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Abstract— Intelligent machine condition monitoring (CM)
for automatic fault diagnosis relies on data-driven algorithms
to characterize machine health for predictive maintenance
activities on smart factory floors. Since data collection can be
expensive, CM data sets may not cover all the possible fault
conditions, necessitating that CM algorithms continually learn
new conditions. State-of-the-art CM research has focused on
detecting unknown conditions rather than integrating unknown
conditions into future predictions. Therefore, CM-ready Con-
tinual Learning (CL) solutions should learn to classify new
conditions and use improved representations that minimize
the need for future fine-tuning. Meta-learning approaches
like Few-Shot Prototypical Networks (FSPN) regularize base-
task learning to find these more generalizable representations.
Experiments on a motor data set demonstrate that FSPN with
only 5 or 10 examples of the novel fault consistently outperforms
static, fine-tuning, and Elastic Weight Consolidation (EWC)
approaches for CL, increasing the overall accuracy by up to
19 points (53% to 72%). Compared to recent FSPN work
for image classification, these results show that FSPN may be
advantageous for CM due to the limited class diversity of CM
data sets. Future work should extend the FSPN architecture to
include open set recognition and quantitatively analyze varying
numbers of base-task classes.

Index Terms— Continual Learning, Failure Detection and
Recovery, Deep Learning Methods

I. INTRODUCTION

Smart factories depend on intelligent machine condition
monitoring (CM) to assess machine health and schedule pre-
dictive maintenance. However, extensive data from diverse
operating conditions are typically not available to train data-
driven CM algorithms due to cost, time, and operational
constraints. Thus, CM algorithms cannot assume that the
distribution of training data covers the full range of possible
conditions [1], [2]. As a result, practical machine learning
(ML) approaches to CM must identify novel fault conditions
as they occur and distill the information needed to recognize
future recurrences.

The broader ML community refers to this problem as
continual (or incremental, lifelong, etc.) learning. Given a set
of tasks seen one at a time, an effective Continual Learning
(CL) algorithm will learn a new task without losing perfor-
mance on previously seen tasks. Sometimes previous tasks
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may be revisited, but this study focuses on tasks seen se-
quentially without repetition, since this best reflects the CM
application scenario in which previous fault conditions may
not recur with any regularity. In addition, task boundaries
are unknown in CM, making it an unsupervised CL problem
comprised of two components: 1) automatic detection of new
tasks (e.g., new fault conditions) and 2) continual learning of
new tasks without catastrophic forgetting of previous tasks.

Related CM research has focused on detecting unknown
faults—the first subproblem of unsupervised CL. Also known
as open set recognition [3], detecting unknown faults requires
detecting when the input data meaningfully deviates from the
original training data. A popular approach is to model the
probability distribution of features from each known class
and use a likelihood threshold to flag new data as out of do-
main. Zhang et al. [1] adopted this idea by fitting a Gaussian
distribution to the features extracted from gearbox vibration
data under different conditions. However, similar conditions
confused the approach, and the study only considered the
appearance of a single novel fault. In a similar vein, Yu et al.
[2] adapted work by [3], leveraged a Weibull distribution to
reject unknown bearing faults, but did not incorporate these
new faults into the network’s future predictions. Following
[4], Li et al. [5] demonstrated novel fault detection during
transfer learning, and [6] extended the idea to multiple novel
faults but required known and unknown fault examples to be
available simultaneously, an additional training phase, and
multiple clustering trials. Furthermore, none of these studies
integrate emerging faults into future predictions and therefore
cannot be considered CL.

Mainstream ML and deep learning (DL) research into CL
has generated several methods for mitigating catastrophic
forgetting. Teaching a new task to a model is trivial (e.g.,
through retraining or fine-tuning); remembering previous
tasks during this process is extraordinarily difficult. Learning
without Forgetting (LwF) [7] demonstrated how to preserve
previous task information when learning a new task by
discouraging weight updates that change the input-output
relationship of previous task prediction layers. Nearly con-
currently, Incremental Classifier and Representation Learning
(iCaRL) [8] sought to mitigate catastrophic forgetting with
a combination of knowledge distillation [9] from historical
instances of the network and a set of class exemplars that
the network can review to refresh memory of previous tasks.
Avoiding the need for exemplars, Elastic Weight Consolida-
tion (EWC) [10] developed a regularization term grounded in
information theory that blocks changes to weights strongly
tied to good classification performance on a previous task
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Convolutional Prototype Learning (CPL) and Few-Shot Prototypical Networks (FSPN) adopt different strategies for learning good feature

extraction. CPN relies on a set of trainable prototypes, while FSPN dynamically calculates prototypes from a support set as needed. This difference affects

the generalizability of representations for continual learning.

