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Abstract—Data-driven predictive maintenance reduces
manufacturing downtime, and complex process-sensing
relationships encourage the use of Deep Learning to auto-
matically extract features. However, labeled training data
is often lacking, and novel fault conditions may occur.
Practical deployments must learn from unlabeled data, adapt
to emerging conditions, and do so without prior knowledge
of when the condition changes. Combining state-of-the-art
Self-Supervised Learning (SSL) with Continual Learning (CL)
facilitates adaptation as new conditions are observed. This
study proposes a framework for adaptive online condition
monitoring based on Barlow Twins SSL and novel Mixed-Up
Experience Replay (MixER) for unsupervised CL. Tailored for
1D sensing data, Barlow Twins effectively clusters unlabeled
data. When combined with MixER, the system outperforms
state-of-the-art unsupervised CL on a motor health condition
data set, reaching 92.4% classification accuracy. Future
work will demonstrate human-in-the-loop integration for real
manufacturing environments.

Index Terms—Condition Monitoring, Continual Learning,
Deep Learning, Predictive Maintenance

I. INTRODUCTION

DATA-driven predictive models show promise for assessing
machine health in real-time and enabling cost-saving

Predictive Maintenance. Advances in Deep Learning (DL) can
automatically extract valuable features from Condition Monitor-
ing (CM) data when complex process-observation relationships
are not well understood [1]. However, significant roadblocks
hinder practical deployments since these models assume that
test-time conditions match training conditions [2]. Training data
largely comes from normal conditions, so deployed models
often encounter unknown faults without ground truth labels [3],
[4]. Considering these constraints, practical predictive models
for CM must satisfy certain requirements:

R1) learn from unlabeled sensing observations,
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R2) learn novel conditions not represented in the initial
training data, and

R3) adapt to these unpredictable shifts in data on the fly.
Self-Supervised Learning (SSL) could alleviate R1 through

specialized tasks with automatically generated labels [5].
These tasks are designed to extract information related to
downstream applications. Simple approaches have included
using autoencoders and statistical labels when missing ground
truth labels [6], [7]. Using the more advanced Deep InfoMax [8]
approach, Li et al. [9] learned features from 2D grayscale
images derived from vibration signals, later fine-tuning the
network with limited labeled data to classify bearing and
gearbox faults. Alternatively, Wei et al. [10] used A Simple
Framework for Contrastive Learning of Visual Representations
(SimCLR) [11] to learn features from 1D vibration signals and
diagnose bearing and cutting tool faults. However, this study
relied on stacking 1D vibration data into 2D images instead
of developing physically motivated approaches for 1D signals.
Recognizing this, Peng et al. [12] applied SSL directly on
vibration signals using Bootstrap Your Own Latent [13]. The
positive results encourage further work to leverage state-of-the-
art SSL like Barlow Twins [14] to realize R1 for CM.

Practical models must also distinguish novel conditions (i.e.,
emerging faults) not represented in the original training data set
(R2). Zhang et al. [3] fit a Gaussian model to the latent features
of an autoencoder and flagged out-of-distribution features at
test time as a novel condition, but the model was inconsistent
and could only identify a single new fault. Other methods have
focused on detecting novel conditions within offline historical
data. Li et al. [15] leveraged Domain Adversarial Transfer
Learning to detect the an emerging fault in unlabeled target
data. A follow-up work applied iterative K-means to count the
number of emerging conditions [16]. Similarly, Chao et al. [4]
trained a variational autoencoder on offline data and traded
K-means for OPTICS, a density-based clustering algorithm, to
identify novel faults. However, both studies required offline
data sets and neither produced an updated model that could
classify both old and new faults.

