoretical results. Final conclusions and future directions are discussed in Section 6.

2 Notation and preliminaries

Throughout this paper the L2(Ω) norm of scalars, vectors, and tensors will be denoted by ∥ · ∥ with
the usual L2 inner product denoted by (·, ·). Hk(Ω) is the Sobolev space W k

2 (Ω), with norm ∥ · ∥k. For
functions v(x, t) defined on (0, T ), we define the norms, for 1 ≤ m <∞,

∥v∥∞,k := EssSup[0,T ]∥v(·, t)∥k and ∥v∥m,k :=
(

∫ T

0

∥v(·, t)∥mk dt
)1/m

.

The function spaces we consider are:

X : = H1
0 (Ω)d =

{

v ∈ L2(Ω)d : ∇v ∈ L2(Ω)d×d and v = 0 on ∂Ω
}

,

Q : = L2
0(Ω) =

{

q ∈ L2(Ω) :

∫

Ω

q dx = 0

}

,

V : = {v ∈ X : (∇ · v, q) = 0, ∀q ∈ Q} .

A weak formulation of the full MHD equations is: Find uj : [0, T ] → X, pj : [0, T ] → Q, Bj : [0, T ] →
X and λj : [0, T ] → Q satisfying

(uj,t,v) + (uj · ∇uj ,v)− s (Bj · ∇Bj ,v) + νj (∇uj ,∇v)− (pj ,∇ · v) = (fj ,v) , ∀v ∈ X,

(∇ · uj , l) = 0, ∀l ∈ Q,

(Bj,t,χ) + (uj · ∇Bj ,χ)− (Bj · ∇uj ,χ) + γj (∇Bj ,∇χ)− (λj ,∇ · χ) = (∇× gj ,χ) , ∀χ ∈ X,

(∇ ·Bj , ψ) = 0, ∀ψ ∈ Q.

We denote conforming velocity, pressure, potential finite element spaces based on an edge to edge
triangulation (d = 2) or tetrahedralization (d = 3) of Ω with maximum element diameter h by

Xh ⊂ X , Qh ⊂ Q.

We also assume the finite element spaces (Xh, Qh) satisfy the usual discrete inf-sup /LBBh condition for
stability of the discrete pressure, see [39] for more on this condition. Taylor-Hood elements, e.g., [40], [39],
are one such choice used in the tests in Section 5. We define the trilinear form

b(u, v, w) := (u · ∇v, w)

The full discretization of the proposed partitioned ensemble algorithm with Crank-Nicolson scheme
is

Algorithm 3. Given un
j,h, Bn

j,h, p
n
j,h and λnj,h, find un+1

j,h , Bn+1
j,h , pn+1

j,h and λn+1
j,h satisfying for any

vh,χh ∈ Xh and lh, ψh ∈ Qh,
(

un+1
j,h − un

j,h

∆t
,vh

)

= −ξjb(ũn+1/2
j,h , ũ

n+1/2
j,h ,vh) + sξjb(B̃

n+1/2
j,h , B̃

n+1/2
j,h ,vh) (28)

− ν̄n
(

∇u
n+1/2
j,h ,∇vh

)

− ν′nj

(

∇ũ
n+1/2
j,h ,∇vh

)

+
(

p
n+1/2
j,h ,∇ · vh

)

− αh
(

∇(un+1
j,h − un

j,h),∇vh

)

+
(

f
n+1/2
j,h ,vh

)

,
(

∇ · un+1
j,h , lh

)

= 0, (29)
(

Bn+1
j,h −Bn

j,h

∆t
,χh

)

= ξjb(B̃
n+1/2
j,h , ũ

n+1/2
j,h ,χh)− ξjb(ũ

n+1/2
j,h , B̃

n+1/2
j,h ,χh) (30)
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− γ̄n
(

∇B
n+1/2
j,h ,∇χh

)

− γ′nj

(

∇B̃
n+1/2
j,h ,∇χh

)

+
(

λ
n+1/2
j,h ,∇ · χh

)

− αMh
(

∇(Bn+1
j,h −Bn

j,h),∇χh

)

+
(

∇× g
n+1/2
j,h ,χh

)

,
(

∇ ·Bn+1
j,h , ψh

)

= 0, (31)

ξj =
F (Rn+1

j,h )

E(ūn+1
j,h , B̄n+1

j,h )
, (32)

E(ūn+1
j,h , B̄n+1

j,h ) =
1

2
∥ūn+1

j,h ∥2 + s

2
∥B̄n+1

j,h ∥2 + C0, (33)

F (Rn+1
j,h )− F (Rn

j,h)

∆t
=

(

un+1
j,h − un

j,h

∆t
,u

n+1/2
j,h

)

+ s

(

Bn+1
j,h −Bn

j,h

∆t
,B

n+1/2
j,h

)

(34)

+ ξjb(ũ
n+1/2
j,h , ũ

n+1/2
j,h ,u

n+1/2
j,h )− sξjb(B̃

n+1/2
j,h , B̃

n+1/2
j,h ,u

n+1/2
j,h ) + ν̄n∥∇u

n+1/2
j,h ∥2

+ ν′nj

(

∇ũ
n+1/2
j,h ,∇u

n+1/2
j,h

)

−
(

p
n+1/2
j,h ,∇ · un+1/2

j,h

)

+ αh
(

∇(un+1
j,h − un

j,h),∇u
n+1/2
j,h

)

−
(

f
n+1/2
j,h ,u

n+1/2
j,h

)

− sξjb(B̃
n+1/2
j,h , ũ

n+1/2
j,h ,B

n+1/2
j,h ) + sξjb(ũ

n+1/2
j,h , B̃

n+1/2
j,h ,B

n+1/2
j,h ) + sγ̄n∥∇B

n+1/2
j,h ∥2

+ sγ′nj

(

∇B
n+1/2
j,h ,∇B

n+1/2
j,h

)

