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ABSTRACT
Today’s exa-scale scientific applications or advanced instruments
are producing vast volumes of data, which need to be shared/trans-
ferred through the network/devices with relatively low bandwidth
(e.g., data sharing on WAN or transferring from edge devices to
supercomputers). Lossy compression is one of the candidate strate-
gies to address the big data issue. However, little work was done to
make it resilient against silent errors, which may happen during
the stage of compression or data transferring. In this paper, we pro-
pose a resilient error-bounded lossy compressor based on the SZ
compression framework. Specifically, we design a new independent-
block-wise model that decomposes the entire dataset into many
independent sub-blocks to compress. Then, we design and imple-
ment a series of error detection/correction strategies elaboratively
for each stage of SZ. Our method is arguably the first algorithm-
based fault tolerance (ABFT) solution for lossy compression. Our
proposed solution incurs negligible execution overhead in the fault-
free situation. Upon soft errors happening, it ensures decompressed
data strictly bounded within user’s requirement with a very limited
degradation of compression ratio and low overhead.

CCS CONCEPTS
• Software and its engineering → Software reliability; Soft-
ware fault tolerance.
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1 INTRODUCTION
Processing scientific data on various devices and transferring them
through different types of network is becoming very common [32].
On the one hand, numerous domain scientists are sharing the re-
search data due to ever-emerging open non-trivial scientific prob-
lems in different domains. However, today’s scientific experiments
can easily produce extremely large amounts of data. For example,
the SKA (Square Kilometer Array) telescope will generate hun-
dreds of PB/year of processed science data products in 2023 and
the HL-LHC will generate 1 EB of science data in 2026. Many other
experiments project to generate EBs of science data [9]. These vast
volumes of data would be accessed and analyzed by many scientists
with common interests at different sites. Also large-scale simulation
campaigns that are dificult to reproduce are often shared by many
researchers indifferentsites.Forexample theCommunity EarthSys-
tem Model for the Coupled Model Intercomparison Project (CMIP)
5 has produced about 2.5 PB of data. CMIP6 is projected to exceed
10 PB of the raw data requirements [11]. Eficiently transferring the
data on wide area network (WAN) is critical to guaranteeing that
the data sharing would not hinder the research progress. On the
other hand, transferring large amounts of data from edge devices
to remote servers or supercomputers is becoming very common
in many research areas. For instance, Linac Coherent Light Source
(LCLS-II) may produce an extremely large amount of X-ray imaging
data (250GB/s [16]), which needs to be transferred to data centers or
supercomputers for post hoc analysis. Another example is that the
remote sensor technology continues to increase in fidelity for space
systems, so large amounts of data are being collected by orbiting
satellites or space vehicles and transmitted to other stations (e.g.,
ground stations, other satellites) [14].

Error-bounded lossy compressors [21, 35, 38, 39, 48] have been
effective in significantly reducing large volumes of data produced
by scientific simulations [12, 25, 47] or instruments/devices [22, 42].
They have been thought of as one of the best ways to resolve the
big data transferring issue. For instance, Globus [23] is arguably
the most eficient data transferring platform, while its maximum
throughput is about 8GB/s [40] even with a very high concurrency
(transferring hundreds of files concurrently), and its transferring
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throughput is only several hundreds of megabytes with a low con-
currency. Without compression, transferring 10 petabytes of data
may take 120 days on a 1GB/s connection.

Silent errors can lead to incorrect logic unit result or corrupt
storage systems silently without notice of hardware or operating
system. A recent study from Google has revealed that silent errors
are more common than anticipated [26]. Silent errors are non-
negligible when running lossy compressors on various end-points
such as edge devices and supercomputers:

• Silent errors in supercomputers: If one lossy compressor is
employed to compress a large amount of data on a supercom-
puter in parallel, silent errors have to be taken into account.
In general, the single-core lossy compression throughput is
only 20MB/s�200MB/s [15, 55] for an error-bounded lossy
compressor (e.g., SZ [21, 35, 48], ZFP [38] and MGARD [8]),
while vast volumes of data need to be compressed at runtime
(e.g., a single exascale execution of cosmological simulation
[25] may produce 20PB), so hundreds of thousands of core
hours are required for the compression. Silent data corrup-
tion (SDC) may occur in the entire compression procedure
because of the large amount of resources and time involved
(e.g., memory, cache, register, CPU, for hours). The SDCs are
mainly referred to as computational silent errors and mem-
ory silent errors. Such errors are very dangerous because
they may mislead the scientists in research studies.

• Silent errors in error-prone devices/environment: The edge
devices especially in the special environments such as inter-
planetary space probe in orbiting satellites or space vehicles
would be more error-prone (mainly struck by SDCs) than
the regular devices on the earth. To address this issue, some
fault tolerance techniques [30, 37] have been proposed for
specific algorithms such as matrix multiplication and FFT.
However, when lossy compressors are used by such particu-
lar devices to compress image data, the whole compression
procedure has to be protected against soft errors. Otherwise,
the corrupted data may let scientists miss important findings
or draw a misleading conclusion.

• Potential malicious attacks or missing/erroneous packets: Shar-
ing large amount of scientific data between scientists or
institutions is becoming very common, so eficiently and
reliably transferring such vast volumes of data on wide area
network (WAN) is significant to the scientific community.
Whenever the data need to be shared on WAN, they will face
serious silent error issues such as potential malicious attacks
or missing/erroneous packets (e.g., if UDP is used).

Mat Noor and Vladimirova [43] made a parallel fault-tolerant
Integer KLT implementation for lossless hyperspectral image com-
pression on board satellites. However, there are no lossy compres-
sors designed to detect and correct silent errors. Designing an silent
error detection/correction method for lossy compression is chal-
lenging because decompressed data will deviate from original data
even though there are no silent errors occurring.

In this paper, we develop a resilient error-bounded lossy com-
pressor based on SZ [35] - one of the best generic error-bounded
lossy compressors for large-scale scientific datasets [35, 41]. SZ al-
lows users to control compression errors in different ways (such as
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absolute error bound, relative error bound and peak signal-to-noise
ratios) and it can get very high compression ratios with satisfied
reconstruction quality [24, 31, 36, 45, 48], so it has been widely used
or evaluated in the scientific community. Not only can our solution
detect the possible silent errors during the compression/decompres-
sion but it can also automatically correct the errors in many cases.
This is very helpful in detecting/correcting the soft errors during
the data transfer (such as the errors occurring in the error-prone
UDP policy or the ones caused by malicious attacks). Specifically,
the independent-block design in our compressor allows to recover
the data by retrieving only a small piece of data, which would be
very helpful in data transfer on WAN as the data sender/transmitter
just needs to resend a tiny amount of data instead of the whole
dataset upon any error detection.

The main idea of this paper is analyzing each subroutine in the
SZ lossy data compression framework elaborately and designing a
series of fault tolerance strategies carefully, such that the lossy
compressor can be protected against silent errors effectively with
little overhead. We summarize the detailed contributions as follows.

• We comprehensively analyze each subroutine of SZ with respect
to possible memory/computation errors. The analysis unveils that
some parts of SZ are naturally error resilient, while other parts
are fragile to silent errors. Silent errors striking these parts may
cause wrong decompressed data or even crash. Thus, it is critical
to protect those parts by specific fault tolerance strategies.

• We propose an eficient resilient lossy compression solution based
on the SZ compressor. We modify SZ by dividing each dataset
into small blocks and making the compression work totally inde-
pendent across blocks. Such a design is able to control the impact
of silent errors on the decompressed data and also fix the data
with minimum overhead. We design resilient strategies which
can not only detect silent errors in most of cases but also correct
them automatically in some cases.