Incrementally learning tasks as described by R2 is called
Continual Learning (CL). The goal of CL is to maximize
performance across an ordered sequence of tasks processed
one-by-one. This differs from multitask learning because the
tasks must be learned sequentially instead of simultaneously and
from transfer learning because performance must be maximized
across all tasks instead of just the target task [17]. Existing
work has demonstrated using Elastic Weight Consolidation [18]
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or Memory Aware Synapses [19] to predict the health condition
of turbofan engines across varying conditions [20], [21] and
assess the quality of simulated products [22]. Xing et al. [23]
took a related approach to transfer fault knowledge when
process parameters changed, but all these methods violated R3
by requiring task change information (e.g., when an emerging
fault occurs) and often violated R1 by requiring labeled data.
Dark Experience Replay (DER) circumvented the former by
maintaining a small buffer of past data (i.e., experience) and
including (i.e., replaying) it in the training objectives alongside
new data to avoid forgetting [24]. Lifelong Unsupervised Mixup
(LUMP) combined SSL and DER for unsupervised CL capable
of satisfying R1, R2, and R3 but has not yet been tested for
CM [25].

Building on advancements in SSL and CL, this study
proposes a novel framework for adaptive online CM that applies
Barlow Twins to 1D time series data from rotating machinery
and invents Mixed-Up Experience Replay (MixER) that extends
LUMP. This paper’s contributions are threefold:

1) the novel application of Barlow Twins SSL to CM data
with new time series augmentations for unlabeled 1D
signals to achieve R1,

2) a novel adaptive online CM architecture and pipeline that
proposes Mixed-Up Experience Replay (MixER) for CL
to achieve R2 and R3, and

3) experiments validating MixER by comparing cluster-
ing performance of state-of-the-art unsupervised CL
approaches on unlabeled data from sequentially observed
motor health conditions.

In the remainder of this paper, Section II presents related work
in SSL and CL, Section III presents the proposed methodology,
Section IV describes validation experiments, Section V dis-
cusses the results, and Section VI offers concluding thoughts.

II. RELATED WORK

The proposed adaptive online CM framework draws from
previous SSL and CL literature.

A. Self-Supervised Learning
Self-Supervised Learning (SSL) learns representations from

unlabeled data through pretext tasks [26], [27] or domain-
specific data augmentation. For the latter, SSL treats ran-
dom augmentations of the same data example as a single
pseudoclass and learns to map them to similar features [28].
Effective augmentations randomize unimportant attributes
without destroying semantic information. Many approaches
rely on contrastive loss that consolidates features from the
same pseudoclass while distancing features from different
pseudoclasses [5], [8]. Notable attempts to address difficulties
with contrastive learning include Momentum Contrast [29],
its derivatives [11], [13], and Simple Siamese Representation
Learning [30]. To circumvent the drawbacks altogether, Barlow
Twins [14] replaced contrastive loss with cross-correlation loss
that encouraged each dimension of a feature projection to be
independent from the rest but correlated with itself across
augmentations of the same data example. This achieved state-
of-the-art performance without specialized network layers or
training needed by contrastive learning.

B. Continual Learning Strategies
While Barlow Twins could satisfy R1 of adaptive on-

line CM, R2 and R3 motivate exploration of Continual
Learning (CL). Popular approaches like Learning without
Forgetting [31], Elastic Weight Consolidation [18], Memory
Aware Synapses [19], and Incremental Classification and
Representation Learning [32] performed incremental learning
at discrete task boundaries and did not support continuously
changing data. In contrast, Dark Experience Replay (DER)
opted to train continuously while using a fixed-length set
of randomly saved examples to capture past experience [24].
Reservoir sampling filled the buffer uniformly throughout the
learning history [33]. This experience was then replayed in the
loss function to mitgate forgetting. The DER loss function was

LDER = Lsup(x, y) + α∥gϕ(x̃)− z̃∥22 (1)

where Lsup(x, y) was the supervised loss on new examples,
gϕ(x̃) was the classifier’s output logits for buffer example
x̃, and z̃ was the original logits for x̃. The hyperparameter α
controlled the strength of regularization preventing the classifier
from changing its predictions for past experience. The authors
also proposed extending DER to DER++ with another loss
term to promote memory of past experience:

LDER++ = Lsup(x, y) + α∥gϕ(x̃)− z̃∥22 + βLsup(x̃, ỹ) (2)

If the data distribution changes significantly, forcing the model
to match its old predictions may be counterproductive [24].
There could be another way to arrive at the same class
prediction that better supports the distribution shift. Thus,
the DER++ loss function included teaching the model past
experience with ground truth labels ỹ. Training with the ground
truth labels ỹ could cause overfitting to past experience [34],
but combining this with the α term can improve performance.