and relies on the remaining network capacity to capture
the new task. Hyperparameters control the tradeoff between
learning new information and remembering old information.
Indicative of growing interest in CL for manufacturing,
Tercan et al. [11] adopted a technique similar to EWC called
Memory Aware Synapses (MAS) [12] to learn successive
product quality prediction tasks and eliminate the need to
store exemplars from previous tasks. Intuitively, however,
CM hardware is more likely to lack computational resources
than sufficient memory since exemplar sets are usually
small, and devices must consume as little power as possible.
Therefore, practitioners cannot transfer mainstream ML work
to CM without addressing the dependence on fine-tuning.

Many existing approaches rely on extensive fine-tuning
because conventional CL thought assumes that task informa-
tion is stored implicitly in the network weights Fine-tuning is
necessary to update these weights with information from new
tasks while ideally preserving old information, possibly by
incorporating buffers of previous task exemplars. To alleviate
fine-tuning requirements, the model should not learn the task
information itself, but how to extract relevant, discriminative
information when given examples of the tasks to complete.
That is, instead of learning to answer a question like, “What
shape is this example?”, the model should learn to answer the
question, “Given these possible shapes, what shape is most
like this example?” The network learns not to extract the
shape itself from the input, but the relevant information for
distinguishing shapes. That is, rather than attempting direct

shape classification, the network may learn to count sides or
corners, a strategy that will better generalize to never-before-
seen shapes.

Coincidentally, Few-Shot Learning (FSL) reifies this exact
meta-learning objective. In K-way, n-shot FSL, the network
is provided a support set with n examples for each of K
classes and asked to classify a query example according to
this information. Prototypical networks [13] have emerged as
a straightforward but effective FSL technique and learn an
embedding in which the extracted feature of the query exam-
ple will be nearest to the mean feature of the n same-class
elements from the support set. While the desired inter-class
separation and intra-class compactness goals can be added
to traditional training objectives [14], prototypical networks
“train like they test” by training with few-shot episodes
mirroring those seen at test time. This ensures that the
network targets the true objective instead of a proxy. Gidaris
et al. [15] have shown how to hone prototypical networks for
CL scenarios such as Few-Shot Class-Incremental Learning
(FSCIL), but the scope of this work focuses on evaluating the
inherent reusability (i.e., generalizability) of features from
few-shot prototypical networks versus traditional classifiers,
classifiers with fine-tuning, and classifiers using EWC to
mitigate forgetting.

Given the perceived theoretical meta-learning advantages
of FSL for CL, this study proposes that representations
learned by a Few-Shot Prototypical Network (FSPN) provide
a more effective starting point for CL in CM applications
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than traditional classifier-trained embeddings or state-of-the-
art CL methods like EWC. This paper contributes:

1) the observation that CM applications impose unique
constraints on CL, including fine-tuning restrictions on
low-power edge devices, that preclude direct usage of
state-of-the-art CL algorithms;

2) experimental results confirming that representations
learned by FSPN better differentiate novel motor faults
than representations found by a traditional classifier,
even when fine-tuning is permitted (with and without
EWC); and

3) analysis indicating that this advantage of few-shot
representations for CM could be related to the low
number of unique classes in CM data sets.

The remainder of this paper contains background on the eval-
uated methods in Section II, an overview of the experimental
setup in Section III, presentation and discussion of the results
in Section IV, and concluding thoughts and future directions
in Section V.