• We implement our resilient compressor and evaluate: (i) its fault
tolerance ability in the presence of silent errors, (ii) the corre-
sponding overhead in the fault-free situation and (iii) the possible
impact to the compression quality. We perform the experiments
with real-world simulation data across multiple science domains
and image data taken by New Horizons probe [4] in aerospace.
Experiments show that our designed independent-block based
compression model has very limited execution overheads (≤10%
in most cases). The experiments also confirm that our fault tol-
erance solution yields little overhead (≤7.3% at 2048 cores) and
correctdecompression results in the presence of soft errors.When
injecting one and two errors, respectively, during the compression
at runtime, our solution can significantly improve SZ resilience
(92% running cases with correct decompressed data compare to
only 71.2% and 47% of the original SZ).

We organize our paper as follows. Section 2 discusses related
work. Section 3 formulates the research problem. Section 4 provides
an in-depth analysis of the fault tolerance ability of SZ. Section 5
presents our fault tolerance methodology. We evaluate our methods
in Section 6. The last section concludes the paper.
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2 RELATED WORK
We discuss the related work in two facets: the fault tolerance ability
of existing lossy compressors and the existing solutions designed
to protect other applications against silent errors.

So far, there have been many lossy compressors [19, 21, 33, 35, 38,
39, 47, 48] developed to significantly reduce the large volume of data
produced by scientific simulations. All the lossy compressors, basi-
cally, could be classified into two categories - transform-based com-
pression [38, 47] and prediction-based compression [21, 35, 39, 48].
None of the transform-based compressors are immune to the silent
errors. In fact, if the data in the transformed domain are corrupted
because of memory or computation error, multiple data values in the
original data domain could be affected. As for the prediction-based
model, the silent errors could be also fatal to the reconstruction of
data. In SZ, for example, if the data prediction on some data point is
struck silently during the compression, the predicted value on that
data point would be inconsistent during the compression and
decompression, leading to uncontrolled decompression errors.

Much work has been done to fight against memory and compu-
tation errors. At the hardware level, error correcting code (ECC)
detects and corrects bit flips in memory. ECC can correct single-bit
flipped memory errors but cannot detect or correct any compu-
tation errors. Hardware redundancy adopts redundant hardware
to execute the same application with the same input and compare
the outputs from the different hardwares. Software redundancy
means running the same program on the single hardware multiple
times and compare the outputs from different runs. Thus, double
modular redundancy (DMR) is needed for error detection with 100%
overhead and triple modular redundancy (TMR) is needed for error
correction with 200% overhead.

Such high overhead of modular redundancy to handle soft er-
rors has motivated algorithm based fault tolerance (ABFT) [27],
which aims to exploit the special characteristics of an application
or algorithm to detect and correct soft errors. Despite the fact that
ABFT requires a significant algorithm integration effort, the tiny
overhead of ABFT makes it very attractive. Most of the existing
ABFT methods, however, focus on popular arithmetic algorithms
such as matrix operations [18, 27, 54], fast Fourier transforms [34]
and iterative methods [49]. To the best of our knowledge, no ABFT
work has been done for lossy compression algorithms, which is a
significant gap in the context of scientific data compression.

3 BACKGROUND AND PROBLEM
FORMULATION

We discuss the research background and formulate the research
problem in this section.

3.1 SZ Lossy Compression Framework
SZ[35] is an error-bounded lossy compressor designed for scientific
data. According to the recent studies [35, 41, 48], it can effectively
reduce the data size for many scientific simulations, such as cli-
mate simulation, cosmological simulation, quantum simulation, and
chemical simulation.

Basically, SZ includes four critical stages during the compres-
sion: (1) data prediction, (2) linear-scaling quantization, (3) variable-
length encoding, and (4) lossless compression such as Zstd [7]. In
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the data prediction step, SZ [21, 35, 48] splits the whole dataset into
multiple blocks and then perform the compression in each block
based on two alternative prediction methods - an improved Lorenzo
predictor [29] or linear regression. The second step - linear-scaling
quantization converts each raw data value (such as floating-point
value) to an integer index (or quantization bin) based on the user-set
error bound and the difference of the predicted value and original
value. The remaining two steps are used to reduce the data size by
performing Huffman encoding on the quantization bin index array
and adopting lossless compression. This may significantly reduce
the data size because the distribution of quantization bin indices
are likely fairly non-uniform especially when the data are relatively
smooth in space.

3.2 Algorithm based Fault Tolerance (ABFT)
ABFT achieves silent error detection and correction by leveraging
the characteristics of the algorithms. In high level explanations,
ABFT detects errors by checking if some relationship is respected
and correct the errors by another introduced set of computation.
Each ABFT technique has to be developed for a particular approach
composed by one or more algorithms. We give an example to illus-
trate how ABFT detects/corrects soft errors in general. Given an
array�[] at timestamp�0, then at a later timestamp�1, one attempts
to detect if there was a memory error that corrupted a value in
�[] during the period [�0,�1]. In order to detect the error, we
can leverage a checksum (equation 1).

Õ
��� = �[�] (1)

Specifically, we can calculate the sum of �[] at �0 and �1, respec-
tively. Suppose the two calculated sums are denoted by����0 and
����1, respectively. If����0≠����1, we can conclude there must
be an error happening to �[] during the period [�0,�1]. In order to
locate where the error is in the array �[], we can leverage an extra
computation (equation 2).

Õ
���� = � � �[�] (2)

Specifically, assuming the value at index � is corrupted during the
time period [�0,�1], according to���� −  ���� = �[�] ′ −  �[�] and
����� −����� = ��(�[�]
−�[�]), one can derive the error location index � =
(�����1−�����0 )/(����1−����0 ). This example illustrates
that it is viable to detect and even correct the single-data-point error
just by introducing a few more light-weight computations.

3.3 Error Model and Assumptions
We identify theerrormodel in this subsection. In our study,we focus
on different types of errors (mainly memory error and computation
error). As for the memory error model, the errors could randomly
happen anywhere in the whole memory at any time during the life
time of a process in the form of bit-flips. As for the computation
errors, their impact could appear in the form of bit-flips on the com-
putation results. Similar to other ABFT research, the flow control
error (FCE) is beyond the scope of our work because the general
solutions are designed on the compiler/instruction/hardware level
[46]. Moreover, it is too dificult to comprehensively detect the
FCEs even for professional FCE detection tools according to recent
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studies [46]. Without loss of generality, we assume that the occur-
rence probability of multiple computation errors or memory errors
is extremely low for one block of data during one compression,
since one block is generally very small (such as 10×10×10 in size).
Similar to other ABFTs [17, 34, 53], we assume the checksum itself
is error free because of its tiny computation time compared with
the compression time.

3.4 Formulation of Silent Error Detection
Evaluation in SZ

As mentioned previously, SZ has four stages in the whole course of
compression, and we mainly focus on the single-data-point silent
error (either computation error or memory error) happening at each
stage, without loss of generality. In addition, we mainly focus on the
dominant data structures (i.e., all the data structures taking linear
space of the number of data points �) that take the majority of
memory footprint in SZ because they are the major objects affected
by silent errors if any. The rest parts (called negligible space in the
following text) could be considered error free. Which parts taking
negligible space will be discussed later in this paper.

The objective of our work is to detect and correct both computa-
tional errors and memory errors in each stage of SZ compression
as much as possible. There are three important metrics to evaluate
our designed resilient lossy compressor, as listed below.