− s
(

λ
n+1/2
j,h ,∇ ·Bn+1/2

j,h

)

+ sαMh
(

∇(Bn+1
j,h −Bn

j,h),∇B
n+1/2
j,h

)

− s
(

∇× g
n+1/2
j,h ,B

n+1/2
j,h

)

+ ξj

[

−
∫

Ω

(

νj |∇ū
n+1/2
j,h |2 + sγj |∇B̄

n+1/2
j,h |2

)

dΩ

+

∫

Ω

f
n+1/2
j,h · ūn+1/2

j,h dΩ +

∫

Ω

s(∇× g
n+1/2
j,h ) · B̄n+1/2

j,h dΩ +

∫

Γ

BS(ū
n+1/2
j,h , B̄

n+1/2
j,h )dΓ

]

+ (1− ξj)

∣

∣

∣

∣

∫

Ω

f
n+1/2
j,h · ūn+1/2

j,h dΩ +

∫

Ω

s(∇× g
n+1/2
j,h ) · B̄n+1/2

j,h dΩ +

∫

Γ

BS(ū
n+1/2
j,h , B̄

n+1/2
j,h )dΓ

∣

∣

∣

∣

.

The full discretization of the proposed partitioned ensemble algorithm with BDF2 scheme is

Algorithm 4. Given un−1
j,h , un

j,h, Bn−1
j,h , Bn

j,h, find un+1
j,h , Bn+1

j,h , pn+1
j,h and λn+1

j,h satisfying for any

vh,χh ∈ Xh and lh, ψh ∈ Qh,

(

3un+1
j,h − 4un

j,h + un−1
j,h

2∆t
,vh

)

= −ξjb(ũn+1
j,h , ũn+1

j,h ,vh) + sξjb(B̃
n+1
j,h , B̃n+1

j,h ,vh) (35)

− ν̄n
(

∇un+1
j,h ,∇vh

)

− ν′nj

(

∇ũn+1
j,h ,∇vh

)

+
(

pn+1
j,h ,∇ · vh

)

− αh
(

∇(3un+1
j,h − 4un

j,h + un−1
j,h ),∇vh

)

+
(

fn+1
j,h ,vh

)

,
(

∇ · un+1
j,h , lh

)

= 0, (36)
(

3Bn+1
j,h − 4Bn

j,h +Bn−1
j,h

2∆t
,χh

)

= ξjb(B̃
n+1
j,h , ũn+1

j,h ,χh)− ξjb(ũ
n+1
j,h , B̃n+1

j,h ,χh) (37)

− γ̄n
(

∇Bn+1
j,h ,∇χh

)

− γ′nj

(

∇B̃n+1
j,h ,∇χh

)

+
(

λn+1
j,h ,∇ · χh

)

− αMh
(

∇(3Bn+1
j,h − 4Bn

j,h +Bn−1
j,h ),∇χh

)

+
(

∇× gn+1
j,h ,χh

)

,
(

∇ ·Bn+1
j,h , ψh

)

= 0, (38)

ξj =
F (R

∗n+3/2
j,h )

E(ū
n+3/2
j,h , B̄

n+3/2
j,h )

, (39)

E(ū
n+3/2
j,h , B̄

n+3/2
j,h ) =

1

2
∥ūn+3/2

j,h ∥2 + s

2
∥B̄n+3/2

j,h ∥2 + C0, (40)

F (R
∗n+3/2
j,h )− F (R

∗n+1/2
j,h )

∆t
=

(

3un+1
j,h − 4un

j,h + un−1
j,h

2∆t
,un+1

j,h

)
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+ s

(

3Bn+1
j,h − 4Bn

j,h +Bn−1
j,h

2∆t
,Bn+1

j,h

)

+ ξjb(ũ
n+1
j,h , ũn+1

j,h ,un+1
j,h ) (41)

− sξjb(B̃
n+1
j,h , B̃n+1

j,h ,un+1
j,h ) + ν̄n∥∇un+1

j,h ∥2 + ν′nj

(

∇ũn+1
j,h ,∇un+1

j,h

)

−
(

pn+1
j,h ,∇ · un+1

j,h

)

+ αh
(

∇(3un+1
j,h − 4un

j,h + un−1
j,h ),∇un+1

j,h

)

−
(

fn+1
j,h ,un+1

j,h

)

− sξjb(B̃
n+1
j,h , ũn+1

j,h ,Bn+1
j,h ) + sξjb(ũ

n+1
j,h , B̃n+1

j,h ,Bn+1
j,h ) + sγ̄n∥∇Bn+1

j,h ∥2 + sγ′nj

(

∇B̃n+1
j,h ,∇Bn+1

j,h

)

− s
(

λn+1
j,h ,∇ ·Bn+1

j,h

)

+ sαMh
(

∇(3Bn+1
j,h − 4Bn

j,h +Bn−1
j,h ),∇Bn+1

j,h

)

− s
(

∇× gn+1
j,h ,Bn+1

j,h

)

+ ξj

[

−
∫

Ω

(

νj |∇ūn+1
j,h |2 + sγj |∇B̄n+1

j,h |2
)

dΩ +

∫

Ω

fn+1
j,h · ūn+1

j,h dΩ

+

∫

Ω

s(∇× gn+1
j,h ) · B̄n+1

j,h dΩ +

∫

Γ

BS(ū
n+1
j,h , B̄n+1

j,h )dΓ

]

+ (1− ξj)

∣

∣

∣

∣

∫

Ω

fn+1
j,h · ūn+1

j,h dΩ +

∫

Ω

s(∇× gn+1
j,h ) · B̄n+1

j,h dΩ +

∫

Γ

BS(ū
n+1
j,h , B̄n+1

j,h )dΓ

∣

∣

∣

∣

.