However, DER and DER++ did not support unlabeled data.
In response, Madaan et al. [25] adapted DER to unlabeled data
by replacing the classification task with SSL. To further improve
performance, the authors proposed Lifelong Unsupervised
Mixup (LUMP) that linearly blended examples of new data with
experience from the replay buffer. LUMP was implemented by
modifying the DER loss function (1):

LLUMP = LSSL(x
′) + α∥gϕ(x̃)− h̃∥22 (3)

LSSL is the SSL loss (e.g., SimSiam or Barlow Twins) on
augmentations of a “mixed-up” seed input x′ = λx+(1−λ)x̃
where x is the batch from the current task, and λ is the mixing
hyperparameter. Although λ could be sampled from a Beta
distribution, the experiments used a fixed value. The second
term encourages the model to preserve the same projections
h̃ for experience x̃ in the replay buffer. With state-of-the-art
results for image classification, LUMP introduced a promising
solution for adaptive online CM.

III. PROPOSED METHOD FOR ADAPTIVE ONLINE
CONDITION MONITORING

This study presents a novel pipeline for learning emerging
faults from unlabeled sensing data through the proposed Mixed-
Up Experience Replay (MixER) with Barlow Twins.
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Fig. 1. The proposed system architecture for CL to monitor machine health. Feature extractors connected by dashed lines use the same weights.

TABLE I
AUGMENTATION TRANSFORMATIONS

Random Flip x = -x if rand() < 0.5 else x

Random Scaling k = randuniform(0.1, 1.0)
x = k * x

Random Jitter n = randint(0, x.shape[-1])
x = concat(x[:,n:], x[:,:n])

Random Masking n = randint(0, x.shape[-1] - 64)
x[:,n:n + 64] = 0

A. Proposed System for Continual Learning

Fig. 1 shows a framework for adaptive online CM using
Mixed-Up Experience Replay (MixER) with Barlow Twins
SSL for CL on unsupervised time series signals. Acceleration
and current sensors collect high-frequency time series signals
from rotating machinery for the predictive model (A in Fig. 1).

The framework applies simple transformations (B in Fig. 1)
to diversify the signals without destroying important semantic
(i.e., condition) information. The augmentations consist of
random flipping, scaling with a factor from 0.1 to 1.0, jitter
up to the length of the window, and masking (zeroing) a
random 64-point section of the signal (see Table I). From a
physical standpoint, these transformations randomize amplitude
and phase to obscure time series artifacts while preserving
frequency content important for rotating machinery signals.

Augmented examples are passed to Barlow Twins SSL (C
in Fig. 1) with three 1D CNN residual blocks (see Fig. 2)
that extract features while improving backward gradient flow
versus regular CNN layers. A projector embeds the features
into a metric space where cross-correlation loss is applied.
Representing the CNN encoder as fθ with parameters θ and
projection head gϕ with parameters ϕ, the projections from
batch x ∈ RN×L of N examples are h = gϕ(fθ(x)). The
normalized values are ĥ = (h − h̄)/σh where h̄ and σh are
the mean and standard deviation of each feature across the

batch. By augmenting the input twice, the model produces
two projections ĥa, ĥb ∈ RN×M , and calculates M×M cross-
correlation matrix:

R = ĥ
⊤
a ĥb/N (4)

The Barlow Twins loss function is

LBT =
∑
i

(1−Rii)
2
+ γ

∑
i

∑
j ̸=i

R2
ij (5)

where the first term is an “invariance term” that encourages
similar features from the same seed example, and the second
term is a “redundancy reduction term” (with scaling factor γ)
that encourages independence among features [14].

To adapt the representation to emerging faults, this study
proposes the novel MixER algorithm (D in Fig. 1). MixER
combines LUMP with DER++, training the Barlow Twins
model on mixed-up examples of both emerging faults and
past experience. Mixing up past experience improves data
diversity to prevent overfitting. The machine condition can
then be classified for predictive maintenance (E in Fig. 1).