• Silent error detection/correction ability. What kinds of silent errors
could be detected or corrected? What is the accuracy and coverage
rate of silent error detection?
• Computational Overhead. It is the ratio of the extra time to the
total original execution time in an error-free situation.
• Impact to Compression Result. Whether the resilient lossy com-
pressor can still respect the user-specified error bound for the de-
compressed data? What is the compression overhead: i.e, how much
the compression ratio would be degraded under the resilient com-
pressor compared with the original compressor?

All the three evaluation metrics can be used to all lossy compres-
sors, which is the first resilience formulation in the context of lossy
compression, to the best of our knowledge.

4 RESILIENCE ANALYSIS OF SZ 2.1
In this section, we analyze the resilience (the ability of detecting/-
correcting silent errors and the impact for the undetected errors)
for the latest version of SZ - SZ 2.1 based on its principle.

4.1 Resilience Regarding Computation Error
We analyze SZ’s natural resilience based on when/where the com-
putation error could happen, including calculation of regression
coeficients, selecting bestfit predictor by sampling method, and
data prediction and calculation of decompressed data, huffman
encoding and lossless compression. We call the first two stages
“prediction preparation”.

4.1.1 Resilience in the prediction preparation. A computation er-
ror in prediction preparation stage may only lower compression
ratio to a certain extent but it would not affect the correctness of
decompressed data (i.e., still strictly respecting error bound). That
is, the decompressed data is still the golden result in spite of the
computation error in prediction preparation. In fact, although the
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computation error may lead to inaccurate regression coeficients or
incorrect bestfit predictor selection, exactly the same coeficients/s-
election will be used for both compression and decompression. The
compression ratio could be affected because the data prediction
may be less accurate due to the inaccurate coeficients or incorrect
predictor selection.

4.1.2 Resilience in the data prediction and calculation of decom-
pressed data. Data prediction is the most critical step in SZ. In order
to guarantee the error bound, the neighboring data values used to
predict each data point during the compression have to be exactly
the same values to be used during the decompression. That is, SZ
needs to obtain the decompressed data values during compression.
We demonstrate the key compression procedure in the Algorithm
1, which is conducted in a loop of scanning all data blocks.

Algorithm 1 Key Compression Step Per Block in SZ2.1

Input: One block of raw data
1: for (each data point (denoted ori) in a block) do
2: pred ← P(neighbor decompressed data);
3: Δ ← ori−pred;
4: bin ← |Δ|/�; /*Compute quantization bin based on error bound �*/
5: i f  (bin <  bin_max) then
6: decmp ← �(pred, bin,�); /*Retrieve the decompressed data*/
7: i f  (|ori −  decmp| >  �) then
8: Do unpredictable data compression; /*IEEE 754 binary compression*/
9:            end i f

10: else
11: Do unpredictable data compression; /*IEEE 754 binary compression*/
12:       end i f
13: end for

The SZ compression pipeline involves 5 key steps.

(1) Calculate predicted value (line 2).
(2) Compute the difference between the real value and the predicted

value (line 3).
(3) Calculate error quantization bins (line 4).
(4) Calculate the decompressed data (line 6) which will be used to

predict the following data points in compression.
(5) Double-check the correctness of the compression based on the

given error bound against possible machine epsilon error (line 7-
9): specifically, the decompressed value would be reconstructed
based on the quantization bin and compared with the true value.

In the following, we analyze the fault tolerance ability of the key
procedure of compression upon a computation error occurring in
the code segment presented in Algorithm 1 using Figure 1, based on
five possible cases. Figure 1 presents a snippet of data in the whole
dataset, where the current data point refers to the data point which is
being compressed. The red circle points are the original raw data
values, and the blue cross point refers to the predicted data value at
the current data point. In SZ2.1, each prediction error will be con-
verted to an integer instance discretized based on the quantization
bins, whose size is 2× as large as user’s error bound. We note that
the resilience issue should be discussed in three situations/types
regarding different zones as shown in the figure. More specifically,
the necessary condition to obtain correct decompressed output is
that a correct decompressed value must be calculated (type-1) or an
unpredictable data handling is called (type-2) during compression;
and the same data should be reconstructed during decompression
(type-3), which will be used later.
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A

Original Raw data pionts

B  Predicted data value

Safe zone (A)

B Unsafe zone (B)

Unsafe zone (C)
A

Already processed data points
Data index

Current data point

Figure 1: Analysis of fault tolerance ability for SZ with com-
putation error

Case 1 - a computation error happens to line 2. In this case, we
need to take into account two possible situations in terms of the
deviation of the predicted value affected by the error.

• Situation 1: the predicted value is changed by the error signifi-
cantly such that the quantization bin calculated later on falls outside
the maximum quantization range (i.e., bin < bin_max does not hold).
In this situation (zone A in Figure 1), the decompressed data will
still respect the error bound for sure because of the type-2 behavior.
• Situation 2: the impact of the silent error on the predicted value
is relatively small such that the quantization bin is within the max-
imum quantization range (i.e., bin <  bin_max still holds). This may
cause a significant error to the decompressed data (zone B, C in
Figure 1) because of violation of type-3 behavior. The reason is
described as follows. On the one hand, the double-checking step
(line 7) cannot detect such an error because it would decompress
the data point based on the “wrong” predicted value such that the
reconstructed value will still respect the error bound. On the other
hand, it is unlikely that such an silent error would happen again dur-
ing the decompression, so that SZ would get a different predicted
value for the current data point in the course of decompression and
thus a wrong decompressed value on this data point (violation of
type-3 behavior). Moreover, this decompressed value would also be
used to predict other data points in the decompression, so that the
errors would be propagated throughout the whole dataset.

Case 2 - A computation error happens to line 3 or 4. These two
lines are naturally resilient due to the type-2 behavior. The unpred-
icatable data compression is always called (line 10 for zone A and
line 8 for zone B), no matter how much the calculated quantization
bin deviates (zone B or zone A),

Case 3 - A computation error happens to line 6. This may affect
correctness of the decompression data, which will be analyzed
based on two possible situations.

• Situation 1: the decompressed data value is deviated significantly
because of the silent error such that the following double-checking
(i.e., line 7-8) suggests to use unpredictable compression here. So it
is resilient because of type-2 behavior.
• Situation 2: the decompressed data value is changed slightly such
that it skips the double-checking step. In this situation, the skewed
(wrong) decompressed data value would be used in the prediction of
the succeeding data points, and this would lead to the inconsistent
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prediction results between the compression and decompression.
Thus it is not resilient because of violation of type-3 behavior.

Case 4 - A computation error happens to line 7. Line 7 has very
good resilience but not perfect. Obviously, if line 7 makes a false
result to be true, it is resilient because of the unpredictable data
solution (type-2 behavior). If line 7 makes a true result to be false, it
is not resilient because of the impact of machine epsilon. However,
in our fault tolerant design, we do not protect this part because
the likelihood of this situation is extremely small. This situation
happens only when the original real value is located right on the
edge of a quantization bin. To be more specific, a test shows only
24 out of 5123 data points (NYX dataset, relative error bound 1E-3)
will make line 7 true.

4.1.3 Resilience in lossless compression. We will show our solutions
are able to detect silent errors that occur in lossless compression in
Section 5.3.

All in all, in terms of the SZ lossy compression framework, the
only concern regarding fault tolerance during the compression
procedure is on the correctness of the predicted value (i.e., line 2
in Figure 1 (a)) and the correctness of data decompression during
the compression (i.e., line 6). To address this issue, we adopted an
eficient selective instruction duplication method, to be described
in Section 5 in detail.

4.2 Resilience Regarding Memory Error
Now, we analyze the resilience against the memory errors occurring
in different places, such as input data, regression coeficients and
quantization bin index array, respectively.