There’s also the addition of two regularization terms in Algorithms (3) and (4),

{

αh∆(un+1
j,h − un

j,h),

αMh∆(Bn+1
j,h −Bn

j,h),
for CN,

{

αh∆(3un+1
j,h − 4un

j,h + un−1
j,h ),

αMh∆(3Bn+1
j,h − 4Bn

j,h +Bn−1
j,h ),

for BDF2.

These terms are highly effective at reducing the considerable error that eventually appears when the
timestep is not sufficiently refined. Significant improvement in accuracy will be seen later in the numerical
tests. It’s noted in [29] that this improvement cannot be explained by the stability or error analysis
alone. Instead, an explanation is offered through analysis of a modified form of the equations under
consideration. In the modified equations, the addition of the term −αhk∆ut (in the case of velocity) and
−αhk∆Bt (in the case of magnetic field) are added to the left-hand sides,































[uj,t − αhk∆uj,t] + uj · ∇uj − sBj · ∇Bj − νj∆uj +∇pj = fj in Ω × (0, T ),

∇ · uj = 0, in Ω × (0, T ),

[Bj,t − sαMhk∆Bj,t] + uj · ∇Bj −Bj · ∇uj − γj∆Bj +∇λj = ∇× gj in Ω × (0, T ),

∇ ·Bj = 0, in Ω × (0, T ),

uj(x, 0) = u0
j (x), in Ω, Bj(x, 0) = B0

j (x), in Ω.

(42)

This results in a modified kinetic energy corresponding to the equation. In our case, the resulting modified
kinetic energy would be

∥u(t)∥2 + αhk∥∇u(t)∥2 + s∥B(t)∥2 + sαMhk∥∇B(t)∥2.

Following Kraichnan’s theory [41], it is argued in [29] that the penalty term in the kinetic energy induces
an enhanced energy decay rate for numerically under-resolved modes while preserving the correct energy
cascade above the cut-off length scale. The quick roll-off in the energy spectrum is also exploited in
the Navier-Stokes-α model (NS-α)–a nonlinearly dispersive modification of the Navier-Stokes equations
for large eddy simulation of turbulence [33, 34]. This roll-off mechanism shortens the inertial range and
makes the system more computable.

3 Stability of the method

3.1 Crank-Nicolson

Theorem 5 With homogeneous boundary conditions and forcing terms equal to zero, Algorithm (3) is

unconditionally stable with respect to the modified energy F (Rj).
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Proof. Stability follows directly from [25]. Set vh to u
n+1/2
j,h in (28), χh to sB

n+1/2
j,h in (30), add each of

these to (34) and note (29) and (31). Then one gets

F (Rn+1
j,h )− F (Rn

j,h) = −∆t
F (Rn+1

j,h )

E(ūn+1
j,h , B̄n+1

j,h )

∫

Ω

(

νj |∇ū
n+1/2
j,h |2 + sγj |∇B̄

n+1/2
j,h |2

)

dΩ (43)

+

[

1−
F (Rn+1

j,h )

E(ūn+1
j,h , B̄n+1

j,h )

]

|S0|∆t+
F (Rn+1

j,h )

E(ūn+1
j,h , B̄n+1

j,h )
S0∆t.

Where S0 =
∫

Ω
f
n+1/2
j,h · ūn+1/2

j,h dΩ +
∫

Ω
s(∇× g

n+1/2
j,h ) · B̄n+1/2

j,h dΩ. Solving for F (Rn+1
j,h ) gives

F (Rn+1
j,h ) =

F (Rn
j,h) + |S0|∆t

1 + ∆t
E(ūn+1

j,h ,B̄n+1

j,h )

[

∫

Ω

(

νj |∇ū
n+1/2
j,h |2 + sγj |∇B̄

n+1/2
j,h |2

)

dΩ + (|S0| − S0)
] . (44)

If fj = 0 and ∇× gj = 0, then S0 = 0 and

F (Rn+1
j,h ) =

F (Rn
j,h)

1 + ∆t
E(ūn+1

j,h ,B̄n+1

j,h )

∫

Ω

(

νj |∇ū
n+1/2
j,h |2 + sγj |∇B̄

n+1/2
j,h |2

)

dΩ
. (45)

Note the denominator in (45) is greater than or equal to 1. By definition (5), if R0
j,h > 0, then F (R0

j,h) >

0. In fact R0
j,h would be initialized as G (E[u0

j (x),B
0
j (x)]), which by definition (6) is guaranteed positive.

Then by induction for any timestep n, F (Rn+1
j,h ) > 0, giving us

0 < F (Rn+1
j,h ) ≤ F (Rn

j,h), n ≥ 0. (46)

This completes the proof.

3.2 BDF2

Theorem 6 With homogeneous boundary conditions and forcing terms equal to zero, Algorithm (4) is

unconditionally stable with respect to the modified energy F (Rj) as long as the approximations of Rj(t)
at timestep 1

2 are positive.

Proof. If one sets vh to un+1
j,h in (35) and χh to sBn+1

j,h in (37), subtracts each of these from (41) and
notes (36) and (38), the proof follows identically to [25]. We have

F (R
∗n+3/2
j,h )− F (R

∗n+1/2
j,h ) = −∆t

F (R
∗n+3/2
j,h )

E(ū
n+3/2
j,h , B̄

n+3/2
j,h )

∫

Ω

(

νj |∇ūn+1
j,h |2 + sγj |∇B̄n+1

j,h |2
)

dΩ (47)

+

[

1−
F (R

∗n+3/2
j,h )

E(ū
n+3/2
j,h , B̄

n+3/2
j,h )

]

|S0|∆t+
F (R

∗n+3/2
j,h )

E(ū
n+3/2
j,h , B̄

n+3/2
j,h )

S0∆t.

