A&A 668, A139 (2022)
https://doi.org/10.1051/0004-6361/202039956
© T. Grassi et al. 2022

tronomy
Astrophysics

Reducing the complexity of chemical networks via interpretable

autoencoders

T. Grassi'?3, F. Nauman®, J. P. Ramsey5 , S. Bovino®, G. Picogna"z, and B. Ercolano!-2

! Universitiits-Sternwarte Miinchen, Scheinerstr. 1, 81679 Miinchen, Germany
e-mail: tgrassi@mpe.mpg.de

2 Excellence Cluster Origin and Structure of the Universe, Boltzmannstr.2, 85748 Garching bei Miinchen, Germany

3 Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse 1, 85748 Garching bei Miinchen, Germany

4 2MNordic IT Consulting AB, Skérs led 3, 412 63 Gothenburg, Sweden

5> Department of Astronomy, University of Virginia, Charlottesville, VA 22904, USA

¢ Departamento de Astronomia, Facultad Ciencias Fisicas y Matematicas, Universidad de Concepcién, Av. Esteban Iturra s/n Barrio
Universitario, Casilla 160, Concepcién, Chile

Received 21 November 2020 / Accepted 2 September 2021

ABSTRACT

In many astrophysical applications, the cost of solving a chemical network represented by a system of ordinary differential equations
(ODEs) grows significantly with the size of the network and can often represent a significant computational bottleneck, particularly
in coupled chemo-dynamical models. Although standard numerical techniques and complex solutions tailored to thermochemistry can
somewhat reduce the cost, more recently, machine learning algorithms have begun to attack this challenge via data-driven dimensional
reduction techniques. In this work, we present a new class of methods that take advantage of machine learning techniques to reduce
complex data sets (autoencoders), the optimization of multiparameter systems (standard backpropagation), and the robustness of well-
established ODE solvers to to explicitly incorporate time dependence. This new method allows us to find a compressed and simplified
version of a large chemical network in a semiautomated fashion that can be solved with a standard ODE solver, while also enabling
interpretability of the compressed, latent network. As a proof of concept, we tested the method on an astrophysically relevant chemical
network with 29 species and 224 reactions, obtaining a reduced but representative network with only 5 species and 12 reactions, and

an increase in speed by a factor 65.

Key words. astrochemistry — methods: numerical

1. Introduction

Over the last few decades, the technological advance and pro-
liferation of astronomical observations has revealed a dramatic
richness and variety of chemical species in space, in particu-
lar in the interstellar medium (ISM), star-forming regions, and
protoplanetary disks (e.g., Henning & Semenov 2013; Walsh
et al. 2014). Especially at radio, submillimeter, and infrared
wavelengths, sensitivity and spatial resolution improvements
have resulted in the discovery of a plethora of both simple and
complex chemical species (McGuire 2018). Understanding how
these species form, how they react with other species, and what
physical conditions they trace requires (both experimental and
theoretical) accurate and comprehensive tools (Herbst & van
Dishoeck 2009; Jgrgensen et al. 2020).

From a numerical point of view, the time-dependent study of
the formation and evolution of key chemical tracers under ISM
conditions is obtained by solving a system of ordinary differen-
tial equations (ODEs) that represent the time evolution of the
species interconnected by a set of chemical reactions. Increas-
ing molecular complexity leads to a larger number of species
and reactions that must be included in the chemical network
to realistically represent a specific physical environment. This
is particularly true for the ISM and protoplanetary disks as we
learn more about these environments through observations. As
such, the size of requisite chemical networks increases quickly,

as demonstrated for example by the hundreds of species and
the thousands of reactions in the KIDA database of chemical
reactions' (Wakelam et al. 2012). Naturally, increasing network
complexity leads to increasing computational costs for solving
the associated system of ODEs, which indeed becomes pro-
hibitive when coupled to dynamical models that follow the
evolution of astrophysical environments over space and time.

As a result, in order to keep costs reasonable, existing chem-
ical models are typically far from being complete. While 1D
and 2D astrochemical simulations (e.g., Garrod 2008; Bruderer
et al. 2009; Woitke et al. 2009; Semenov et al. 2010; Sipili et al.
2010; Akimkin et al. 2013; Rab et al. 2017, to name only a few)
enable us to deeply explore the chemistry and constrain the sen-
sitivity of chemical networks to various parameters, the effects
of dynamics, magnetic fields and complex radiative transfer,
are seldom modeled, and can sometimes lead to a mislead-
ing interpretation of the results. On the other hand, (radiative)
(magneto-)hydrodynamic simulations are often limited by their
computational cost, and when chemistry and microphysics are
included, they are often done so only with simplified prescrip-
tions. Several efforts have been made in this respect (e.g., Glover
et al. 2010; Bai 2016; Ilee et al. 2017; Bovino et al. 2019; Grassi
et al. 2019; Gressel et al. 2020; Lupi & Bovino 2020), but the
chemical complexity has been intentionally limited to the species

I http://kida.astrophy.u-bordeaux. fr/

A139, page 1 of 14

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Open Access funding provided by Max Planck Society.

A&A 668, A139 (2022)

that are relevant for the given problem (e.g., coolants). Analo-
gously, Monte Carlo approaches for constraining reaction rates
from observations using Bayesian inference (e.g., Holdship et al.
2018) represent another situation where faster computation of the
chemistry would be beneficial.

Employing specific simplified prescriptions is an example
of a so-called reduction method that attempts to preserve the
impact of the relevant (thermo)chemistry on dynamical evolu-
tion while minimizing the cost. As already alluded to, practically,
this usually means removing species and reactions based on
chemical and physical considerations (e.g., Glover et al. 2010).
However, as with any reduction method, this approach is tuned
to the environment of interest, and can result in the introduc-
tion of uncertainties when the problem becomes nonlinear or
when the validity of the reduction has not been tested in a
particular region of parameter space. Grassi et al. (2012), follow-
ing Tupper (2002), presented an automatic reaction rate-based
reduction scheme, yielding a variable speed-up while also pro-
viding good agreement with results from the complete network.
Recently, Yoon & Kwak (2018) and Xu et al. (2019) employed
similar approaches for the study of molecular clouds and pro-
toplanetary disks. Meanwhile, Ruffle et al. (2002), Wiebe et al.
(2003), and Semenov et al. (2004) compared the reaction kinetic
with a method similar to the so-called objective reduction tech-
niques from combustion chemistry. Conversely, Grassi et al.
(2013) proposed a topological method to reduce the complex-
ity of a chemical network: “Hub” chemical species are selected
for a reduced network after being predicted to be more active
and/or important during the evolution of the system. Yet another
approach is to split the reaction time-scales to reduce the com-
putational complexity of the problem, for example by integrating
the slow scales only and add the fast ones as a correction term
(e.g., Valorani & Goussis 2001; Nicolini & Frezzato 2013). The
methods described above can provide non-negligible speed-ups
relative to the cost of computing the complete network, but they
can be problem-dependent, difficult to implement in practice
(e.g. to couple to a dynamical model), or interfere with other
reduction techniques and lose some of their effectiveness when
included in large-scale dynamical models.

An alternative to these methods is to employ data-driven
machine learning techniques (Grassi et al. 2011; de Mijolla
et al. 2019). The evolution of a standard chemical solver can
be replaced by a more computationally tractable operator that
is capable of advancing the solution in time. In contrast to a
physically motivated approach (that consists in removing reac-
tions and species based on the environment or problem), here
the chemical and physical assumptions are minimal and the sim-
plifications automated, but the interpretation is often much more
difficult (e.g., Chakraborty et al. 2017).

More recently, it has been demonstrated that machine learn-
ing algorithms can also be used to identify so-called governing
equations (Brunton et al. 2016; Long et al. 2017; Chen et al. 2018;
Rackauckas et al. 2019; Raissi & Karniadakis 2018; Raissi et al.
2019; Choudhary et al. 2020), solve forward and inverse differ-
ential equation problems efficiently (Rubanova et al. 2019), and
construct low-dimensional interpretable representations of phys-
ical systems (Champion et al. 2019; Wiewel et al. 2019; Yildiz
etal. 2019). Excluding Hoffmann et al. (2019), where an effective
reaction network is inferred from observations with a sparse ten-
sor regression method, these methods have never been applied to
the complicated system of coupled ODEs that is commonly used
to represent chemical evolution.

In this work, we present a new deep machine learning
method that can discover a low-dimensional chemical network

A139, page 2 of 14

via autoencoders and that effectively represents the dynamics
of a full network. The two main advantages of this approach
are that (i) it is more interpretable compared to existing data-
driven approaches and (ii) the resulting low-dimensional ODE
system can be easily integrated with standard ODE solvers
and coupled to hydrodynamic simulations where the calcula-
tion of time-dependent chemistry is desired. We also present a
proof-of-concept application of the method.

The layout of this work is as follows. In Sect. 2 we review the
application of ODEs to chemistry, other reduction techniques,
and how we apply autoencoders to discover a low-dimensional
network. In Sect.3 we apply our method to an astrophysical
chemical network and compare the results to a calculation with
a full network. We discuss the limitations and the potential
solutions in Sect. 4. Conclusions are in Sect. 5.

