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ABSTRACT

In many astrophysical applications, the cost of solving a chemical network represented by a system of ordinary differential equations
(ODEs) grows significantly with the size of the network and can often represent a significant computational bottleneck, particularly
in coupled chemo-dynamical models. Although standard numerical techniques and complex solutions tailored to thermochemistry can
somewhat reduce the cost, more recently, machine learning algorithms have begun to attack this challenge via data-driven dimensional
reduction techniques. In this work, we present a new class of methods that take advantage of machine learning techniques to reduce
complex data sets (autoencoders), the optimization of multiparameter systems (standard backpropagation), and the robustness of well-
established ODE solvers to to explicitly incorporate time dependence. This new method allows us to find a compressed and simplified
version of a large chemical network in a semiautomated fashion that can be solved with a standard ODE solver, while also enabling
interpretability of the compressed, latent network. As a proof of concept, we tested the method on an astrophysically relevant chemical
network with 29 species and 224 reactions, obtaining a reduced but representative network with only 5 species and 12 reactions, and
an increase in speed by a factor 65.
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1. Introduction

Over the last few decades, the technological advance and pro-
liferation of astronomical observations has revealed a dramatic
richness and variety of chemical species in space, in particu-
lar in the interstellar medium (ISM), star-forming regions, and
protoplanetary disks (e.g., Henning & Semenov 2013; Walsh
et al. 2014). Especially at radio, submillimeter, and infrared
wavelengths, sensitivity and spatial resolution improvements
have resulted in the discovery of a plethora of both simple and
complex chemical species (McGuire 2018). Understanding how
these species form, how they react with other species, and what
physical conditions they trace requires (both experimental and
theoretical) accurate and comprehensive tools (Herbst & van
Dishoeck 2009; Jùrgensen et al. 2020).

From a numerical point of view, the time-dependent study of
the formation and evolution of key chemical tracers under ISM
conditions is obtained by solving a system of ordinary differen-
tial equations (ODEs) that represent the time evolution of the
species interconnected by a set of chemical reactions. Increas-
ing molecular complexity leads to a larger number of species
and reactions that must be included in the chemical network
to realistically represent a specific physical environment. This
is particularly true for the ISM and protoplanetary disks as we
learn more about these environments through observations. As
such, the size of requisite chemical networks increases quickly,

as demonstrated for example by the hundreds of species and
the thousands of reactions in the KIDA database of chemical
reactions1 (Wakelam et al. 2012). Naturally, increasing network
complexity leads to increasing computational costs for solving
the associated system of ODEs, which indeed becomes pro-
hibitive when coupled to dynamical models that follow the
evolution of astrophysical environments over space and time.

As a result, in order to keep costs reasonable, existing chem-
ical models are typically far from being complete. While 1D
and 2D astrochemical simulations (e.g., Garrod 2008; Bruderer
et al. 2009; Woitke et al. 2009; Semenov et al. 2010; Sipilä et al.
2010; Akimkin et al. 2013; Rab et al. 2017, to name only a few)
enable us to deeply explore the chemistry and constrain the sen-
sitivity of chemical networks to various parameters, the effects
of dynamics, magnetic fields and complex radiative transfer,
are seldom modeled, and can sometimes lead to a mislead-
ing interpretation of the results. On the other hand, (radiative)
(magneto-)hydrodynamic simulations are often limited by their
computational cost, and when chemistry and microphysics are
included, they are often done so only with simplified prescrip-
tions. Several efforts have been made in this respect (e.g., Glover
et al. 2010; Bai 2016; Ilee et al. 2017; Bovino et al. 2019; Grassi
et al. 2019; Gressel et al. 2020; Lupi & Bovino 2020), but the
chemical complexity has been intentionally limited to the species

1 http://kida.astrophy.u-bordeaux.fr/
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that are relevant for the given problem (e.g., coolants). Analo-
gously, Monte Carlo approaches for constraining reaction rates
from observations using Bayesian inference (e.g., Holdship et al.
2018) represent another situation where faster computation of the
chemistry would be beneficial.