Where S0 =
∫

Ω
fn+1
j,h · ūn+1

j,h dΩ +
∫

Ω
s(∇× gn+1

j,h ) · B̄n+1
j,h dΩ. Solving for F (R

∗n+3/2
j,h ) gives

F (R
∗n+3/2
j,h ) =

F (R
∗n+1/2
j,h ) + |S0|∆t

1 + ∆t

E(ū
n+3/2
j,h ,B̄

n+3/2
j,h )

[
∫

Ω

(

νj |∇ūn+1
j,h |2 + sγj |∇B̄n+1

j,h |2
)

dΩ + (|S0| − S0)]
. (48)

If fj = 0 and ∇× gj = 0, then S0 = 0 and

F (R
∗n+3/2
j,h ) =

F (R
∗n+1/2
j,h )

1 + ∆t

E(ū
n+3/2
j,h ,B̄

n+3/2
j,h )

∫

Ω

(

νj |∇ūn+1
j,h |2 + sγj |∇B̄n+1

j,h |2
)

dΩ
. (49)

The denominator above is greater than or equal to 1. Now by definition (5), if it’s ensured the approxi-

mation of Rj(t) at timestep 1/2 is positive, i.e. R
∗1/2
j,h > 0, then F (R

∗1/2
j,h ) > 0. Then by induction for any

timestep n, F (R
∗n+3/2
j,h ) > 0 and

0 < F (R
∗n+3/2
j,h ) ≤ F (R

∗n+1/2
j,h ), n ≥ 0. (50)

This completes the proof.
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Note that for the choice of F (χ) = χ2 ≥ 0 for all χ ∈ (−∞,∞), (50) and unconditional stability will

hold regardless of whether R
∗1/2
j,h > 0.

4 Implementation

Since the schemes are linear and the auxiliary variables are scalar functions of time variable, the resulting
systems can be solved conveniently by superposition of a series of Stokes-type equations. We illustrate
the idea by presenting the algorithms in strong form.

4.1 Crank-Nicolson

To efficiently implement Algorithm (1), we proceed in the following manner. Assume

un+1
j = ûn+1

j + ξjŭ
n+1
j , pn+1

j = p̂n+1
j + ξj p̆

n+1
j ,

Bn+1
j = B̂n+1

j + ξjB̆
n+1
j , λn+1

j = λ̂n+1
j + ξj λ̆

n+1
j .

Then solving Algorithm (1) is equivalent to solving the following subproblems,

Algorithm 7. Given un−2
j , un−1

j , un
j , B

n−2
j , Bn−1

j , Bn
j , p

n
j and λnj ,

Sub-problem 1: find ûn+1
j , B̂n+1

j , p̂n+1
j and λ̂n+1

j satisfying

1

∆t
ûn+1
j − ν̄n

2
∆ûn+1

j +
1

2
∇p̂n+1

j = f
n+1/2
j +

1

∆t
un
j + ν′nj ∆ũ

n+1/2
j (51a)

+
ν̄n

2
∆un

j − 1

2
∇pnj ,

∇ · ûn+1
j = 0, (51b)

1

∆t
B̂n+1

j − γ̄n

2
∆B̂n+1

j +
1

2
∇λ̂n+1

j = ∇× g
n+1/2
j +

1

∆t
Bn

j +
γ̄n

2
∆Bn

j (51c)

+ γ′nj ∆B̃
n+1/2
j − 1

2
∇λnj ,

∇ · B̂n+1
j = 0, (51d)

Sub-problem 2: find ŭn+1
j , B̆n+1

j , p̆n+1
j and λ̆n+1

j satisfying

1

∆t
ŭn+1
j − ν̄n

2
∆ŭn+1

j +
1

2
∇p̆n+1

j = s
(

B̃
n+1/2
j · ∇

)

B̃
n+1/2
j −

(

ũ
n+1/2
j · ∇

)

ũ
n+1/2
j , (52a)

∇ · ŭn+1
j = 0, (52b)

1

∆t
B̆n+1

j +
1

2
∇λ̆n+1

j − γ̄n

2
∆B̆n+1

j =
(

B̃
n+1/2
j · ∇

)

ũ
n+1/2
j −

(

ũ
n+1/2
j · ∇

)

B̃
n+1/2
j , (52c)

∇ · B̆n+1
j = 0. (52d)

Remark 1 For inhomogeneous Dirichlet boundary conditions, let

ûn+1
j = g(x, tn+1), ŭn+1

j = 0, B̂n+1
j = h(x, tn+1), B̆n+1

j = 0 on ∂Ω.

We use the following approximations,

{

v̄n+1
j = v̂n+1

j + v̆n+1
j , (53)

v̄
n+1/2
j = 1

2 (v̄
n+1
j + vn). (54)

This is a reasonable approximation to use since ξj is a second order approximation to 1 and is necessary
for our equations to result in a linear update of ξj . We then update ξj as

ξj =
F (Rn

j ) + |S0|∆t
E(ūn+1

j , B̄n+1
j ) +∆t

∫

Ω

(

ν|∇ū
n+1/2
j |2 + sγ|∇B̄

n+1/2
j |2

)

dΩ +∆t(|S0| − S0)
, (55)
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where

S0 =

∫

Ω

f
n+1/2
j · ūn+1/2

j dΩ +

∫

Ω

s(∇× g
n+1/2
j ) · B̄n+1/2

j dΩ +

∫

Γ

BS(ū
n+1/2
j , B̄

n+1/2
j )dΓ. (56)

Notice ξj is updated via a linear equation and is very direct. Once we have ξj we update

Rn+1
j = G

(

ξjE(ūn+1
j , B̄n+1

j )
)

(57)

and proceed to the next timestep iteration. Since ξj is a ratio of the SAV to itself, we should expect
the result to be close to one. With our ensemble approach in (51)-(52), all J realizations have the same
coefficient matrix in each timestep so should be computationally efficient.