2. Methods
2.1. Systems of chemical ordinary differential equations

The time evolution of the species in a chemical network is com-
monly represented by a set of coupled ODEs defined by the
species and reactions in that network. The definition of each
reaction includes a rate coefficient, k, that represents the prob-
ability of the reactants to form the products. The variation in
time of the abundances of each species, n;(¢), is given by

%Eh,-=—n,~Zk,-‘,-nj+anZkﬂnl, (1)
J J l

where the first term on the right-hand side represents the reac-
tions involving the destruction of the ith species, while the
second its formation, and the sums are over N total species. In
Eq. (1), the abundances are functions of time, and k can depend
on temperature, and in some environments density, and that may
both vary with time (e.g., Baulch et al. 2005). If X represents the
abundances of the N species, Eq. (1) can be written in the more
general form as an operator f in RY — RV,

X = f(xk), @)

defined by the rate coefficients k and the input variables x(z).
In many astrophysical applications, the number of species N,
and hence the number of differential equations in the system,
ranges from a few tens to several hundreds, while the number
of reactions subsequently range from hundreds to tens of thou-
sands reactions depending on the complexity of the astrophysical
model (see Appendix A). In general, numerically solving a sys-
tem of ODEs for a large number of species and reactions requires
anon-negligible amount of computational resources, and usually
represents a numerical bottleneck for many applications, particu-
larly for those that couple chemistry to dynamics. The two main
reasons for this are (i) the substantial coupling between differ-
ent species/ordinary differential equations and (ii) the interplay
between the desired solution accuracy and different timescales
in the problem that results in small integration (time) steps (e.g.,
Bovino et al. 2013; Grassi et al. 2013). Both effects, however,
can result in a so-called stiff system of ODEs, which further
increases the challenges by requiring (generally) more expensive
ODE solvers with particular features.

2.2. Reduction techniques

The simplest approach to reducing the cost of computing chem-
istry is to exploit available computer hardware (e.g., vector-
ization on modern central processing units [CPUs], graphics

T. Grassi et al.: Reducing the complexity of chemical networks via interpretable autoencoders

processing units [GPUs], or performance analysis and tuning),
which can lead to a moderate speed-up. However, vectorization
is practically limited by how effectively mathematical operators
can be computed in parallel across array elements (e.g., Tian
et al. 2013). GPU-based methods are meanwhile limited by the
technical specifications of the hardware (Curtis et al. 2017). Cer-
tainly, these approaches reduce the cost, but they are still far
from eliminating the numerical bottleneck that is computational
chemistry.

Another approach is to make linear fits to complex reaction
rate coefficients that may depend on exponential or logarith-
mic functions. This reduces the cost of evaluating f(x;k) and
the Jacobian (df;/0x;), but does not remove the complexity of
the problem itself, and therefore only achieves a relevant, but
relatively moderate, speed-up.

Among other more generic solutions, some ODE solvers
can take advantage of the sparsity of Jacobian matrices, a dis-
tinguishing feature of the chemical ODE systems. Applying a
compression algorithm to the Jacobian can reduce the computa-
tional cost considerably (Duff et al. 1986; Hindmarsh et al. 2005;
Nejad 2005; Perini et al. 2012), but the time required to solve the
chemical network over time in several astrophysical applications
still remains non-negligible.

More commonly however, both in astrophysics and in chem-
ical engineering, the computational impact of the chemistry is
reduced by determining which reactions are relevant for a given
problem, for example via expert inspection (e.g., Glover & Clark
2012; Gong et al. 2017), or via rate efficiencies evaluation (e.g.
Grassi et al. 2012; Xu et al. 2019). However, these methods may
fail to reproduce the detailed evolution of less abundant species,
or may become ineffective when the network cannot be sub-
stantially reduced (e.g., because the reactions contribute to the
stiffness of the system).

In more recent years, machine learning and Bayesian meth-
ods are beginning to be exploited, in particular because of the
emergence of a number of tools that allow these techniques
to be implemented with relative ease (e.g., Grassi et al. 2011;
de Mijolla et al. 2019; Heyl et al. 2020). In particular, (deep)
neural networks have been employed to predict the evolution
in time of the chemical abundances and temperature (recently
termed “emulators”), and replace the ODE solver within the
parameter space described by the supplied training data. This
approach is certainly one of the most promising to negate the
computational cost of solving chemistry, but it has so far been
limited by complicated (and not necessary successful) neural
network training sessions, error propagation, and a lack of inter-
pretability. Interpretability, namely to have a certain degree of
machine learning model’s transparency (Lipton 2016; Miller
2017), can become relevant when the input conditions of the neu-
ral network lie outside the training, test, and/or validation sets, or
if the training is affected by unnoticed under- or over-fitting to the
data. This limit to interpretability resides in the intrinsic design
of deep neural networks (DNNs), that is formed by thousands
of parameters that define the interaction of nonlinear functions.
For comparison, analogous machine learning techniques, such as
principal component analysis, have some degree of interpretabil-
ity (Shlens 2014), while DNNs applied to chemistry apparently
do not (Chakraborty et al. 2017). Despite these drawbacks, given
the constant improvement of machine learning techniques and
hardware, deep machine learning techniques are one of the most
promising reduction methods for chemistry proposed in the last
several years.

The technique presented in this paper is somewhat in
between the methods described above. We want to take

q) A
5 x(©) ODE - x=f(x; k)
@
-l
<
J
n
x
o —P
time
encoding @ decoding
204 zeR"
(A
@)O
ODE - z=g(z; p)
—
time

Fig. 1. Graphical representation of the proposed method. The evolution
of the chemical species %(¢) in the physical space is usually obtained
by integrating f(X; k) in time (upper panel). This can be reconstructed
by evolving a different set of variables in the latent space Z(f) by using
the g(Z; p) (lower panel). The transformation between the two spaces
is obtained with an encoder (¢) and a decoder (). The physical space
has N chemical species/dimensions (N = 6 in this schematic), while the
latent space has M < N variables/dimensions (M = 2 in this schematic).
Lines schematically show how the abundances in the physical and latent
spaces might evolve with time. Sketches of the chemical networks in
the physical space and the latent space are shown on the right side. The
latent network (A=B) has fewer species and reactions, but captures the
dynamics of the full chemical network faithfully.

advantage of the capability of DNNs to find simplified repre-
sentations of complex chemical networks, but coupled with the
time-dependent accuracy provided by ODE solvers, while also
including the interpretability of the resulting network.

To accomplish this, we reduced the dimensionality of the
physical space with an encoder (¢) in order to create the so-called
latent space (see Fig. 1). In the latent space, the N abundances of
species, X, are represented by another set of M (<N) abundances:
Z. We thus postulated that these variables belong to another
chemical network defined in the latent space. Analogously to
the chemical network in the physical space, that is represented
by the system of ODEs f(X; k) in Eq. (1), the chemical network
in the latent space still evolves following a set of differential
equations (albeit a different set), g(Z; p), where the parameters
p play the same role as the rate coefficients k do in the physi-
cal space. Using g, it is possible to evolve zZ(f) forward in time
in the latent space. Next, a decoder (¢) transforms the variables,
Z(1), back to the physical abundances, X(¢). Our method aims at
finding the encoder ¢, decoder ¥, and the operator g, which then
allows us to obtain %(#) from the evolving Z(¢), which has a sig-
nificantly smaller number of dimensions and hence is much less
computationally expensive to integrate.

2.3. Autoencoders

Autoencoders are a widely used machine learning techniques in
many disciplines that incorporate symmetric pairs of deep neu-
ral networks, and have applications in denoising images (e.g.,
Gondara 2016), generating original data with variational autoen-
coders (e.g., Kingma & Welling 2013), detecting anomalies in

A139, page 3 of 14

A&A 668, A139 (2022)

images and time-series (e.g., Zhou & Paffenroth 2017), and,
more relevant to this work, to reduce the dimensionality of data
(e.g., Kramer 1991). Autoencoders are a nonlinear generalization
of principal component analysis (Jolliffe 2002) with trainable
parameters, which makes them suitable for all kinds of dimen-
sional reduction tasks, including reducing the complexity of
chemical networks.

Given a set of N-dimensional data, ¥ € R", an autoencoder
consists of two operators, namely an encoder (¢ as RY — RM)
and a decoder (¢ as RY — RY), which are optimized to have
X =~ X = yY(e(X)), in other words, the autoencoder should be
capable of reproducing the input data within a given accuracy.
The first operator produces the encoded data 7 = ¢(X), where
z € RM with M < N (upper part of Fig.2). The second opera-
tor then reconstructs/decodes 7 to retrieve ¥’ = (Z). The space
where X resides is called the physical space, while Z belongs to
the latent space. The latent space has a lower dimensionality rel-
ative to the physical space. The reconstruction error in X’ is the
£2-norm between the original and the reconstructed data

Lo = |lx - #II3, A3)

where Ly = O represents perfect reconstruction. If X has been
reconstructed properly (X = x’), the amount of information is
conserved through the autoencoder, and hence the information
contained in 7 is sufficient to represent X, but with the advantage
of a lower dimensionality. In Fig.2 (upper part), we schemati-
cally show the autoencoder as a set of layers of a deep neural
network. The first layer on the left is the input layer with N nodes
(also called neurons), which is connected to a second hidden
layer, kg, by weights Wg and biases b(? (not shown) via hy =

F.(W x % + b), where F, is a so-called activation function. We
add hidden layers, each with fewer nodes than the previous layer,
until the layer marked with Z is reached. This layer has M nodes
and is the representation of X in the latent space. The decoder
works in an analogous way, connecting Z to X’ via several hid-
den layers with weights and biases between the layers, with each
layer having a larger number of nodes until reaching the last,
output layer that consists of N nodes (that is the same number of
nodes as the input layer). The aim of the neural network train-
ing is then to find the optimal values for the weights Wl‘; and the
biases b‘; that minimize the loss Ly by using a gradient descent
technique and an optimizer method that computes the adaptive
learning rates for each parameter (Rumelhart et al. 1988; Lecun
et al. 1998).