Employing specific simplified prescriptions is an example
of a so-called reduction method that attempts to preserve the
impact of the relevant (thermo)chemistry on dynamical evolu-
tion while minimizing the cost. As already alluded to, practically,
this usually means removing species and reactions based on
chemical and physical considerations (e.g., Glover et al. 2010).
However, as with any reduction method, this approach is tuned
to the environment of interest, and can result in the introduc-
tion of uncertainties when the problem becomes nonlinear or
when the validity of the reduction has not been tested in a
particular region of parameter space. Grassi et al. (2012), follow-
ing Tupper (2002), presented an automatic reaction rate-based
reduction scheme, yielding a variable speed-up while also pro-
viding good agreement with results from the complete network.
Recently, Yoon & Kwak (2018) and Xu et al. (2019) employed
similar approaches for the study of molecular clouds and pro-
toplanetary disks. Meanwhile, Ruffle et al. (2002), Wiebe et al.
(2003), and Semenov et al. (2004) compared the reaction kinetic
with a method similar to the so-called objective reduction tech-
niques from combustion chemistry. Conversely, Grassi et al.
(2013) proposed a topological method to reduce the complex-
ity of a chemical network: ªHubº chemical species are selected
for a reduced network after being predicted to be more active
and/or important during the evolution of the system. Yet another
approach is to split the reaction time-scales to reduce the com-
putational complexity of the problem, for example by integrating
the slow scales only and add the fast ones as a correction term
(e.g., Valorani & Goussis 2001; Nicolini & Frezzato 2013). The
methods described above can provide non-negligible speed-ups
relative to the cost of computing the complete network, but they
can be problem-dependent, difficult to implement in practice
(e.g. to couple to a dynamical model), or interfere with other
reduction techniques and lose some of their effectiveness when
included in large-scale dynamical models.

An alternative to these methods is to employ data-driven
machine learning techniques (Grassi et al. 2011; de Mijolla
et al. 2019). The evolution of a standard chemical solver can
be replaced by a more computationally tractable operator that
is capable of advancing the solution in time. In contrast to a
physically motivated approach (that consists in removing reac-
tions and species based on the environment or problem), here
the chemical and physical assumptions are minimal and the sim-
plifications automated, but the interpretation is often much more
difficult (e.g., Chakraborty et al. 2017).

More recently, it has been demonstrated that machine learn-
ing algorithms can also be used to identify so-called governing
equations (Brunton et al. 2016; Long et al. 2017; Chen et al. 2018;
Rackauckas et al. 2019; Raissi & Karniadakis 2018; Raissi et al.
2019; Choudhary et al. 2020), solve forward and inverse differ-
ential equation problems efficiently (Rubanova et al. 2019), and
construct low-dimensional interpretable representations of phys-
ical systems (Champion et al. 2019; Wiewel et al. 2019; Yıldız
et al. 2019). Excluding Hoffmann et al. (2019), where an effective
reaction network is inferred from observations with a sparse ten-
sor regression method, these methods have never been applied to
the complicated system of coupled ODEs that is commonly used
to represent chemical evolution.

In this work, we present a new deep machine learning
method that can discover a low-dimensional chemical network

via autoencoders and that effectively represents the dynamics
of a full network. The two main advantages of this approach
are that (i) it is more interpretable compared to existing data-
driven approaches and (ii) the resulting low-dimensional ODE
system can be easily integrated with standard ODE solvers
and coupled to hydrodynamic simulations where the calcula-
tion of time-dependent chemistry is desired. We also present a
proof-of-concept application of the method.

The layout of this work is as follows. In Sect. 2 we review the
application of ODEs to chemistry, other reduction techniques,
and how we apply autoencoders to discover a low-dimensional
network. In Sect. 3 we apply our method to an astrophysical
chemical network and compare the results to a calculation with
a full network. We discuss the limitations and the potential
solutions in Sect. 4. Conclusions are in Sect. 5.

2. Methods

2.1. Systems of chemical ordinary differential equations

The time evolution of the species in a chemical network is com-
monly represented by a set of coupled ODEs defined by the
species and reactions in that network. The definition of each
reaction includes a rate coefficient, k, that represents the prob-
ability of the reactants to form the products. The variation in
time of the abundances of each species, ni(t), is given by

dni

dt
≡ ṅi = −ni

∑

j

ki jn j +

∑

j

n j

∑

l

k jlnl, (1)

where the first term on the right-hand side represents the reac-
tions involving the destruction of the ith species, while the
second its formation, and the sums are over N total species. In
Eq. (1), the abundances are functions of time, and k can depend
on temperature, and in some environments density, and that may
both vary with time (e.g., Baulch et al. 2005). If Åx represents the
abundances of the N species, Eq. (1) can be written in the more
general form as an operator f in RN → RN ,

