
https://doi.org/10.1007/s00029-023-00837-y
SelectaMathematica
New Series

Free fermion six vertex model: symmetric functions and
random domino tilings

Amol Aggarwal1,2 · Alexei Borodin3 · Leonid Petrov4 ·Michael Wheeler5

Accepted: 27 January 2023
© The Author(s), under exclusive licence to Springer Nature Switzerland AG 2023

Abstract
Our work deals with symmetric rational functions and probabilistic models based
on the fully inhomogeneous six vertex (ice type) model satisfying the free fermion
condition. Two families of symmetric rational functions Fλ,Gλ are defined as cer-
tain partition functions of the six vertex model, with variables corresponding to row
rapidities, and the labeling signatures λ = (λ1 ≥ . . . ≥ λN ) ∈ Z

N encoding boundary
conditions. These symmetric functions generalize Schur symmetric polynomials, as
well as some of their variations, such as factorial and supersymmetric Schur polynomi-
als. Cauchy type summation identities for Fλ,Gλ and their skew counterparts follow
from the Yang–Baxter equation. Using algebraic Bethe Ansatz, we obtain a double
alternant type formula for Fλ and a Sergeev–Pragacz type formula for Gλ. In the spirit
of the theory of Schur processes, we define probability measures on sequences of sig-
natures with probability weights proportional to products of our symmetric functions.
We show that these measures can be viewed as determinantal point processes, and we
express their correlation kernels in a double contour integral form. We present two
proofs: The first is a direct computation of Eynard–Mehta type, and the second uses
non-standard, inhomogeneous versions of fermionic operators in a Fock space com-
ing from the algebraic Bethe Ansatz for the six vertex model. We also interpret our
determinantal processes as random domino tilings of a half-strip with inhomogeneous
domino weights. In the bulk, we show that the lattice asymptotic behavior of such
domino tilings is described by a new determinantal point process on Z

2, which can
be viewed as an doubly-inhomogeneous generalization of the extended discrete sine
process.
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1 Introduction

1.1 Preface

Determinantal random point processes (or fields) originated in random matrix theory
in the 1960s and were first singled out as a class by Macchi in 1975 [71] under the
name fermion point processes. The book of Anderson–Guionnet–Zeitouni [3, Sec-
tion 4.6] provides a brief historical summary of the random matrix origins. The term
determinantal was adopted around the year 2000, see Borodin–Olshanski [14] and
Soshnikov [96]. By now there are quite a few surveys discussing various aspects
of determinantal processes by Soshnikov [96], Lyons [70], Johansson [54], König
[61], Hough–Krishnapur–Peres–Virag [50], Borodin [17], Kulesza–Taskar [67], and
Decreusefond–Flint–Privault–Torrisi [27].

One of themost important determinantal processes is the sine process that goes back
to Mehta–Gaudin [75] and Dyson [29]. It describes universal bulk1 asymptotics of
large determinantal systems in one space dimension, see, e.g., Yau [99] for a historical
overview. For one-dimensional discrete point processes (i.e., random subsets of Z),
the corresponding universal object is the discrete sine process introduced by Borodin–
Okounkov–Olshanski [15].

Besides being universal bulk limits in one dimension, both the continuous and the
discrete sine processes admit natural extensions to two dimensions arising, respec-
tively, from the Dyson Brownian motion, see Dyson [29], Nagao–Forrester [84], and

1 The term “bulk” refers to the parts of the system where the space can be rescaled to form growing regions
with unit particle density.
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randomplane partitions, seeOkounkov–Reshetikhin [90], ormore general dimermod-
els, cf. Kenyon–Okounkov–Sheffield [65] and Johansson [53]. In the discrete case
(which is the focus of the present paper), the two-dimensional (also called extended)
sine process admits a natural description as a unique (cf. Sheffield [95]) translation
invariant ergodic Gibbs measure on point configurations in Z

2 of a given slope. The
slope consists of two real or a single complex parameter that encodes the particles’
densities along the two coordinate directions. In this case the Gibbs property means
that the probability law of the random configuration is invariant under uniform resam-
pling in any finite window, conditioned on the configuration on the boundary of this
window. The fact that such a rich family of Gibbs measures in Z

2 enjoys a completely
explicit determinantal description of their correlations is remarkable and very rare.

The main probabilistic outcome of the present work is the introduction of a wide
class of new inhomogeneous deformations of the extended discrete sine process. These
deformations are determinantal point processes on Z

2 with very explicit correlation
kernels that depend, in addition to the complex slope parameter, on four bi-infinite
sequences of real parameters associated with the horizontal and the vertical coordinate
directions (two sequences per each direction). They seem to be out of reach of existing
approaches to deformations of the extended sine processes such as various versions
of the Schur processes, fermionic Fock space formalism with the Boson–Fermion
correspondence, random matrix type ensembles, or periodic dimer models.

Free parameters varying by rows and columns is a salient feature of integrable
lattice models, and those are indeed behind our construction. More precisely, we start
with the free fermion six vertex model, show that it is described by determinantal
(fermion) point processes, and in a bulk limit obtain the inhomogeneous deformations
of the extended discrete sine process.

The six vertex model, first introduced as a two-dimensional model for residual
entropy of water ice by Pauling in 1935 [91], is a classical model in statistical mechan-
ics that gave birth to the domain of integrable (exactly solvable) lattice models; see
the book of Baxter [5] for an introduction, and also Reshetikhin [94] for a more recent
survey of the six vertex model. Integrable lattice models is a vast domain, and the
present work belongs to a subdomain dealing with symmetric functions and associ-
ated stochastic systems.

The theory of symmetric functions, a classical introduction towhich isMacdonald’s
book [73], studies remarkable families of symmetric and associated nonsymmetric
polynomials with origins in diverse areas of group theory, combinatorics, repre-
sentation theory, noncommutative harmonic analysis, probability, and mathematical
physics. There aremanyworks highlighting connections between symmetric functions
and integrable vertex models; for some of the earlier papers see Kirillov–Reshetikhin
[66], Fomin–Kirillov [36, 37], Lascoux–Leclerc–Thibon [69],Gleizer–Postnikov [44],
Tsilevich [97], Lascoux [68], Zinn–Justin [102], Brubaker–Bump–Friedberg [8],
Bump–McNamara–Nakasuji [13], and Korff [63].

We focus on the (asymmetric) six vertex model with vertex weights a1, a2, b1, b2,
c1, c2 satisfying the free fermion condition a1a2+ b1b2 = c1c2. This condition corre-
sponds to the vanishing of the quantity � associated to the model. See the references
in Baxter [5, Ch. 8.10.III], and also Felderhof [33–35] for earlier works on the free
fermion six vertex model.
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We consider the six vertex model in which the free fermion condition holds at each
lattice site, but otherwise the weights are fully inhomogeneous and are determined
by the parameters (xi , ri ) and (y j , s j ) which are constant along the lattice rows and
columns, respectively. The x’s and y’s are known as the rapidities, while the r ’s and s’s
are the spin parameters. This particular parametrization ensures that the vertexweights
satisfy a version of the Yang–Baxter equation, which is a key algebraic property
powering our results. We mainly employ the Yang–Baxter equation in the form of
quadratic relations for the row operators A, B,C, D that are standard in the Algebraic
Bethe Ansatz, cf. Faddeev [32], Korepin–Bogoliubov–Izergin [56, Part VII].

The structure of integrable lattice models (in particular, in our six vertex model)
is very special as it is powered by connections to quantum groups. Quantum groups
are deformations of universal enveloping algebras of classical Lie groups (and their
generalizations), which possess certain additional structure, in particular, R-matrices
satisfying the Yang–Baxter equation. In this language, the free fermion six ver-
tex weights correspond to the R-matrix of the rank 1 quantum affine superalgebra
Uq(̂sl(1|1)). A recent paper [1] by a subset of the authors presented a detailed
study of symmetric functions related to the higher rank quantum affine superalge-
bras Uq(̂sl(1|n)) with n > 1. In that case fermions are no longer ‘free’, and most of
the theory differs substantially. In particular, the results and proofs in the present work
are largely independent from those of [1], although we do point to connections in a
few places where those exist.

We define two families of functions Fλ,Gλ indexed by integer tuples λ = (λ1 ≥
. . . ≥ λN ≥ 0) as certain partition functions of the free fermion six vertex model with
boundary conditions depending on λ. The functions Fλ,Gλ are rational in (a finite,
λ-dependent subset of) the parameters xi , ri , y j , s j . Up to a simple product factor
in Fλ, both the functions are symmetric with respect to simultaneous permutations
of the row variables (xi , ri ), which is a consequence of the Yang–Baxter equation.
When the horizontal parameters y j , s j do not depend on j , the functions Fλ and Gλ

reduce, respectively, to the ordinary symmetric Schur polynomials and the supersym-
metric Schur polynomials. In another specialization of the parameters, the functions
Fλ become the factorial Schur polynomials (cf. Molev [78, 101]).

We establish the following results:

• Cauchy type summation identities leading to a product form expression for
∑

λ FλGλ, and their skew analogues.
• Torus biorthogonality of the functions Fλ and certain dual functions F∗λ , with
integration over the row rapidities x j .

• A double alternant type formula for Fλ, and a Jacobi–Trudy type determinantal
formula for Gλ.

• Another explicit formula for Gλ involving a summation over pairs of permuta-
tions which resembles (but does not imply) the Sergeev–Pragacz formula for the
supersymmetric Schur polynomials (cf. Hamel–Goulden [49, (5)]).

By analogywith the Schur processes of [90], we define probabilitymeasures (called
FGmeasures) on two-dimensional integer arrays encodedby sequencesλ(1), . . . , λ(T ).
Under an FG measure, the probability weights are expressed through the functions
Fλ,Gλ and their skew analogues. Thanks to the Cauchy type summation identities,
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λ( j)-marginals have weights proportional to Fλ( j)Gλ( j) for certain specializations of
F and G that vary with j = 1, . . . , T . We interpret the FG measures as certain
ensembles of random domino tilings of a half-strip, in which the domino weights are
inhomogeneous and depend on the parameters (xi , ri ) and (y j , s j ) varying in the two
coordinate directions.

We show that the FG measures (and the corresponding random domino tilings) are
determinantal. Namely, the random point configuration

S(T ) = {(t, λ(t)
i + N + 1− i) : 1 ≤ t ≤ T , 1 ≤ i ≤ N } ⊂ {1, . . . , T } × Z≥1

has all correlation functions P[A ⊆ S(T )] (where A is finite) expressed as symmetric
|A|×|A| determinants of a certain function K (t, a; t ′, a′) called the correlation kernel.
We write K as a double contour integral which resembles (yet does not coincide with)
some determinantal correlation kernels of multilevel β = 2 randommatrix ensembles.

Our kernel K generalizes that of the Schur process first obtained in [90] via a ver-
tex operator formalism in the fermionic Fock space. We obtain our double contour
integral formula for K by employing an ‘inhomogeneous version’ of the Fock space.
In particular, we establish an inhomogeneous analogue of the Boson–Fermion corre-
spondence (cf. Kac [55, Theorem 14.10] for the homogeneous statement), which may
be of independent interest. The fermionic operators in our Fock space arise as combi-
nations of (doubly) infinite volume limits of the Algebraic Bethe Ansatz row operators
A, B,C, D evaluated at certain special parameter values. We realize the commutation
relations for the inhomogeneous fermionic operators, as well as the inhomogeneous
Boson–Fermion correspondence, as consequences of the Yang–Baxter equation.

The double contour integral form of the correlation kernel K of the FG measures
is well-suited for the asymptotic analysis in the bulk of the system by the method of
steepest descent. Such analysis leads us to the generalization of the extended discrete
sine kernel that was mentioned above.

Having outlined our main results, let us now proceed to describing them in greater
detail.

1.2 Symmetric rational functions

Let λ = (λ1 ≥ . . . ≥ λN ≥ 0), λi ∈ Z, be a nonincreasing integer sequence, which
we call a signature with N parts. Central objects considered in the present work are
families of rational functions Fλ(x; y; r; s) andGλ(x; y; r; s) indexed by signatures λ.
These functions depend on four sequences of (generally speaking, complex) parame-
ters

x = (x1, . . . , xk), r = (r1, . . . , rk), y = (y1, y2, . . .), s = (s1, s2, . . .).

(1.1)

The functions Fλ,Gλ are defined as partition functions of the free fermion six vertex
model. By a partition function we mean the sum of weights of all configurations of the
six vertex model with given boundary conditions depending on λ, where the weight
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Fig. 1 Left: An example of a six vertex model configuration contributing to Gλ. The number N of parts in
λ and the number k of the variables x, r (1.1) may differ (here k = 4, N = 2). The boundary conditions on
the left and right are empty, are {N , N −1, . . . , 1} at the bottom, and are {λ1+N , λ2+N −1, . . . , λN +1}
at the top. Right: An example of a configuration contributing to Fν . In contrast with Gλ, the number of
parts in ν must be equal to k (here k = 4). The boundary conditions are empty on the left and at the top,
fully packed on the right, and are {ν1 + k, ν2 + k − 1, . . . , νk + 1} at the bottom

of each particular configuration is equal to the product of local single-vertex weights

w6V
(

j2

i2
j1

i1

)

, where i1, j1, i2, j2 ∈ {0, 1}, depending on the parameters x, y, r , s.

The parameters x, y, r , s, in their turn, depend on the lattice coordinates of the vertex.
For the definition of Gλ we take the vertex weights w6V = W given by

W
( ) = a1 = 1, W

( ) = a2 = r−2x − y

s−2y − x
,

W
( ) = b1 = s−2y − r−2x

s−2y − x
,

W
( ) = b2 = y − x

s−2y − x
, W

( ) = c1 = x(r−2 − 1)

s−2y − x
,

W
( ) = c2 = y(s−2 − 1)

s−2y − x

(1.2)

(notation a1, a2, b1, b2, c1, c2 is the classical convention in the six vertex model
weights, see, e.g., [5, 94, Ch. 8]). The functions Fλ involve the renormalized weights

̂W (i1, j1; i2, j2) := W (i1, j1; i2, j2)
W (0, 1; 0, 1) .

This normalization is chosen so that ̂W (0, 1; 0, 1) = 1. One readily sees that each of
the families of vertex weights W and ̂W satisfies the free fermion condition a1a2 +
b1b2 − c1c2 = 0. The free fermion condition is crucial throughout our work.

Having the vertex weights, we form partition functions in the half-infinite strip
Z≥1 × {1, . . . , k} (where k is the number of variables in x, r (1.1)) as in Fig. 1, and
call them Gλ(x; y; r; s) and Fν(x; y; r; s).
Remark 1.1 We also define skew functions Gλ/μ(x; y; r; s) and Fν/κ(x; y; r; s) as
partition functions. Namely, for Gλ/μ, the signature μ encodes the bottom boundary
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in Fig. 1, left, so that we haveGλ = Gλ/(0,0,...,0). For Fν/κ , the signatureκ encodes the
top boundary in Fig. 1, right, so that Fν = Fν/∅. See Sect. 3.2 in the text for detailed
definitions of all these functions. For brevity, in the Introduction we mostly stick to
the non-skew functions.

We have normalized the weights W and ̂W so that the vertices occurring infinitely
many times in Fig. 1 have weight 1. Therefore, the weights of individual six vertex
model configurations are well-defined. Moreover, both partition functions Gλ and Fν

involve only finitely many such configurations, so there are no convergence issues.
We see that Fν(x; y; r; s) and Gλ(x; y; r; s) are rational functions in (a finite subset
of) the parameters (1.1).