In a chemical network, X represents the abundances of the
N chemical species that compose the network. In a successfully
trained autoencoder, Z = ¢(X¥) represents the N chemical abun-
dances X in the latent space with M < N variables. In other
words, the latent space contains the same information as the
physical space, but in a compressed format with fewer vari-
ables. However, with only a pure autoencoder, some important
information (in particular, the time derivatives of the abun-
dances) cannot easily be inferred, and the latent space has no
obvious chemical or physical interpretation. For this reason, we
need to extend the deep neural network autoencoder with an
additional branch.

2.4. Differential equation identification in latent space via
autoencoders

To enable the interpretability of the encoded data we need to
have access not only to Z, but also to the time derivative 7. We fol-
low an approach similar to Champion et al. (2019), who couples

A139, page 4 of 14

DECODER w(Z)

¥ latent

H =0 a
I > dEx

9(2)3,y(2)

ODE
pi . .
}Iz X'
g2

Fig. 2. Schematic of the autoencoder and latent ODE system. The upper
part of the sketch represents the autoencoder, with both encoder and
decoder deep neural networks. Each rectangle represents a layer of the
deep neural network, linked together by weights W and biases b (omit-
ted for the sake of clarity). The input to the encoder is X, with N nodes
(dimensions), connected to a sequence of hidden layers 4; with decreas-
ing dimensionality/number of nodes, until reaching the layer Z with
M nodes (dimensions), where the maximum compression is obtained.
The decoder is symmetric w.r.t. the encoder, with layers of increasing
dimensionality, ending with an output layer of N nodes (dimensions).
We note that, in our case, we have six hidden layers instead of the
4 shown in this sketch. In the lower part of the sketch, we show the
latent ODE system that uses Z as inputs and produces 7 as output, both
with M dimensions. This additional neural network is controlled by the
parameters p (one for each latent reaction), and has an analytical repre-
sentation ¢g(Z; p). The obtained latent space derivatives are decoded to
the target derivatives x with the same procedure as of Eq. (5).

autoencoders with a “sparse identification of nonlinear dynam-
ics” algorithm (SINDY; Brunton et al. 2016). SINDY consists
of a library of (non-)linear functions (e.g., constant, polynomial,
and trigonometric) whose activation is controlled by a set of
parameters that determine the importance of each term (in other
words, of the weights), and is intended to represent the right-
hand side of a generic nonlinear system of ODEs. Rather than
using the SINDY algorithm directly, we instead use the time
derivatives as additional constraints and employ a set of func-
tions that mimic the right-hand side of a chemical ODE system
during the training phase.

The time derivative’ of the latent variables, 9,z = 9,¢(%),
after a change of variables, can be written as X d,p(X). Since
we are seeking a “compressed” chemical network in the latent
space, we also define Z = ¢(Z; p) as analogous to Eq. (2), where p
are the unknown latent rate coefficients. This allows us to define
an additional £>-norm loss,

Ly = lg(z; p) = X 3xp(D)l5,)
that we can minimize on during training.

Analogously, X can be written as Zd,¥/(Z), and we can define
the corresponding loss term

Ly = ||% - g(z p) 045, ®)

2 We define 8, = 4/6t, 8, = 8/0x, and 8, = §/0z.

T. Grassi et al.: Reducing the complexity of chemical networks via interpretable autoencoders

where % is known from the chemical evolution in the physical
space. Ly and L, are the losses that control the reconstruction of
X and Z, by constraining ¢, ¥, and g at the same time.

To enable the calculation and use of L; and L, in our setup,
we include an additional branch in our neural network framework
(see lower part of Fig. 2) that consists of an input layer taking Z,
produces output Z = ¢(Z; p), and includes trainable parameters
p. Defining an analytical form for g(Z; p) requires some knowl-
edge of the evolution of Z in the latent space. Champion et al.
(2019) employ a set of polynomials and arbitrary complicated
functions through the SINDY method that are controlled (turned
on or off) by the weights E, an additional £ _norm loss term ||Z]|;,
and a “selective thresholding” approach to minimize the number
of functions (a concept referred to as “parsimonious models”;
Tibshirani 1996; Champion et al. 2020).

In our case, we chose a form for g(Z; p) that represents a
chemical network analogous to Eq. (2), but in the latent space,
and has the advantage of being interpretable because it is sim-
ilar to the physical space representation. Furthermore, a natural
constraint to place on g(Z; p) to ensure its connection to the phys-
ical representation is the mass conservation in the latent space,
>.im;z; =constant, where m; is the mass of the latent species
z; (see Appendix B). Rather than defining a specific total mass,
we constraint the system only to have constant mass, namely
0, Y ;m;izi = Y,;m; 0,z; = 0. This criteria can also be described
by a loss function:

M-1
Ly = mi[i.p(®)]] + : (©)

i=0

M-
Z m; g(Z; p)i
i=0

where the two terms are the mass conservation criteria according
to the encoder and the latent ODE system, respectively.

The remaining task is to design g(Z; p) to represent a chemi-
cal network. In principle, one could take a brute-force method
and include all possible combinations of chemical reactions
among the different species. This approach might work for a
few latent dimensions, but if we want to include all the con-
nections, when the number of latent variables becomes large,
the latent chemical network might become larger than the net-
work in the physical space. In this work, we intentionally limit
ourselves to a small number of latent dimensions (M = 5; see
2.5), which allows us to construct a small latent chemical net-
work even when including all the possible reactant combinations
and requiring mass conservation. We report our latent chemical
network in Appendix B. We do not currently include any other
constraints (as e.g., parsimonious representations), but we are
working to improve the design of g(Z; p) in a forthcoming work
(see also Sect. 4).

Finally, we define the total loss

L= LO + /llLl + /lsz + /l3L3, (7)

where A;, Ap, and A3 are adjustable weights to scale each loss
in order to have comparable magnitudes when summed together
(discussed more in detail in Sect. 4). The loss is minimized using
X and X from a set of chemical models evolved in time with a
standard ODE chemical solver as training data. They represent
the ground truth. The aim of the training is to find the parameters
of the encoder ¢, the decoder ¢, and the latent ODE system g in
order to obtain |L| < &, where ¢ is a threshold determined by the
absolute tolerance required by the specific astrophysical prob-
lem. However, according to our tests, this condition alone does
not always guarantee a satisfactory reconstruction of x(#) from
the evolved Zz(¢), and, in practice, for the purposes of this first

PHYSICAL RN
_ f(x; k) _
H A

Fig. 3. Schematic of the relation between the operators f, g, ¢, and
¥ employed in the current setup. The ODE system f(¥; k), R¥Y — R¥,
allows the integration of X(r) € R" in time, and is analogous to g(Z; p),
RM — RM that is employed to integrate 7(f) € RM. To transform X to
Z (and vice versa) we use an encoder ¢, RY — RY and a decoder ¢,
RM — RN, To evolve both % and Z we employ a standard implicit ODE
solver, hence the time-step Az can be arbitrarily long.

study, we halt the training when the trajectories of the species in
the test set are reasonably reproduced by visual inspection (see
also Sect. 4).

To recap (cf. Fig. 3), the time evolution of %(f) € RV that is
normally obtained with an ODE solver by integrating f(X; k), can
be found by instead evolving Z(f) € RM using an ODE solver but
a simpler system of ODEs, g(Z; p), in a latent space. The encoder
¢ (RN — RM) and the decoder ¥ (RY — RY) transform (¢) into
Z(t), and vice versa. The advantage of this method is the explicit
inclusion of time dependence and an ODE solver that integrates
a system of equations that is simpler than the original (M <« N),
resulting in a method that is not only faster, but also retains some
physical interpretability.

2.5. Implementation

Designing a neural network requires determining the nominal
number of layers, the interaction among the nodes, choosing
an appropriate loss function, and many other aspects. The opti-
mal choice for these hyperparameters can only be determined
by training the neural networks on the data many times. The
training process optimizes the weights and biases of the network
along with any other trainable parameters, for example, param-
eters p in g in our case. Below, we describe the steps of our
implementation, including those that consist of design choices,
hyperparameters and trainable parameters (caveats are discussed
in Sect.4): (i) Prepare the training set; calculate the temporal
evolution of %(¢) and X(f) and vary the initial conditions to cover
the physical parameter space relevant for the current problem.
(i1) Define M, the number of dimensions in the latent space. (iii)
Design the latent chemical network giving the analytical form of
9(Z; p), see Sect.2.4. The analytical form of g needs to be pro-
vided, but the parameters p are optimized as part of the training.
(iv) Determine the importance of each loss weight A in Eq. (7),
normalizing each loss to contribute to the total loss. (v) Train the
deep neural network in Fig.2 based on minization of the total
loss L given by Eq. (7).