Theorem 8 The scalar ξj in (55) and Rn+1
j in (57) are guaranteed to be positive at all timesteps.

Proof. By definition (5), F (R0
j ) > 0 so long as R0

j > 0. It’s explained in (3.1) that R0
j will be positive.

The energy function E(u,B) is always positive and
∫

Ω

(

ν|∇u|2 + sγ|∇B|2
)

dΩ ≥ 0. Since |S0| − S0 ≥ 0,
the initially computed ξj is ensured positive. Then by induction, ξj at any timestep is guaranteed positive.

Once it’s ensured ξj > 0, from the definition (6) we can guarantee Rn+1
j in (57) is positive. This

completes the proof.

4.2 BDF2

For Algorithm (2), we develop an efficient implementation with the same approach. Note solving Algo-
rithm (2) is equivalent to the following,

Algorithm 9. Given un−1
j , un

j , B
n−1
j and Bn

j ,

Sub-problem 1: find ûn+1
j , B̂n+1

j , p̂n+1
j and λ̂n+1

j satisfying

3

2∆t
ûn+1
j − ν̄n∆ûn+1

j +∇p̂n+1
j = fn+1

j +
2

∆t
un
j − 1

2∆t
un−1
j + ν′nj ∆ũn+1

j , (58a)

∇ · ûn+1
j = 0, (58b)

3

2∆t
B̂n+1

j − γ̄n∆B̂n+1
j +∇λ̂n+1

j = ∇× gn+1
j +

2

∆t
Bn

j − 1

2∆t
Bn−1

j + γ′nj ∆B̃n+1
j , (58c)

∇ · B̂n+1
j = 0, (58d)

Sub-problem 2: find ŭn+1
j , B̆n+1

j , p̆n+1
j and λ̆n+1

j satisfying

3

2∆t
ŭn+1
j − ν̄n∆ŭn+1

j +∇p̆n+1
j = s

(

B̃n+1
j · ∇

)

B̃n+1
j −

(

ũn+1
j · ∇

)

ũn+1
j , (59a)

∇ · ûn+1
j = 0, (59b)

3

2∆t
B̆n+1

j − γ̄n∆B̆n+1
j +∇λ̆n+1

j =
(

B̃n+1
j · ∇

)

ũn+1
j −

(

ũn+1
j · ∇

)

B̃n+1
j , (59c)

∇ · B̂n+1
j = 0. (59d)

We use the following approximations,

{

v̄n+1
j = v̂n+1

j + v̆n+1
j , (60)

v̄
n+3/2
j = 3

2 v̄
n+1
j − 1

2v
n, (61)

again noting ξj is a second order approximation to 1. We update ξj as

ξj =
F (R

∗n+1/2
j ) + |S0|∆t

E(ū
n+3/2
j , B̄

n+3/2
j ) +∆t

∫

Ω

(

ν|∇ūn+1
j |2 + sγ|∇B̄n+1

j |2
)

dΩ +∆t(|S0| − S0)
, (62)

where

S0 =

∫

Ω

fn+1
j · ūn+1

j dΩ +

∫

Ω

s(∇× gn+1
j ) · B̄n+1

j dΩ +

∫

Γ

BS(ū
n+1
j , B̄n+1

j )dΓ.
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Once we have ξj we update Rn+1
j as follows:







R
∗n+3/2
j = G

(

ξjE(ū
n+3/2
j , B̄

n+3/2
j )

)

, (63)

Rn+1
j = 2

3R
∗n+3/2
j + 1

3R
n
j . (64)

and proceed to the next timestep iteration.

Theorem 10 The scalar ξj in (62) and Rn+1
j in (64) are guaranteed to be positive at all timesteps if

the approximation R
∗1/2
j > 0.

Proof. Again by definition (5), F (R
∗1/2
j ) > 0 so long as approximation R

∗1/2
j > 0. The argument for

positivity of ξj proceeds identically to that made in the proof of Theorem (8).

Once it’s ensured ξj > 0, again from definition (6) we can guarantee R
∗n+3/2
j in (63) is positive.

It’s also guaranteed R0
j is positive from the previously stated point that it would be initialized as

G (E(u0
j (x),B

0
j (x))). Thus we conclude Rn+1

j in (64) remains positive. This completes the proof.

5 Numerical tests

This section will present numerical results for Algorithms (3) and (4) to demonstrate the expected con-
vergence rates and the stability proven previously. We set F (χ) = χ2 and the corresponding G (χ) =

√
χ

in every experiment. Throughout these tests we’ll use the finite element triplet (P 2–P 1–P 2), and the
finite element software package FEniCS [42].

5.1 Convergence Test

To verify the expected convergence rates, we will use a variation of the test problem in [43]. Take the
time interval 0 ≤ t ≤ 1 and domain Ω = [0, 1]2. Define the true solution (u, p,B) as











uϵ =
(

y5 + t2, x5 + t2
)

(1 + ϵ),

pϵ = 10(2x− 1)(2y − 1)(1 + t2)(1 + ϵ),

Bϵ =
(

sin (πy) + t2, sin (πx) + t2
)

(1 + ϵ),

where ϵ is a given perturbation. For this problem we will consider two perturbations ϵ1 = 10−1 and
ϵ2 = −10−1. The kinematic viscosity and magnetic resistivity are defined as νϵ = 0.5 · (1 + ϵ) and
γϵ = 0.5 · (1 + ϵ). The source terms and initial conditions correspond with the exact solution for the
given perturbation. For each algorithm we initialize uj , Bj , pj or λj using the exact solution. The results
are displayed in tables (1)-(8) both with regularization and without (α = αM = 0). Under this test, we
indeed observe second order convergence with and without regularization. In this particular test on a
short time interval, we also observe the algorithm with regularization achieves relatively similar accuracy
to the algorithm without.