In Sect. 4 we consider particular cases of the parameters x, y, r, s under which the
functions Fλ,Gλ become either the ordinary Schur symmetric polynomials [73, I.3],
or their factorial or supersymmetric variations [21, 72, 78]. Here let us formulate the
supersymmetric setting.

Proposition 1.2 (Proposition 4.10 in the text) Take the horizontally homogeneous spe-
cialization y j = y and s j = s for all j ≥ 1. Then for any signature λ = (λ1 ≥ . . . ≥
λN ≥ 0) we have

Fλ(x1, . . . , xN ; y; r; s)
F(0,0,...,0)(x1, . . . , xN ; y; r; s) = sλ

(

1− s2x1
s2(1− x1)

, . . . ,
1− s2xN
s2(1− xN )

)

,

where sλ is the ordinary Schur symmetric polynomial [73, I.3]. Moreover,

Gλ(x1, . . . , xM ; y; r; s)

= sλ

(

{

s2(1− x j )

1− s2x j

}M

j=1

/{ s2(x jr
−2
j − 1)

1− s2r−2j x j

}M

j=1

)

M
∏

i=1

(

1− s2r−2i xi
1− s2xi

)N

,

where sλ(· · · / · · · ) denotes the supersymmetric Schur function [21], [72, (6.19)].

Thus, one may view our functions Fλ,Gλ as generalizations of various Schur-like
symmetric functions, based on the inhomogeneous parameters y j , s j . In fact, many of
the properties of Fλ,Gλ discussed in the rest of this subsection resemble the ones of
the ordinary Schur polynomials.

The concrete parametrization of the vertex weights W , ̂W by x, y, r , s is chosen
so that the weights satisfy the Yang–Baxter equation with the cross vertex weights
independent of (yi , si ). These cross vertex weights are given in Fig. 5, and we refer
to Sect. 2.2 in the text for a detailed formulation of the Yang–Baxter equation. In
particular, the Yang–Baxter equation implies (see Proposition 3.5 in the text) that the
functions

Gλ(x1, . . . , xk; y; r1, . . . , rk; s) and

Fν(x1, . . . , xk; y; r1, . . . , rk; s)
∏

1≤i< j≤k
(xi − r−2j x j )
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are symmetric under simultaneous permutations of the pairs of variables (xi , r j ).
Another application of the Yang–Baxter equation (together with an explicit formula

for Fλ fromTheorem 1.5 below) brings the followingCauchy type summation identity:

Theorem 1.3 (Theorem 3.8 in the text) Fix integers N , k ≥ 1 and sets of complex
variables x = (x1, . . . , xN ), r = (r1, . . . , rN ), w = (w1, . . . , wk), θ = (θ1, . . . , θk),
and y = (y1, y2, . . . , ), s = (s1, s2, . . .), satisfying

sup
p≥1

∣

∣

∣

∣

∣

s−2p yp − xi

yp − xi

yp − w j

s−2p yp − w j

∣

∣

∣

∣

∣

< 1 forall 1 ≤ i ≤ N , 1 ≤ j ≤ k. (1.3)

Then we have

∑

λ=(λ1≥...≥λN≥0)
Gλ(w; y;θ; s) Fλ(x; y; r; s)

=
∏

1≤i≤ j≤N (r−2i xi − x j )
∏

1≤i< j≤N (s−2i yi − y j )
∏N

i, j=1(yi − x j )

N
∏

i=1

k
∏

j=1

xi − θ−2j w j

xi − w j
.

(1.4)

Remark 1.4 An example of a fully inhomogeneous situation when condition (1.3)
holds is yp = 1− 2−p, sp = 1+ 2p, p ≥ 1, and 1

2 > w j > xi > 1
3 for all i, j .

Let us now discuss explicit formulas for the functions Fλ and Gλ. The first function
Fλ possesses an inhomogeneous analogue of the double alternant formula for the
Schur symmetric polynomials [73, I.(3.1)]. Define inhomogeneous analogues of the
power functions by

ϕk(x | y; s) := 1

yk+1 − x

k
∏

j=1

x − s−2j y j

x − y j
, k ≥ 0.

Theorem 1.5 (Theorem 3.9 in the text) Let λ be a signature with N parts. Then

Fλ(x; y; r; s) =
∏

1≤i≤ j≤N (r−2i xi − x j )
∏

1≤i< j≤N (xi − x j )
det
[

ϕλ j+N− j (xi | y; s)
]N
i, j=1 . (1.5)

We also obtain an explicit formula for Gλ(x; y; r; s), see Theorem 3.10 in the text.
It involves summation over pairs of permutations which resembles (however, does not
imply, cf. Remark 4.15) the Sergeev–Pragacz formula [49, (5)] for the supersymmetric
Schur polynomials. Our formula in Theorem 3.10 is quite long so we do not reproduce
it here.

We prove explicit formulas for Fλ and Gλ in Appendix A via computations with
row operators (for these operators, see Sect. 1.6 below and Sect. 2.3 in the text). These
computations follow [19, Section 4.5] (but are much more involved in the case of
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Gλ) and are based on Algebraic Bethe Ansatz for quantum integrable systems, see,
e.g., [56, Part VII]. This approach can ultimately be traced to our central tool, the
Yang–Baxter equation, whose repeated application yields quadratic relations for row
operators.

Remark 1.6 The inhomogeneous free fermion six vertex weights like (1.2) appeared
(with a different parametrization) in [79]. Moreover, in that paper a determinantal
formula like (1.5) for a partition functionwith Fλ-like boundary conditionswas proven.
This was done by an Izergin–Korepin approach, that is, by showing that both the
partition function and the right-hand side of (1.5) satisfy the same list of properties
which uniquely determine a function.

Along with the Sergeev–Pragacz type formula, Gλ admits another explicit expres-
sion based on the Cauchy identity and the inhomogeneous biorthogonality associated
with the functions Fλ. Here we present a single-variable version of this biorthogonal-
ity, see Proposition 5.4 in the text for amultivariable statement involving determinants.
Define

ψk(x | y; s) :=
yk+1(s−2k+1 − 1)

x − s−2k+1yk+1

k
∏

j=1

x − y j

x − s−2j y j
, k ≥ 0.

Then we have for all k, l ≥ 0 (Lemma 5.1 below):

1

2π i

∮

γ

ϕk(z | y, s) ψl(z | y, s) dz =
{

1, k = l;
0, k 	= l,

(1.6)

where the simple closed contour γ separates the sets {y j } j≥1 and {s−2j y j } j≥1 and goes
around the y j ’s in the positive direction.

Using (1.6), we can extract Gλ as the coefficient by Fλ from the right-hand side of
the Cauchy identity (1.4). This leads to the following Jacobi–Trudy type formula:

Proposition 1.7 (Proposition 5.10 in the text) Let λ be a signature with N parts. Then
we have

Gλ(w; y;θ; s) =
∏

1≤i< j≤N

s−2i yi − y j
y j − yi

det
[

hλi+N−i, j (w; y;θ; s)
]N
i, j=1 ,

where

hk,m(w; y;θ; s) = 1

2π i

∮

γ ′
dz

ψk(z | y; s)
ym − z

M
∏

j=1

z − θ−2j w j

z − w j
.

Here the positively oriented integration contour γ ′ surrounds all the points y j , wi and
leaves out all the points s−2j y j .

In (1.6) and Proposition 1.7 we assume that the parameters are chosen in such a
way that the integration contours γ and γ ′ exist.
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1.3 Determinantal processes

Dividing the Cauchy identity of Theorem 1.3 by its right-hand side, we define a
probability measure on the space of signatures with N parts which we call an FG
measure:

M(λ) := 1

Z
Fλ(x; y; r; s)Gλ(w; y;θ; s), (1.7)

where Z is the normalizing constant given by the right-hand side of (1.4), and x =
(x1, . . . , xN ), r = (r1, . . . , rN ), w = (w1, . . . , wk), and θ = (θ1, . . . , θk). This
definition is analogous to that of Schurmeasures introduced in [86]. Further, by analogy
with Schur processes [90] and Macdonald processes [9], we define (ascending) FG
processes which are probability measures on sequences of signatures λ(1), . . . , λ(T )

(each with N parts) defined as

AP(λ(1), λ(2), . . . , λ(T )) = 1

Z
Gλ(1) (w1; y; θ1; s) . . .Gλ(T )/λ(T−1) (wT ; y; θT ; s)

Fλ(T ) (x; y; r; s). (1.8)

Here Z is the same normalizing constant (the right-hand side of (1.4)), and Gλ/μ are
skew versions of the functions Gλ (see Remark 1.1 above, or Definition 3.2 below).
For any fixed t , the marginal distribution of λ(t) under (1.8) is the FG measure (1.7)
with the same x, r, y, s, and with w = (w1, . . . , wt ),θ = (θ1, . . . , θt ).

Sufficient conditions under which formulas (1.7) and (1.8) define probability distri-
butions with nonnegative probability weights are (1.3) (so that the probability weights
are normalizable, i.e., the series for Z converges) and

xi < y j < r−2i xi < s−2j y j and wi < y j < θ−2i wi < s−2j y j forall i, j .

The latter conditions imply that all vertex weights W (i1, j1; i2, j2), ̂W (i1, j1; i2, j2)
are nonnegative, hence Fλ, Gλ and the Gλ/μ’s are nonnegative, too.

We show that the probability measure AP(λ(1), . . . , λ(T )) gives rise to a deter-
minantal point process, which also implies determinantal structure for the measure
M (1.7). We refer to [17, 50, 96] for generalities on determinantal processes. Let us
adapt general definitions to our setting. Let (λ(1), . . . , λ(T )) be a sequence of random
signatures with joint distribution (1.8), and define a random point configuration

S(T ) :=
T
⋃

t=1

{

(t, λ(t)
1 + N ), (t, λ(t)

2 + N − 1), . . . , (t, λ(t)
N + 1)
} ⊂ {1, . . . , T } × Z≥1.

Let A ⊂ {1, . . . , T } × Z≥1 be a fixed finite subset. A correlation function associated
with A is, by definition, the probability PAP[A ⊂ S(T )]. We show that this correlation
function, for any A, is given by an |A| × |A| determinant of a fixed correlation kernel
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defined as (here 1 ≤ t, t ′ ≤ T and a, a′ ≥ 1):

KAP(t, a; t ′, a′) = 1

(2π i)2

∮

�y,θ−2w

du
∮

�y,w

dv
1

u − v

N
∏

k=1

(u − yk)(v − xk)

(u − xk)(v − yk)

× ya(1− s−2a )

v − s−2a ya

1

u − ya′

a−1
∏

j=1

v − y j

v − s−2j y j

a′−1
∏

j=1

u − s−2j y j

u − y j

t
∏

d=1

v − θ−2d wd

v − wd

t ′
∏

c=1

u − wc

u − θ−2c wc
,

(1.9)

where the integration contours are positively oriented circles one inside the other (the
u contour is outside for t ≤ t ′ while the v contour is outside for t > t ′); the u contour
encircles all the points yi , θ

−2
j w j , and not xk ; and the v contour encircles all the points

yi , w j , and not s
−2
k yk . Here we assume that the parameters are such that the contours

exist.

Theorem 1.8 (Theorem 6.7 in the text) The ascending FG process (1.8) is deter-
minantal with the kernel KAP. That is, for any A = {(t1, a1), . . . , (tm, am)} ⊂
{1, . . . , T } × Z≥1, we have

PAP

[

A ⊂ S(T )
] = det

[

KAP(ti , ai ; t j , a j )
]m
i, j=1 .

When t = t ′, the kernel (1.8) becomes the correlation kernel KM(a, a′) =
KAP(t, a; t, a′) for the FG measure M(λ) (1.7), where λ = λ(t) and w =
(w1, . . . , wt ), θ = (θ1, . . . , θt ).

We give two proofs of Theorem 1.8. The first proof (presented in Appendix B)
uses an Eynard–Mehta type approach based on [20], see also [31]. This approach is
parallel to how the kernel for the Schur measures is computed in [20]. The second
proof, presented in Sects. 7 and 8, is based on fermionic operators in a Fock space
coming from the Algebraic Bethe Ansatz row operators. We discuss the main features
of the second approach in Sect. 1.6 below.

In the horizontally homogeneous case y j = y, s j = s for all j ≥ 1, the correlation
kernel KM(a, a′) turns into the kernel for a certain Schur measure, see Sect. 6.4 in the
text. A certain inhomogeneous analogue of Schur processes (describing continuous
time particle dynamics in inhomogeneous space generalizing the push-block process
from [12]) was defined recently in [4]. It is likely that the probability measures of [4]
could arise as degenerations of our FG processes, but we do not address this question
here.

1.4 Random domino tilings

We interpret ascending FG processes (1.8) as random tilings by 1 × 2 dominoes of
an infinite half-strip, in the spirit of the steep tiling representation of Schur processes
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Fig. 2 An example of a domino tiling corresponding to the ascending FG process with T = 4, N = 3. The
dominoes which repeat infinitely many times far to the right are shaded. The large blue dots are particles
associated to the tiling, i.e., the centers of the bottom squares of dominoes which have coordinates (l ′, k′).
They are used to identify the domino tiling with a sequence of signatures λ(1), . . . , λ(T ). We also display
the path ensembles leading to the partition functions G

λ(T ) (in the bottom part) and F
λ(T ) (dashed paths in

the top part)

[10]. (The connection between states of the free fermion six vertex model and random
domino tilings has been long known before, cf. Elkies–Kuperberg–Larsen–Propp [30],
Zinn–Justin [100], Ferrari–Spohn [40].) While our boundary conditions are not as
general as those in arbitrary steep tilings in the cited work, we are able to consider
dominoes with more general weights which depend on the many parameters of the FG
process.

Recall that the ascending FG process is associated with two integers, N and T . Let
the coordinates in the Z

2 plane be numbered as 0′ < 1 < 1′ < 2 < 2′ < . . .. Consider
the infinite half-strip with vertical coordinates between 0′ and N + T + 1, and with
N unit squares removed from the bottom left, see Fig. 2. We consider domino tilings
of this strip such that far to the right the dominoes stabilize to regular brick layers of
two different directions, northeast and southeast in the regions i ≤ T ′ and i ≥ T + 1,
respectively.

Let us explain how a given domino tiling corresponds to a sequence λ(1), λ(2), . . . ,

λ(T ) of signatures, each with N parts. Single out the dominoes for which the center
of the bottom unit square has coordinates of the form (l ′, k′). There are only finitely
many such dominoes, and in Fig. 2 we indicated the centers of the bottom squares. Let
us call these points the particles associated with the domino tiling. More precisely, we
have N dominoes containing particles in the bottom T layers, and in the top N layers
there are N − 1, N − 2, . . . , 1, 0 particles in each layer. For k = 1, . . . , T , define the
signature λ(k) so that the N particles at layer k have the horizontal coordinates

(λ
(k)
1 + N )′, (λ(k)

2 + N − 1)′, . . . , (λ(k)
N−1 + 2)′, (λ(k)

N + 1)′. (1.10)
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Fig. 3 Domino weights in Fig. 2 leading to the ascending FG process

For example, the sequence of signatures corresponding to the domino tiling in Fig. 2
is

λ(1) = (0, 0, 0), λ(2) = (1, 0, 0), λ(3) = (3, 2, 0), λ(4) = (4, 2, 0).