B. Mixed-Up Experience Replay (MixER)
LUMP combined Barlow Twins with DER, mixing new

examples with those from the experience replay buffer, but
left out the DER++ β objective. The proposed Mixed-Up
Experience Replay (MixER) demonstrates using this β term
on unlabeled experience with linear mixup:

LMixER = LBT(x
′)︸ ︷︷ ︸

learn emerging
faults

+α∥gϕ(fθ(x̃))− h̃∥22︸ ︷︷ ︸
penalize changes in

model behavior

+βLBT(x̃
′)︸ ︷︷ ︸

re-learn past
experience

(6)

LBT(x
′) is Barlow Twins cross-correlation loss on x′ = λx+

(1− λ)x̃ using past experience x̃ (like LUMP). Unlike Lump,
MixER adds the β term in which LBT(x̃

′) is Barlow Twins
loss on x̃′ = λ2x̃a+(1−λ2)x̃b (i.e., linear mixup of examples
from the experience replay buffer with ratio λ2). While LUMP
uses a constant λ, MixER randomly samples the mixing ratio
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Fig. 2. (Top) data augmentation, feature extraction layers, and projector in the Barlow Twins model; (Bottom Left) data augmentation sequence;
(Bottom Right) 1D convolutional residual block of the feature extractor

λ2 from a Beta distribution: λ2 ∼ Beta(ν, ν). The first term
allows the model learn emerging faults, the second penalizes
changes in the model’s behavior to prevent forgetting, and the
third enables the model to re-learn past experience. The β term
explicitly reminds the model of past experience, and the α
term prevents overfitting to specific historical examples.

C. Adaptive Online Condition Monitoring with MixER
Fig. 3 surveys a data processing pipeline for adaptive online

CM using the proposed framework. While the model could
be pretrained offline, it can also be deployed without prior
training. Once features are extracted, MixER loss provides
the gradients to refine the representation via Barlow Twins
on unlabeled data (R1) without forgetting previous conditions
(R2). Reservoir sampling curates the experience replay buffer
of 100 256-point windows without needing condition change
points (R3). The system flags new feature clusters that could
indicate emerging faults and enables experts to decide if they
are a fault or a benign change in process parameters. Within
this framework, this study seeks to validate MixER-based CL.

IV. EXPERIMENTS

Since MixER depends on Barlow Twins, experiments are
designed to verify Barlow Twins can learn from unlabeled
time series data containing all eight operating conditions.
Subsequently, CL experiments with emerging faults compare
the feature representations produced by DER, DER++, LUMP,
and MixER from unlabeled data.

A. Motor Condition Data Set
Vibration and current data were collected from eight motor

conditions using the SpectraQuest Machinery Fault Simulator

(MFS) in Fig. 4. The conditions were normal operation (N),
faulted bearings (FB), bowed rotor (BoR), broken rotor (BrR),
misaligned rotor (MR), unbalanced rotor (UR), phase loss
(PL), and unbalanced voltage (UV). The MFS was run at 2000
RPM and 3000 RPM with 0.06 Nm and 0.7 Nm loads. Data
from vertically and horizontally mounted accelerometers and
a current clamp were sampled at 12 kHz during steady state
operation for 60 seconds. Each signal was normalized to [-1,
1] and split into 256-point windows.

B. Experimental Objectives

Before simulating emerging faults, experiments must verify
that Barlow Twins with the augmentations from Table I is
suitable for CM time series data. Training Barlow Twins with
all the motor condition data at once establishes a baseline upper
limit of performance. The experiments assess representation
quality via the accuracy of a linear classifier (e.g., a single fully-
connected neural network layer with no activation function),
following standard practice in the literature [14], [25], [30].
This linear classifier is not part of the proposed framework
but serves as a consistent way to evaluate features. Five SSL
variations are tested: one with all augmentations and four that
each drop out a different one. If performance decreases when
one is removed, this could reveal what physically meaningful
information the Barlow Twins model learns.