Table 1: Crank-Nicolson error and convergence rates for the first ensemble member in uh and ∇uh.
h ∆t ∥u1 − u1,h∥∞,0rel Rate ∥∇u1 −∇u1,h∥2,0rel Rate

1/10 1/8 9.191 e-4 — 4.985 e-3 —
1/20 1/16 2.088 e-4 2.138 1.399 e-3 1.834
1/40 1/32 4.810 e-5 2.118 3.679 e-4 1.927
1/80 1/64 1.154 e-5 2.060 9.422 e-5 1.965
1/160 1/128 2.889 e-6 1.998 2.384 e-5 1.983

Reg with α = αM = 0.5
1/10 1/8 3.912 e-4 — 4.741 e-3 —
1/20 1/16 6.032 e-5 2.697 1.355 e-3 1.807
1/40 1/32 9.532 e-6 2.662 3.579 e-4 1.920
1/80 1/64 2.208 e-6 2.110 9.179 e-5 1.963
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Table 2: Crank-Nicolson error and convergence rates for the first ensemble member in Bh and ∇Bh.
h ∆t ∥B1 −B1,h∥∞,0rel Rate ∥∇B1 −∇B1,h∥2,0rel Rate

1/10 1/8 2.566 e-4 — 3.013 e-3 —
1/20 1/16 5.0568 e-5 2.343 8.451 e-4 1.834
1/40 1/32 1.150 e-5 2.136 2.223 e-4 1.927
1/80 1/64 2.746 e-6 2.067 5.694 e-5 1.965
1/160 1/128 6.869 e-7 1.999 1.440 e-5 1.983

Reg with α = αM = 0.5
1/10 1/8 1.512 e-4 — 2.909 e-3 —
1/20 1/16 2.138 e-5 2.822 8.298 e-4 1.810
1/40 1/32 3.082 e-6 2.795 2.191 e-4 1.921
1/80 1/64 6.830 e-7 2.174 5.619 e-5 1.964

Table 3: Crank-Nicolson error and convergence rates for the second ensemble member in uh and ∇uh.
h ∆t ∥u2 − u2,h∥∞,0rel Rate ∥∇u2 −∇u2,h∥2,0rel Rate

1/10 1/8 2.020 e-3 — 5.498 e-3 —
1/20 1/16 4.897 e-4 2.045 1.433 e-3 1.940
1/40 1/32 9.342 e-5 2.390 3.701 e-4 1.953
1/80 1/64 1.560 e-5 2.582 9.440 e-5 1.971
1/160 1/128 2.923 e-6 2.416 2.385 e-5 1.985

Reg with α = αM = 0.5
1/10 1/8 4.070 e-4 — 4.753 e-3 —
1/20 1/16 6.277 e-5 2.697 1.357 e-3 1.809
1/40 1/32 1.134 e-5 2.469 3.584 e-4 1.921
1/80 1/64 2.649 e-6 2.097 9.190 e-5 1.964

Table 4: Crank-Nicolson error and convergence rates for the second ensemble member in Bh and ∇Bh.
h ∆t ∥B2 −B2,h∥∞,0rel Rate ∥∇B2 −∇B2,h∥2,0rel Rate

1/10 1/8 7.455 e-4 — 3.376 e-3 —
1/20 1/16 1.666 e-4 2.162 8.700 e-4 1.956
1/40 1/32 3.097 e-5 2.427 2.239 e-4 1.958
1/80 1/64 5.113 e-6 2.598 5.706 e-5 1.973
1/160 1/128 7.772 e-7 2.718 1.442 e-5 1.985

Reg with α = αM = 0.5
1/10 1/8 1.567 e-4 — 2.915 e-3 —
1/20 1/16 2.222 e-5 2.818 8.308 e-4 1.811
1/40 1/32 3.664 e-6 2.600 2.193 e-4 1.922
1/80 1/64 8.188 e-7 2.162 5.622 e-5 1.964

Table 5: BDF2 error and convergence rates for the first ensemble member in uh and ∇uh.
h ∆t ∥u1 − u1,h∥∞,0rel Rate ∥∇u1 −∇u1,h∥2,0rel Rate

1/10 1/8 7.413 e-4 — 5.804 e-3 —
1/20 1/16 1.891 e-4 1.971 1.495 e-3 1.957
1/40 1/32 4.790 e-5 1.981 3.793 e-4 1.978
1/80 1/64 1.183 e-5 2.018 9.557 e-5 1.989
1/160 1/128 2.944 e-6 2.006 2.399 e-5 1.994

Reg with α = αM = 0.5
1/10 1/8 4.528 e-4 — 5.601 e-3 —
1/20 1/16 6.215 e-5 2.865 1.453 e-3 1.947
1/40 1/32 7.946 e-6 2.968 3.694 e-4 1.976
1/80 1/64 1.339 e-6 2.570 9.310 e-5 1.988

Table 6: BDF2 error and convergence rates for the first ensemble member in Bh and ∇Bh.
h ∆t ∥B1 −B1,h∥∞,0rel Rate ∥∇B1 −∇B1,h∥2,0rel Rate