Let us now assign weights to dominoes depending on the parameters wi , θi , y j , s j
in the top part, and xi , ri , y j , s j in the bottom part, as displayed in Fig. 3. Note that
the dominoes repeating infinitely often (the shaded ones in Figs. 2 and 3) have weight
1. Assuming that the weights satisfy (1.3), we see that the infinite series for the nor-
malizing constant of this probability measure on domino tilings converges. Thus, the
model of random domino tilings is well-defined.

In Sect. 9we establish the correspondence between the randomdomino tilingmodel
just described, and the ascending FG processes. This correspondence is based on the
known mapping between the free fermion six vertex model and a layered free fermion
five vertex model, e.g., see [98, Section 4.7].

Theorem 1.9 The joint distribution of the signaturesλ(1), . . . , λ(T ) (eachwith N parts)
associated via (1.10) to the random domino tiling as in Fig.2 with domino weights
given in Fig.3 is described by the ascending FG process (1.8).

Remark 1.10 One can also consider the joint distribution of all T + N − 1 signa-
tures arising from Fig. 2. Namely, let μ(1), . . . , μ(N ), where μ(i) has i parts and
μ(N ) = λ(T ), be constructed as in (1.10) from the coordinates (l ′, k′) of the parti-
cles in the top N rows of the tiling. Then the sequence of signatures (λ(1), . . . , λ(T ) =
μ(N ), μ(N−1), . . . , μ(1)) has the joint distribution of a general FG process defined
in Sect. 8.1 in the text. For such FG processes (and their further generalizations) we
obtain the correlation kernel as a certain series coefficient using fermionic operators,
see Theorem 8.9 in the text. It should be possible to rewrite the coefficient representa-
tion for the correlation kernel of the general FG processes as a contour integral. We do
not pursue this here for brevity and also because the lattice (bulk) asymptotic behavior
(discussed in Sect. 1.5 below) throughout the whole domino tiling in Fig. 2 is expected
to be the same, up to renaming the parameters.

1.5 Bulk asymptotics and the inhomogeneous discrete sine kernel

We study bulk asymptotics of the domino tiling model described in Sect. 1.4 as
N , T →+∞ and T � N . Here “bulk” means that we zoom around a global position
(
αN�, 
τN�), so that the lattice structure is preserved in the limit. For simplicity
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of the asymptotic analysis, we let the inhomogeneity parameters of the domino tiling
vary only in a finite neighborhood of this global location. After taking the limit, we
send the size of the finite neighborhood to infinity as well.

In this limit we observe a probability measure on the space of domino tilings of
the whole plane Z

2. This measure is determinantal. Its correlation kernel, which we
call the (two-dimensional) inhomogeneous discrete sine kernel and denote by K z

2d
(defined below in this subsection), describes the bulk asymptotic joint distribution of
the particles associated with a random domino tiling (as in Fig. 2). We take arbitrary
inhomogeneity parameters around the global position (
αN�, 
τN�), so that the lim-
iting bulk kernel K z

2d on Z
2 is also inhomogeneous. Moreover, it depends on four

sequences of parameters w = {wi }i∈Z, θ = {θi }i∈Z, y = {y j } j∈Z, and s = {s j } j∈Z.
Here the indexing is by i, j ∈ Z because in the bulk limit the parameters vary in all Z2

directions around the global scaling position which becomes the origin. Along with
these four sequences, K z

2d also depends on a point z in the upper half complex plane.
In the homogeneous case, this point is responsible for the slope of the tiling, i.e., the
densities of the particles in the horizontal and the vertical directions. The presence
of the complex slope is typical in homogeneous two-dimensional bulk lattice asymp-
totics [60, 65, 90]. However, the dependence on four extra sequences of parameters is
a novel feature of our kernel K z

2d that is a consequence of the inhomogeneity of our
model.

Theorem 1.11 (Theorem 10.9 in the text) Fix z in the open upper half complex plane.
Then there exists a choice of parameters of the ascending FG process together with a
global location (α, τ ) (detailed in Sect.10.1), such that in the limit as N , T → +∞,
T � N, the correlation kernel KAP (1.9) of the ascending FG process admits the
limit

lim
N→+∞ KAP(t + 
τN�, a + 
αN�; t ′ + 
τN�, a′ + 
αN�) = K z

2d(t, a; t ′, a′),

where t, a, t ′, a′ ∈ Z are fixed.

We establish Theorem 1.11 using the steepest descent method for double contour
integral correlation kernels which essentially follows [87, Sections 3.1, 3.2]. This
technique is quite standard, andwe refer to Sect. 10 in the text for detailed formulations.

Let us now proceed with the definition of the inhomogeneous discrete sine kernel
K z
2d. First, we need some auxiliary notation. For any two sequences b = {bi }i∈Z and

c = {ci }i∈Z, define the following inhomogeneous analogues of the power functions
U �→ Un , n ∈ Z:

Pn,n′(u | b; c) :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

n′
∏

j=n+1

u − b j

u − c j
, n < n′;

1, n = n′;
n
∏

j=n′+1

u − c j
u − b j

, n > n′,

n, n′ ∈ Z. (1.11)
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Assume that the sequences satisfy

supi wi < inf j y j ≤ sup j y j < inf i θ
−2
i wi ≤ supi θ

−2
i wi < inf j s

−2
j y j . (1.12)

These ordering conditions are equivalent (as we show in Lemma 11.4 in the text) to
the fact that all the domino weights given in Fig. 3, (a) are positive and separated from
zero and infinity. We now define the two-dimensional inhomogeneous discrete sine
kernel as

K z
2d(t, a; t ′, a′) := −

1

2π i

∫ z

z̄

ya(1− s−2a )

(u − ya)(u − s−2a′ ya′)

Pa,a′(u | s−2y; y)Pt,t ′(u | w;θ−2w) du, (1.13)

where t, a, t ′, a′ ∈ Z. The integration contour is an arc from z̄ to z which crosses the
real line to the left of all wi when �t = t ′ − t ≥ 0; and between θ−2i wi and s−2j y j
when �t < 0.

From the fact that K z
2d is a limit of KAP (Theorem 1.11), the correlation kernel

of a determinantal random point process coming from the ascending FG process, we
deduce that K z

2d with arbitrary inhomogeneity parameters w,θ, y, s satisfying the
ordering (1.12) has the following nonnegativity property:

Theorem 1.12 (Theorem 11.3 in the text) Under the above assumptions on the param-
eters and for any z in the open upper half complex plane, the kernel K z

2d defines
a determinantal random point process on Z

2. In particular, all symmetric minors
det[K z

2d(ti , ai ; t j , a j )] of any order are between 0 and 1.

Indeed, each symmetricminor det[K z
2d(ti , ai ; t j , a j )] is the probability of the corre-

lation event {therandomconfigurationcontainsallthepoints (ti , ai )}. This is nonnegative
since the process K z

2d is a limit of a bona fide determinantal random point process.
We refer to [17, 50, 96] for generalities on determinantal processes.

In Sect. 11 we discuss specializations of the kernel K z
2d leading to known determi-

nantal correlation kernels arising in bulk lattice limits:

• the one-dimensional discrete sine kernel [15];
• one-dimensional periodic and inhomogeneous generalizations of the discrete sine
kernel [16, 22, 76, 77];

• the bulk kernel arising from uniformly random domino tilings which is a bulk limit
of [53, (2.21)] but also follows from the general theory of [65];

• the incomplete beta kernel [90] giving rise to the unique family of ergodic trans-
lation invariant Gibbs measures on lozenge tilings of the whole plane [65, 95]
indexed by the complex slope z;

• and kZ× Z periodic generalizations of the incomplete beta kernel [22, 76, 77].

Our kernel K z
2d admits a kZ × mZ periodic specialization for all k,m ≥ 1 by

taking the parameters (wi , θi ) to be m-periodic in i , and the parameters (y j , s j ) to
be k-periodic in j . For general m ≥ 2 the arc integral representation (1.13) of such
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a periodic kernel is new. It would be interesting to match this arc integral to the two-
dimensional torus integral representation of the doubly periodic kernels which follows
from the general theory of [65], but we do not pursue this here.

We also remark that our kernel K z
2d corresponds only to the so-called liquid phase

of the domino tiling model. It is known [11, 25, 28, 65] that doubly periodic domino
weights may lead to the appearance of gaseous phase. The gaseous phase is not present
in our FG processes because our domino weights are not fully generic and depend on
their many parameters in quite a special way. In particular, in the 2Z × 2Z periodic
case we have verified that the domino weights are gauge equivalent (in the sense of
[58, Section 3.10]), in a nontrivial way, to weights periodic in only one direction.

1.6 Fermionic operators and correlation functions

In this final part of the Introduction we outline definitions and main properties of
fermionic operators acting in a Fock, or “infinite wedge”, space. Detailed definitions
and statements are in Sects. 7 and 8 below.

Our fermionic operators are combinations of Algebraic Bethe Ansatz row operators
constructed from the vertexweightsW (1.2). The fermionic operators allow to compute
certain generating function type series involving the correlation functions of the FG
processes. The correlation functions are then extracted as series coefficients using
inhomogeneous biorthogonality similar to (1.6).

Fock space and fermionic operators coming from Pieri rules for Schur functions
were used in [86, 90] to compute correlation kernels of Schur measures and processes.
Expressions for local operators and correlations in various quantum integrable systems
through the row operators A, B,C, D also appear in, e.g., [59, 89], but our model and
formulas are quite different from those. It is also worth noting that fermionic operators
in the homogeneous Fock space associated to the free fermion six vertex model (and
again leading to Schur functions) were considered recently in [64]. However, our
inhomogeneous Fock space and the fermionic operators acting in it arising from the
free fermion six vertex model seem to be new.

A subset T ⊂ Z is called semi-infinite (or densely packed towards −∞) if there
exists M = M(T) > 0 with i /∈ T for all i > M and i ∈ T for all i < −M . For a
semi-infinite subset, define its charge c(T) := #(T∩ Z>0)− #(Z≤0\T). For example,
all zero-charge semi-infinite subsets are finite permutations of Z≤0.

Let F be the (fermionic) Fock space spanned by eT, where T runs over all semi-
infinite subsets of Z. We view F as a subspace of the formal infinite tensor product
⊗+∞

m=−∞ V (m), where each V (m) is isomorphic to C
2 with standard basis e(m)

0 , e(m)
1 .

This is done by interpreting each eT as a tensor product

eT =
+∞
⊗

m=−∞
e(m)
km

, km = km(T) = 1m∈T.

Here and below 1··· is the indicator. Sometimes in the literature the wedge product
symbol

∧+∞
m=−∞ e(m)

km
is used instead of the tensor product, with the same meaning. In

more detail, we never implicitly use the wedge commutation relation v∧w = −w∧v,
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and whenever signs are required we insert them explicitly, as in, e.g., the creation and
annihilation operators ψ j , ψ

∗
j in (1.18) below.

We also need an inner product inF under which the eT’s form an orthonormal basis,
that is, 〈eT, eR〉 = 1T=R. Let us decompose F into subspaces with fixed charge:

F =
⊕

n∈Z

Fn, Fn = span {eT : c(T) = n} .

We are now in a position to define the row operators AZ = AZ(x, r), BZ =
BZ(x, r), CZ = CZ(x, r), and DZ = DZ(x, r) acting in F. They act in the following
way with respect to the charge:

AZ : Fn → Fn, BZ : Fn → Fn−1, CZ : Fn → Fn+1, DZ : Fn → Fn .

We define these operators pictorially through their matrix elements. For AZ we have

〈AZ(x, r)eT, eR〉

=
W

(

−5 −4 −3 −2 −1 0 1 2 3 4 5
T

R. . . . . .
)

W

(

−5 −4 −3 −2 −1 0 1 2 3 4 5

. . . . . .
) .

Here the numerator is a formal infinite product of vertex weightsW (· · · | x; y j ; r; s j )
over all j ∈ Z,where the bottomand topboundary conditions areT andR, respectively,
and the far left and far right boundary conditions are occupied. By definition, the
product of the weights W (· · · ) is zero if there are no six vertex model configurations
with these boundary conditions. The denominator in AZ is the normalization factor
which is also a formal infinite product. The ratio is well-defined as the product of the
ratios of the weights at each lattice site j ∈ Z, because this product involves only
finitely many factors not equal to 1.

Similarly we define the other three operators, BZ with boundary conditions empty
and full at far left and far right, CZ with boundary conditions full and empty at far left
and far right, and DZ with empty boundary conditions on both sides:

〈BZ(x, r)eT, eR〉

=
W

(

−5 −4 −3 −2 −1 0 1 2 3 4 5
T

R. . . . . .
)

W

(

−5 −4 −3 −2 −1 0

. . .
)

W

(

1 2 3 4 5

. . .
) ,

〈CZ(x, r)eT, eR〉
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=
W

(

−5 −4 −3 −2 −1 0 1 2 3 4 5
T

R. . . . . .
)

W

(

−5 −4 −3 −2 −1 0

. . .
) ,

〈DZ(x, r)eT, eR〉

=
W

(

−5 −4 −3 −2 −1 0 1 2 3 4 5
T

R. . . . . .
)

W

(

−5 −4 −3 −2 −1 0

. . .
) .

We refer to Sects. 7.2 and 7.3 below for formal definitions of these operators in the Fock
space via a limiting procedure m → −∞, n → +∞ starting from finite segments
{m,m + 1, . . . , n − 1, n}.

Thanks to the Yang–Baxter equation, the row operators satisfy a number of com-
mutation relations, for example,

BZ(x, r)DZ(w, θ) = x − θ−2w
x − w

DZ(w, θ)BZ(x, r), (1.14)

provided that x, w satisfy (1.3), which is required to avoid diverging infinite series.
Other commutation relations are listed in Proposition 7.8 in the text.

In fact, relation (1.14) is closely related to the Cauchy identity (Theorem 1.3). Let
λ be a signature with N parts, and set T = {λ1+ N , λ2+ N − 1, . . . , λN + 1} ∪Z≤0.
Then

Fλ(x1, . . . , xN ; y; r1, . . . , rN ; s) = 〈eT, BZ(xN , rN ) . . . BZ(x1, r1)eZ≤0〉,
Gλ(w1, . . . , wM ; y; θ1, . . . , θM ; s) = 〈eT, DZ(wM , θM ) . . . DZ(w1, θ1)eZ≤N 〉.

(1.15)

Applying (1.14) several times, we have

〈eZ≤0 , B
Z(xN , rN ) . . . BZ(x1, r1)D

Z(wM , θM ) . . . DZ(w1, θ1)eZ≤N 〉

=
N
∏

i=1

M
∏

j=1

xi − θ−2j w j

xi − w j
〈eZ≤0 , D

Z(wM , θM ) . . . DZ(w1, θ1)

BZ(xN , rN ) . . . BZ(x1, r1)eZ≤N 〉

= F(0,...,0)(x; y; r; s)
N
∏

i=1

M
∏

j=1

xi − θ−2j w j

xi − w j
,

(1.16)
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where in the last step we removed the DZ operators thanks to eZ≤0 in the inner product,
and used the definition of F again. The first line of (1.16) is precisely the left-hand
side of the Cauchy identity (1.4). In the third line we need an explicit product formula
for F(0,...,0) which follows from Theorem 1.5 (see the proof of Theorem 3.8 for this
computation), and the resulting expression becomes the right-hand side of the Cauchy
identity (1.4).