A139, page 5 of 14

A&A 668, A139 (2022)

After a successful training, it is possible to compress the ini-
tial conditions X(r = 0) defined in the physical space into the
latent space variables z(z = 0), via the encoder ¢. Therein, z(?) is
advanced in time by using a standard ODE solver with g(Z; p),
where the constants p have been obtained during the training.
The evolved abundances in the physical space %(¢) are then recov-
ered by applying the decoder ¢ to Z(¢); cf. Fig. 3. In other words,
one should now be able to infer the temporal evolution of X(¢)
without solving the full, relatively expensive system of ODE:s.

3. Results

For our training data, we wuse the chemical network
osu_09_2008%, which includes 29 distinct species (H, H,
H,, H, H], O, O*, OH*, OH, O,, O3, H,0, H,0*, H30", C,
C*, CH, CH*, CH,, CHj, CHs3, CH3, CHy4, CHy, CHZ, CO,
CO™", HCO™*, He, He", plus electrons; Rollig et al. 2007) and
224 reactions. We use a constant temperature 7 = 50K, total
density ¢ = 10* cm™3, cosmic ray ionization rate / = 10716571,
and randomized initial conditions for C, C*, O, and electrons.
We assume the initial state is almost entirely molecular, so that
nH, = Ny, While nc and nc+ are randomly initialized in loga-
rithmic space between 10~%n to 10™3ny, no = nc + nc+, and
electrons are initialized on the basis of total charge neutrality.
The other species are initialized to 10~291,0¢. We note that even if
these initial conditions do not represent a specific astrophysical
system (e.g., the metallicity is not, in general, constant between
models), this will not affect our findings. Furthermore, because
the chemical data generation and the training stage are based
on randomized initial conditions, results could slightly differ
between trainings.

We integrate the ODEs with the backward differentiation
formula [BDF] method of SOLVE_IVP in SCIPY (Shampine &
Reichelt 1997; Virtanen et al. 2020), which provides a good com-
promise between computational efficiency and ease of imple-
mentation. The system of ODEs was modified (see Appendix C)
to solve the chemical abundances in logarithmic space, as x(¢) =
log,, 7i(t), and then normalized in the range [—1, 1]. The time
evolution of ¥(¢) is also computed logarithmically at 100 pre-
determined grid points over an interval of 108 yr for a given
randomized set of initial conditions, and then normalized in the
range [0, 1]. A representative example of one result set is shown
in Fig. 4. The conversion to log-space is necessary to account for
the orders of magnitudes differences spanned by the chemical
abundances, while the normalization of X is because the acti-
vation function of the output layer is tanh, hence limited in the
range [—1,1]. Time is meanwhile normalized to [0, 1] for the
sake of clarity.

The autoencoder consists of an encoder with dense lay-
ers of size 32, 16, and 8 nodes with ReLU activation (Agarap
2018), a latent space layer of 5 nodes (Z) and tan h activation,
and a decoder symmetric to the encoder, but with tan A acti-
vation on the last output layer (see Appendix D). The number
of hidden layers and nodes employed was obtained by test-
ing several configurations that, after approximately 10 training
epochs, demonstrate a good reconstruction of X(¢), as retrieved
by decoding z(¢) including the integration of ¢g(Z; p) with the
ODE solver.

3 The author of the Ohio State University (OSU) chemical network is
E. Herbst. The original file is no longer reachable as of March 2021;
however, the code and the data employed in this paper can be found at
https://bitbucket.org/tgrassi/latent_ode_paper/, commit
83300al.

A139, page 6 of 14

1.0]
0.5
£ o0.0]
_0.5-—(: CH3 - CO H0 ot >
_10§§§ ‘—éi EE EZC% E:
00 02 04 06 08 1.0
t

Fig. 4. Example of chemical evolution in the physical space obtained
by integrating f(x; k) in time. Each line represents the evolution of each
chemical abundance x(¢) in time. We note that x = log,,(n/cm~?) and
normalized in the range [—-1, 1], while time 7 = log,,(time/yr) and nor-
malized in the range [0, 1]. The temporal grid consists of 100 uniformly
spaced points (in logarithmic time).

With respect to g(Z; p), the latent ODE system, this branch of
the network consists of a custom layer with M = 5 input nodes
(?) and 5 output nodes (7), 12 trainable parameters p (one for
each latent chemical reaction), and linear activation. The number
of latent variables has been obtained by testing several configu-
rations. In particular, we note that the autoencoder (loss term
Ly alone) is capable of compressing the system with only two
latent variables, but when we include the additional branch (that
is adding loss L; and L) we need at least 3 variables. If we want
to add a latent chemical network that includes mass conservation
(by including L3), the minimum number of variables is 5. This is
also the setup that is better at reproducing x(¢) via decoding the
evolving Z(¢), (see Appendix B).

We employ KERAS (Chollet et al. 2015) and TENSORFLOW
(Abadi et al. 2015) to build our deep neural network*. We use
550 chemical models with random initial conditions, assign-
ing 500 to the training set, and 50 to the test set. We note
that by using this procedure, the independence of the test set
from the training set is not guaranteed, and that the resulting
latent differential equations will not work for any possible set
of initial conditions (in other words, the latent differential equa-
tions produced by the training procedure cannot be considered
to be “universal”). That said, the final goal of such a methodol-
ogy is to obtain a reduced function g capable of representing
the original ODE system f when applied to any ¥. However,
this is not the case for the results discussed in this work (see
also Sect. 4).

The loss weights are 1; = A3 = 107 and A, = 1072. We
train the network using batch-size 32 and the ADAM opti-
mizer (Kingma & Ba 2014) with the KERAS default arguments,
notwithstanding the learning rate, which we set to 107*. The
resulting loss as a function of training epoch for a representative
training run is shown in Fig. 5. The implementation of our loss
function, Eq.(7), is described in Appendix E. Since the train-
ing stage is quite sensitive to the initial conditions and the loss
weights, we stop the iterations via visual inspection, that is when

4 TENSORFLOW 2.3.1 with CUDA 10.1, on a NVIDIA Tesla V100S;
compute capability 7.0. The training wall-clock time is approximately
2.5h.

T. Grassi et al.: Reducing the complexity of chemical networks via interpretable autoencoders

0
10 — . — 5
Lo — L3
—_— L
10—1 J
w0
31072
1073
10744+~ . :
100 10! 102
Epochs

Fig. 5. Loss as a function of the training epochs. The total loss L (blue)
is the sum of the autoencoder reconstruction loss Ly (orange), the loss L,
on the reconstruction of 7 (green), the analogous L, for X (red), and the
mass conservation loss Lj (purple). The different loss terms are defined
in Sect. 2.4.

the reconstruction of X(¢) is satisfactory. We plan, however, to
improve this in the future with an automatic stopping criterion.
The total loss (L, blue), is initially dominated by the autoencoder
reconstruction of % (Lo, orange line in Fig. 5), and then by the Z
reconstruction (L, green). The X reconstruction (L, red) and
the mass conservation loss (L3 purple) are always sub-dominant,
but still contribute measurably to the total loss. We note that,
although L,, and the other loss terms, not exhibit any strange
behavior (continue declining), generally above 10?> epochs the
reconstruction of 7 begins to diverge or oscillate around the cor-
rect solution, and for this reason we interrupt the training at this
point. This is probably related to the specific analytic expression
use for g (see the discussion in Sect. 4).

The time evolution of 7 in the latent space for one randomly
selected model of the test set is shown in Fig. 6. The latent vari-
ables “abundances” are obtained from the encoded data ¢(x(¢))
(dashed lines), while the evolution of the latent chemical net-
work, starting from 7(t = 0) = ¢(X(t = 0)), is obtained using a
standard ODE solver (SOLVE_IVP) to integrate g in time (solid
lines). This comparison reveals that it is indeed possible to evolve
the chemistry in a latent compressed space and obtain results
that are very close to those obtained in the physical space. When
dashed and solid lines overlap we have a perfect reconstruc-
tion. However, the difference we find in the reconstruction of
Z(¢) depends again on the analytical form of g that directly deter-
mines the evolution in time of the latent variables (solid lines).
In the physical space, the evolution in time of the 29 species X(¢)
is accomplished using an ODE solver that integrates f(X; k) built
from 224 reactions, while in the latent space, we evolve in time
the 5 species zZ(f) using the same ODE solver to integrate g(Z; p)
determined by 12 reactions only (cf. Fig. 1).

This method should be capable of not only retrieving the
temporal evolution of ¢(X(#)), but also of the chemical species
Xx(1). In Fig.7, we compare for 6 selected species (out of 29)
the evolution in time of the original data X(#) (dotted lines), the
reconstructed x(r)" = y(¢(%(7))) values (dashed), and the corre-
sponding decoded evolution in the latent space ¥(Z(t)) (solid),
where Z(#) is evolved with the ODE solver integrating g. The
direct autoencoder reconstruction of the original data y¥(¢(X)),
that is without integrating the differential equations in the latent

0.2
0.11
__ 0.0
kol
N
—-0.11
—_—Zy = 24
z1 === 0(x)
—0.21 | — 7> —-—- Z;m;p(X;)
— 73 — Imz

0.0 0.2 0.4 0.6 0.8 1.0

t
Fig. 6. Evolution in time of Z obtained by directly encoding the original
data, ¢(X), (dashed lines), and the corresponding evolution obtained by
integrating the ODE system ¢ in the latent space starting from z(t = 0),
(solid lines). The different colors represent the 5 latent space variables

(the latent “abundances”). The black lines represent the total “mass” in
the two cases.