4.2.1 Resilience against memory error in inputs. Since the input
data (i.e., original data) occupies the significant portion of the mem-
ory footprint, we have to protect it against potential silent errors.
The input data is used in the following steps: 1. computing the
regression coeficients; 2. sampling and estimating the compression
error of both regression and Lorenzo predictor; 3. data prediction
and calculation of the difference between predicted data and orig-
inal data and handling unpredictable data. We find that: for the
first two steps, similar to the analysis in Section 4.1.1, the memory
error in input data will only impact the compression ratio and keep
the correctness of decompressed data. However, step 3 must use
genuine uncorrected input data since that is where the compression
happens. With a corrupted input in step 3, the decompressed data
will be calculated based on that corrupted value which is obviously
error prone.

We will leverage the above finding to reduce the overhead of
checksum calculations since it discloses the fact that the corrupted
values may not affect the correctness of decompressed data in the
first 2 steps (i.e., error detection/correction for those parts are not
necessary).

4.2.2 Resilience against the memory error in regression coefficients.
The memory usage of regression coeficients are found to be very
small compared to the overall memory usage such that this part
does not need particular protection. Each data block will maintain at
most 4 coeficients (for 3D dataset). Thus, the coeficients only take

��������� of the overall memory. For a 3D example, usually the
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block size is 10x10x10 which means the coeficients take only  1

of overall memory.

4.2.3 Resilience against the memory error in quantization bin index
array. In SZ, the quantization bin index array (to be called bin array
for simplicity) is an array used to record how much the predicted
value deviates from the original value for each data point. The
element in the array is a positive integer if the data is predictable;
otherwise, the element is 0, indicating that the data needs to be
compressed/decompressed by unpredictable compression method.
Obviously, if the bin array is corrupted by some memory error, the
decompressed data will not be correct. So, the array is not resilient to
memory error. Also, since the prediction is a critical stage that
contributes the portion of the overall execution time, the likelihood
of error happening during this stage is higher than other stages,
thus we have to protect the bin array in this stage. Specifically, we
carry out two different checksums on each block right after all the
data inside the block are processed, such that we are able to detect
and correct the possible corrupted data by double-checking the
checksum values later (e.g., during the Huffman encoding stage).

5 ERROR TOLERANCE METHODOLOGY
Our resilient compression design is done in three aspects. First, we
eliminate the data dependency between adjacent blocks; second, we
use selective instruction duplication to ensure correct computation;
third, we use checksums to detect and correct corrupted values
caused by memory errors.

5.1 Blockwise independent design
In the following, we discuss how to eliminate the dependency be-
tween blocks, such that any silent error can be confined within a
small block, improving the robustness significantly.

The key difference between the original SZ and our independent-
block based compression is that we now treat each block of data
as separately with each other. Specifically, we apply the prediction
and quantization inside each block individually and make sure the
compressed data of one block is totally independent with others’.
This requires many changes to the original SZ development. For
instance, we need to record the compressed size of each block after
we finish the compression for that block. In addition, we also need
to record the quantization bin array individually for each block
and perform the Huffman encoding individually as per block. Both
recording the bin array and Huffman encoding need to be done
individually per block. The block-wise design in our solution is
feasible for any structured mesh data with different dimensions
(1D, 2D, and 3D), since block/segmentation design extracts/locates
the data in each block based on their array indices in the space and
performs the “isolated” data block by block.

Another significant advantage in the independent-block based
compression design is that one can perform random-access de-
compression eficiently by specifying a specific region in space.
To this end, we implement random-access support in our imple-
mentation, such that the decompression speed can be improved
significantly if the user just wants to decompress a small region
in the whole dataset. The corresponding experimental results will
be presented in Section 6. Moreover, such an independent-block
based compression also makes the parallelism of SZ much easier
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to port on many-core architectures, such as GPU. Also, if only a
block of data is detected to be corrupted either because soft errors
during data transferring or decompression, we just need to resend
and decompress only that block.

5.2 Fault tolerant compression

Algorithm 2 Soft Error  Resilient SZ Compression

Input: original input data (denote by���[]), user defined error bound (denoted by�).
Output: compressed data in byte and compressed��� of blocked decompressed data
1: for each block, �� [] with size�, of the input data do
2: Compute the regression coeficients
3: �����[�] ←      �� [�] /*for silent error in input data*/
4: ������[�] ←      � � �� [�] /*for silent error in input data*/
5: end for
6: for each block (block�) of input data do

7: Sample and estimate ���� and ����

8: ���������[�] ← ���� <  ���� ?���
:��� 9: end for

10: for each block (block�) of input data do
11: memory_error_detect_correct(���[],�����,������)
12: �() ← ���������[�] = =  ��� ? ������������ () :

������������ () 13: for each data point,��� , in the data block do
14: ����′ ← ���� () /*����(): instruction duplicated �()*/
15: Δ ← ���� −  ����;
16: q_bin ← |Δ|/�; /*Compute quantization bin based on error bound �*/
17: i f  (q_bin <  bin_max) then

18: decmp ← �(pred’, q_bin,�) ; /*Get decompressed data,����() is instruc-
tion duplicated �()*/

19: i f  (| ���� −  ����� | >  �) then
20: Do unpredictable data compression; /*IEEE 754 binary compression*/
21:                end i f
22: �����[�]+=dcmp /*cksum for decompressed data of block� */
23:            else
24: Do unpredictable data compression; /*IEEE 754 binary compression*/
25:            end i f
26: ����[�] +=�_��� /*for silent error in�_���[]*/
27: �����[�] += � � �_��� /*for silent error in�_���[]*/
28:       end for
29: end for
30: h_tree ← Huffman_tree(�_���[]) /*build Huffman tree*/
31: for each block of�_���[] do
32: memory_error_detect_correct(�_���[],����,�����)
33: encoded_bin ← Huffman_encode(h_tree, q_bin[])
34: end for
35: compressed_bin ← Zstardard(encoded_bin) /*lossless compression*/
36: write_to_file(encoded_bin and unpredicatable data)
37: write_to_file(Zstandard(�����[])) /*Write checksum*/

We present our resilient compression method in Algorithm 2. We
highlight the lines related to our fault tolerance design in blue font.
Line 3 and 4 are calculating checksums for input data, in order to
detect possible silent errors striking the input data later on. As we
discussed in Section 4.2.1, we do not need to detect memory error
in the input data during computations for regression coeficients
and compression error estimation. We only detect whether the in-
put data encounters memory errors before the data prediction gets
started (line 11). If a data corruption is detected (by�����), it can
be located and recovered by the pair of checksums (i.e.,����� and
������) applied on input data. Then, we protect the quantization
bin array against memory errors (line 24 and 35). Line 29 and 40
are designed for detecting possible silent errors occurring in the de-
compression stage, to be detailed later. For the computation errors,
instruction duplication can be used. Base on our analysis in Sec-
tion 4.1, only data prediction (line 18) and calculating decompressed
data (line 25) need to be protected by instruction duplication.
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5.3 Fault tolerant decompression
The resilient SZ decompression is presented in Algorithm 3. Line
1-9 refers to the regular block-wise data decompression of SZ. Our
resilience design starts from line 10. We constructed the checksums
for each block and compressed the checksum array (i.e.,�����[]) by
lossless compression (Zstd) during data compression. Accordingly,
we need to decompress����� (line 10) before the error detection.
Our idea is leveraging such checksums of decompressed data (i.e.,
�����[]) constructed during compression to detect possible errors
that happen during decompression. Specifically, after performing
the data decompression for each block (line 1-9), our algorithm will
calculate the corresponding checksums for each block of decom-
pressed data and compare the checksums to �����[] (line 12-13).
If they are not consistent, some errors must happen during the
decompression. So, the algorithm will decompress this block by
random-access decompression (line 14), meaning the compressed
bytes are reloaded. If the checksum is consistent, we know some
memory or computation error is detected (line 17). If inconsistent
the second time, we know the silent error likely happens during
pre-decompression procedures including lossless compression or
data transferring which will be reported to users (line 19).