Using (1.15), we may express the probability weight M(λ) (1.7) under the FG
measure as the following evaluated inner product in the Fock space:

M(λ) = 1

Z
〈eZ≤0 , B

Z(xN , rN ) . . . BZ(x1, r1) IλD
Z(wM , θM ) . . . DZ(w1, θ1)eZ≤N 〉

(1.17)

Here and throughout this subsection Z denotes the right-hand side of the Cauchy
identity (1.4). The operator Iλ is the rank one projection in F onto the semi-infinite
subset corresponding to λ:

IλeR =
{

eR, if R = {λ1 + N , λ2 + N − 1, . . . , λN + 1, 0,−1,−2, . . .} ;
0, otherwise,

for any semi-infinite subsetR ⊂ Z. Expressions similar to (1.17) are available for FG
processes as well, see Sect. 8.2 in the text. For simplicity of notation, below in this
subsection we stick to the case of FG measures.

If instead of Iλ we insert into (1.17) a product of creation and annihilation operators
in the Fock space F, we would get a correlation function of the FG measure. Recall
that the creation and annihilation operators are defined as

ψ j eT =
{

(−1)#{t∈T : t> j}eT∪{ j}, j /∈ T;
0, j ∈ T,

ψ∗j eT =
{

(−1)#{t∈T : t> j}eT\{ j}, j ∈ T;
0, j /∈ T.

(1.18)

They satisfy the canonical anticommutation relations

ψkψ
∗
k + ψ∗k ψk = 1, ψkψ

∗
� + ψ∗� ψk = ψ∗k ψ∗� + ψ∗� ψ∗k = ψkψ� + ψ�ψk = 0,

k 	= �.

For any finite subset A = {a1, . . . , am} ⊂ Z≥1 we have the following expression
for the correlation function:

PM [A ⊂ {λ1 + N , λ2 + N − 1, . . . , λN + 1}]
= 1

Z
〈eZ≤0 , B

Z(xN , rN ) . . . BZ(x1, r1) ψamψ∗am . . .

ψa1ψ
∗
a1D

Z(wM , θM ) . . . DZ(w1, θ1)eZ≤N 〉.
(1.19)
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Inserting pairs of creation and annihilation operators between the D operators above
produces correlation functions of ascending FG processes.

Instead of computing (1.19) directly, we replace the creation and annihilation oper-
ators with certain generating series �(u),�∗(v) containing creation and annihilation
operators. The series �(u),�∗(v) themselves are operators which are expressed
through the rowoperatorswith special parameters.Namely, define for any semi-infinite
subset T:

�(u, ξ) eT := DZ(u,
√

u/ξ)CZ(ξ,
√

ξ/u)(−1)c(T)eT,

�∗(ζ, v) eT := DZ(ζ,
√

ζ/v)BZ(v,
√

v/ζ ) eT.
(1.20)

The statement below could be viewed as an inhomogeneous analogue of the Boson–
Fermion correspondence, cf. [55, Theorem 14.10] for the homogeneous version.

Theorem 1.13 (Theorem 7.11 in the text) As operators on F, we have

�(u, ξ) =
∑

j∈Z

y j (1− s−2j )

u − s−2j y j
P0, j−1(u | y, s−2y) ψ j ,

�∗(ζ, v) =
∑

j∈Z

v − ζ

v − y j
P0, j−1(v | s−2y, y) ψ∗j ,

(1.21)

where we use the notation of inhomogeneous powers (1.11).

Let us set�(u) := �(u, 0) and�∗(v) = �∗(0, v). From (1.21)we see that�(u, ξ)

does not depend on ξ , and �∗(v) is well-defined by specializing the second line of
(1.21). Thanks toTheorem1.13, operators�(u),�∗(v) satisfy theWick determinantal
formula for the “vacuum average”:

〈

eZ≤0 , �(u1)�
∗(v1) . . . �(um)�∗(vm) eZ≤0

〉 = det

[

vα

uα′ − vα

]m

α,α′=1
. (1.22)

See Propositions 7.12 and 7.14 in the text for details on the Wick determinantal for-
mula.

There are two steps remaining in the computation of the correlation functions (1.19)
of the FG measure M. First, using commutation relations between the row operators
and (1.22), we show the following.

Proposition 1.14 (Aparticular case ofProposition8.7 in the text)Let u1, . . . , um, v1, . . .

, vm be independent variables satisfying certain conditions (see (8.4) for details). Then
we have

1

Z
〈eZ≤0 , B

Z(xN , rN ) . . . BZ(x1, r1)�(um)�∗(vm) . . . �(u1)�
∗(v1)

× DZ(wM , θM ) . . . DZ(w1, θ1)eZ≤N 〉

=
M
∏

i=1

m
∏

α=1

(vα − θ−2i wi )(uα − wi )

(vα − wi )(uα − θ−2i wi )

m
∏

α=1

N
∏

j=1

uα − y j
vα − y j

vα − x j
uα − x j
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det

[

vα

uα′ − vα

]m

α,α′=1
. (1.23)

Using (1.21), we interpret (1.23) as an inhomogeneous generating series of the
correlation functions (1.19) of the FGmeasureM, with the generating variables ui , v j .
The last step is to extract the coefficients (1.19) from this generating series. The
operation of a coefficient extraction is linear, and we must apply 2m such operations
to the right-hand side of (1.23). Due to the form of this right-hand side, these operations
maybeput into them×m determinant (this is essentially theAndréief identity, cf. [39]).
This implies that the correlation functions have a determinantal form. In Theorem 8.9
in the text we write the resulting correlation kernel of the general FG process as such
a series coefficient.

Furthermore, the coefficient extraction can be done analytically bymeans of contour
integrals. This is an extension of the inhomogeneous biorthogonality (1.6), to inhomo-
geneous powers indexed by both positive and nonpositive integers, see Lemmas 8.4
and 8.5 in the text. The integration contours for u, v in the coefficient extraction must
be chosen so that the commutation relations between the row operators used to obtain
(1.22) and (1.23) are valid. Using this, we determine the correct integration contours
for the correlation kernel KAP (1.9) of the ascending FG process, see Theorem 8.10
in the text. As a result, we have computed the correlation kernel KAP in two ways, via
fermionic operators and via an Eynard–Mehta type approach, and both computations
led to the same expression.

Part I Symmetric functions

In this part (accompanied by Appendix A) we develop symmetric rational functions
based on the free fermion six vertex model.

2 Free fermion six vertexmodel

2.1 Vertex weights

We consider the weights w6V(i1, j1; i2, j2), i1, j1, i2, j2 ∈ {0, 1}, of the asymmetric
six vertex (square ice) model:

w6V(0, 0; 0, 0) = a1, w6V(1, 1; 1, 1) = a2, w6V(1, 0; 1, 0) = b1,

w6V(0, 1; 0, 1) = b2, w6V(1, 0; 0, 1) = c1, w6V(0, 1; 1, 0) = c2,
(2.1)

see Fig. 4 for the illustration. By agreement, w6V(i1, j1; i2, j2) is set to zero unless
i1 + j1 = i2 + j2, which corresponds to the path preservation property: the number
of paths coming into a vertex equals the number of paths coming out of it. The nota-
tion a1, a2, b1, b2, c1, c2 for the vertex weights follows the longstanding tradition, for
example, see [5, 94, Ch. 8].

We further assume that our six vertex weights obey the free fermion condition

a1a2 + b1b2 = c1c2. (2.2)
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Fig. 4 Weights (2.1) of the free fermion six vertex model, and their parametrizations (2.3), (2.4) with the
four parameters x, y, r , s

In other words, we impose the vanishing of the quantity � = a1a2 + b1b2 − c1c2
2
√
a1a2b1b2

associated with the six vertex weights.
The free fermion condition (2.2) leaves five out of six independent parameters.

Furthermore, in order to build symmetric functions, we normalize the weights so that
one of them becomes equal to 1, and we can repeat this type of vertices infinitely many
times in a configuration. The normalization leaves four independent parameters. We
make two different choices which of the weights to set to 1:

• Setting the weight a1 of the empty vertex (0, 0; 0, 0) we get the weights

W (0, 0; 0, 0) = 1, W (1, 1; 1, 1) = r−2x − y

s−2y − x
,

W (1, 0; 1, 0) = s−2y − r−2x
s−2y − x

,

W (0, 1; 0, 1) = y − x

s−2y − x
, W (1, 0; 0, 1) = x(r−2 − 1)

s−2y − x
,

W (0, 1; 1, 0) = y(s−2 − 1)

s−2y − x
.

(2.3)

• Setting the weight b2 of the vertex (0, 1; 0, 1), we get the weights

̂W (0, 0; 0, 0) = s−2y − x

y − x
, ̂W (1, 1; 1, 1) = r−2x − y

y − x
,

̂W (1, 0; 1, 0) = s−2y − r−2x
y − x

,

̂W (0, 1; 0, 1) = 1, ̂W (1, 0; 0, 1) = x(r−2 − 1)

y − x
,

̂W (0, 1; 1, 0) = y(s−2 − 1)

y − x
.

(2.4)
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Fig. 5 The cross vertex weights (2.6)

See Fig. 4 for an illustration. The four parameters which they depend on are denoted
by x, y, r , s. Sometimes we will indicate this dependence explicitly as

W (i1, j1; i2, j2 | x; y; r; s), ̂W (i1, j1; i2, j2 | x; y; r; s).

The concrete choice of the parametrization as in (2.3)–(2.4) is dictated by the form
of the Yang–Baxter equation (see the next Sect. 2.2), and by the overall goal of con-
structing symmetric functions.

One readily checks that the weights W and ̂W satisfy the free fermion condition
(2.2). We also have

̂W (i1, j1; i2, j2) = W (i1, j1; i2, j2)
W (0, 1; 0, 1) (2.5)

for all i1, j1, i2, j2 ∈ {0, 1}, that is, the weightsW and ̂W differ only by normalization.

Remark 2.1 The free fermion six vertex weights (2.3)–(2.4) possessUq(̂sl(1|1)) quan-
tum affine superalgebra symmetry, and they are a special case of the higher rank
Uq(̂sl(m|n)) integrable weights studied in the companion work [1].

2.2 Yang–Baxter equation

Define the following cross vertex weights:

R(0, 0; 0, 0) = 1, R(1, 1; 1, 1) = x2 − x1r
−2
1

x1 − x2r
−2
2

,

R(1, 0; 1, 0) = x1r
−2
1 − x2r

−2
2

x1 − x2r
−2
2

,

R(0, 1, 0, 1) = x1 − x2

x1 − x2r
−2
2

, R(1, 0; 0, 1) = x1(1− r−21 )

x1 − x2r
−2
2

,

R(0, 1; 1, 0) = x2(1− r−22 )

x1 − x2r
−2
2

.

(2.6)

See Fig. 5 for an illustration. These weights, together with W or ̂W , satisfy the Yang–
Baxter equation:
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Fig. 6 Illustration of the Yang–Baxter equation. For fixed boundary values i1, i2, i3, j1, j2, j3, the partition
functions in both sides are equal to each other. Here Wj ≡ W (· · · | x j ; y; r j ; s). The parameters (x1, r1),
(x2, r2) and (y, s) correspond to lines, which is also indicated

Proposition 2.2 (Yang–Baxter equation) For any fixed i1, i2, i3, j1, j2, j3 ∈ {0, 1} we
have

∑

k1,k2,k3∈{0,1}
R(i2, i1; k2, k1)W (i3, k1; k3, j1 | x1; y; r1; s)

W (k3, k2; j3, j2 | x2; y; r2; s)
=
∑

k′1,k′2,k′3∈{0,1}
R(k′2, k′1; j2, j1)W (i3, i2; k′3, k′2 | x2; y; r2; s)

W (k′3, i1; j3, k′1 | x1; y; r1; s),
(2.7)

The same equation holds if we replace one or both of the weights

W (· · · | x1; y; r1; s), W (· · · | x2; y; r2; s)

everywhere by the corresponding ̂W, which results in three other identities. See Fig.6
for a graphical illustration of the sums in both sides.

Proof Identity (2.7) or, more precisely, the family of identities depending on the
boundary conditions i1, i2, i3, j1, j2, j3, is checked in a straightforwardway. The three
other families of identities involving the weights ̂W are multiples of (2.7), thanks to
(2.5). ��

Remark 2.3 The Yang–Baxter equation of Proposition 2.2 is a consequence of the
more general Uq(̂sl(m|n)) statement, see Proposition 5.1.4 and Example 8.1.1 in [1].
This may be considered a conceptual reason behind Proposition 2.2 since our weights
are obtained from the ones in [1] by fusion.
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Fig. 7 Graphical illustration of the action of the operators A, B,C, D on tensor products (2.9). The sums in
(2.9) correspond to various states of the inner horizontal edge. The vertical edges can have arbitrary states

2.3 Row operators

Based on the vertexweights, we define certain row operators acting in tensor powers of
C
2. Thanks to the Yang–Baxter equation, these operators satisfy certain commutation

relations.
Let us fix sequences s = (s1, s2, . . .) ⊂ C and y = (y1, y2, . . .) ⊂ C of complex

numbers. For any integer k ≥ 1,we letV (k) � C
2 denote the two-dimensional complex

vector space spanned by two vectors e(k)
0 and e(k)

1 . For notational convenience, we will

also set e(k)
j = 0 for j /∈ {0, 1}.