II. CONTINUAL LEARNING STRATEGIES

Continual Learning (CL) can be modeled as an ordered
sequence of 7T tasks {{DL . DL }}I , where each task has

train’
a training dataset D . (that could be further split into a

validation set) and a testing dataset DL,. CL attempts to learn
subsequent tasks without losing performance on preceding
tasks [16]. The first, or base, task may be considered a
pretraining stage without the same constraints (e.g., few-
shot or no fine-tuning) as future tasks [16]. For example,
a classifier might be trained on data from normal operating
conditions and limited faulty conditions (Task 1) and then
asked to learn one or more never-before-seen faults (future
tasks) without losing the ability to classify those previously
seen. The following sections introduce Convolutional Proto-
type Networks (CPN), Few-Shot Prototypical Networks, and
Elastic Weight Consolidation (EWC) and how they can be
used for CL.

A. Convolutional Prototype Networks

Convolutional Prototype Networks (CPN) [14] serve as
the baseline prototypical network architecture. CPN uses a
Convolutional Neural Network (CNN) for feature extraction
followed by a nearest-prototype classifier using Euclidean
distance. That is, given parameterized feature extraction
CNN fy and a set of prototypes P = {p,, | 1 < k < K} for
K classes, the CPN output is

—d(fo(x), Px)
> —d(fo(x),p;)

where d(-,-) is Euclidean distance, and p(y = k | x, P,0)
is the probability that example x belongs to class k based
on prototypes P and parameters 6. Calculating the Negative
Log Likelihood (NLL) of (1) gives the loss function for
training CPN (this study excludes the supplementary loss
terms introduced in [14]):

J(x, P,8) = d(fs(x),py) + log Z —d(fo(x),p;) @

ply=k|x,P0) =

(D

To find the feature extraction parameters € and the class
prototypes P, the resulting optimization problem can be
written as

{é, P} = argmin By, [J(X, P,0)] 3)

{6,r}

and seeks the joint values of # and P that minimize the ex-
pected loss value across examples from training distribution
p(x).

For CL, CPN is trained on an initial task containing
base classes kK = 1,2,..., K. Following the idea of weight
imprinting [17], the model can be extended to recognize a
new class without fine-tuning by embedding n examples of
the novel class into the feature space and using the mean
feature as the new class prototype:

1 & i
Prs = = 2 Jo (x4 @
=1
Pry1=PU{pki1} &)

where xﬁ? 11 1s the ith example of novel class K + 1, and
P11 is the updated set of prototypes. Since Euclidean
distance is a Bregman divergence/distance, py, ; minimizes
its expected distance to the novel class examples [13]. Once
the model calculates the new prototype, it can predict the

probability of the novel class for future examples using (1).

B. Elastic Weight Consolidation

While many CM applications do not support fine-tuning,
a thorough analysis should still compare fine-tuning with
FSPN to best understand the tradeoffs. Naive fine-tuning
causes catastrophic forgetting, but Elastic Weight Consoli-
dation (EWC) [10] mitigates this by discouraging updates
to weights valuable to previous task ¢ with a regularization
term when training on task ¢ + 1:

Lewc,i+1 = A Z Fyp(6; —0i4)° (6)
3

where ; is parameter ¢ in the current model, 6; ; is the value
of 6, after learning previous task j, and F;, is the value
in task t’s Fisher Information Matrix (FIM) diagonal corre-
sponding to 0; ;. F;; represents the amount of information
in 0, about task t. Larger F; ; indicates that 0, , changes
rapidly around its local minimum and that moving 6; far from
0; + would significantly impact the network performance. The
regularization term thus penalizes significant modifications to
“important” weights from task ¢.

EWC requires computing and saving separate FIMs for
each successive task ¢ = 1,2,..., which may not be
desirable if the model should learn an indefinite number of
future tasks. Progress & Compress [18] introduced online
EWC that combines successive FIMs with a discount rate +:

Fiio1=F,+~F; @)

where F; is the FIM diagonal value for 6; from task ¢ + 1,
and Fj 441 is the updated FIM for regularizing future tasks
according to (6). For CPN, fine-tuning with online EWC
can supplement the CL steps described in Section II-A to
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optimize fp for the new task. By including EWC regular-
ization, fine-tuning should improve performance on the new
task and avoid destructively manipulating weights valuable
to previous tasks.