Algorithm 3 Soft Error  Resilient SZ Decompression

Input: The SZ compressed file in byte (cmp_data) and compressed��� for blocked
decompressed data���_����� .
Output: Decompressed data with bounded error compared to original data.

1: zstd_decmp ← Zstandard_decompress(cmp_data)
2: for each block do
3: �_���[] ← Huffman_decoding(zstd_decmp)
4: ���_����[] ← was predicted by Lorenzo ? lor_dec() : reg_dec()
5: end for
6: ����� [] ← Zstandard_decompress(���_�����) 7:
for each block of decompressed data (block�) do 8:

���� ←      ���_����[] for block�
9: i f  ���� ≠  ����� [�] then

10: Reexecute line 3-4 for block� /*random-access decompression*/
11: ���� ←      ���_����[] for block�
12: i f  ���� =����� [�] then
13: Log: memory/computation error detected but corrected
14:            else
15: Log: silent error in pre-decompression procedure.

consider resend block�; Return
16: end i f
17:       end i f
18: end for
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sum of the data block because it is calculated based on integer inter-
pretation of the bits instead of floating point. Thus, it is immune to
NaN/Inf issues that happens only to floating point numbers. Using
the 64-bit unsigned integer representation, we can have the check-
sum hold up to (232 + 1) 32-bit unsigned integers without overflow
because the maximum 64-bit unsigned integer (264 −  1) divided by
maximum 32-bit unsigned integer (232 −  1) is equal to (232 + 1).
That is fairly enough to totally avoid the overflow since each data
block in SZ has only 1000 data points (such as 10×10×10 block) in
general. With all these techniques, we can provide bit-level error
detection and correction. The main difference from Demmel’s work
[20] is that we are actually doing integer-based summation instead
of the sum based on floating point numbers.

To extend to 64-bit double precision numbers, we just need to
treat each double value as two 32-bit unsigned integers. So it is
reduced to the above case.

5.5 Impact to compression ratio without
protecting regression and sampling

As mentioned previously, we do not protect the computation in
regression and sampling in that the errors during this period would
not affect the correctness of decompressed data and just have tiny
impact to the compression ratios. In what follows, we derive theo-
retically the upper bound of the compression ratio decrease affected
by the computation errors happening during the regression or sam-
pling. We denote the compression ratio of SZ in error free run by
�0; the number of data blocks by�. For simplicity, we assume that
the compression ratio for each block is identical with each other.
In the worst case, the error in regression or sampling will at most
reduce the compression ratio to be 1, which means that it does
not reduce the size of that block of data. Consequently, we can
derive the maximum compression ratio decrease as CR_decrease

= (� +�−1 )×100%. Based on the above equation, the upper bound
of compression ratio decrease depends on the error free compres-
sion ratio and the block size. For example, if the block size is set
to 6×6×6 and the compression ratio is 10, and if the input data is
around 864 MB, then there will be 106 data blocks. The compression
ratio decrease would be bounded within  10−1  <  0.1%, which is
negligible to the overall compression ratios.

5.4 Avoiding round off errors in checksums 6 EXPERIMENTAL EVALUATION
Since the input data and the decompressed data are both floating
point numbers, round off errors in the checksums may introduce
inaccurate memory error corrections. To avoid the impact of round
off error, we treat the floating point numbers as unsigned 32-bit
integers and then calculate checksums based on these integers. We
first describe how the checksum is performed on the 32-bit single-
precision floating point data as an example and then discuss how
to extend it to 64-bit double-precision floating point values.

Given a data block of 32-bit floating point values, for each ele-
ment, we put all its 32 bits in a temporary variable and treat the
bits in that variable as a 64-bit unsigned integer with the first 32
bits being flushed to 0. We then add that integer to the checksum
which is also a 64-bit unsigned integer. Finally, we get the checksum
represented by a 64-bit unsigned integer for this data block. Notice
that the “checksum” here is not equal or approximates to the real

6.1 Experimental Setup
In this subsection, we describe how we set the experiments in our
evaluation, including applications, error injections, and experimen-
tal environment.

6.1.1 Applications. We evaluate our resilient error-bounded SZ
compressor on three real scientific datasets: NYX, Hurricane, and
SCALE-LETKF (SL for short). We also evaluate our fault tolerant
compressor using 20 Pluto images provided by Plantary Data Sys-
tem (PDS) [6]. Those images were taken by New Horizons space
probe [4] in aerospace which is an error-prone environment be-
cause of potential impact of cosmic rays. The description to these
datasets is presented in Table 1. Each application involves multiple
one or multiple fields, such as dark matter density (density of dark
matter), baryon density (density of baryon), and temperature in
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the simulated cosmology space, and velocities in different dimen-
sions (denoted as velocity-X,velocity-Y,velocity-Z for NYX [44] or
denoted as U,V,W for climate/weather [28, 51]). For the Pluto im-
age data, we perform the error-bounded lossy compression such
that the visual quality can be maintained very well, as illustrated
in Figure 2. To indicate the reconstructed data has a high visual
quality, we calculate both peak signal-to-noise ratio (PSNR) and
structural similarity metric (SSIM) [50] between original data and
decompressed data. PSNR and SSIM are two commonly used as-
sessment metrics for visual quality. Our calculation shows that the
PSNR and SSIM are both very high for the reconstructed data when
error bound is 1E-4, indicating a fairly high precision in visual
quality in this test-case.
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then inject a random bitflip error in the checkpoint file and restart
by the bit-flipped checkpoint. We inject 1, 2 or 3 errors and perform
500 runs per test for both fault tolerant SZ and the original SZ.

6.1.3 Experimental Environment. We run experiments on a super-
computer (Bebop) [1]. Inside each computing node are two Intel
Xeon E5-2695 v4 processors totalling 36 cores. The POSIX I/O [52]
with mode, file-per-process, is used for parallel data reading and
writing. We implement our solution in SZ’s source code and call it
ftrsz (or FT-SZ) in the following text. We alter the order of value ad-
ditions in the duplicated computation of data prediction, which can
effectively prevent the compiler from overlooking this operation,
and the execution time overhead can thus be measured correctly.

6.2 Comparison with state-of-the-art

(a) Original image (b) SZ decompressed image

Figure 2: Visualization of Original Data vs. Decompressed
Data (Pluto photo taken by New Horizons [4]; SZ compres-
sion using Value-range based error bound of 1E-4): PSNR =
84.8 dB, SSIM = 0.9936, NRMSE = 5.766E-5

6.1.2 Error injections with two modes.

Evaluation mode A - source-code level error injection. Like most
ABFT work [17, 34], we inject errors at the source code level and
only inject errors to the main data structures. Specifically, as for
the memory errors in input data and quantization bin array, we
randomly choose an index from the array and randomly flip a bit of
the selected data value during the compression. Thus, we simulate
memory error randomness both in time and location. We inject
them after the checksums are applied on input data (i.e., �����[]
and������[]). To simulate the computation errors when calculating
regression coeficients, sampling and estimating compression error
of Lorenzo and regression, we randomly select a data point in a
random block and then change its value by injecting a random
bitflip error. We exclude the evaluation of computation errors in
prediction as it is already protected by instruction redundancy.