Next, for any complex numbers x, r ∈ C, we define four operators A = A(x, r),
B = B(x, r),C = C(x, r), and D = D(x, r) acting from the left on any V (k) through
the equations

Ae(k)
i = W (i, 1; i, 1 | x; yk; r; sk) e(k)

i ;
Be(k)

i = W (i, 0; i − 1, 1 | x; yk; r; sk) e(k)
i−1;

Ce(k)
i = W (i, 1; i + 1, 0 | x; yk; r; sk) e(k)

i+1;
De(k)

i = W (i, 0; i, 0 | x; yk; r; sk) e(k)
i ,

(2.8)

where the weights W are given in (2.3).
We also define actions of these operators on tensor products V (k1)⊗ V (k2)⊗ . . .⊗

V (kn). To do this in the case n = 2, set

A
(

v1 ⊗ v2) = Cv1 ⊗ Bv2 + Av1 ⊗ Av2;
B(v1 ⊗ v2) = Dv1 ⊗ Bv2 + Bv1 ⊗ Av2;
C(v1 ⊗ v2) = Cv1 ⊗ Dv2 + Av1 ⊗ Cv2;
D(v1 ⊗ v2) = Dv1 ⊗ Dv2 + Bv1 ⊗ Cv2,

(2.9)

for all v1 ∈ V (k1), v2 ∈ V (k2) (see Fig. 7 for an illustration). Then extend this action
to V (k1)⊗V (k2)⊗ . . .⊗V (kn) for n > 2 using the above relations (2.9) inductively on
n. The induction step consists of taking v1 there to be an element of V (k1) ⊗ V (k2) ⊗
. . .⊗V (kn−1), and v2 an element of V (kn). This action on tensor products is associative.
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The operators A, B,C , and D acting in any tensor product V (k1)⊗V (k2)⊗. . .⊗V (kn)

satisfy the following commutation relations:

Proposition 2.4 For any x1, x2, r1, r2 ∈ C, we have

A(x2, r2)A(x1, r1) =A(x1, r1)A(x2, r2); (2.10)

B(x2, r2)B(x1, r1) = r−21 x1 − x2

r−22 x2 − x1
B(x1, r1)B(x2, r2); (2.11)

C(x2, r2)C(x1, r1) = r−22 x2 − x1

r−21 x1 − x2
C(x1, r1)C(x2, r2); (2.12)

D(x2, r2)D(x1, r1) =D(x1, r1)D(x2, r2); (2.13)

B(x2, r2)D(x1, r1) = r−21 x1 − x2
x1 − x2

D(x1, r1)B(x2, r2)+ (1− r−22 )x2
x1 − x2

D(x2, r2)B(x1, r1); (2.14)

D(x2, r2)B(x1, r1) = r−21 x1 − x2

r−21 x1 − r−22 x2
B(x1, r1)D(x2, r2)

+ (1− r−21 )x1

r−21 x1 − r−22 x2
B(x2, r2)D(x1, r1); (2.15)

D(x2, r2)C(x1, r1) = r−22 x2 − x1
x2 − x1

C(x1, r1)D(x2, r2)

+ (1− r−22 )x2
x2 − x1

C(x2, r2)D(x1, r1); (2.16)

C(x2, r2)D(x1, r1) = r−22 x2 − x1

r−22 x2 − r−21 x1
D(x1, r1)C(x2, r2)

+ x1(1− r−21 )

r−22 x2 − r−21 x1
D(x2, r2)C(x1, r1); (2.17)

A(x2, r2)C(x1, r1) = r−22 x2 − x1
x1 − x2

C(x1, r1)A(x2, r2)+ x2(1− r−22 )

x1 − x2
C(x2, r2)A(x1, r1), (2.18)

and

x1(r
−2
1 − 1)

r−22 x2 − x1
D(x2, r2)A(x1, r1)+ r−22 x2 − r−21 x1

r−22 x2 − x1
C(x2, r2)B(x1, r1)

= x1(r
−2
1 − 1)

r−22 x2 − x1
D(x1, r1)A(x2, r2)+ x2 − x1

r−22 x2 − x1
B(x1, r1)C(x2, r2); (2.19)

x2(r
−2
2 − 1)

r−22 x2 − x1
A(x2, r2)D(x1, r1)+ x2 − x1

r−22 x2 − x1
B(x2, r2)C(x1, r1)

= x2(r
−2
2 − 1)

r−22 x2 − x1
A(x1, r1)D(x2, r2)+ r−22 x2 − r−21 x1

r−22 x2 − x1
C(x1, r1)B(x2, r2). (2.20)

Proof First, assume that the operators act in a single two-dimensional spaceV (k) � C
2.

Then all of the desired commutation relations follow from the Yang–Baxter equation
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Fig. 8 The Yang–Baxter equation for a horizontal chain of two-vertex configurations

of Proposition 2.2. Let us show how to get one of these relations, say, (2.14), the others
are obtained in a similar way.Write the Yang–Baxter equation (2.7) with the boundary
conditions i1 = i2 = 0, i3 = j1 = 1, j2 = j3 = 0 and with the parameters (x1, r1)
and (x2, r2) interchanged. In the operator form, this Yang–Baxter equation reads

D(x1, r1)B(x2, r2) = x2(1− r−22 )

x2 − x1r
−2
1

D(x2, r2)B(x1, r1)

+ x2 − x1

x2 − x1r
−2
1

B(x2, r2)D(x1, r1). (2.21)

Note that in the product D(x1, r1)B(x2, r2), the B and D operator corresponds to
the bottom and, respectively, top, vertex in the left-hand side of Fig. 6, and same for
all other products in this proposition. In (2.21) we then move the term containing
D(x2, r2)B(x1, r1) into the left-hand side, and divide the identity by the prefactor
(x2 − x1)/(x2 − x1r

−2
1 ) in front of B(x2, r2)D(x1, r1). This gives (2.14) for the case

of the two-dimensional space V (k) � C
2.

To extend the relations to arbitrary tensor products V (k1) ⊗ V (k2) ⊗ . . . ⊗ V (kn),
we apply the standard “zipper argument” to establish the Yang–Baxter equation for
a horizontal chain of two-vertex configurations, see Fig. 8. This equation follows by
sequentially applying the original equation (2.7) to move the cross vertex and swap
the parameters (xi , ri ). Then the Yang–Baxter equation corresponding to the space
V (k1) ⊗ V (k2) ⊗ . . .⊗ V (kn) implies all the desired commutation relations. ��

Using the weights ̂W (2.4), define four operators ̂A = ̂A(x, r), ̂B = ̂B(x, r),
̂C = ̂C(x, r), and ̂D = ̂D(x, r) acting from the right on each two-dimensional space
V (k) as

e(k)
i
̂A = ̂W (i, 1; i, 1 | x; yk; r; sk) e(k)

i ;
e(k)
i
̂B = ̂W (i + 1, 0; i, 1 | x; yk; r; sk) e(k)

i+1;
e(k)
i
̂C = ̂W (i − 1, 1; i, 0 | x; yk; r; sk) e(k)

i−1;
e(k)
i
̂D = ̂W (i, 0; i, 0 | x; yk; r; sk) e(k)

i .

(2.22)

Note the difference with the operators A, B,C, D (2.8) which read vectors e(k)
i corre-

sponding to a vertex (i1, j1; i2, j2) “from bottom to top” (i.e., map e(k)
i1

to e(k)
i2

), while
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̂A, ̂B, ̂C, ̂D read vectors “from top to bottom”. Note that the states of the left and right
edges for the same-letter operators in (2.8) and (2.22) are same.

We extend the operators (2.22) to tensor products V (k1) ⊗ V (k2) ⊗ . . .⊗ V (kn) by
first defining for n = 2,

(v1 ⊗ v2)̂A = v1̂C ⊗ v2̂B + v1̂A ⊗ v2̂A;
(v1 ⊗ v2)̂B = v1̂D ⊗ v2̂B + v1̂B ⊗ v2̂A;
(v1 ⊗ v2)̂C = v1̂C ⊗ v2̂D + v1̂A ⊗ v2̂C;
(v1 ⊗ v2)̂D = v1̂D ⊗ v2̂D + v1̂B ⊗ v2̂C,

(2.23)

and then for arbitrary n by induction similarly to (2.9).
The operators ̂A, ̂B, ̂C, ̂D acing in any tensor product V (k1) ⊗ V (k2) ⊗ . . .⊗ V (kn)

satisfy commutation relations which parallel the ones in Proposition 2.4. In the next
proposition, let us list a few relations which are employed in proofs later in the paper.
They also follow from the Yang–Baxter equation (Proposition 2.2) and the “zipper
argument”, as in the proof of Proposition 2.4.

Proposition 2.5 For any x1, x2, r1, r2 ∈ C, we have

̂A(x2, r2)̂A(x1, r1) =̂A(x1, r1)̂A(x2, r2); (2.24)

̂B(x2, r2)̂B(x1, r1) = x2 − r−21 x1

x1 − r−22 x2
̂B(x1, r1)̂B(x2, r2); (2.25)

̂B(x2, r2)̂D(x1, r1) =r−21 x1 − x2
x1 − x2

̂D(x1, r1)̂B(x2, r2)

+ (1− r−22 )x2
x1 − x2

̂D(x2, r2)̂B(x1, r1); (2.26)

̂B(x2, r2)̂A(x1, r1) =r−21 x1 − x2
x2 − x1

̂A(x1, r1)̂B(x2, r2)

+ (1− r−22 )x2
x2 − x1

̂A(x2, r2)̂B(x1, r1); (2.27)

̂D(x2, r2)̂D(x1, r1) =̂D(x1, r1)̂D(x2, r2). (2.28)

3 Symmetric functions

Here we define symmetric functions Fλ and Gλ (indexed by signatures λ) which are
partition functions of certain configurations of the free fermion six vertex model.

3.1 Signature states

A (generalized) signature with N parts is a nonincreasing integer sequence

λ = (λ1 ≥ . . . ≥ λN ), λi ∈ Z.
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Denote |λ| := λ1 + · · · + λN . We will mostly deal with nonnegative signatures, i.e.,
such that λN ≥ 0, and will omit the word “nonnegative”. To a signature λ with N
parts we associate a configuration

S(λ) = (λ1 + N , λ2 + N − 1, . . . , λN−1 + 2, λN + 1) ⊂ Z≥1 (3.1)

of distinct points in the integer half-line.
Consider the (formal) infinite tensor product V (1) ⊗ V (2) ⊗ . . ., where V (k) � C

2

for all k with basis e(k)
0 , e(k)

1 . Let V be the subset of the infinite tensor product spanned
by the following vectors:

eT = e(1)
m1
⊗ e(2)

m2
⊗ e(3)

m3
⊗ . . . , mi =

{

1, i ∈ T;
0, otherwise,

(3.2)

where T ⊂ Z≥1 runs over arbitrary finite sets. These basis vectors are called finitary.
(We will sometimes use the same notation (3.2) for arbitrary subsets T ⊆ Z≥1.) In
particular, with each signature λ we associate a signature state eS(λ). Note that all but

finitely many of the tensor components of eS(λ) are e
(k)
0 .

ByV�, � = 0, 1, . . ., denote the subspace ofV spanned by eT with T running over all
�-element subsets of Z≥1. Let us extend some of the row operators defined in Sect. 2.3
to act in the space V. Namely, thanks to W (0, 0; 0, 0) = 1, the operators C(x, r) and
D(x, r) act in each of the V�’s, and

C(x, r) : V� → V�+1, D(x, r) : V� → V�. (3.3)

Similarly, thanks to ̂W (0, 1; 0, 1) = 1, the operators ̂A(x, r) and ̂B(x, r) act as

̂A(x, r) : V� → V�, ̂B(x, r) : V� → V�+1. (3.4)

These operators satisfy the commutation relations (2.24), (2.25), and (2.27). Note that
while the spaces V� involve infinite tensor products, in the action of the operators
̂A, ̂B,C, D the boundary condition at infinity is always determined uniquely.

Remark 3.1 Later in Sect. 7 we employ a similar infinite tensor product over the whole
lattice Z, or, more precisely, a corresponding Fock space, to compute a generating
function for correlations of certain probability distributions based on our symmetric
functions.

3.2 Symmetric functions as partition functions

Here we define the functions Fλ/μ(x; y; r; s) and Gλ/μ(x; y; r; s) as certain partition
functions of the free fermion six vertex model.

Definition 3.2 Fix a positive integer k, two signatures λ,μ with the same number
of parts, and parameters x = (x1, . . . , xk), y = (y1, y2, . . .), r = (r1, . . . , rk), s =
(s1, s2, . . .).
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Fig. 9 Examples of path configurations contributing to the partition functions in Definitions 3.2 and 3.3.
Left: Gλ/μ with λ = (5, 4) and μ = (1, 0). Right: Fλ/μ with λ = (2, 1, 0, 0, 0) and μ = (2)

Consider the following boundary data in the half-infinite rectangleZ≥1×{1, . . . , k}.
A path vertically enters the rectangle from the bottom at each m ∈ S(μ); a path
vertically exits the rectangle at the top at each � ∈ S(λ); the left and right boundaries
of the rectangle, as well as all the other boundary edges on top and bottom, are empty
(see Fig. 9, left, for an illustration).

Let the vertex weight at each (i, j) in the rectangle be W (i1, j1; i2, j2 |
x j ; yi ; r j ; si ) (2.3). That is, the parameters (x, r) are constant along the horizontal,
and (y, s) are constant along the vertical direction. Denote the partition function of
thus defined vertex model in the half-infinite rectangle by Gλ/μ = Gλ/μ(x; y; r; s).
Even though the domain is infinite, this partition function is well-defined thanks to
W (0, 0; 0, 0) = 1.

In the particular case μ = (0, . . . , 0) (with the same number of parts as in λ), we
abbreviate Gλ = Gλ/μ.

Definition 3.3 Within the notation of Definition 3.2, let now the number of parts in
λ be N + k and the number of parts in μ be N for some N ∈ Z≥0. Consider the
following (different) boundary data for the half-infinite rectangle Z≥1 × {1, . . . , k}.
Let a path enter vertically from the bottom at each � ∈ S(λ) = (λ1 + N + k, λ2 +
N + k − 1, . . . , λN+k + 1); a path exit vertically at the top at each m ∈ S(μ) =
(μ1 + N , μ2 + N − 1, . . . , μN + 1); and a path exit the rectangle far to the right at
each horizontal layer. Let all the other boundary edges of the rectangle be empty (see
Fig. 9, right, for an illustration).

Let the vertex weight at each (i, j) in the rectangle be ̂W (i1, j1; i2, j2 |
x j ; yi ; r j ; si ) (2.4). Denote the partition function of this vertex model by Fλ/μ =
Fλ/μ(x; y; r; s). This partition function is well-defined because ̂W (0, 1; 0, 1) = 1.

In the particular case N = 0 (i.e., when μ = ∅ is the empty signature with no
parts), we abbreviate Fλ = Fλ/μ.

We extend the definitions of Gλ/μ and Fλ/μ to arbitrary pairs of signatures λ,μ

(without the restrictions on the number of parts), by setting these functions to zero if
there are no path configurations with the prescribed boundary data.

From the definitions it follows that the partition functionsGλ/μ and Fλ/μ arewritten
in terms of the row operators from Sect. 2.3 acting in the subspace V of the infinite
tensor product (as explained in Sect. 3.1):
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Proposition 3.4 The function Gλ/μ(x1, . . . , xk; y; r1, . . . , rk; s) is equal to the coef-
ficient by eS(λ) in D(xk, rk) . . . D(x1, r1)eS(μ). Here eS(λ), eS(μ) belong to the same
subspace VN , and the product of the D(xi , ri )’s preserves this subspace by (3.3).

Similarly, the function Fλ/μ(x1, . . . , xk; y; r1, . . . , rk; s) is equal to the coefficient
by eS(λ) in eS(μ)

̂B(xk, rk) . . . ̂B(x1, r1). Here eS(μ) ∈ VN and eS(λ) ∈ VN+k , and the
product of the ̂B(xi , ri )’s maps VN to VN+k , see (3.4).

3.3 Symmetry and branching

Let us derive a few basic properties of the functions F,G defined in the previous
subsection. For each i ≥ 1, let σi denote the elementary transposition of the indices
i ↔ i + 1, and define its action on (various) sets of variables as

σi (x1, . . . , xi−1, xi , xi+1, xi+2 . . .) = (x1, . . . , xi−1, xi+1, xi , xi+2, . . .),

and similarly for r, y, s.

Proposition 3.5 (Symmetries) For each k ≥ 1 and i ∈ {1, . . . , k − 1} we have the
following symmetry properties:

Gλ/μ(σi (x); y; σi (r); s) = Gλ/μ(x; y; r; s);

Fλ/μ(σi (x); y; σi (r); s) =
xi − xi+1r−2i+1
xi+1 − xir

−2
i

Fλ/μ(x; y; r; s).

In otherwords, the functions Gλ/μ(x; y; r; s) and Fλ/μ(x; y; r; s)
∏

1≤i< j≤k
(xi−x jr

−2
j )

are symmetric under simultaneous permutations of the variables (x j , r j ).

Proof The symmetry properties of the functions G and F follow, respectively, from
the commutation relations (2.13) and (2.25) for the operators acting in the subspace
V of the infinite tensor product (see Sect. 3.1).