0.751

0.501
0.251
0.00

x(t)

—0.254
—0.501
—0.754

—1.00+

0.0 0.2 0.4 1.0
Fig. 7. Evolution in time of ¥ for some selected species obtained by
integrating the ODE in the physical space f(x;k), (dotted lines, ground
truth), by directly autoencoding the original data, ¥(¢(%)), (dashed
lines), and by decoding the evolution of Z derived by integrating the
ODE system g in the latent space (solid lines). This corresponds to
W(Z(r)), where Z(¢) is represented by the solid lines in Fig. 6). In this
plot we report 6 species out of the 29 total.

space, is more accurate (as can be inferred from comparing Ly
and L; in Fig.5), but this is because it is obtained directly from
X(1), the product of the integration in physical space. Conversely,
the latent space method ¥(Z) achieves nearly the same results
(solid lines), but by evolving only the set of 5 variables 7 instead
of the original X(¢) with 29 species. Where there are noticeable
differences, we find that the largest discrepancies in Fig. 7 reflect
the differences between the solid (zZ(z)) and the dashed (p(x(z)))
lines in Fig. 6.

When our results are “denormalized” back to the original
physical space of the chemical abundances (in physical units,
cm™3), the maximum relative error obtained in the test set is
within an order of magnitude depending on the chemical species,

A139, page 7 of 14

A&A 668, A139 (2022)

but we also note that the poor feature reconstruction around
t = 0.6 in Fig. 7, play a crucial role in increasing this error. To
determine the error statistics we fit the logarithms of the relative
errors Ar;j = An;j nl‘} with a probability density function D,
where An; ; is the difference in “denormalized” physical units
(cm™) between the actual and the predicted value of the ith
species abundance in the jth observation (that is the time steps
at which n; is evaluated during the test stage). Such distributions
resemble a Gaussian and we therefore determine their means and
standard deviations by fitting a single Gaussian profile to the dis-
tribution of the logarithm of the relative errors for each species.
If we exclude H, for which we have almost perfect reconstruc-
tion, the means of the logarithms of the relative errors, (log(Ar)),
vary between approximately —2.96 and 0.044, while the stan-
dard deviations, o[log(Ar)], vary between approximately 0.31
and 0.8 (detailed information is reported in Appendix F). There-
fore, despite the promising results (in fact the main features of
the curves are well reproduced), the size of the error makes
our method currently ineffective in replacing a standard chem-
ical solver. Moreover, the error in the reconstructed abundances
relative to the test set strongly depends on the initialization of
the weights of the autoencoder, as well as on the loss weights
employed, which suggest that the convergence of the final param-
eters (W;; and p) that minimize the total loss, could be improved
by a better designed g.

The average time> to integrate f during the preparation of
the training set is ~6.5 s wall-clock time using the BDF solver in
SOLVE_IVP, while to integrate the trained, reduced ODE system
g we need only ~0.1 s (but also using the BDF solver). In both
cases the Jacobian is calculated with a finite-difference approx-
imation. We plan to perform additional benchmark comparisons
in a future work employing larger and more complicated chemi-
cal networks, and using a more efficient solver as, e.g., DLSODES
(Hindmarsh et al. 2005).

Our results show that it is possible to obtain a consider-
ably compressed chemical network that can be integrated with
a standard ODE solver, hence reducing the computational time.
However, this is not the only advantage, as the compressed
solution is interpretable as a chemical network, a result that
is impossible to achieve by only analyzing the weights of the
hidden layers of a standard deep neural network. Hence, the evo-
lution is more controllable and expressible in chemical terms,
and could potentially expose some relevant information about the
original chemical network, as well as allow analytical integration
in time in some special cases.

4. Limitations and outlook

This paper presents a novel method to solving time-dependent
chemistry, but this particular study should be considered as
a proof-of-concept and has some limitations that we discuss
below. We plan to address these shortcomings in the near future
before deploying the method to more realistic and more challeng-
ing scientific applications, e.g., the coupled calculation of the
(thermo)chemical evolution of a large (magneto)hydrodynamic
simulation.

First, as with many data-driven or machine-learning based
methods, the training set should be considerably large to enable
the method to sample the complete spectrum of possible inputs
and outputs. However, it is important to remark that, in contrast
to other deep learning methods, our approach has the advantage

5 Tests performed on a single core of an Intel® Core™ i7-10750H at
2.60 GHz.

A139, page 8 of 14

that the chemical network in the latent space is transparent and
interpretable. Nonetheless, the number of data points required
to train our neural network is 2N X Na¢ X Nmodels, Where N is
the number of chemical species, Ny, the number of time steps
during the evolution when the chemical data is recorded, and
Nmodels the number of models with different initial conditions;
the factor of 2 indicates that both ¥ and x (the time derivatives)
are needed for the training set. While the order of magnitude of
N and Nigeps is likely to vary less, Nmodels might vary consider-
ably depending on the problem in order to cover the parameter
space (de Mijolla et al. 2019). The size of the training data set
also places limitations on how large a parameter space can be
explored. Although the results presented in Sect. 3 have a small
memory footprint (<1 GB), and hence can be obtained with an
average consumer-level GPU card, some setups, which will be
the subject of a forthcoming work, required up to 30 GB of mem-
ory, handled in our case by a NVIDIA TESLA V100S GPU with
32 GB of memory.

Another challenge is the definition of an analytical expres-
sion for g. This is a critical aspect, since this is where the inter-
pretability of the method arises. In our application, we consider
the simplest case of only two latent “atoms” (see Appendix B).
The resultant latent space consists of only 5 variables (or latent
abundances), and for these reasons the maximum number of
possible latent reactions is limited to 12. However, larger chem-
ical networks in the physical space might only be compressible
with >5 latent variables, and consequently the increased num-
ber of possible variable combinations might produce a relatively
large latent chemical network, reducing or nullifying the advan-
tage of the low-dimensionality latent chemical space. That said,
how the minimum number of required latent variables changes
with the size and complexity of a chemical network is cur-
rently unknown. As previously discussed, to cope with this
problem, a promising method is to employ the concept of par-
simonious representation (Champion et al. 2019, 2020). In this
approach, an additional loss term is added to reduce the number
of nonzero coefficients p in g(Z; p) to the minimum required set.
As before, it is worth mentioning that, at the moment, the design
and understanding of chemical networks in the latent space is
uncharted territory.

Furthermore, to achieve an accurate reconstruction of the
time evolution of X, the latent ODE g should be capable of repro-
ducing the high-frequency behavior of the encoded data, ¢(X;).
In Fig. 8 we report the comparison of the time derivatives of
the five components of the latent space (Z) computed via the
trained function g(Z; p) (dashed) and via the gradient in time of
the encoded x (solid). With a perfect reconstruction the two rep-
resentations of z should overlap, but in our case the derivative
computed from g resembles a time average of the derivative of
the encoded X, suggesting that with our current implementation
the fine, high-frequency behavior in the latent space is poorly
reconstructed.

In terms of technical issues, the success of the training
depends on the user-defined loss weights A; in Eq. (7). If, for
example, Ly dominates over the other losses (see Fig.5), the
autoencoder perfectly reproduces X as ¥(¢(x)), but fails in repro-
ducing ¥ from ¥(Z) when Z is evolved using g. Conversely, if L,
or L, dominates the total loss, the autoencoder fails completely
to reproduce the original data, and no useful solution can be
found. Additionally, the absolute value of the loss is defined with
respect to an error, so that |L| < . For example in Ly, Eq. (3),
the loss is calculated as the sum of the difference between the
absolute values of the original and reconstructed abundances,
squared. However, since the abundances have been normalized

T. Grassi et al.: Reducing the complexity of chemical networks via interpretable autoencoders

0.8

S — 9(X)o === g(2)o

P(%)1 g(2n

0.61 — p(R), ——- 92

— ()3 —=- 9(2)s

0.41 — @Ry T 92

s

‘N 0.2
0.0
—-0.21

0.0 0.2 0.4 0.6 0.8 1.0

Fig. 8. Time derivatives of the encoded data, ¢(%), (solid lines), com-
pared to the latent ODEs, ¢(Z), (dashed), both as a function of time. The
different colors denote the different components of the latent space.

(Sect. 3), the contribution of each chemical species to L is the
same, which may not be appropriate given the often orders of
magnitude difference between abundances of different species.
Depending on the aims of the specific astrophysical problem, this
particular loss term can be replaced by a weighted loss, where
the user defines which species play a key role in Ly. Another
approach that may prove beneficial in some contexts is to use the
difference between the relative abundances of the species, rather
than the absolute one. Analogous considerations apply to Ly, L,
and L;.