Evaluation mode B - system level error injection. Besides the eval-
uation mode A (memory errors happens only to the data we pro-
tected), we also follow a Checkpoint-based Fault Injection (CFI) [10]
model to inject random error(s) to the whole memory consumed
during the compression. We adopt a system-level checkpointing
toolkit - Berkeley Lab Checkpoint/Restart (BLCR) [3], which can
dump the whole memory of a running process to disk as a check-
point and then restart its execution from that checkpoint. In our
experiment, we select a random time stamp during the whole com-
pression period. Then, we set a checkpoint by saving the whole
memory at that time stamp using BLCR and kill the process. We

We compare our error resilient SZ with the classic recomputation
method since there is no other resilience work on lossy compressor
to the best of our knowledge. We did not compare with instruction
redundancy because it cannot protect against memory errors. In the
recomputation method, we run the SZ compression or decompres-
sion twice and check if the two compression results are identical.We
use SZ in the recomputation method as it exhibits both competitive
compression ratio and speed from among all error-bounded lossy
compressors (as verified in exhisting literature [21, 31, 35, 45, 48]).
In spite of the great generality of the recomputation based resilience,
it brings very high overhead in terms of execution time, which will
be presented in Section 6.4.2. Specifically, the SZ-based recomputa-
tion method causes significantly higher cost (100% versus 5%�20%
as shown in Figure 5 and Figure 6) and twice amount of original
compute resources, so it is the least users want to do for their sim-
ulations in practice. As such, we focus on the comparison of our
fault-tolerant SZ versus the original SZ in the following text.

6.3 Evaluation of Independent-block
Compression

We first evaluate our designed independent-block based SZ com-
pression (a.k.a., random-access based compression).

6.3.1 Exploration of The Best Block Size. It is important to deter-
mine an appropriate block size in our independent-block based
compression framework. We determine the best block size by a
comprehensive analysis in terms of rate-distortion with masses of
experiments using different block sizes, as the optimal block size is
hard to find for different datasets by theory.

We evaluate the compression results using the block size of
4x4x4 through 20x20x20. We exemplify the rate-distortion with
cosmological NYX simulation data (velocity_x field) and climate
hurricane simulation data (TCf48 field) with five different block
sizes in Figure 3. As shown in the figure, small block sizes (such as
4x4x4 and 6x6x6) may lead to high PSNR in the cases with low bit-
rates (such as ≤2); large block sizes (such as 8x8x8 � 12x12x12)
would be clearly better than the small block sizes on high bit-rates.
The reason is explained as follows. For the over-small block sizes
such as 4x4x4, the overhead of storing the regression-coeficients
appears relatively high compared to the overall compressed size. For
the over-large block sizes such as 20x20x20, the linear-regression
based predictor cannot get a good fitting for the data. Based on
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Table 1: Description to scientific datasets used in our evaluation

Dataset
NYX [44]

Hurricane Isabel[28]
SCALE-LETKF (SL) [51]

NASA: Pluto [6]

# Fields
6

13
6
1

Dimensions
512X512X512
100X500X500

98X1200X1200
1028X1024

Precision
float
float
float
float

Science
Cosmology

Climate
Weather

Aerospace

Example Fields
Dark matter density, Baryon density, temperature, vel-X, vel-Y, vel-Z

QCLOUD, QGRAUP, QICE, QSNOW, PRECIP, U, V, W, etc.
W, V, U, QR, QC, PRES

all are 2D image files with different angles or distances.

our experiments with multiple simulation data, we set the block
size to 10x10x10 in our implementation because it has much better
compression ratios (i.e., low bit-rate) in the hard-to-compress cases
than other block sizes, while it exhibits comparative compression
ratios with other block sizes in the cases with low bit-rates.

110                                                                   110

100                                                                   100

90                                                                     90

80                                                                     80

70 blocksize_4 70 blocksize_4
blocksize_6                                                      blocksize_6
blocksize_8                                                      blocksize_8

50 blocksize_10 50 blocksize_10

40
blocksize_12

40
blocksize_12

Bit Rate Bit Rate
(a) NYX velocity_x                                 (b) Hurricane TCf48

Figure 3: Rate distortion with different block sizes

6.3.2 Evaluating independent-block decompression. The biggest ad-
vantage of the independent-block based implementation is very
fast decompression speed if the users just want to extract a small
sub-block of data. Moreover, as we discussed in Section 5.3, this
design can also help correct the errors very quickly upon a detec-
tion of problematic blocks by checksums. In Figure 4, we present
the decompression times with different data sizes compared to the
whole dataset. The x-axis indicates the ratio of the decompressed
data size to the whole data size. In the figure, we observe that the de-
compression time decreases approximately linearly with decreasing
data size in the decompression, which confirms the high eficiency
of random-access decompression.

6.4 Error free experimental results
One key indicator is how much overhead (including compression
ratio overhead and execution time overhead) would be introduced
by the silent error detection in the compressor.

5  
Dark Matter Density
Velocity X

4                                 0.45

0.4

0.35
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2.5                                 0.25

0.2

0.15
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Ratio of Decompressed Data Size to The Whole Data Size

Figure 4: Eficiency of random access decompression

Table 2: Compression ratio degradation of random-access SZ
(rsz) and fault-tolerant random-access SZ (ftrsz)

error bound: 1E-3 1E-4 1E-5     1E-6 1E-3 1E-4 1E-5 1E-6

NYX Hurricane
sz: 17.0 7.7 4.6 3.1 8.4 5.1 3.1 2.4

rsz decrease: 8.7%      3.7%      3.1%     3.2%     8.5%     4.7%     1.2%     1.5%
ftrsz decrease: 10.7% 4.7% 3.7% 3.6%     9.3%     5.2%     1.6%     1.7%

SCALE-LETKF (SL) Pluto
sz: 19.1 8.7 5.2 3.7 7.1 4.0 3.4 3.2

rsz decrease:      23.6% 21.3% 13.5%     9.1%     4.2%     0.3%     0.1% 0%
ftrsz decrease: 24.9% 21.9% 13.9%     9.4%     5.6%     0.8%     0.1% 0%

6.4.1 Compression ratio overhead. We evaluate the the compres-
sion ratio overhead in fault-tolerant compression mehtods. Table 2
presents the compression ratios of the original SZ (denoted as
sz) and the relative decreases of compression ratios under the
independent-block based SZ (or random-based SZ, abbreviated as
rsz) and fault-tolerant random-access SZ (denoted as ftrsz), respec-
tively. It is observed that our proposed solution incurs only 0�10.7%
degradation on compression ratio for NYX, Hurricane and Pluto
data, and the degradation level decreases with decreasing error
bounds. The SL dataset exhibits 9.4�24.9% compression ratio degra-
dation, which mainly comes from the overhead introduced by the
random-access design. The general reason for the degradation of
compression ratios that we store the checksum�����[] during the
compression in order to verify the correctness of the decompressed
data. In principle, the key reason for SL dataset getting more com-
pression ratio degradation is that the original SZ uses data across
blocks in its prediction while the random-access SZ can only uses
the data confined within each block in the prediction, which may
cause lower prediction accuracy especially when the simulation
data is relatively smooth in space.

6.4.2 Execution time overhead. We evaluate the time overheads
introduced by our fault tolerance codes added to SZ when there
are no errors. We show the results in both compression and decom-
pression in Figure 5. We can see from Figure 5 that in most cases,
the rsz and ftrsz incur about 5�20% overheads in compression time
and 2�30% overheads in decompression time. Such time overhead,
actually, are negligible compared to the total I/O time on a PFS
because of potential I/O bottleneck, which will be demonstrated in
the end of this section.