Proposition 3.6 (Branching) Fix integers M, N ≥ 1 and sets of complex variables

x = (x1, . . . , xM ), x′ = (xM+1, . . . , xM+N ),

r = (r1, . . . , rM ), r′ = (rM+1, . . . , rM+N ),

y = (y1, y2, y3, . . . , ), s = (s1, s2, s3, . . .).

Define x ∪ x′ = (x1, . . . , xM+N ), r ∪ r′ = (r1, . . . , rM+N ). Then for any signatures
λ,μ we have

∑

ν

Gλ/ν(x; y; r; s)Gν/μ(x′; y; r′; s) = Gλ/μ(x ∪ x′; y; r ∪ r′; s);
∑

ν

Fλ/ν(x; y; r; s) Fν/μ(x′; y; r′; s) = Fλ/μ(x ∪ x′; y; r ∪ r′; s).
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Proof These identities follow from Definitions 3.2 and 3.3, respectively. For example,
for the first identity consider the vertex model in Z≥1×{1, . . . , M + N } for the right-
hand side Gλ/μ. Encode the configuration of the vertical arrows between rows M and
M+1 by a signature ν. Then the bottom and the top vertexmodels inZ≥1×{1, . . . , M}
and Z≥1 × {M + 1, . . . , N } have partition functions Gν/μ and Gλ/ν , respectively.
Summing over ν leads to the desired identity (note that this sum is finite). The second
identity is proven in the same way.

3.4 Cauchy identity

The functions F,G satisfy Cauchy-type summation identities which follow from the
Yang–Baxter equation.

Proposition 3.7 (Skew Cauchy identity) Fix two signatures λ,μ, integers M, N ≥ 1,
and sequences of complex variables

x = (x1, . . . , xM ), r = (r1, . . . , rM );
w = (w1, . . . , wN ), θ = (θ1, . . . , θN );

y = (y1, y2, y3, . . . , ), s = (s1, s2, s3, . . .),

satisfying

∣

∣

∣

∣

∣

yk − s2k xi
yk − xi

yk − w j

yk − s2kw j

∣

∣

∣

∣

∣

< 1− δ < 1 forall 1 ≤ i ≤ M, 1 ≤ j ≤ N , and k ≥ 1.

(3.5)

Then we have

∑

ν

Gν/λ(w; y;θ; s)Fν/μ(x; y; r; s)

=
M
∏

i=1

N
∏

j=1

xi − θ−2j w j

xi − w j

∑

κ

Gμ/κ(w; y;θ; s)Fλ/κ(x; y; r; s).

(3.6)

Proof With the help of of Proposition 3.6 and induction on M and N , it suffices to
prove (3.6) for M = N = 1.

Fix λ,μ with K + 1 and K parts, respectively, for some K ≥ 0 (other choices
for the numbers of parts of λ and μ lead to triviality of both sides). Interpret
∑

κ
Gμ/κ(w; y; θ; s)Fλ/κ(x; y; r; s) as a partition function of a vertex model in the

half-infinite rectangle Z≥1× {1, 2}, with the boundary conditions S(λ) at the bottom,
S(μ) at the top, empty on the left, and {full, empty} on the far right. The weights at
vertices (k, 1) and (k, 2), k ≥ 1, are ̂W (· · · | x; yk; r; sk) and W (· · · | w; yk; θ; sk),
respectively. Due to this choice of the weights, the partition function is well-defined
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Fig. 10 The partition function corresponding to the sum over κ in the right-hand side of the skew Cauchy
identity (3.6). Adding the empty cross vertex on the left and dragging it to the right with the help of the
Yang–Baxter equation produces the sum over ν

(all vertices which are repeated infinitely often have weight 1). See Fig. 10 for an
illustration.

Add the empty cross vertex with weight R(0, 0; 0, 0) = 1 to the left ofZ≥1×{1, 2},
and use the Yang–Baxter equation (Proposition 2.2) to move it to the right. After
L ≥ max(λ1 + K + 1, μ1 + K ) steps we get the identity

∑

κ

Gμ/κ(w; y; θ; s)Fλ/κ(x; y; r; s)

= R(0, 1; 0, 1)
∑

ν : ν1+K+1≤L
Gν/λ(w; y; θ; s)Fν/μ(x; y; r; s)

+ Z̃ · R(1, 0; 0, 1)
L
∏

k=max(λ1+K+1, μ1+K )+1
W (0, 1; 0, 1 | w; yk; θ; sk)

̂W (0, 0; 0, 0 | x; yk; r; sk).

Here R(0, 1; 0, 1) = x − w

x − θ−2w
, and Z̃ is a quantity independent of L . Sending

L →+∞, we see that the product over k in the second summand goes to zero thanks
to (3.5), while in the first summand the restriction ν1+K+1 ≤ L disappears. Dividing
both sides by R(0, 1; 0, 1) produces the desired identity (3.6).

As a corollary of Proposition 3.7 and the determinantal formula for F (3.12) from
the next Sect. 3.5, we also get the following identity:

Theorem 3.8 (Cauchy identity, Theorem 1.3 from Introduction) In the setting of
Proposition 3.7 we have

∑

ν

Gν(w; y;θ; s) Fν(x; y; r; s)

=
M
∏

i=1
xi (r

−2
i − 1)

∏

1≤i< j≤M (r−2i xi − x j )(s
−2
i yi − y j )

∏M
i, j=1(yi − x j )

M
∏

i=1

N
∏

j=1

xi − θ−2j w j

xi − w j
,

(3.7)

where the summation in the left-hand side is over all signatures ν with M parts.

Proof This is a particular case of Proposition 3.7 when λ = 0M (this notation stands
for the signature (0, . . . , 0) with 0 repeated M times) and μ = ∅. The sum in the
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right-hand side of (3.6) reduces to a single term with κ = ∅, and G∅/∅ = 1. We thus
get

∑

ν

Gν(w; y;θ; s) Fν(x; y; r; s) = F0M (x; y; r; s)
M
∏

i=1

N
∏

j=1

xi − θ−2j w j

xi − w j
. (3.8)

Using Theorem 3.9 formulated below, we have

F0M (x; y; r; s) =
( M
∏

i=1
xi (r

−2
i − 1)

∏

1≤i< j≤M

r−2i xi − x j
xi − x j

)

det

[

1

yM− j+1 − xi

M− j
∏

m=1

ym − s2mxi
s2m(ym − xi )

]M

i, j=1
.

This determinant has an explicit product form:

det

[

1

yM− j+1 − xi

M− j
∏

m=1

ym − s2mxi
s2m(ym − xi )

]M

i, j=1
=
∏

i< j (xi − x j )(s
−2
i yi − y j )

∏M
i, j=1(yi − x j )

.

(3.9)

This can be established by induction on M using the Desnanot–Jacobi identity for
determinants:

det(A) = det(A1
1) det(A

M
M )− det(AM

1 ) det(A1
M )

det(A1,M
1,M )

, (3.10)

where A is theM×M matrix in the left-hand side of (3.9), and AI
J,I,J ⊂ {1, . . . , M},

|I| = |J|, is the matrix obtained from A by deleting rows and columns indexed by I
and J, respectively. Each of the matrices in the right-hand side of sizes M − 1 and
M − 2 are essentially the ones in the left-hand side of (3.9), up to shifts in some of the
parameters xi , yi , si , and diagonal factors. More precisely, denote the matrix elements
by

a(M)
i j = 1

yM− j+1 − xi

M− j
∏

m=1

ym − s2mxi
s2m(ym − xi )

.

One can readily check that

(AM
M )i j

xi − y1

xi − s−21 y1
= a(M−1)

i j

∣

∣

∣

yi→yi+1, si→si+1
; (A1

1)i j = a(M−1)
i j

∣

∣

∣

xi→xi+1
;

(A1
M )i j

xi+1 − y1

xi+1 − s−21 y1
= a(M−1)

i j

∣

∣

∣

xi→xi+1, yi→yi+1, si→si+1
; (AM

1 )i j = a(M−1)
i j ;
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(A1,M
1,M )i j

xi − y1

xi − s−21 y1
= a(M−2)

i j

∣

∣

∣

xi→xi+1, yi→yi+1, si→si+1
.

Thus, by the induction hypothesis, all the determinants in the right-hand side of (3.10)
are expressed as certain products. The induction step then follows by matching the
combination (3.10) of these products with the desired right-hand side of (3.9). Putting
all together produces the Cauchy identity (3.7).

3.5 Determinantal and Sergeev–Pragacz type formulas

The function Fλ admits an explicit formula involving a determinant of the single-
variable functions F(m). The functionGλ admits a more complicated (yet still explicit)
formula in terms of a summation over the product of two symmetric groups. In this
section we formulate both expressions, and their proofs based on commutation rela-
tions for the row operators (Sect. 2.3) are postponed to Appendix A. See also the next
Sect. 4 for simpler proofs in some particular cases.

For sequences of complex numbers s = (s1, s2, . . .), y = (y1, y2, . . .) and any
integer k ≥ 0 denote

ϕk(x) = ϕk(x | y; s) := 1

yk+1 − x

k
∏

j=1

x − s−2j y j

x − y j
. (3.11)

In particular, ϕ0(x | y; s) = 1/(y1 − x). From Definition 3.3 and the formula for
the vertex weights ̂W (2.4) we have F(k)(x; y; r; s) = x(r−2 − 1) ϕk(x | y; s) for all
k ≥ 0.

Theorem 3.9 (Determinantal formula for Fλ, Theorem 1.5 from Introduction) For any
N ≥ 1, complex variables

x = (x1, . . . , xN ), r = (r1, . . . , rN ), y = (y1, y2, . . .), s = (s1, s2, . . .),

and any signature λ = (λ1 ≥ . . . ≥ λN ) we have

Fλ(x; y; r; s) =
( N
∏

i=1
xi (r

−2
i − 1)

∏

1≤i< j≤N

r−2i xi − x j
xi − x j

)

det
[

ϕλ j+N− j (xi | y; s)
]N
i, j=1 , (3.12)

where ϕk are defined by (3.11).

This theorem is proven in Appendix A.1.
In the next theorem and throughout the text,Sm denotes the group of all permuta-

tions of {1, . . . ,m}. Let λ = (λ1 ≥ . . . ≥ λN ) be an arbitrary signature with N parts.
Let d = d(λ) ≥ 0 denote the integer such that λd ≥ d and λd+1 < d + 1. Denote by
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� j = λ j + N − j + 1, j = 1, . . . , N , the elements of the set S(λ). Let

μ = (μ1 < μ2 < . . . < μd) = {1, . . . , N } \
(

S(λ) ∩ {1, . . . , N }). (3.13)

Theorem 3.10 (Sergeev–Pragacz type formula forGλ) Let M, N > 0 denote integers.
For complex variables

x = (x1, x2, . . . , xM ), r = (r1, r2, . . . , rM ), y = (y1, y2, . . .), s = (s1, s2, . . .),

with the notation above, we have

Gλ(x; y; r; s) =
M
∏

j=1

N
∏

k=1

yk − s2k r
−2
j x j

yk − s2k x j

∑

I,J⊆{1,...,M}
|I|=|J|=d

∏

i∈Jc

j∈J

1

xi − x j

∏

i, j∈J
i< j

1

x j − xi

×
∏

i∈I
1≤ j≤M

(r−2i xi − x j )
∏

i∈Ic
j∈J

(r−2i xi − x j )
∏

i∈I
j∈Ic

1

r−2i xi − r−2j x j

∏

i, j∈I
i< j

1

r−2i xi − r−2j x j

×
∑

σ,ρ∈Sd

sgn(σρ)

d
∏

h=1

( y�h
(

1− s2�h
)

y�h − s2�h x jρ(h)

�h−1
∏

i=N+1

s2i
(

yi − x jρ(h)

)

yi − s2i x jρ(h)

)

×
d
∏

m=1

(

s2μm

yμm − s2μm
r−2iσ(m)

xiσ(m)

N
∏

k=μm+1

s2k
(

r−2iσ(m)
xiσ(m)

− yk
)

yk − s2k r
−2
iσ(m)

xiσ(m)

)

.

(3.14)

where I = (i1 < i2 < . . . < id) and J = ( j1 < j2 < . . . < jd). Note that both sides
of (3.14) vanish if d(λ) > M, as it should be.

This theorem is proven in Appendix A.2. The name “Sergeev–Pragacz type for-
mula” for (3.14) is suggested by the connection between Gλ (in the horizontally
homogeneous case) and supersymmetric Schur functions. Even though we could not
relate (3.14) to the Sergeev–Pragacz formula (e.g., see [49, (5)]) itself, the form of
our formula is sufficiently similar to justify the name. See Sect. 4.2 and in particular
Remark 4.15 below for a detailed discussion.

4 Specializations to known symmetric functions

Here we discuss how our functions F and G degenerate to certain known Schur-type
symmetric functions. This leads to independent proofs of Theorems 3.9 and 3.10 in
some particular cases.
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Fig. 11 All three semistandard Young tableaux for λ = (3, 1) and N = 2, the corresponding summands
in sλ(x | y) given by formula (4.2), and the corresponding vertex model configurations in the proof of
Lemma 4.2

4.1 Five vertex model and factorial Schur polynomials

We begin with a five vertex degeneration, when the weight of the vertex of type
(1, 1; 1, 1) vanishes, and connect the functions Fλ to the factorial Schur polynomials
(also sometimes called double Schur polynomials, cf. [78]). We adopt the definition
from [72, 6th variation]. The factorial Schur polynomials are indexed by signatures
λ = (λ1 ≥ . . . ≥ λN ≥ 0), depend on the variables x = (x1, . . . , xN ) and on a
sequence y = (y1, y2, . . .) of complex parameters:

sλ(x | y) =
det
[

(xi | y)λ j+N− j
]N
i, j=1

∏

1≤i< j≤N (xi − x j )
, (x | y)k := (x + y1) . . . (x + yk).

(4.1)

These polynomials can also be represented as sums over semistandard Young
tableaux. We use the language of Young tableaux only in this subsection, and so
refer to, e.g., [73, Ch. I] for the relevant definitions. We have [72, (6.16)]

sλ(x | y) =
∑

T

(x | y)T , (x | y)T :=
∏

(i, j)∈λ

(

xT (i, j) + yT (i, j)+ j−i
)

. (4.2)

Here the sum is taken over all semistandard Young tableaux of shape λ filled with
numbers from 1 to N , the product is over all boxes (i, j) in λ, where i and j are the
row and column coordinates of the box, and T (i, j) is the tableau entry in this box.
See an example in Fig. 11.

Remark 4.1 In the particular case y = (0, 0, . . .), the factorial Schur polynomials
sλ(x | y) turn into the ordinary Schur polynomials sλ(x1, . . . , xN ).

The tableaux formula (4.2) can be translated into the vertex model language. This
fact is contained in either of [13, 68, 74], but for consistency we give a proof here.

Lemma 4.2 There is aone-to-one correspondencebetween (seeFig.11 for an example)

1. Semistandard Young tableaux of shape λ filled with numbers from 1 to N, and
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2. Path configurations of the six vertex model in the half-infinite rectangle Z≥1 ×
{1, . . . , N } with paths entering from the bottom at locations S(λ) = {λ j + N −
j + 1}1≤ j≤N and exiting through the right boundary, such that the left and the top
boundaries are empty. The paths must satisfy an additional five vertex condition
that the vertex (1, 1; 1, 1) is not present.