Concerning the present study, the adopted chemical network
and the resulting data have a limited amount of variability. Not in
terms of the evolution of the chemical abundances (see Fig. 4),
but rather in terms of the limited initial conditions. In fact, a
constant temperature and cosmic-ray ionization rate translates
into time-independent reaction rate coefficients &, and thus the
same holds true for the corresponding coefficients p in the latent
space. The evolution of the temperature is a key aspect in many
astrophysical models, and hence it should be included as an addi-
tional variable and evolved alongside the chemical abundances.
Indeed, since our current model produces an interpretable repre-
sentation in the latent space, adding the temperature might lead
to a system of latent ODEs ¢ that gives additional insights on the
interplay between chemistry and thermal processes. This will be
addressed in future work.

A key aspect and the final goal of our method is to obtain
a “universal” set of differential equations in the latent space (g)
that, within a given approximation error, effectively replaces the
analogous function in the physical space (f). If such a system
exists, in principle any trajectory x(¢) produced by applying f(X)
has its own corresponding trajectory Z(¢) that can be advanced
in time by applying g(Z). If this achievement is obtained, any
arbitrarily uncorrelated test set of models can be reproduced by
our trained framework, as far as this test set is produced by using
f. Within this context, in this paper we are not obtaining such a
result because (i) the functions g is not the latent representation
of f, and/or (ii) the autoencoder is not a sufficiently accurate
compressed representation of the physical space.

In (magneto)hydrodynamic simulations, the (thermo)
chemical evolution is often included using an operator splitting
technique, that is to alternate between (thermo)chemical evo-
lution and dynamics (but with a communally determined time

step). In the current implementation of our method, this implies
that x(r) needs to be encoded to Z(¢), evolved with g in the
latent space to z(t + At), and decoded again to X(¢ + Ar) during
each dynamical time step. This could result in a significant cost
overhead if the computational time saved by solving g instead of
f is smaller than the time spent applying ¢ and . In the present
test, the time spent for one encode and decode is negligible
(<0.008 s) when compared to integrating f directly (~6.5 s).
However, avoiding the need to encode and decode each time
step when coupling this method to a dynamical simulation will
be addressed in a future work.

In simulations that solve (thermo)chemistry and dynamics
together via operator splitting, care must be taken to minimize
the propagation of errors in the chemical abundances over time
due to the advection of species. This can be dealt with using
so-called “consistent multi-fluid advection” schemes (Plewa &
Miiller 1999; Glover et al. 2010; Grassi et al. 2017) that ensure
conservation of, e.g., the metallicity. Analogously, it might
be possible within the current method to include additional
losses designed to conserve elemental abundances (in our case,
H, C, and O).

The method presented in this study shows promising results,
and represents a novel approach to the problem of reducing the
computational impact of modeling (thermo)chemical evolution,
particularly in the context of large-scale dynamical simulations.
However, several limitations present in the current implementa-
tion suggest that further exploration and a deeper analysis of the
methodology are required. It is clear however that machine learn-
ing is a rapidly and continually growing field, and that faster and
more capable hardware becomes available at regular intervals.
As such, we are confident that the class of methods to which
this study belongs will prove capable at efficiently reducing
the computational impact of not only time-dependent chemi-
cal evolution, but for other systems of astrophysically-relevant
differential equations.

5. Conclusions

In this work, we describe the theoretical foundations and a
first application of a novel data-driven method aimed at using
autoencoders to reduce the complexity of multidimensional
and time-dependent chemistry, and to reproduce the temporal
evolution of the chemistry when coupled to a learned, latent
system of ODEs.

In summary, we find that:

— This approach can reduce the number of chemical species
(or dimensions) by encoding the physical space into a low-
dimensional latent space.

— This compression not only manages to preserve the infor-
mation stored in the original data, it also ensures that the
evolution of the compressed variables is representable by
another set of ordinary differential equations corresponding
to a latent “chemical network™ with a considerably smaller
number of reactions, and that the time-dependent chemical
abundances can subsequently be accurately reconstructed.

— In the proof-of-concept application presented in this work,
we are capable of reducing a chemical network with
224 reactions and 29 species into a compressed network with
12 reactions and 5 species that can be evolved forward in
time with a standard ODE solver.

— Integrating a considerably smaller chemical network in time
permits a considerable computational speed-up relative to

A139, page 9 of 14

A&A 668, A139 (2022)

integrating the original network. In our preliminary tests we
obtained an acceleration of a factor 65.

— The interpretability of the latent variables and ODEs pro-
vides an advantage compared to opaque standard machine
learning methods of dimensionality reduction. Moreover,
interpretability could allow us to better understand the intrin-
sic chemical properties of a network in the physical-space
through identification of specific characteristics or behaviors
in the latent space that might otherwise be hidden.

We also note that the current implementation includes a set of
limitations that needs to be solved in the future:

— Similar to most of the data-driven machine learning meth-
ods, the training data set needs to be considerably large to
completely explore the full spectrum of variability. Addi-
tionally, to achieve a successful training, the different loss
terms need to be tuned by hand in order to obtain a quick
and effective convergence.

— The topology of the compressed chemical network needs to
be outlined by the user (meaning that g currently needs to be
defined analytically), which is not always trivial. However,
various techniques have been proposed and will be explored
in a future work to simplify this task.

— This method has been tested in a rather controlled environ-
ment (e.g., constant temperature, density, and cosmic-ray
ionization rate) with a limited amount of variability in the
initial conditions, and will need to be generalized in the
future.

In conclusion, despite the limitations and some technical issues
that we will address in future works, the method presented here
is a promising new approach to solving the problem of compli-
cated chemical evolution and its often high computational cost.
The code is publicly available at https://bitbucket.org/
tgrassi/latent_ode_paper/. Finally, it is important to note
that the chemical data generation and the training stage in this
work are both based on randomized initial conditions, and hence
code output and the results in this paper could differ slightly.

Acknowledgments. We thank the referee for the useful comments that improved
the quality of the paper. We thank T. Hoffmann for his help in installing
and configuring the hardware employed in this paper. S.B. is financially
supported by ICM (Iniciativa Cientifica Milenio) via Nicleo Milenio en Tec-
nologia e Investigacion Transversal para explorar Agujeros Negros Supermasivos
(#NCN19_058), and BASAL Centro de Astrofisica y Tecnologias Afines (CATA)
AFB-17002. B.E. acknowledges support from the DFG cluster of excellence
“Origin and Structure of the Universe” (http://www.universe-cluster.
de/). G.P. acknowledges support from the DFG Research Unit “Transition
Disks” (FOR 2634/1, ER 685/8-1). J.PR. acknowledges support from the
Virginia Initiative on Cosmic Origins (VICO), the National Science Foundation
(NSF) under grant nos. AST-1910106 and AST-1910675, and NASA via the
Astrophysics Theory Program under grant no. ONSSC20K0533. This work was
funded by the DFG Research Unit FOR 2634/1 ER685/11-1. This research was
supported by the Excellence Cluster ORIGINS, which is funded by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s
Excellence Strategy - EXC-2094 - 390783311. This work made use of the follow-
ing open source projects: MATPLOTLIB (Hunter 2007), SCIPY (Virtanen et al.
2020), NUMPY (Harris et al. 2020), INKSCAPE (https://inkscape.org),
KERAS (Chollet et al. 2015), and TENSORFLOW (Abadi et al. 2015).

References

Abadi, M., Agarwal, A., Barham, P, et al. 2015, TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems, software available from
tensorflow.org

Agarap, A. F. 2018, ArXiv e-prints [arXiv:1803.08375]

Akimkin, V., Zhukovska, S., Wiebe, D., et al. 2013, ApJ, 766, 8

Bai, X.-N. 2016, AplJ, 821, 80

Baulch, D. L., Bowman, C. T., Cobos, C. J., et al. 2005, J. Phys. Chem. Ref. Data,
34,757

A139, page 10 of 14

Bovino, S., Grassi, T., Latif, M. A., & Schleicher, D. R. G. 2013, MNRAS, 434,
L36

Bovino, S., Ferrada-Chamorro, S., Lupi, A., et al. 2019, ApJ, 887, 224

Bruderer, S., Doty, S. D., & Benz, A. O. 2009, ApJS, 183, 179

Brunton, S. L., Proctor, J. L., & Kutz, J. N. 2016, Proc. Natl. Acad. Sci., 113,
3932

Chakraborty, S., Tomsett, R., Raghavendra, R., et al. 2017, in 2017 IEEE
SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Com-
puted, Scalable Computing Communications, Cloud Big Data Computing,
Internet of People and Smart City Innovation (SmartWorld/SCALCOM/
UIC/ATC/CBDCom/IOP/SCI), 1-6

Champion, K., Lusch, B., Kutz, J. N., & Brunton, S. L. 2019, Proc. Natl. Acad.
Sci., 116, 22445

Champion, K., Zheng, P., Aravkin, A. Y., Brunton, S. L., & Kutz, J. N. 2020,
IEEE Access, 8, 169259

Chen, R. T. Q., Rubanova, Y., Bettencourt, J., & Duvenaud, D. 2018, ArXiv
e-prints [arXiv:1806.07366]

Chollet, F., et al. 2015, Keras, https://keras.io

Choudhary, A., Lindner, J. F., Holliday, E. G., et al. 2020, Phys. Rev. E, 101,
062207

Curtis, N. J., Niemeyer, K. E., & Sung, C.-J. 2017, Combustion Flame, 179,
312

de Mijolla, D., Viti, S., Holdship, J., Manolopoulou, I., & Yates, J. 2019, A&A,
630, A117