1/10 1/8 1.868 e-4 — 3.502 e-3 —
1/20 1/16 3.792 e-5 2.301 9.005 e-4 1.960
1/40 1/32 9.133 e-6 2.054 2.285 e-4 1.979
1/80 1/64 2.300 e-6 1.990 5.756 e-5 1.989
1/160 1/128 5.816 e-7 1.983 1.445 e-5 1.994

Reg with α = αM = 0.5
1/10 1/8 1.649 e-4 — 3.438 e-3 —
1/20 1/16 2.185 e-5 2.916 8.904 e-4 1.949
1/40 1/32 2.772 e-6 2.978 2.263 e-4 1.976
1/80 1/64 4.182 e-7 2.729 5.705 e-5 1.988
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Table 7: BDF2 error and convergence rates for the second ensemble member in uh and ∇uh.
h ∆t ∥u2 − u2,h∥∞,0rel Rate ∥∇u2 −∇u2,h∥2,0rel Rate

1/10 1/8 7.762 e-4 — 5.806 e-3 —
1/20 1/16 1.880 e-4 2.045 1.495 e-3 1.957
1/40 1/32 4.699 e-5 2.001 3.795 e-4 1.978
1/80 1/64 1.186 e-5 1.987 9.561 e-5 1.989
1/160 1/128 2.964 e-6 2.001 2.400 e-5 1.994

Reg with α = αM = 0.5
1/10 1/8 4.531 e-4 — 5.603 e-3 —
1/20 1/16 6.218 e-5 2.865 1.453 e-3 1.947
1/40 1/32 7.964 e-6 2.965 3.695 e-4 1.976
1/80 1/64 1.547 e-6 2.364 9.314 e-5 1.988

Table 8: BDF2 error and convergence rates for the second ensemble member in Bh and ∇Bh.
h ∆t ∥B2 −B2,h∥∞,0rel Rate ∥∇B2 −∇B2,h∥2,0rel Rate

1/10 1/8 1.918 e-4 — 3.505 e-3 —
1/20 1/16 3.930 e-5 2.287 9.013 e-4 1.960
1/40 1/32 9.605 e-6 2.033 2.287 e-4 1.979
1/80 1/64 2.425 e-6 1.986 5.761 e-5 1.989
1/160 1/128 6.129 e-7 1.984 1.446 e-5 1.994

Reg with α = αM = 0.5
1/10 1/8 1.649 e-3 — 3.439 e-3 —
1/20 1/16 2.185 e-4 2.916 8.906 e-4 1.949
1/40 1/32 2.772 e-4 2.978 2.264 e-4 1.976
1/80 1/64 4.880 e-5 2.506 5.706 e-5 1.988

5.2 Efficiency Test

In this experiment we repeat the numerical methods used above with the same problem, except we set
νϵ = 1.0·(1+ϵ), γϵ = 0.2·(1+ϵ) and analyze 11 perturbations ϵi = 10−1−0.009∗i, i = 0, . . . , 10. We com-
pare the performance speed and accuracy of Algorithms (3) and (4) with the corresponding nonensemble
GPAV methods, where no ensemble mean is used and the linear systems for each perturbation are solved
in serial. To do this, we list the CPU runtime in seconds and error norm of the average of all 11 velocities
and magnetic fields, labeled as ūn and B̄n, for each computation. As can be seen in the tables (9)-(12)
below, the second order ensemble methods obtain the same accuracy as the nonensemble trials, while
requiring significantly less runtime.

Table 9: Error and CPU time for computing ūh and B̄h with Algorithm 3.

h ∆t ∥ū− ūen,h∥∞,0rel ∥B̄ − B̄en,h∥∞,0rel CPU time (s)

1/5 1/40 3.099 e-3 1.220 e-3 2.117 e+0
1/10 1/80 4.782 e-4 1.716 e-4 7.622 e+0
1/20 1/160 6.294 e-5 2.218 e-5 3.911 e+1
1/40 1/320 7.968 e-6 2.802 e-6 2.905 e+2
1/80 1/640 1.005 e-6 4.450 e-7 2.181 e+3

Table 10: Error and CPU time for computing ūh and B̄h with nonensemble CN algorithm.

h ∆t ∥ū− ūen,h∥∞,0rel ∥B̄ − B̄en,h∥∞,0rel CPU time (s)

1/10 1/80 4.783 e-4 1.718 e-4 1.694 e+1
1/20 1/160 6.294 e-5 2.219 e-5 1.144 e+2
1/40 1/320 7.968 e-6 2.802 e-6 8.362 e+2
1/80 1/640 1.004 e-6 7.730 e-7 6.895 e+3

Table 11: Error and CPU time for computing ūh and B̄h with Algorithm 4.

h ∆t ∥ū− ūen,h∥∞,0rel ∥B̄ − B̄en,h∥∞,0rel CPU time (s)

1/5 1/40 3.609 e-3 1.331 e-3 2.768 e+0
1/10 1/80 4.961 e-4 1.750 e-4 8.432 e+0
1/20 1/160 6.348 e-5 2.219 e-5 3.844 e+1
1/40 1/320 7.982 e-6 2.785 e-6 2.760 e+2
1/80 1/640 1.006 e-6 3.546 e-7 2.267 e+3
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5.4 Chamber Flow

In this numerical test, we consider a channel flow in a rectangular domain of length 2.2 units and
height 0.41, with a cylinder of radius 0.05 centered at (0.2, 0.2), in the presence of a magnetic field. On
the walls and around the cylinder, a no-slip boundary condition is applied for velocity while magnetic
field is kept constant as B =< 0, 0.1 >T . We set the inflow and outflow conditions equal, choosing
u =< 6y(0.41 − y)/0.412 sin (πt/16.0), 0 >T and B =< 0, 0.1 >T . The coupling term is set to s = 0.01
and for all realizations we fix γ = 0.1 then consider two cases, ν = 1/50 and ν = 1/1000.