C. Few-Shot Prototypical Network

Since CPN jointly trains both the feature extractor and pro-
totypes, it moves each class prototype towards the center of
the corresponding feature cluster while simultaneously mov-
ing each feature toward its class prototype. The randomly-
initialized prototypes influence feature learning without be-
ing grounded in relevant task information from the data set.
This physically-disconnected randomness means that the net-
work cannot be guaranteed to cluster future faults based on
physical signal similarity. Few-Shot Prototypical Networks
(FSPN) remedy this by computing prototypes from a few
randomly-sampled examples of each class (the support set)
[13]. The computed prototypes stem directly from features
extracted from the physical signal, providing more reliable
feedback for physically-meaningful clustering. Resampling
the support set throughout training ensures that a variety
of class examples influence the learned representation. With
this revised training procedure, an FSPN only needs a few
shots (examples) of each class to make accurate predictions
at inference time.

Formally, an FSPN has a support set S that contains n
examples for each of K classes:

S:{xg>~p(x|y=k)|1g¢gn,1gk§K} )
where XS) is the ith example of the kth class. Instead of
a single set of trainable prototypes P like CPN, the model

recomputes prototypes for each training step (episode) using
only the randomly sampled support set:

1« ;
P(S) =4 = <(”)1<k<K 9
S)=9 ; fo (%)L <k < ©)
The resulting few-shot classifier training problem is
0= argemin Exvpx),s~p(s) [J(x,0, P(S))]  (10)

Given support set S at test time, the model computes the
prototypes according to (9) and class probabilities using (1).
As with CPN, the model is pretrained on a base task. When
n examples of novel class K + 1 appear, they are added to
the support set. The model will then classify future examples
into the K + 1 classes without fine-tuning by recomputing
the prototypes using (9) and applying (1).

III. EXPERIMENTS

To evaluate the proposed methods, a SpectraQuest Ma-
chinery Fault Simulator (MFS) Magnum simulated eight
motor operating conditions: normal, faulted bearings, bowed
rotor, broken rotor, misaligned rotor, unbalanced rotor, phase
loss, and unbalanced voltage. The MFS was run at 2000 RPM
and 3000 RPM, and a magnetic brake added loads of either
0.06 N-m and 0.7 N-m (load settings of 0 and 3). Each of
the 32 combinations of condition and process parameters ran
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Fig. 2. Architecture of the 1D CNN for extracting latent features from
motor vibration signals. A stride of 2 halves the spatial length after each
convolution, all of which are followed by ReLU and batch normalization.
The label C' x L indicates a layer with C' channels and spatial length L.

TABLE I

TAsK Epics
Epic 1 Epic 2 Epic 3
normal normal normal
Task 1 faulted bearings faulted bearings bowed rotor
as bowed rotor bowed rotor broken rotor
phase loss broken rotor phase loss
Task 2 broken rotor  faulted bearings  faulted bearings
Task 3  misaligned rotor phase loss  misaligned rotor
Task 4 unbal. rotor  misaligned rotor unbal. rotor
Task 5 unbal. voltage unbal. voltage unbal. voltage

for 60 s in steady-state while the data acquisition software
sampled vibration data at 12 kHz from a vertically-aligned
and magnetically-mounted accelerometer. Data preprocess-
ing steps normalized the signals to [—1,1] and split them
into non-overlapping, 512-sample windows.

The eight condition classes are partitioned into five tasks
for CL, and each task is split into 70% train, 15% vali-
dation, and 15% test subsets. The first task contains four
conditions and always includes the normal condition, while
the remaining four tasks incrementally add additional faults.
Since the exact division of conditions into tasks could affect
the results, three different splits (or “epics”) constitute three
unique testing scenarios (see Table I).

The experiments evaluate CPN without fine-tuning
(“Static”), CPN with fine-tuning (“Fine Tune”), and CPN
with fine-tuning plus EWC (“EWC”), along with 1-Shot, 5-
Shot, and 10-Shot prototypical networks. Experiments have
two phases:

Phase 1: Pretrain five sets of 1D CNN-based CPN and n-
shot networks on vibration data from Task 1 with different
random seeds to observe variation caused by weight initial-
ization. Fig. 2 shows the feature extraction architecture.

Phase 2: Evaluate the three CPN and three FSPN CL
approaches with five different random seeds to observe
variation caused by example ordering within each sequential
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TABLE II
GLOBAL TASK ACCURACY (%) AFTER CL

Epic 1 Epic 2 Epic 3

Static 532+29 579+19 61246
Fine Tune 213 +3.1 21.1+64 205+33
EWC 251 +62 268+72 264+79
1-Shot 56.0+82 61.0+34 558+45
5-Shot 64.9 + 4.1 674 £ 1.1 632 +29
10-Shot 723 +3.1 68.0 1.1 66.5 + 2.1

task data set for each of the five corresponding pretrained
networks (25 results per method).