Duff, N., Duff, 1., Erisman, A., Reid, C., & Reid, J. 1986, Direct Methods for
Sparse Matrices, Monographs on Numerical Analysis (UK: Clarendon Press)

Garrod, R. T. 2008, A&A, 491, 239

Glover, S. C. O., & Clark, P. C. 2012, MNRAS, 421, 116

Glover, S. C. O., Federrath, C., Mac Low, M. M., & Klessen, R. S. 2010,
MNRAS, 404, 2

Gondara, L. 2016, 2016 IEEE 16th International Conference on Data Mining
Workshops (ICDMW)

Gong, M., Ostriker, E. C., & Wolfire, M. G. 2017, ApJ, 843, 38

Grassi, T., Merlin, E., Piovan, L., Buonomo, U., & Chiosi, C. 2011, ArXiv e-
prints [arXiv:1103.0509]

Grassi, T., Bovino, S., Gianturco, F. A., Baiocchi, P., & Merlin, E. 2012,
MNRAS, 425, 1332

Grassi, T., Bovino, S., Schleicher, D., & Gianturco, F. A. 2013, MNRAS, 431,
1659

Grassi, T., Bovino, S., Haugbglle, T., & Schleicher, D. R. G. 2017, MNRAS, 466,
1259

Grassi, T., Padovani, M., Ramsey, J. P, et al. 2019, MNRAS, 484, 161

Gressel, O., Ramsey, J. P., Brinch, C., et al. 2020, ApJ, 896, 126

Harris, C. R., Millman, K. J., van der Walt, S. J., et al. 2020, Nature, 585,
357

Henning, T., & Semenov, D. 2013, Chem. Rev., 113, 9016

Herbst, E., & van Dishoeck, E. F. 2009, ARA&A, 47, 427

Heyl, J., Viti, S., Holdship, J., & Feeney, S. M. 2020, ApJ, 904, 197

Hindmarsh, A. C., Brown, P. N., Grant, K. E., et al. 2005, ACM Trans. Math.
Softw., 31, 363

Hoffmann, M., Frohner, C., & Noé, F. 2019, J. Chem. Phys., 150, 025101

Holdship, J., Jeffrey, N., Makrymallis, A., Viti, S., & Yates, J. 2018, ApJ, 866,
116

Hunter, J. D. 2007, Comput. Sci. Eng., 9, 90

Ilee, J. D., Forgan, D. H., Evans, M. G., et al. 2017, MNRAS, 472, 189

Jolliffe, I. 2002, Principal Component Analysis (New York: Springer Verlag)

Jgrgensen, J. K., Belloche, A., & Garrod, R. T. 2020, Ann. Rev. Astron.
Astrophys., 58, 727

Kingma, D. P., & Ba, J. 2014, ArXiv e-prints [arXiv:1412.6980]

Kingma, D. P., & Welling, M. 2013, ArXiv e-prints [arXiv:1312.6114]

Kramer, M. A. 1991, AIChE ., 37, 233

Lecun, Y., Bottou, L., Bengio, Y., & Haffner, P. 1998, Proc. IEEE, 86, 2278

Lipton, Z. C. 2016, ArXiv e-prints [arXiv:1606.03490]

Long, Z., Lu, Y., Ma, X., & Dong, B. 2017, ArXiv e-prints [arXiv:1710.09668]

Lupi, A., & Bovino, S. 2020, MNRAS, 492, 2818

McGuire, B. A. 2018, ApJS, 239, 17

Miller, T. 2017, ArXiv e-prints [arXiv:1706.07269]

Nejad, L. 2005, Ap&SS, 299, 1

Nicolini, P., & Frezzato, D. 2013, J. Chem. Phys., 138, 234102

Perini, F.,, Galligani, E., & Reitz, R. D. 2012, Energy Fuels, 26, 4804

Plewa, T., & Miiller, E. 1999, A&A, 342, 179

Rab, C., Elbakyan, V., Vorobyov, E., et al. 2017, A&A, 604, A15

Rackauckas, C., Innes, M., Ma, Y. et al. 2019,
[arXiv:1902.02376]

Raissi, M., & Karniadakis, G. E. 2018, J. Comput. Phys., 357, 125

Raissi, M., Perdikaris, P., & Karniadakis, G. 2019, J. Comput. Phys., 378,
686

Rollig, M., Abel, N. P, Bell, T., et al. 2007, A&A, 467, 187

ArXiv eprints

T. Grassi et al.: Reducing the complexity of chemical networks via interpretable autoencoders

Rubanova, Y., Chen, R. T. Q., & Duvenaud, D. K. 2019, in Advances in
Neural Information Processing Systems 32, eds. H. Wallach, H. Larochelle,
A. Beygelzimer, F. d° Alché-Buc, E. Fox, & R. Garnett (New York: Curran
Associates, Inc.), 5320

Ruffle, D. P, Rae, J. G. L., Pilling, M. J., Hartquist, T. W., & Herbst, E. 2002,
A&A, 381, L13

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. 1988, Learning Repre-
sentations by Back-Propagating Errors (Cambridge, MA, USA: MIT Press),
696

Semenov, D., Wiebe, D., & Henning, T. 2004, A&A, 417, 93

Semenov, D., Hersant, F., Wakelam, V., et al. 2010, A&A, 522, A42

Shampine, L. F., & Reichelt, M. W. 1997, SIAM J. Sci. Comput., 18, 1

Shlens, J. 2014, ArXiv e-prints [arXiv:1404.1100]

Sipild, O., Hugo, E., Harju, J., et al. 2010, A&A, 509, A98

Tian, X., Saito, H., Preis, S. V., et al. 2013, in 2013 IEEE International Sympo-
sium on Parallel Distributed Processing, Workshops and Phd Forum, 1149

Tibshirani, R. 1996, J. R. Stat. Soc. Ser. B Methodol., 58, 267

Tupper, P. 2002, BIT Numerical Math., 42, 447

Valorani, M., & Goussis, D. A. 2001, J. Comput. Phys., 169, 44

Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, Nat. Methods, 17,
261

Wakelam, V., Herbst, E., Loison, J. C., et al. 2012, ApJS, 199, 21

Walsh, C., Millar, T. J., Nomura, H., et al. 2014, A&A, 563, A33

Wiebe, D., Semenov, D., & Henning, T. 2003, A&A, 399, 197

Wiewel, S., Becher, M., & Thuerey, N. 2019, Comput. Graphics Forum, 38, 71

Woitke, P., Kamp, I., & Thi, W. F. 2009, A&A, 501, 383

Xu, R., Bai, X.-N., C)berg, K., & Zhang, H. 2019, ApJ, 872, 107

Yildiz, C., Heinonen, M., & Léhdesméki, H. 2019, ArXiv e-prints
[arXiv:1905.10994]

Yoon, J., & Kwak, K. 2018, J. Phys. Conf. Ser., 1031, 012023

Zhou, C., & Paffenroth, R. C. 2017, in Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 665

A139, page 11 of 14

A&A 668, A139 (2022)

103 J

102 J

101 J

Number of reactions

1004 ¢ . e

102
Number of species

101

Fig. A.1. Number of chemical reactions as a function of the number
of species, constructed by randomly removing blocks of 400 reactions.
The dashed line is a power-law in N with an exponent of 1.3.

Appendix A: Relation between the number of
species and the number of reactions

We tested the relation between the number of reactions (NR)
and the number of species (V) for our “complete” osu_09_2008
network (4457 reactions) by randomly removing reactions and
counting the number of species left. The results are reported in
Fig. A.l1 where we randomly remove blocks of 400 reactions, and
show a Ng o N' power-law relation. The increasing slope at the
rightmost side (that corresponds to a large number of species) of
the plot is because several species are found in a many differ-
ent reactions, but only drop out when all of those reactions have
been removed. This assumes that our complete chemical network
is roughly representative of the true overall catalog of chemical
reactivity of the included species. In this case, the computational
cost has a more complicated relation with the number of reac-
tions and/or species, since the cost also depends on the different
timescales in the network (related to stiffness) and the sparsity of
the Jacobian, which depends on the types of reactions involved
(see Sect. 2.1).

Appendix B: The latent chemical network and its
analytical representation

One of the most complex tasks of this method is to define
the analytical form for Z = g(Z; p). At the present stage, we do
not have any automatic (machine learning-based or otherwise)
method to find the optimal analytical form of g, not even from
its parameters p and some additional loss term, as for example a
parsimonious loss term, ||Z||; (Champion et al. 2019), and mass
conservation. The approach we follow then is to create a small
network that presents mass conservation and includes two-body
reactions for nonlinearity. The simplest approach is to consider
only two latent atoms, A and B, to create a limited number of
latent molecules, namely A, B, AA, BB, and AB. These are
the five latent variables (species) Z. With mass conservation and
assuming that A and B have the same mass, so that ma = mp = 1
and maa = mpp = map = 2, see Eq.(6), the possible latent

A139, page 12 of 14

reactions are 6 forward and the corresponding six reverse:

A+A=AA (B.1)
A+B = AB (B.2)
B+B = BB (B.3)
AA +BB = AB + AB (B.4)
AA+B=AB+A (B.5)
BB+A=AB+B (B.6)
with the following ODE:s (cfr. Eq. (1))
ia=—-2Fy—F|+ F4—F;s B.7
ig=—-F—2F,—F4+ Fs (B.8)
iaan=+Fo—F3-Fy (B.9)
g = +Fy — F3 - F;s (B.10)
Zag = +F1 +2F3+ F4 + F5 (B.11)

where F; = R; — Riy¢, and Ry = poz/z\, Ry = pizazs, .-,
Rs5 = pszppza are the forward reaction rates, while Rg = pezaa,
R7 = p7zaB, ..., R11 = p11zaBZs are the reverse reaction rates,
and where p are the rate coefficients determined during training.