We’ll use an ensemble of two different solutions with the initial and boundary conditions perturbed by
multiplicative factors of (1± ϵ). We simulate the flow with Algorithms (3) and (4) till final time T = 8.8
with a mesh discretization fixed at h = 1/100. We set α = αM = 0 such that these tests are performed
without the regularization terms involved. In order to maintain accurate results up unto T = 8.8, we
find it necessary to choose a time step of roughly ∆t = 1/1000 when ν = 1/50 and ∆t = 1/2000 when
ν = 1/1000. The solutions under each perturbation for velocity are shown in Figures (1)-(4) and for
magnetic field in Figures (7)-(10). We also provide results for no perturbation, that is, ϵ = 0. This is for
comparison as we expect the ensemble solutions to converge to the unperturbed results as ϵ→ 0.

Fig. 1: Ensemble solutions for velocity at time T = 8.8 for Algorithm (3) with ν = 0.02, γ = 0.1 and
∆t = 0.001.

Fig. 2: Ensemble solutions for velocity at time T = 8.8 for Algorithm (3) with ν = 0.001, γ = 0.1 and
∆t = 0.0005.
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Fig. 3: Ensemble solutions for velocity at time T = 8.8 for Algorithm (4) with ν = 0.02, γ = 0.1 and
∆t = 0.001.

Fig. 4: Ensemble solutions for velocity at time T = 8.8 for Algorithm (4) with ν = 0.001, γ = 0.1 and
∆t = 0.0005.

Fig. 5: Algorithm (3) solution when ϵ = 0 for velocity at time T = 8.8 with ν = 0.001, γ = 0.1 and
∆t = 0.001.
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Fig. 6: Algorithm (4) solution when ϵ = 0 for velocity at time T = 8.8 with ν = 0.001, γ = 0.1 and
∆t = 0.001.

Fig. 7: Ensemble solutions for magnetic field at time T = 8.8 for Algorithm (3) with ν = 0.02, γ = 0.1
and ∆t = 0.001.

Fig. 8: Ensemble solutions for magnetic field at time T = 8.8 for Algorithm (3) with ν = 0.001, γ = 0.1
and ∆t = 0.0005.
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Fig. 9: Ensemble solutions for magnetic field at time T = 8.8 for Algorithm (4) with ν = 0.02, γ = 0.1
and ∆t = 0.001.

Fig. 10: Ensemble solutions for magnetic field at time T = 8.8 for Algorithm (4) with ν = 0.001, γ = 0.1
and ∆t = 0.0005.

Fig. 11: Algorithm (3) solution when ϵ = 0 for magnetic field at time T = 8.8 with ν = 0.001, γ = 0.1
and ∆t = 0.001.

Fig. 12: Algorithm (4) solution when ϵ = 0 for magnetic field at time T = 8.8 with ν = 0.001, γ = 0.1
and ∆t = 0.001.
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5.5 Chamber Flow with Regularization

Here we present the same chamber flow problem implementing Algorithms (3) and (4) with nonzero
regularization coefficients. We choose α = ν and αM = γ in each test. We’re able to achieve similar
accuracy to the previous section with coarser time step. The following numerical results are achieved:

Fig. 13: Ensemble solutions for velocity at time T = 8.8 for Algorithm (3) with regularization and
ν = 0.001, γ = 0.1 and ∆t = 0.001.

Fig. 14: Ensemble solutions for magnetic field at time T = 8.8 for Algorithm (3) with regularization and
ν = 0.001, γ = 0.1 and ∆t = 0.001.
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Fig. 15: Ensemble solutions for velocity at time T = 8.8 for Algorithm (4) with regularization and
ν = 0.001, γ = 0.1 and ∆t = 0.001.

Fig. 16: Ensemble solutions for magnetic field at time T = 8.8 for Algorithm (4) with regularization and
ν = 0.001, γ = 0.1 and ∆t = 0.001.
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5.6 Accuracy Comparison

In this section we present a comparison test between the errors of the scheme with and without the
regularization terms introduced in Section 5.5. We use the same test as in 5.1, except this time we set
ν = 1.0 and γ = 0.2. We choose two perturbations of ϵ = 0.1 and ϵ = 0.2, with final time T = 2.5. This
time we use only the L2 error norm of the result at final time T . For the stabilization coefficients α and
αM , we set them equal to the viscosity and magnetic resistivity correspondingly.

Table 13: Error for the first ensemble member in uh.
h ∆t SAV-CN SAV-BDF2 Stab-SAV-CN Stab-SAV-BDF2

1/100 1/8 1.398 e-2 3.789 e-2 6.485 e-6 1.823 e-5
1/100 1/16 8.242 e-2 6.229 e-2 3.467 e-6 4.143 e-6
1/100 1/32 3.369 e-2 3.664 e-2 1.907 e-6 9.296 e-7
1/100 1/64 2.230 e-2 9.960 e-3 7.120 e-7 1.902 e-7
1/100 1/128 4.517 e-2 2.383 e-3 1.093 e-6 5.102 e-8

Table 14: Error for the first ensemble member in Bh.
h ∆t SAV-CN SAV-BDF2 Stab-SAV-CN Stab-SAV-BDF2

1/100 1/8 5.219 e-2 1.312 e-1 3.074 e-5 6.940 e-5
1/100 1/16 2.644 e-1 1.962 e-1 1.647 e-5 1.592 e-5
1/100 1/32 7.231 e-2 7.033 e-2 9.188 e-6 3.429 e-6
1/100 1/64 6.947 e-2 2.400 e-2 3.318 e-6 6.148 e-7
1/100 1/128 1.061 e-1 8.650 e-3 5.619 e-6 1.390 e-7
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