Å̇x = f ( Åx; k), (2)

defined by the rate coefficients k and the input variables Åx(t).
In many astrophysical applications, the number of species N,
and hence the number of differential equations in the system,
ranges from a few tens to several hundreds, while the number
of reactions subsequently range from hundreds to tens of thou-
sands reactions depending on the complexity of the astrophysical
model (see Appendix A). In general, numerically solving a sys-
tem of ODEs for a large number of species and reactions requires
a non-negligible amount of computational resources, and usually
represents a numerical bottleneck for many applications, particu-
larly for those that couple chemistry to dynamics. The two main
reasons for this are (i) the substantial coupling between differ-
ent species/ordinary differential equations and (ii) the interplay
between the desired solution accuracy and different timescales
in the problem that results in small integration (time) steps (e.g.,
Bovino et al. 2013; Grassi et al. 2013). Both effects, however,
can result in a so-called stiff system of ODEs, which further
increases the challenges by requiring (generally) more expensive
ODE solvers with particular features.

2.2. Reduction techniques

The simplest approach to reducing the cost of computing chem-
istry is to exploit available computer hardware (e.g., vector-
ization on modern central processing units [CPUs], graphics

A139, page 2 of 14













A&A 668, A139 (2022)

but we also note that the poor feature reconstruction around
t ≃ 0.6 in Fig. 7, play a crucial role in increasing this error. To
determine the error statistics we fit the logarithms of the relative
errors ∆ri, j = ∆ni, j n−1

i, j
with a probability density function Di,

where ∆ni, j is the difference in ªdenormalizedº physical units
(cm−3) between the actual and the predicted value of the ith
species abundance in the jth observation (that is the time steps
at which ni is evaluated during the test stage). Such distributions
resemble a Gaussian and we therefore determine their means and
standard deviations by fitting a single Gaussian profile to the dis-
tribution of the logarithm of the relative errors for each species.
If we exclude H2 for which we have almost perfect reconstruc-
tion, the means of the logarithms of the relative errors, ⟨log(∆r)⟩,
vary between approximately −2.96 and 0.044, while the stan-
dard deviations, σ[log(∆r)], vary between approximately 0.31
and 0.8 (detailed information is reported in Appendix F). There-
fore, despite the promising results (in fact the main features of
the curves are well reproduced), the size of the error makes
our method currently ineffective in replacing a standard chem-
ical solver. Moreover, the error in the reconstructed abundances
relative to the test set strongly depends on the initialization of
the weights of the autoencoder, as well as on the loss weights
employed, which suggest that the convergence of the final param-
eters (Wi j and p) that minimize the total loss, could be improved
by a better designed g.

The average time5 to integrate f during the preparation of
the training set is ∼6.5 s wall-clock time using the BDF solver in
SOLVE_IVP, while to integrate the trained, reduced ODE system
g we need only ∼0.1 s (but also using the BDF solver). In both
cases the Jacobian is calculated with a finite-difference approx-
imation. We plan to perform additional benchmark comparisons
in a future work employing larger and more complicated chemi-
cal networks, and using a more efficient solver as, e.g., DLSODES

(Hindmarsh et al. 2005).
Our results show that it is possible to obtain a consider-

ably compressed chemical network that can be integrated with
a standard ODE solver, hence reducing the computational time.
However, this is not the only advantage, as the compressed
solution is interpretable as a chemical network, a result that
is impossible to achieve by only analyzing the weights of the
hidden layers of a standard deep neural network. Hence, the evo-
lution is more controllable and expressible in chemical terms,
and could potentially expose some relevant information about the
original chemical network, as well as allow analytical integration
in time in some special cases.

4. Limitations and outlook

This paper presents a novel method to solving time-dependent
chemistry, but this particular study should be considered as
a proof-of-concept and has some limitations that we discuss
below. We plan to address these shortcomings in the near future
before deploying the method to more realistic and more challeng-
ing scientific applications, e.g., the coupled calculation of the
(thermo)chemical evolution of a large (magneto)hydrodynamic
simulation.

First, as with many data-driven or machine-learning based
methods, the training set should be considerably large to enable
the method to sample the complete spectrum of possible inputs
and outputs. However, it is important to remark that, in contrast
to other deep learning methods, our approach has the advantage

5 Tests performed on a single core of an Intel® CoreTM i7-10750H at
2.60 GHz.

that the chemical network in the latent space is transparent and
interpretable. Nonetheless, the number of data points required
to train our neural network is 2N × N∆t × Nmodels, where N is
the number of chemical species, N∆t the number of time steps
during the evolution when the chemical data is recorded, and
Nmodels the number of models with different initial conditions;
the factor of 2 indicates that both Åx and Å̇x (the time derivatives)
are needed for the training set. While the order of magnitude of
N and Ntsteps is likely to vary less, Nmodels might vary consider-
ably depending on the problem in order to cover the parameter
space (de Mijolla et al. 2019). The size of the training data set
also places limitations on how large a parameter space can be
explored. Although the results presented in Sect. 3 have a small
memory footprint (<1 GB), and hence can be obtained with an
average consumer-level GPU card, some setups, which will be
the subject of a forthcoming work, required up to 30 GB of mem-
ory, handled in our case by a NVIDIA TESLA V100S GPU with
32 GB of memory.