To implement these ODEs as g in the custom layer of
TENSORFLOW we define the “tensorial” form

R=p-Z, (B.12)
where Z is an array that contains the reactant products, one ele-
ment per reaction (e.g., Zy = zazg or more generally Z; = R;/p;).
Next, we define
2=9@Zp) =S XR, (B.13)
where S is a matrix with size equal to the number of species
times the number of reactions. Values S;; > 0 indicate that the
ith species is a product of the jth reaction, while §;; < —1 indi-
cates areactant, and §;; = 0 indicates that the species is neither a
reactant nor a product of the jth reaction. There is a matrix S for
each ODE, e.g., for Eq.(B.7) it is

-2 1 0 0 0
2 -1 0 0 0
-1 0 1 -1 0
1 0 -1 1 0
0 0 0 -2 1
sT = 8 _(1) (2) (2) _} . (B.14)
0 1 -2 0 1
1 -1 1 -1 0
-1 1 -1 1 0
-1 0 1 -1
1 0 -1 -1 1

The TENSORFLOW code is automatically generated by the
utility NETWORK2TENSOR.PY in the project repository.

It is worth noting that, if the number of latent variables
increases, this approach might produce a considerably large
chemical network, diminishing the aims and power of the
method. For this reason, in future work, we will improve on this
aspect by developing additional constraints to better design the
latent network. More details can be found in the Gex class in
autoencoder_plus/test.py in the project repository https:
//bitbucket.org/tgrassi/latent_ode_paper/.

T. Grassi et al.: Reducing the complexity of chemical networks via interpretable autoencoders

Appendix C: Log-space ODE solver

We modified the system of ODE:s in order to integrate both abun-
dances and time directly in logarithmic space. In particular, if
7 = logy(#) and y = log,,(x) we can write dx = xIn(10)dy and
dr = tIn(10) dt to obtain a new right-hand side

dy 107
=2 — £(y) = — F(10Y
2= f) = 15,10,

(C.1)

that can be integrated with a standard BDF solver. A limitation

of this method is that + = 0 must be replaced with a nonzero

value, in our case the integration starts from ¢ = 10~ yr. Chem-

ical species meanwhile have a lower bound of 107%n, where
—10% o3

Nt = 107 em™.

Appendix D: Model layout

Fig.D.1 shows the model layout as given by the plot_model
utility in KERAS. The model consists of an encoder, a decoder,
and the g layer, here labeled gex. This can be compared with
Fig.2.

The input layer (InputLayer) consists of 29 nodes corre-
sponding to the chemical species . The 5 latent variables Z
are the output of the encoder (layer encoder_last) and input
for the first layer of the decoder (decoder_first), aas well as
the layer that represents the ODE system g (gex). The decoder
produces X’ as output (decoder_last), and hence has 29 out-
put units, while gex has 5 output units, namely 7. KERAS
requires that these outputs be concatenated into a single layer
with no trainable parameters and no activation function. The
question marks in Fig. D.1 indicate the batch size that is defined
at run-time.

Appendix E: Loss term implementation

To implement the loss terms in KERAS and TENSORFLOW, we
need to have access to d,¢(X) and d,¥(Z), that are the differential
variation in the encoder and decoder with respect to the variables
x and z, respectively (Sect.2.4). To this aim, since we use the
“eager” execution model® of TENSORFLOW, we take advantage
of GradientTape, which allows us to keep track of the variation
in the output of one or more layers as a function of the variation
in the input quantities.

To compute the gradient, e.g., d,¢(%), instead of using the
gradient function that automatically sums dy;/dx; along i, we
employ batch_jacobian that does not compute any sum, and
allows us to write

with tf.GradientTape() as tape:
tape.watch(x)
zenc = encoder (x)

dphi_dx = tape.batch_jacobian(zenc, x)

where encoder is ¢(X), dphi_dx is the Jacobian matrix
d¢;i/0xj, and x is X. Then Xd,p(X), namely ', x;0¢;/dx;, is
implemented as tf.1linalg.matvec(dphi_dx, xdot), where
tf.linalg.matvec is the TENSORFLOW matrix multiplica-
tion operator, and xdot is X. Similar considerations apply to
0.¥(Z). More details can be found in the loss function in
autoencoder_plus/test.py in the project repository https:
//bitbucket.org/tgrassi/latent_ode_paper/.

6 https://www.tensorflow.org/guide/eager

. input: | [(?, 29)]
input_1: InputLayer
output: | [(?, 29)]
input: 2,29
encoder_first: Dense P ()
output: | (?, 32)
input: 2,32
encoder_hl: Dense P ()
output: | (?, 16)
input: 2,16
encoder_h2: Dense P ()
output: | (2, 8)
input: 2,8
encoder_last: Dense P .8
output: | (2,5)
input: 2,5
decoder_first: Dense P @3
- output: | (2, 8)
input: 2,8 input: | (2,5
decoder_hl: Dense P .8 gex: Gex P ®.5)
output: | (2, 16) output: | (2, 5)
input: 2,16
decoder_h2: Dense P ()
- output: | (?, 32)
input: | (2, 32)
decoder last: Dense
- output: | (?,29)
input: | [(?, 29)., (2. 5)]
concatenate: Concatenate
output: (2, 34)

Fig. D.1. Model layout from the plot_model utility in KERAS. The up-
per part represents the encoder, the left branch the decoder, and the right
the custom layer gex (g). The output of encoder_last is the latent
space (Z). Concatenate is a dummy layer that concatenates the output
of the two branches. The question marks indicate the unknown batch
size, that is defined at runtime. To be compared with Fig. 2.

Appendix F: Test set error

Here we report on the probability density functions O; and
subsequent Gaussian fits to the logarithm of the relative errors of
each chemical species, as discussed in Sect. 3. In Tab. F.1 we in-
dicate the mean and the variance of the Gaussian fitting functions
reported in Fig. F.1. The values reported in Tab.F.l1 depend on
the specific training history, and might differ by approximately
20% between training runs.

A139, page 13 of 14

A&A 668, A139 (2022)

Species (log(Ar)) Std. Dev. Species log(Ar) Std. Dev.

C —-0.432 0.307 c* -0.415 0.795
CH -0.225 0.619 CH* -0.139 0.447
CH, —-0.180 0.637 CH; —-0.383 0.585
CH; —-0.074 0.611 CHJ -0.527 0.714
CH4 -0.014 0.603 CH} +0.044 0.570
CHZ -0.199 0.328 60) -0.119 0.513
co* -0.121 0.408 e -0.666 0.598
H -0.328 0.568 H* -0.490 0.544
H, -2.962 0.707 Hj -1.181 0.542
H,O -0.257 0.681 H,O0* -0.520 0.537
H} -0.351 0.386 H;0* -0.378 0.765
HCO* -0.228 0.579 o -0.792 0.560
o -0.341 0.366 0, +0.022 0.664
104 -0.039 0.685 OH -0.246 0.640
OH" -0.471 0.512

Table F.1. Mean and standard deviation for the Gaussian fits to the dis-
tributions of the logarithm of the relative errors as discussed in the text.
‘We report the mean of the logarithm of the relative error, (log(Ar)), and
corresponding standard deviations, o[log(Ar)]. See also Fig. F.1.

1.0

0.5

Dllog(|Ari])]

0.0
1.0

0.5

Dllog(|Ari)]

0.0

1.0 — Hf — 0
—— H0* o7
— HCO* —— OH
— 0 OH*
0.5 & — 0+

‘104 1073 1072 1071 100 10t 102 103 104
relative error, |Ar;|

Dllog(|Ar;|)]

Fig. F.1. Gaussian fitting functions of the logarithm of the relative
error distributions for each chemical species. For three selected species
(C, CH:, and H3) we also report the normalized histogram of the error
counts (light blue bars). The vertical dashed line indicates a relative
error of 1. The plotted distributions are normalized to the maximum. As
a reference, the gray-shaded area is the envelope of all the curves. See
also Tab.F.1.

A139, page 14 of 14

	Reducing the complexity of chemical networks via interpretable autoencoders
	1 Introduction
	2 Methods
	2.1 Systems of chemical ordinary differential equations
	2.2 Reduction techniques
	2.3 Autoencoders
	2.4 Differential equation identification in latent space via autoencoders
	2.5 Implementation

	3 Results
	4 Limitations and outlook
	5 Conclusions
	Acknowledgments
	References
	Appendix A: Relation between the number of species and the number of reactions
	Appendix B: The latent chemical network and its analytical representation
	Appendix C: Log-space ODE solver
	Appendix D: Model layout
	Appendix E: Loss term implementation
	Appendix F: Test set error