Moreover, with the vertex weights at each (i, j) ∈ Z≥1 × {1, . . . , N } equal to
̂WfSchur(0, 0; 0, 0) = xN+1− j + yi , ̂WfSchur(1, 1; 1, 1) = 0,

̂WfSchur(1, 0; 1, 0) = ̂WfSchur(0, 1; 0, 1)
= ̂WfSchur(1, 0; 0, 1) = ̂WfSchur(0, 1; 1, 0) = 1,

(4.3)

the partition function in the half-infinite rectangle described above is equal to the
factorial Schur polynomial sλ(x | y).

A similar bijection holds between semistandard tableaux of a skew shape λ/μ, and
five vertex model configurations with top and bottom boundary conditions given by
S(μ),S(λ). Here the boundary conditions are the same as for the functions Fλ/μ, see
Definition 3.3.

Proof of Lemma 4.2 Take a semistandard tableau T of shape λ, and let ν be the shape
formed by numbers from 1 to N − 1. These signatures interlace:

λ1 ≥ ν1 ≥ λ2 ≥ ν2 ≥ . . . ≥ λN−1 ≥ νN−1 ≥ λN ,

which in the language of the configurations S(λ) = {λ j + N − j + 1
}

and S(ν) =
{

ν j + N − j
}

translates into

λ1 + N > ν1 + N − 1 ≥ λ2 + N − 1 > ν2 + N − 2 ≥
. . . ≥ λN−1 + 2 > νN−1 + 1 ≥ λN + 1. (4.4)

There is a unique one-layer six vertex model configuration in Z≥1 with boundary
conditions S(λ) at the bottom and S(ν) at the top, with no paths entering from the left,
and a path exiting through the right boundary. The strict inequalities in (4.4) imply
that this configuration satisfies the five vertex condition.

To construct the full desired bijection, look at shapes in the tableau formed by
numbers from 1 to j for every j ≤ N − 1, and argue in the same manner as above.

Finally, observe that under this bijection, for each tableau T the product (x | y)T
from (4.2) is the same as the product of the weights (4.4) in the corresponding five
vertex model configuration. Indeed, with the notation ν as above, observe that the
variable xN enters the configuration weight only through empty vertices (0, 0; 0, 0),
which gives

λ1+N−1
∏

m=ν1+N

(xN + ym)

λ2+N−2
∏

m=ν2+N−1
(xN + ym) . . .

λN
∏

m=1
(xN + ym).
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This is readily seen to be the same contribution as in (4.2). The argument similarly
extends to all other variables xi .

Remark 4.3 The weight xN+1− j + yi in (4.3) may be replaced by x j + yi because the
polynomial sλ(x | y) is symmetric in the x j ’s.

We can now specialize Fλ given by Definition 3.3 into sλ(x | y):
Proposition 4.4 Let λ be a signature with N parts. Take complex parameters

s−2x−1 = (s−2x−11 , . . . , s−2x−1N ), −y−1 = (−y−11 ,−y−12 , . . .),

r = (r , . . . , r), s = (s, s, . . .). (4.5)

Then we have

lim
s→0, r→+∞ Fλ(s

−2x−1;−y−1; r; s) = xN−11 xN−22 . . . xN−1
∏

i≥1 y
#{k∈S(λ) : k>i}
i

sλ(x | y). (4.6)

The factorial Schur polynomial sλ(x | y) is symmetric in the xi ’s, and observe
that the deformed symmetry in the xi ’s of the right-hand side of (4.6) agrees with
Proposition 3.5.

Proof of Proposition 4.4 Taking the weights ̂W (2.4) with the parameters (4.5) and
applying the limits s → 0, r → +∞ leads to the vertex weights at each (i, j) ∈
Z≥1 × {1, . . . , N } (listed in the same order as in (4.3) and Fig. 4):

(

1+ x j/yi , 0, x j/yi , 1, 1, x j/yi
)

. (4.7)

These weights are almost the same as ̂WfSchur (4.3), and after a certain renormalization
we can get sλ(x | y). Namely, denote by Z the left-hand side of (4.6). Then

Z

xN−11 xN−22 . . . xN−1

λ1+N−1
∏

i=1
yNi (4.8)

is the partition function like Fλ with the vertex weights

(

x j + yi , 0, 1, yi , yi , 1
)

(4.9)

in the part {1, 2, . . . , λ1 + N − 1}× {1, . . . , N } of the half-infinite rectangle. Indeed,
multiplying by the yi ’s clears the all denominators, while the number of the extra
x j factors in (4.7) coming from the weights (1, 0; 1, 0) and (0, 1; 1, 0) is N − j ,
independently of the path configuration. Note also that to the right of λ1 + N − 1,
every path configuration contains only vertices of the type (0, 1; 0, 1), and so the
remaining weight is equal to 1.

Finally, one can readily check that the number of the extra yi factors coming from the
vertices of types (0, 1; 0, 1) and (1, 0; 0, 1) corresponding to the weights (4.9) is also
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independent of the path configuration, and is equal to
∏λ1+N−1

i=1 y#{k∈S(λ)\{λ1+N } : k≤i}
i .

This allows to remove the extra yi factors, and turn the weights (4.9) into ̂WfSchur
(4.3), up to the permutation of the x j ’s allowed by Remark 4.3. Combining all the
extra factors leads to the result.

Let us now present an alternative derivation of the determinantal formula (3.12) for
Fλ in the special factorial Schur case. This argument is simpler than in the general
case discussed in Appendix A.1.

Corollary 4.5 The determinantal formula for Fλ of Theorem 3.9 holds in the factorial
Schur specialization (4.5)–(4.6).

Alternative proof Proposition 4.4 was proven using only the partition function defini-
tion of Fλ and the tableau formula for sλ(x | y), to compare the two functions. We can
now use the determinantal formula for sλ(x | y) (4.1), and it remains to check that the
formula of Theorem 3.9 specializes to (4.1). We have

lim
s→0

s−2ϕk(s
−2x−1 | −y−1; s) = lim

s→0

s−2

−y−1k+1 − s−2x−1

k
∏

j=1

−y−1j − x−1

s2(−y−1j − s−2x−1)

= −x
k
∏

j=1

x + y j
y j

.

Therefore, in the specialization of Proposition 4.4, the determinantal formula for Fλ

turns into

lim
s→0, r→+∞

( N
∏

i=1
x−1i (r−2 − 1)

∏

1≤i< j≤N

r−2x j − xi
x j − xi

)

det
[

s−2ϕλ j+N− j (s
−2x−1i | −y−1; s)

]N

i, j=1

=
( N
∏

i=1
(−xi )−1

∏

1≤i< j≤N

xi
xi − x j

)

det

⎡

⎣−xi
λ j+N− j
∏

m=1

xi + ym
ym

⎤

⎦

N

i, j=1
,

which produces (4.1) up to the same prefactor as in (4.6).

Let us now turn to the functions Gλ, and denote

šλ(x | y) := 1
∏

i≥1 y
#{k∈S(λ) : k>i}
i

yN−11 yN−22 . . . yN−1
(x1 . . . xM )N

lim
s→0, θ→+∞Gλ(s

−2x−1;−y−1;θ; s), (4.10)

where λ is a signature with N parts, and the parameters are

s−2x−1 = (s2x−11 , . . . , s2x−1M ), −y−1 = (y−11 , y−12 , . . .),
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θ = (θ, . . . , θ), s = (s, s, . . .).

Proposition 4.6 The limit (4.10) exists. It is equal to the five vertex partition function
in Z≥1 × {1, . . . , M} with boundary conditions as for Gλ (Definition 3.2), and the
following vertex weight at each lattice point (i, j):

WfSchur(0, 0; 0, 0) = 1, WfSchur(1, 1; 1, 1) = 0,

WfSchur(1, 0; 1, 0) = WfSchur(0, 1; 0, 1)
= WfSchur(1, 0; 0, 1) = WfSchur(0, 1; 1, 0) = 1

x j + yi
.

(4.11)

Proof Take the weights W (2.3) used in the definition of the functions Gλ, and apply
the limit transition as in (4.10). We obtain the following weights (listed in the same
order as in the claim):

(

1, 0,
x j

x j + yi
,

yi
x j + yi

,
yi

x j + yi
,

x j
x j + yi

)

,

which are almost the same as the desired WfSchur (4.11). The extra factors x j and
yi can be taken out analogously to the proof of Proposition 4.4, which results in the
prefactor in (4.10).

Remark 4.7 The weights WfSchur (4.11) and their partition functions (coinciding with
our šλ for special λ) appeared in [51, 81] (see also [82, 93]) in connection with
enumeration of skew standard Young tableaux.

Proposition 4.8 The functions sλ(x1, . . . , xN | y) and šλ(w1, . . . , wM | y) satisfy the
Cauchy summation identity

∑

λ=(λ1≥...≥λN≥0)
sλ(x1, . . . , xN | y) šλ(w1, . . . , wM | y) =

N
∏

i=1

M
∏

j=1

1

w j − xi
,

(4.12)

where |xi | < |w j | for all i, j .
Proof This is a combination of the Cauchy identity of Theorem 3.8 and the limit
transitions from Propositions 4.4 and 4.6.

When y j ≡ 0, the functions sλ(x | y) become the usual Schur polynomials sλ(x),
while for šλ we have

šλ(w | 0) = (w1 . . . wM )−N sλ(w
−1
1 . . . w−1M ).

This agrees with the fact that for y j ≡ 0, identity (4.12) reduces to the usual Cauchy
identity for Schur functions [73, Ch. I, (4.3)].
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Remark 4.9 There is another Cauchy identity involving the polynomials sλ(x | y)
together with the dual Schur functions ŝλ(w ‖ y) [78, Theorem 3.1] (in [88] a particular
case of the dual Schur functions is included into the family of dual interpolation
Macdonald functions). One can check (by comparing the Cauchy identities or using
the explicit determinantal formula for ŝλ) that the šλ’s are different from the dual Schur
functions ŝλ.

After this paper was posted, [47] studied combinatorial properties of the functions
šλ (in their notation, these are multiples of Eλ) defined through the Cauchy identity
with factorial Schur polynomials.

4.2 Horizontally homogeneousmodel

Throughout this subsection we set all the column parameters (in the sense of Fig. 9)
to be constant:

s j ≡ s, y j ≡ 1, forall j = 1, 2, . . . . (4.13)

Denote this specialization by (y; s) = (1; s). In this special case we can relate the
functions Fλ and Gλ to the ordinary and the supersymmetric Schur functions, respec-
tively.

The supersymmetric Schur functions sλ(a/b), where a = (a1, . . . , aM ), b =
(b1, . . . , bM ) are two sequences of variables, may be defined as coefficients in the
following Cauchy identity involving the ordinary Schur polynomials sλ(t1, . . . , tN ),
where N is an arbitrary large enough integer:

∑

λ=(λ1≥...λN≥0)
sλ(a/b) sλ(t1, . . . , tN ) =

N
∏

i=1

M
∏

j=1

1+ ti b j

1− ti a j
. (4.14)

The supersymmetric Schur functions are related to the factorial Schur polynomials
which appeared in Sect. 4.1, but we do not need this connection here. See [21], [72,
(6.19)] for details. The next statement is independent of the explicit formulas of The-
orems 3.9 and 3.10 (while may also be derived as a corollary of Theorem 3.9, see
Corollary 4.11 below).

Proposition 4.10 (Proposition 1.2 from Introduction) Let λ be a signature with N
parts. Under the homogeneous specialization (4.13), we have

Fλ(x1, . . . , xN ; 1; r; s) = det

[

(

1− s2xi
s2(1− xi )

)λ j+N− j
]N

i, j=1
N
∏

i=1

(r−2i − 1)xi
1− xi

∏

1≤i< j≤N

r−2i xi − x j
xi − x j

(4.15)
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and, in particular,

Fλ(x1, . . . , xN ; 1; r; s)
F0N (x1, . . . , xN ; 1; r; s) = sλ

(

1− s2x1
s2(1− x1)

, . . . ,
1− s2xN
s2(1− xN )

)

. (4.16)

For Gλ, we have the following expression:

Gλ(x1, . . . , xM ; 1; r; s)

= sλ

(

{

s2(1− x j )

1− s2x j

}M

j=1

/{ s2(x jr
−2
j − 1)

1− s2r−2j x j

}M

j=1

)

M
∏

i=1

(

1− s2r−2i xi
1− s2xi

)N

.

(4.17)

Both identities (4.16) and (4.17) readily extend to skew functions thanks to the
branching rules (Proposition 3.6) and the fact that Schur and supersymmetric Schur
functions form bases.

Proof of Proposition 4.10 First, observe that (4.16) immediately follows from (4.15)
and the formula for the Schur polynomial as a ratio of two determinants.

The claim (4.15) about Fλ follows from the results of [8]. This theorem deals with
the free fermion six vertex model whose weights in the k-th row are given by

w(0, 0; 0, 0) = a(k)
1 ; w(1, 0; 1, 0) = b(k)

1 ; w(1, 0; 0, 1) = c(k)
2 ;

w(1, 1; 1, 1) = a(k)
2 ; w(0, 1; 0, 1) = b(k)

2 ; w(0, 1; 1, 0) = c(k)
1 ,

(4.18)

such that a(k)
1 a(k)

2 + b(k)
1 b(k)

2 = c(k)
1 c(k)

2 for all k. Note the swap c1 ↔ c2 in (4.18)
compared to our usual conventions (2.1) which is needed to match with [8].

By [8, Theorem 9] the partition function with the same boundary conditions as for
Fλ (Definition 3.3) with the weights (4.18) is equal to

sμ

(

b(1)
2

a(1)
1

, . . . ,
b(N )
2

a(N )
1

)

N
∏

k=1
(a(k)

1 )μ1+λN c(k)
2

∏

1≤i< j≤N
(a( j)

1 a(i)
2 + b(i)

1 b( j)
2 ), (4.19)

where μi = λ1−λN+1−i . Note that here we needed to flip both the horizontal and the
vertical directions for Fλ compared to the boundary conditions Sλ in [8]. The extra
factors (a(k)

1 )λN come from the fact that our lattice weights for Fλ start from horizontal
position 1 on the left boundary.
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Let us rewrite (4.19) in a determinantal form, and specialize the weights (4.18) to
our ̂W given by (2.4). We obtain

Fλ(x1, . . . , xN ; 1; r; s)

= det
[

(b(i)
2 /a(i)

1 )λ1−λN+1− j+N− j
]

N
∏

k=1
(a(k)

1 )λ1c(k)
2 (a(k)

1 )N−1

∏

1≤i< j≤N

a( j)
1 a(i)

2 + b(i)
1 b( j)

2

a( j)
1 b(i)

2 − a(i)
1 b( j)

2

= det

[

(

1− s2xi
s2(1− xi )

)λN+1− j+ j−1] N
∏

i=1

xi (r
−2
i − 1)

1− xi

∏

1≤i< j≤N

x j − r−2i xi
xi − x j

.

Replacing λN+1− j + j − 1 by λ j + N − j in the determinant amounts to flipping the
signs in all the factors xi − x j in the denominator, which leads to the desired formula
(4.15).

To establish the claim (4.17) about Gλ, take identity (3.8) used in the proof of
Theorem 3.8:

∑

λ

Gλ(w1, . . . , wM ; 1;θ; s) Fλ(x1, . . . , xN ; 1; r; s)
F0N (x1, . . . , xN ; 1; r; s) =

N
∏

i=1

M
∏

j=1

xi − θ−2j w j

xi − w j
.