Next, emerging fault experiments evaluate the ability of
DER, DER++, LUMP, and MixER to replicate the baseline
performance in the more difficult CL situation. To demonstrate
catastrophic forgetting, a Fine-Tune model is trained without
using experience replay or mixup. All examples from the
same condition are grouped together to create eight equally
sized, homogeneous data sets of 11248 examples subdivided
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Fig. 3. Flowchart of data processing pipeline for adaptive online CM

into 80%/10%/10% splits for training, validation, and testing,
respectively. These eight tasks are then randomly ordered
since some orders may be easier to learn than others. Each
experiment starts by training the model on the first task’s data
(containing a single motor condition) without labels, simulating
R1. Training continues for 50 epochs to allow the feature
representation to converge [24], [25]. The first task’s data set
is then replaced with that of the second task (also containing
a single condition), and training resumes without notifying the
model of the change. This simulates the occurence of a new,
unknown health condition as described by R2 and R3. After
50 epochs the data set is again replaced, and this continues
until all eight tasks have been shown to the model. After each
task, the model is evaluated on all conditions observed to that
point in training. For all experiments, the batch size is 256,
and the experience replay buffer holds 100 examples that are
curated via reservoir sampling.

C. Experimental Implementation

All models and experiments are developed in PyTorch. When
testing Barlow Twins without emerging faults, each of the five
combinations of augmentations is repeated five times with
different random seeds. The Barlow Twins model is trained

Fig. 4. SpectraQuest Machinery Fault Simulator (MFS)

TABLE II
HYPERPARAMETER SEARCH RANGES

Hyperparameter Values

η (learning rate) [0.0005, 0.001, 0.002, 0.01]
α (penalize output changes) [0.1, 0.5, 1.0]
β (re-learn past experience) [0.5, 1.0, 2.0, 5.0]
λ (LUMP mixup) [0.1, 0.4, 0.8]
ν (MixER Beta distribution) [0.5, 1.0, 2.0]

TABLE III
SELECTED HYPERPARAMETER VALUES

Method η α β λ ν

Fine-Tune 0.0005 – – – –
DER 0.0005 0.1 – – –
DER++ 0.001 0.1 0.5 – –
LUMP 0.001 0.5 – 0.4 –
MixER 0.001 0.1 1.0 0.4 1.0

with the Adam optimizer and learning rate of 0.0002 for 100
epochs on data from all eight motor conditions. The subsequent
CL experiments contain several hyperparameters to control
regularization for DER, DER++, LUMP, and MixER (i.e., α,
β, λ, and ν). Hyperparameter values and learning rate are
selected through a grid search with 10% of the training data
(see Table II). Performance is scored via validation accuracy
of a linear classifier, and the resulting values are shown in
Table III. With these hyperparameters, each CL model is trained
25 times: five random seeds for each of five random orderings
(see Table IV) of the eight motor conditions. Experiments
utilize an NVIDIA P100 GPU to accelerate training.

V. RESULTS AND DISCUSSION

After training, the feature extractors are frozen before
assessing representation quality with a linear classifier.
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TABLE IV
CONDITION ORDERINGS

Task 1 2 3 4 5 6 7 8

1 PL FB N UR BoR BrR MR UV
2 UV N MR FB BoR UR PL BrR
3 BrR N UR BoR FB MR PL UV
4 FB BrR UR BoR UV N PL MR
5 N BoR MR UV FB UR BrR PL

Fig. 5. Effect on accuracy of removing augmentation transformations

A. Barlow Twins with Time Series Transforms

The linear classifier reaches 99.6±0.0% accuracy on the
features produced by the Barlow Twins model trained on
all eight motor conditions (i.e., no simulation of emerging
faults). This indicates that Barlow Twins can learn meaningful
representations of vibration data when using the augmentations
in Table I. Fig. 5 shows the change in accuracy when individual
transformations are removed. Accuracy remains high without
the random flip or scaling and falls less than 10 points without
masking. However, it drops more than 74 points when jitter is
removed due to poor clustering of features from the same motor
condition (see Fig. 6). From a physical understanding, jitter
randomizes the time offset of each window while preserving
the frequency content. These offsets are artifacts of data
windowing and not related to the health condition. Nevertheless,
to data-driven models these coincidental time-domain patterns
can dominate clustering and obfuscate underlying condition
information. Randomizing the offsets through jitter forces
the model to learn more semantically meaningful features.
Although the t-SNE visualization does not show one cluster
per condition, the underlying representation has 16 features
and sufficiently avoids overlapping conditions for the linear
classifier to achieve high accuracy.