Another challenge is the definition of an analytical expres-
sion for g. This is a critical aspect, since this is where the inter-
pretability of the method arises. In our application, we consider
the simplest case of only two latent ªatomsº (see Appendix B).
The resultant latent space consists of only 5 variables (or latent
abundances), and for these reasons the maximum number of
possible latent reactions is limited to 12. However, larger chem-
ical networks in the physical space might only be compressible
with >5 latent variables, and consequently the increased num-
ber of possible variable combinations might produce a relatively
large latent chemical network, reducing or nullifying the advan-
tage of the low-dimensionality latent chemical space. That said,
how the minimum number of required latent variables changes
with the size and complexity of a chemical network is cur-
rently unknown. As previously discussed, to cope with this
problem, a promising method is to employ the concept of par-
simonious representation (Champion et al. 2019, 2020). In this
approach, an additional loss term is added to reduce the number
of nonzero coefficients p in g(Åz; p) to the minimum required set.
As before, it is worth mentioning that, at the moment, the design
and understanding of chemical networks in the latent space is
uncharted territory.

Furthermore, to achieve an accurate reconstruction of the
time evolution of Åx, the latent ODE g should be capable of repro-
ducing the high-frequency behavior of the encoded data, ϕ( Åxi).
In Fig. 8 we report the comparison of the time derivatives of
the five components of the latent space (Å̇z) computed via the
trained function g(Åz; p) (dashed) and via the gradient in time of
the encoded Åx (solid). With a perfect reconstruction the two rep-
resentations of Å̇z should overlap, but in our case the derivative
computed from g resembles a time average of the derivative of
the encoded Åx, suggesting that with our current implementation
the fine, high-frequency behavior in the latent space is poorly
reconstructed.

In terms of technical issues, the success of the training
depends on the user-defined loss weights λi in Eq. (7). If, for
example, L0 dominates over the other losses (see Fig. 5), the
autoencoder perfectly reproduces Åx as ψ(φ( Åx)), but fails in repro-
ducing Åx from ψ(Åz) when Åz is evolved using g. Conversely, if L1

or L2 dominates the total loss, the autoencoder fails completely
to reproduce the original data, and no useful solution can be
found. Additionally, the absolute value of the loss is defined with
respect to an error, so that |L| < ε. For example in L0, Eq. (3),
the loss is calculated as the sum of the difference between the
absolute values of the original and reconstructed abundances,
squared. However, since the abundances have been normalized
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integrating the original network. In our preliminary tests we
obtained an acceleration of a factor 65.

± The interpretability of the latent variables and ODEs pro-
vides an advantage compared to opaque standard machine
learning methods of dimensionality reduction. Moreover,
interpretability could allow us to better understand the intrin-
sic chemical properties of a network in the physical-space
through identification of specific characteristics or behaviors
in the latent space that might otherwise be hidden.

We also note that the current implementation includes a set of
limitations that needs to be solved in the future:

± Similar to most of the data-driven machine learning meth-
ods, the training data set needs to be considerably large to
completely explore the full spectrum of variability. Addi-
tionally, to achieve a successful training, the different loss
terms need to be tuned by hand in order to obtain a quick
and effective convergence.

± The topology of the compressed chemical network needs to
be outlined by the user (meaning that g currently needs to be
defined analytically), which is not always trivial. However,
various techniques have been proposed and will be explored
in a future work to simplify this task.

± This method has been tested in a rather controlled environ-
ment (e.g., constant temperature, density, and cosmic-ray
ionization rate) with a limited amount of variability in the
initial conditions, and will need to be generalized in the
future.

In conclusion, despite the limitations and some technical issues
that we will address in future works, the method presented here
is a promising new approach to solving the problem of compli-
cated chemical evolution and its often high computational cost.
The code is publicly available at https://bitbucket.org/
tgrassi/latent_ode_paper/. Finally, it is important to note
that the chemical data generation and the training stage in this
work are both based on randomized initial conditions, and hence
code output and the results in this paper could differ slightly.
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