During CL the Static method learns new classes by adding
the mean feature of 100 novel fault examples to the set
of prototypes used for nearest prototype classification. Fine
Tune saves the first batch of novel task data, creates a new
randomized trainable prototype, and trains end-to-end for 20
epochs on the single batch with an Adam optimizer and
learning rate of 1072, The EWC implementation mirrors
Fine Tune but with an online EWC regularization term using
A =107 and v = 0.9. The n-Shot approaches collect the first
n examples of novel classes and add them to the support
set. The experiments track global accuracy on all tasks in
addition to accuracy on each individual task.

When repeated for the three epics, these two phases
produce 450 CL experiments to run on an NVIDIA GeForce
RTX 3080 GPU and Intel Core i9-10900 CPU @ 2.80 GHz.
For Phase 1, CPN models pretrain for 30 epochs on Task 1
using Adam optimization with a 10~ learning rate. FSPN
approaches pretrain for 30 epochs on Task 1 using Adam
optimization with a 10~ learning rate with a multiplicative
decay of 0.8 per epoch.

IV. RESULTS AND DISCUSSION

The results match expectations; FSPN approaches score
higher overall accuracy than CPN for all epics when using
at least five shots of novel classes. Fig. 3 illustrates the
advantage of FSPN as the models learn the tasks sequen-
tially. In Epics 1 and 2, 1-Shot FSPN outperforms CPN by
approximately 3% (see Table II). Adding more shots reduces
the variance, and 10-Shot FSPN increases the accuracy
compared to Static on Epics 1, 2, and 3 by 19%, 10%, and
5.3%, respectively.

Fine Tune suffers lower accuracy than Static since the
weight updates cause the model to forget earlier task in-
formation. Interestingly, while EWC does offer marginal
increases in accuracy over Fine Tune and prevents the model
from forgetting Task 1 (see Fig. 4), it still falls considerably
short of the Static model’s overall performance. As Fig. 4
illustrates, Static maintains a relatively high overall accuracy
due to high accuracy on the original task instead of compa-
rable accuracy across individual tasks.

Recent image processing research might appear to contra-
dict these results and indicate that Static CL outperforms
FSPN [16]. However, these outcomes are not mutually
exclusive. Ultimately, CL seeks good representations that
can discriminate previously unseen—but related—classes.
The data set, architecture, and training algorithm must work
together to find these discriminative features. Meta-learning
(e.g., FSPN) is one solution to regularize the training process,
teaching the network to extract useful features from limited
source information. Alternatively, if the base task data set
contains a large number of diverse classes, regularization
via meta-learning may be unnecessary. The diversity of base
classes ensures that the representation will be generalizable.
Thus, meta-learning may be advantageous for low-diversity
data sets while traditional training remains effective for those
with large numbers of classes. CM applications usually have
only a few distinct conditions (e.g., eight total across all
five tasks in this study), so meta-learning is appropriate
and supported by the results in Table II. In contrast, few-
shot image data sets may have 60 or more base classes,
providing enough variation to learn generalizable features
without meta-learning [16], although this remains an active
area of research [19].

V. CONCLUSION

While classification of never-before-seen faults is vital for
practical CM algorithms, state-of-the-art CM research fo-
cuses on (potentially offline) recognition of unknown condi-
tions rather than online integration of novel faults into future
predictions. Techniques like EWC could prevent models from
forgetting earlier tasks when fine-tuning on new tasks, but
extensive fine-tuning may not be possible on deployed CM
hardware. Meta-learning approaches like FSPN can better
guide training on the base task to find more generalizable
representations. Experiments on a motor health condition
data set demonstrate that FSPN approaches can consistently
outperform the overall task accuracy of static, fine-tuning,
and EWC methods, and this advantage might be accentuated
by the limited class diversity in the base task. Future work
should extend the FSPN architecture to include automatic
detection of task boundaries (i.e., open set recognition) for
unsupervised CL and quantitatively analyze varying numbers
of classes in the base task.
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