B. Continual Learning of Emerging Faults with MixER

Table V shows the performance of CL methods in the
emerging fault simulations with variability caused by random
model initialization and task orderings. Fig. 7 shows that
Fine-Tune degrades in performance on each successive task
without a strategy to avoid catastrophic forgetting. DER and
DER++ worked well on supervised problems in the literature
but perform poorly in this unsupervised case (73.4±4.7% for
DER++). LUMP sharply increases accuracy to 91.1±3.4%.
Since LUMP simply adds mixup to DER, this indicates that
mixup is likely the dominant reason for LUMP’s gains over
DER. Under this assumption, the proposed method of adding

Fig. 6. Barlow Twins features (t-SNE) with (a) and without jitter (b)

Fig. 7. Test set accuracy on incrementally added conditions

more advanced mixup to DER++ to create MixER should
outperform LUMP. MixER increases accuracy to 92.4±1.7%
after Task 8 and outperforms LUMP on all intermediate tasks.
Fig. 8 shows the evolution of MixER’s latent representation.
The latent space remains well-structured compared to DER++.
A statistical significance test value of 0.042 indicates a low
probability of observing these results if MixER was not actually
different from LUMP (considered moderately significant). Thus,
the proposed MixER method outperforms the state-of-the-
art by adding mixup to DER++ and sampling the mixing
parameter from a Beta distribution. Mixup plays an important
role by diversifying past experience and fusing it with current
observations. These initial results demonstrate that MixER
exceeds state-of-the-art CL performance.

C. Evaluation of the Adaptive Online CM Framework

The experiments validate the core CL aspect of the adaptive
online CM framework from Section III. Despite learning
conditions sequentially, MixER falls only 7.2 points below
the best case Barlow Twins model trained on all conditions
at once. Furthermore, MixER only requires 6.7 min to train
for 50 epochs (8.1 sec/epoch) on 48 sec of training data per
condition, and additional optimization could further reduce this.
This study focuses on learning quality features (assessed via
a supervised linear classifier), and future work can develop
human-in-the-loop classification approaches on the clusters
in Fig. 8 to complete end-to-end validation of the adaptive
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TABLE V
LINEAR CLASSIFIER ACCURACY AFTER EACH EMERGING FAULT

Linear Classifier Accuracy (%)
Task 1† Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8

Fine-Tune 100±0.0 93.9±5.0 86.0±7.0 82.0±7.2 75.7±8.2 72.7±4.4 76.2±7.8 72.9±5.2
DER 100±0.0 94.7±4.9 85.8±6.6 81.6±6.0 76.2±8.2 72.6±4.5 72.5±9.2 71.5±6.7
DER++ 100±0.0 95.8±4.5 84.4±7.4 84.3±4.1 82.2±6.6 75.5±3.9 75.9±6.5 73.4±4.7
LUMP 100±0.0 99.5±1.0 93.9±5.8 93.9±4.0 93.6±4.8 92.9±3.0 92.8±2.4 91.1±3.4
MixER (proposed) 100±0.0 99.6±0.6 94.3±6.7 94.4±5.1 94.8±4.9 94.5±3.1 94.0±3.2 *92.4±1.7

† All methods score 100% on Task 1 since there is only a single condition to classify
*Welch’s t-test value vs. LUMP = 0.042

Fig. 8. t-SNE plots of DER++ (top) and MixER (bottom) features as classes are incrementally observed (left to right)

online CM framework. Importantly, the effectiveness of MixER
without pretraining indicates that the proposed framework can
be deployed with no a priori data collection.

VI. CONCLUSION

Adaptive online CM depends on learning from unlabeled
sensing data (R1) and adapting to emerging faults (R2) that
occur unpredictably (R3). This study contributes a novel
application of Barlow Twins to address R1 for unlabeled 1D
sensing data and achieves 99.6% linear classification accuracy.
Furthermore, the MixER proposal shows 92.4% accuracy
with a linear classifier after sequentially observing the motor
conditions (addressing R2 and R3). Future work can implement
human-in-the-loop, exemplar-based classification to validate
model decisions according to the proposed framework.
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