We also compare ourerror resiliencesolution with recomputation-
based resilience. The compression and decompression time over-
heads of recomputation-based resilience is shown in Figure 6. Aswe
can see, the experimental overheads are quite consistent with the
analytical complexity overheads which is around 100%. Notice that
recomputation-based resilience only provides error detection abil-
ity. If error correction is needed, a third execution will be incurred
which leads to roughly 200% overheads.
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Table 3: Percentage of runs whose maximum absolute error is within error bounds in sz and ftrsz

error bounds:
sz
ftrsz

injecting errors in input data
Successful runs with correct decompressed data
1E-3 1E-4 1E-5 1E-6
60% 57% 49% 48%
100% 100% 100% 100%

injecting errors in quantization bin array
Successful runs with correct decompressed data Normal runs without core-dump segmentation faults

1E-3 1E-4 1E-5 1E-6 1E-3 1E-4 1E-5 1E-6
3% 1% 1% 0% 34% 34% 49% 54%
100% 100% 100% 100% 100% 100% 100% 100%

5 0

4 0

3 0

2 0

1 0

0           
1 E - 3 1 E - 4 1 E - 5

Error  b o u n d s

5 0
N Y X
H u r r i c a n e   4 0
S L

P luto
3 0

2 0

1 0

1 E - 6
0           

1 E - 3 1 E - 4 1 E - 5
Error  b o u n d s

N Y X

H u r r i c a n e

S L

P luto

1 E - 6

34�54% runs can complete without segmentation faults; and only
0-3% runs can complete with correct decompressed data.

As for the extra time overheads introduced by the detection/cor-
rection of errors in our fault tolerance method, we conduct error
injected experiments for all three datasets. The extra overheads
compared to ftrsz in an error-free case are all less than 1% for any
error bound. This is because the case with injected errors only
incurs one more block of checksum calculation, which is negligible
to the overall execution time.

(a) Compression (b) Decompression

Figure 5: Compression time and decompression time over-
heads. Dash lines are random access SZ; solid lines are fault
tolerant random access SZ.

Compression time overheads Deompression time overheads

NYX       Hurricane        SL        Pluto NYX       Hurricane        SL        Pluto

125.00% 125.00%

100.00% 100.00%

75.00% 75.00%

50.00% 50.00%

25.00% 25.00%

0.00% 0.00%
1.00E-03        1.00E-04        1.00E-05        1.00E-06 1.00E-03        1.00E-04        1.00E-05        1.00E-06

Error bounds Error bounds

(a) Compression (b) Decompression

Figure 6: Compression time and decompression time over-
heads of re-computation based resilience.

6.5 Error injected experimental results
6.5.1 Resilience against memory errors in input and quantization
bin array (evaluation mode A). We first inject memory errors into
the input array and bin array to verify that our proposed solution
can still ensure the decompressed data within user’s error bounds.

In this experiment, we observe that various fields exhibit similar
results. As such, we present the results based on the field of dark
matter density in NYX dataset as an example. For every error bound,
we repeat running sz and ftrsz for 100 times, each with randomly
injected memory errors in input and quantization bin array.

As shown in Table 3, our proposed fault tolerance solution can
always yield correct decompressed results when the memory er-
rors are injected in input data or quantization bin array. The 100%
correctness of the decompressed data under ftrsz also means that
our solution is immune to the round-off errors. In comparison, for
the original SZ, we can see that only 48�60% runs can yield error
bounded decompressed data when the input data experiences mem-
ory errors. As the memory error corrupts a value in the bin array,
the situation gets worse because some of the memory errors may
cause core-dump segmentation fault, which happens in the case
that the corrupted values turn out to be a fresh value such that it
is beyond the range of the constructed Huffman tree. As shown in
the right side of Table 3, under the original SZ compression, only

6.5.2 Resilience against memory errors happening anywhere (eval-
uation mode B). Figure 7 presents the experimental results of our
solution (ftrsz) against the original SZ in the evaluation mode B
(i.e., by injecting the errors into the whole memory during the
compression). It is observed that our solution can improve the per-
centage of successful non-crash runs by 10%�20%, and improve
the percentage of the runs with correct decompression results by
30%�170%. Our solution can substantially reduce the crash runs
because we protect the bin arrays, which may run into core-dump
segmentation faults when being injected errors, as shown in Table 3.
In addition, as shown in Figure 7 (b), when injecting one and two
memory errors respectively, about 92% of running cases lead to
correct decompressed data (with guaranteed error bound) under our
solution, while the original SZ suffers very low percentage (71.2%
and 47%, respectively). For our solution, the 8% failed cases with
incorrect decompression data are likely due to the error injec-tion
before the checksum execution at the beginning period, which
means the checksum is calculated based on corrupted input data.
Thus, it will not be able to detect future memory errors.

100% 100%

80% 80%

60% 60%

40% 40%

20% 20%

0% 0%
1 error 2 errors 3 errors 1 error 2 errors 3 errors

# errors injected during compression # errors injected during compression

Original SZ Original SZ
Our Solution (ftrsz)                                                Our Solution (ftrsz)

(a) Runs without crashes (b) silent error

Figure 7: Experimental results using evaluation mode B

6.5.3 Resilience against computation errors during compression.
As discussed in Section 4.1.1, the computations of regression co-
eficients, sampling and estimating compression error are error
resilient though computation errors will impact the compression
ratio. Figure 8 shows our experimental results about the impact to
compression ratios. Computation errors are randomly injected and
each experiment is repeated 50 times. The compression ratio de-
crease is calculated by taking the lowest compression ratio among
50 trials. As can been seen, the compression ratio decrease is within
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2% for up to 10 computation errors injected under the error bound
of 1E-6 or 1E-3. The compression ratios in an error-free case are
4.8023 and 1.8112 for these two error bounds, respectively.

For each run of decompression, we injected one computation
error to a random block and noted all theerrors can be 100% detected
by checksum and corrected by re-executing decompression for that
block. Again, the extra overheads compared to fault tolerant random
access SZ in error-free cases are all less than 1% for all datasets in
all error bounds.

6.6 Parallel experimental results
As mentioned in Section 1, error-bounded lossy compressor can be
particularly helpful for WAN data transfers (e.g., through Globus
[23]), in which large amounts of data are loaded from disk (or paral-
lel file system (PFS)), compressed at the data sender in parallel, and
then decompressed and written to the disk or PFS by the receiver in
parallel. Compression can accelerate the overall data transferring
throughput significantly because WAN bandwidth is in general
unstable and relatively low. According to [40], Globus bandwidth
on WAN is only several GB/s even with a high concurrency (trans-
ferring 500 files concurrently), which is still far less than the parallel
compression throughput that can reach tens to hundreds of GB/s
depending on the number of cores.

In the following text, we evaluate the overhead of our resilient
compressor over the total data reading/writing time (including
compression and decompression time) by running the parallel com-
pression/decompression on a supercomputer, and then evaluate the
performance gain in data transferring by a simulation.

We evaluate the I/O performance with breakdown of the execu-
tion times (compression/decompression time + data writing/reading
time) by processing the NYX dataset in parallel on the supercom-
puter Bebop [1] with an error bound of 1E-4. We run a weak-scaling
experiment with different execution scales (256�2,048 cores), in
which each rank kept the same data size (3GB) to process. Results
are shown in Figure 9. The performance results are fairly stable
with low variance since the total time in each test is relatively long
(100�800 seconds) , and all the performance-related factors includ-
ing compression ratio, compression time, and disk I/O bandwidth
are deterministic or stable. As for the total data dumping time, it
is observed that our error-resilient SZ incurs only 7.3% overhead
at the scale of 2,048 cores. Our error-resilient SZ has only 6.2%
overhead on the data dumping performance when using 2k cores
to read and decompress data. The key reason for the very limited
overall overhead is that the total I/O performance is dominated by
compression ratio because of the I/O bottleneck of the PFS.
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Figure 9: Performance of data dumping/loading (sz vs. ftrsz):
yellow parts represent the compression and decompression
time, and blue part represents disk I/O time

From Globus network bandwidth characterization results be-
tween different end-points, we can also get simulated transferring
times with and without our fault-tolerant lossy compression. The
data transferring simulation involves all steps from loading data
from sender’s disk to writing data in the receiver’s disk. The sim-
ulation is based on the real performance and profiled by running
SZ to compress NYX dataset on the Bebop supercomputer (e.g.,
disk reading speed is �1.5GB/s, disk writing speed is �1.2GB/s,
2048-core parallel compression throughput is about 150GB/s, and
compression ratios are shown in Table 2). The only emulated re-
source is the network bandwidth: 1GB/s to 8GB/s, which is also
based on real-world experiments [40]. Figure 10 clearly shows that
when transferring 1PB of data on Globus across different sites, the
compression techniques can significantly lower the overall transfer-
ring time by 50%�68% (from 30 days to 10�15 days), depending on
the status of network bandwidth. Ftrsz introduces totally negligible
overhead (less than 2%) compared with the original SZ compressor.
In fact, many of today’s supercomputers such as Theta [2] and
Summit [5] have I/O bandwidth higher than 100+GB/s. If the aggre-
gated disk reading and writing bandwidths are both 50GB/s, our
simulation shows that the overall data transferring time under ftrsz
will be reduced to 1 day from 12 days. Note that ftrsz also protects
the data against different types of silent errors.
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Figure 10: 1PB Data Transferring Time on Globus
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7 CONCLUSION
In this paper, we propose a novel resilient strategy for the SZ lossy
compressor. We develop an independent-block based compression
model for SZ to improve its robustness. We analyze each subroutine
of the SZ framework and then design a series of fault tolerance
strategies for the fragile code segments. We perform the evaluation
by processing three well-known scientific datasets on a cluster with
up to 2048 cores and observe the following insights:
• Our solution can control the time overhead to about 10%, with a

degradation of compression ratio limited within �5%.
• When injecting one and two silent errors respectively during the

compression, our solution can have about 92% running cases get
correct decompressed data (with guaranteed error bound), which
is significantly higher than that of the original SZ (71.2% & 47%,
respectively).

• Our solution suffers from very low fault-tolerance overhead. The
overall time increases only 7.3% when loading + compressing the
data on a supercomputer’s PFS, and increases only 6.2% when
decompressing + writing the data.

• Our solution introduces ≤2% overhead when transferring 1PB of
data on WAN/Globus, and can reduce the transferring time by
50%�68% compared with transferring original data.

In the futurework,we plan to explore resilient strategies formore
error-bounded lossy compression models such as block-transform
based model [38] and Higher-order singular value decomposition
(HOSVD) based model [13].
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
Please first follow the README in the FT-SZ github link to install
the software: FT-SZ. The installation process is the same with the
original SZ (https://github.com/szcompressor/SZ). Just remember
to use "–enable-randomaccess" options to enable independent block
compression when compile. After installation, run some example
in the example directory to make sure no error happen.

Experiment in Section 6.2: independent-block compression This
section evaluate the compression ratio and PSNR on two datasets
(NYX and Hurricane both can be found in Artifact 2: SDR Bench).
The curves in Figure 3 are obtained by changing the compression
error bounds so that we have different PSNRs with different com-
pression ratio (or bit rates). We repeat the process for different data
block sizes. In Figure 4, we evaluate the decompression eficiency
when we want to decompress only part of the data. This is set
different start/end coordinates you want to decompress. (You can
see the help info by running the compiled binary named sz without
any arguments so that you know how to pass the arguments to
decompress partial data).

Experiment in Section 6.3: compression overhead in compression
ratio and compression/decompression rate in error free case. We
evaluate based on three versions of SZ. 1. sz: sz without random
access enabled; 2. rsz: sz with random access enabled but without
fault tolerance; 3. ftrsz: sz with both random access and fault tol-
erance. Notice ftrsz is this papers contribution. And rsz could be
seen as the overhead breakdowns when we only introduce random
access. Just run those three versions of sz on the four datasets with
the reported error bounds in the paper multiple times (compres-
sion ratio is deterministic but run time is non-deterministic. so we
run multiple times and take the average). We could get the results
reported in table 2 and figure 5.

Experiment in Section 6.4: resilience evaluation with injected
errors We inject errors with two modes. One mode is at source
code level and the other is at system level. The source code level
inject will randomly select an element from input array or quan-
tization bin array. And then it randomly flip a random bit in that
element from 1 to 0 or 0 to 1 (one can search "flip" to see the im-
plementation of injection in the file "sz/src/sz_float.c"). We do the
same thing for sz and ftrsz multiple times and observe if the pro-
gram crash or succeed with silent errors. Results can be seen in
Table 3. Then we inject error at system level for the whole mem-
ory using check-point restart tool. The tool can be found in the
paper reference of BLCR (https://crd.lbl.gov/departments/computer-
science/class/research/past-projects/BLCR/). The injection is as fol-
lows. We profile the general run time of the execution so that we
know how long a program will take. Then we use BLCR to stop
the program at any random time to dump the memory to file. Then
we terminate the program. Next, load the checkpointing file into
memory and flip a bit. Then continue the program again with the
error-injected checkpoint file. Thus, we observe the error cases:
crash or finish with silent errors. Results are reported in Table 3
and figure 6.

Section 6.5: parallel experiment One can follow the README
to run our parallel experiment. The readme can be found in
https://github.com/sli049/FT-SZ/tree/master/Parallel_experiment.
One can also see one of our parallel job script (test_256.job) when
running at 256 cores in the same github directory. The Globus
simulation code can be found in https://github.com/sli049/FT-
SZ/tree/master/Globus_sim_exp.

Author-Created or Modified Artifacts:

Persistent  I D :  https://github.com/sli049/FT-SZ
A r t i f act  name: FT-SZ

Persistent  I D :  https://sdrbench.github. io/
A r t i f act  name: SDR Bench

Persistent  I D :  https://github.com/sli049/FT-SZ/blob/ �

↩→        master/Horizon-data.tar.gz
A r t i f act  name: Pluto NASA data

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: 36 cores of Intel Xeon E5-2695 v4
processors per node, POSIX I/O, Omni-Path Fabric Interconnect

Operating systemsandversions: Operating System: CentOS Linux
7 (Core) CPE OS Name: cpe:/o:centos:centos:7 Kernel: Linux 3.10.0-
1127.18.2.el7.x86_64 Architecture: x86-64

Compilers and versions: gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-
39)

Applications and versions: SZ 2.1

Libraries and versions: Intel(R) MPI Library for Linux* OS, Ver-
sion 2017 Update 3 Build 20170405 (id: 17193), ZSTD and Zlib ver-
sions are included in source code

Key algorithms: SZ 2.1, checksum, ABFT

Input datasets and versions: Scientific data sets can be
found in Artifact 2; NASA data can be downloaded with
this link: https://pds.nasa.gov/datasearch/subscription-service/SS-
Release.shtml.

URL to output from scripts that gathers execution environment
information.

https://github.com/sli049/FT-SZ/blob/master/envs.txt