Observe that this does not use the explicit formula for Fλ fromTheorem3.9. Employing
(4.16), write this identity as

∑

λ

Gλ(w1, . . . , wM ; 1;θ; s) sλ(t1, . . . , tN )

=
N
∏

i=1

M
∏

j=1

1+ s2((ti − 1)w jθ
−2
j − ti )

1+ s2(ti (w j − 1)− w j )

=
M
∏

j=1

(

1− s2w jθ
−2
j

1− s2w j

)N N
∏

i=1

M
∏

j=1

1+ ti
s2(w j θ

−2
j −1)

1−s2w j θ
−2
j

1− ti
s2(1−w j )

1−s2w j

,

where we have denoted

ti = 1− s2xi
s2(1− xi )

, so that xi = 1− s2ti
s2(1− ti )

(the map ti ↔ xi is an involution). Comparing the previous summation identity with
(4.14) and using linear independence of the Schur polynomials (i.e., the fact that the
coefficients by sλ(t1, . . . , tN ) are uniquely determined by the right-hand side), we get
the claim about Gλ.
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Corollary 4.11 In the horizontally homogeneous case (4.13) the function Fλ is given
by the determinantal formula (3.12) of Theorem 3.9.

Alternative proof This proof does not rely on Theorem 3.9 proven in Appendix A.1.
Under (4.13) we have

ϕk(x | y; s) = 1

1− x

(

1− s2x

s2(1− x)

)k

.

Thus, the claim follows from the first part of Proposition 4.10.

Remark 4.12 It should be also possible to derive the determinantal formulas of Propo-
sition 4.10 using the Wick formula and Hamiltonian operators for the free fermion six
vertex model with horizontally homogeneous weights, recently studied in [48].

Let us rewrite the explicit formula for Gλ from Theorem 3.10 in the homogeneous
case. Let λ be a signature with N parts. Recall the integer d = d(λ) for which λd ≥ d
and λd+1 < d + 1. Let τ = (λ1 − d, . . . , λd − d) and η = (λd+1, . . . , λN ) be
two auxiliary signatures. Let η′ denote the transposed signature corresponding to the
reflection of the Young diagram of η with respect to the diagonal, cf. [73, I.(1.3)].
Observe that both τ and η′ have d parts.

Proposition 4.13 With the notation given before this proposition, we have

M
∏

j=1

(

1− s2r−2j x j

1− s2x j

)−N

Gλ(x; 1; r; s)

=
∑

I,J⊆{1,...,M}
|I|=|J|=d

sτ (xJ)sη′(yI)
∏

i∈Jc

j∈J

1

(x j − xi )

∏

i∈I
j∈Ic

1

(yi − y j )

∏

i∈I
1≤ j≤M

(x j + yi )
∏

i∈Ic
j∈J

(x j + yi ),

(4.20)

where

xi = s2(1− xi )

1− s2xi
, yi =

s2(xir
−2
i − 1)

1− s2r−2i xi
, (4.21)

and xJ, yI are subsets of the variables with indices belonging to J and I, respectively.

Proof Using notation (4.21), we have

xi − x j = s2(s2 − 1)(xi − x j )

(1− s2xi )(1− s2x j )
,
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yi − y j =
s2(1− s2)(r−2i xi − r−2j x j )

(1− s2r−2i xi )(1− s2r−2j x j )
,

xi + y j =
s2(s2 − 1)(xi − r−2j x j )

(1− s2xi )(1− s2r−2j x j )
.

With the help of these formulas, we can express all products in (3.14) through xi − xj,
yi − y j , and x j + yi . The remaining sum over σ, ρ ∈ Sd turns into a product of
determinants leading to Schur polynomials in d variables. This is due to the facts that
in the homogeneous case (4.13) we have

�h−1
∏

i=N+1

s2i
(

yi − x jρ(h)

)

yi − s2i x jρ(h)

= xλh−h
jρ(h)

= xτh+d−h
jρ(h)

,

N
∏

k=μm+1

s2k
(

r−2iσ(m)
xiσ(m)

− yk
)

yk − s2k r
−2
iσ(m)

xiσ(m)

= yN−μm
iσ(m)

= y
η′m+d−m
iσ(m)

.

In the last equality we used the notation μ (3.13) and an observation that N − μm =
λ′m − m = η′m + d − m. This completes the proof.

Combining the second part of Proposition 4.10 with Proposition 4.13, we arrive at
the following formula for supersymmetric Schur polynomials:

Corollary 4.14 With the notation given before Proposition 4.13, we have

sλ(x1, . . . , xM/y1, . . . , yM )

=
∑

I,J⊆{1,...,M}
|I|=|J|=d

sτ (xJ)sη′(yI)
∏

i∈Jc

j∈J

1

(x j − xi )

∏

i∈I
j∈Ic

1

(yi − y j )

∏

i∈I
1≤ j≤M

(x j + yi )
∏

i∈Ic
j∈J

(x j + yi ).

(4.22)

For d = M , formula (4.22) coincides with the Berele–Regev formula [21]. The
latter provides an expression for supersymmetric Schur polynomials in this special
case d(λ) = M :

sλ(x1, . . . , xM / y1, . . . , yM ) = sτ (x1, . . . , xM ) sη′(y1, . . . , yM )

M
∏

i, j=1
(xi + y j ).

Remark 4.15 In the general case d(λ) < M , a formula like (4.22) for factorial
Grothendieck polynomials was proven using integrable lattice models in [80]. See
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also [38, 46] for special cases. We remark that our identity (4.22) generalizes the ones
in [38, 46] in a different direction than what is shown in [80].

Moreover, there does not seem to be a direct relation between Corollary 4.14 and
other known formulas for supersymmetric Schur polynomials, including the Sergeev–
Pragacz formula (e.g., see [49, (5)]) and the Moens–Van der Jeugt determinantal
formula [83].

5 Biorthogonality and contour integral formulas

Here we discuss torus-like biorthogonality property for the functions Fλ, and employ
it to derive integral and determinantal formulas for the functions Gλ.

5.1 Biorthogonality

The functions Fλ(x; y; r; s) satisfy a certain biorthogonality property with respect to
contour integration in the x variables. This biorthogonality extends the torus orthog-
onality of Schur polynomials as irreducible characters of unitary groups. To get the
biorthogonality, we use the determinantal formula for Fλ of Theorem 3.9.

Fix an integer N ≥ 1 and sequences of complex parameters y = (y1, y2, . . .),
s = (s1, s2, . . .), x = (x1, . . . , xN ), r = (r1, . . . , rN ). Recall the functionsϕk(x | y; s)
defined in (3.11). Let us also define

ψk(x) = ψk(x | y; s) :=
yk+1(s2k+1 − 1)

yk+1 − s2k+1x

k
∏

j=1

s2j (y j − x)

y j − s2j x
, k ≥ 0. (5.1)

In particular, ψ0(x | y, s) = y1(s21−1)
y1−s21 x

.

Lemma 5.1 We have for all k, l ≥ 0:

1

2π i

∮

γ

ϕk(z | y, s) ψl(z | y, s) dz = 1k=l , (5.2)

where γ is a closed counterclockwise simple contour in the complex plane containing
the points y j for all j ≥ 1 and not y j s

−2
j for all j ≥ 1, and 1k=l is the indicator that

k = l (i.e., the Kronecker delta).

Remark 5.2 Here and below in this section we assume that the parameters (here,
sequences y and s) are such that the integration contour exists. Alternatively, one
may also think of the integration formally as the sum of residues at all the points y j ,
j ≥ 1, which the contour must encircle.

Proof of Lemma 5.1 First, observe that at z = ∞ bothϕk(z), ψl(z) behave as const·z−1
for all k, l ≥ 0. For k < l, the product ϕk(z)ψl(z) has only factors of the form y j −s2j z
in the denominator, and thus has no poles inside the integration contour γ . Therefore,
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the integral (5.2) vanishes for k < l. For k > l, the product ϕk(z)ψl(z) has at least
two factors of the form z− y j and no factors of the form y j − s2j z in the denominator.
Therefore, the integrand is regular outside the contour, so the integral (5.2) vanishes
for k > l as well. Finally, for k = l we have

ϕk(z)ψk(z) = 1

z − yk+1
· yk+1(1− s2k+1)

yk+1 − s2k+1z
,

and the claim immediately follows.

Using Lemma 5.1, define the following counterparts of the functions Fλ:

F∗λ (x; y; r; s) := det
[

ψλ j+N− j (xi | y; s)
]N
i, j=1

∏

N≥i> j≥1

x j − r−2i xi
x j − xi

, (5.3)

where λ is a signature with N parts.

Remark 5.3 In the horizontally homogeneous case s j ≡ s, y j ≡ 1, the functions F∗λ
are almost the same as the Fλ’s, up to a factor and a change of variables:

F∗λ (s−2/x1, . . . , s−2/xN ; 1; r; s)

= (1− s2)N (s2)|λ|+N (N−1)/2
∏N

i=1(r
−2
i − 1)

∏

1≤i< j≤N

r−2j xi − x j

r−2i xi − x j
Fλ(x1, . . . , xN ; y; r; s).

However, in general the F∗λ ’s cannot be expressed through the Fλ’s.

Proposition 5.4 For any signatures λ,μ with N parts we have

1

N !(2π i)N
∮

γ

dz1 . . .

∮

γ

dzN

∏

1≤i 	= j≤N (zi − z j )
∏N

i, j=1(r
−2
i zi − z j )

Fλ(z; y; r; s) F∗μ(z; y; r; s) = 1λ=μ,

where the integration is over the variables z = (z1, . . . , zN ) belonging to the torus
γ N , and γ is a contour around y j not encircling y j s

−2
j , j ≥ 1. Note that the integrand

has no poles at z j = r−2i zi for any i, j .

Proof This proof is similar to the well-known proof of torus orthogonality of the Schur
polynomials. Cancel out the prefactors, and expand the determinants in Fλ and F∗μ as
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sums over permutations:

1

N !(2π i)N
∮

γ

dz1 . . .

∮

γ

dzN

∏

1≤i 	= j≤N (zi − z j )
∏N

i, j=1(r
−2
i zi − z j )

Fλ(z; y; r; s) F∗μ(z; y; r; s)

= 1

N !(2π i)N
∮

γ

dz1 . . .

∮

γ

dzN

det
[

ϕλ j+N− j (zi | y; s)
]N
i, j=1 det

[

ψμ j+N− j (zi | y; s)
]N
i, j=1

= 1

N !
∑

σ,τ∈SN

sgn(στ)

N
∏

i=1

1

2π i

∮

γ

ϕλσ(i)+N−σ(i)(zi ) ψμτ(i)+N−τ(i)(zi ) dzi .

Using Lemma 5.1, we see that the product of the integrals is nonzero only if σ = τ and
λ = μ.When the integral is nonzero, it is equal to 1. Summing N ! terms corresponding
to each σ = τ ∈ SN , we get the result.

5.2 Contour integral formula for F�/�

Using the branching rule (Proposition 3.6) and the biorthogonality (Proposition 5.4),
we are able to get contour integral formulas for the functions Fλ/μ.

Fix N , M ≥ 1, and signatures λwith N+M parts andμwithM parts. Furthermore,
fix sequences of complex numbers

x = (x1, . . . , xN ), r = (r1, . . . , rN ), y = (y1, y2, . . . , ), s = (s1, s2, . . .).

Proposition 5.5 With the above notation, we have

Fλ/μ(x; y; r; s) =
N
∏

i=1
xi (r

−2
i − 1)

∏

1≤i< j≤N

r−2i xi − x j
xi − x j

× 1

M !(2π i)M
∮

γ

dz1 . . .

∮

γ

dzM

N
∏

i=1

M
∏

j=1

z j − r−2i xi
z j − xi

× det[ϕλ j+N+M− j ((x ∪ z)i | y; s)]N+M
i, j=1 det

[

ψμ j+M− j (zi | y; s)
]M
i, j=1 ,(5.4)

where

(x ∪ z)i =
{

xi , 1 ≤ i ≤ M;
zi−M , M + 1 ≤ i ≤ M + N ,

the integration is over the torus γ M, and γ is a contour around y j not encircling
y j s

−2
j , j ≥ 1. Per Remark 5.2, we either assume that the contour γ exists, or treat the

integral formally.
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Proof Throughout the proof we use the notation z = (z1, . . . , zM ) and θ =
(θ1, . . . , θM ). We have from the branching rule (Proposition 3.6)

Fλ(x ∪ z; y; r ∪ θ; s) =
∑

ν

Fλ/ν(x; y; r; s) Fν(z; y;θ; s),

where the sum is over all signatures with M parts. Multiply this (finite) sum by

1

M !(2π i)M F∗μ(z; y;θ; s)
∏

1≤i 	= j≤M (zi − z j )
∏M

i, j=1(θ
−2
i zi − z j )

= 1

M !(2π i)M
∏

i< j (zi − z j )
∏

i≤ j (θ
−2
i zi − z j )

det
[

ψμ j+M− j (zi | y; s)
]M
i, j=1

and integrate over z = (z1, . . . , zM ) ∈ γ M , where γ is a positively oriented contour
around all y j and not encircling y j s

−2
j , j ≥ 1. The integration extracts the single

coefficient by Fν with μ = ν, which together with the determinantal formulas for Fλ

(3.12) and for F∗μ (5.3) produces the desired expression.

5.3 Contour integral formula for G�/�

Using the skew Cauchy identity (Proposition 3.7) and the biorthogonality (Proposi-
tion 5.4), we can get contour integral formulas for the functions Gν/λ and Gν .

Fix integers N , M ≥ 1 and signatures λ, ν with N parts. Also fix sequences of
complex numbers

w = (w1, . . . , wM ), y = (y1, y2, . . .), θ = (θ1, . . . , θN ), s = (s1, s2, . . .).

(5.5)

Proposition 5.6 With the above notation, we have the following contour integral rep-
resentation for the symmetric functions Gν/λ:

Gν/λ(w; y;θ; s) = 1

N !(2π i)N
∮

γ ′
dz1 . . .

∮

γ ′
dzN

N
∏

i=1

M
∏

j=1

zi − θ−2j w j

zi − w j

× det
[

ϕλi+N−i (z j | y; s)
]N
i, j=1 det

[

ψνi+N−i (z j | y; s)
]N
i, j=1 .

(5.6)
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In particular, for λ = ∅ we have

Gν(w; y;θ; s) =
∏

1≤i< j≤N (s−2i yi − y j )

N !(2π i)N
∮

γ ′
dz1 . . .

∮

γ ′
dzN det

[

ψνi+N−i (z j | y; s)
]N
i, j=1

×
∏

1≤i< j≤N (zi − z j )
∏N

i, j=1(yi − z j )

N
∏

i=1

M
∏

j=1

zi − θ−2j w j

zi − w j
.

(5.7)

In both formulas (5.6) and (5.7) the contour γ ′ encircles all y j , j ≥ 1, and wi ,
i = 1, . . . , M, and leaves out all y j s

−2
j , j ≥ 1. Per Remark 5.2, we either assume the

contour γ ′ exists, or treat the integrals in (5.6)–(5.7) formally.

Proof Since Gν = Gν/0N , identity (5.7) follows from (5.6) and the product formula
(3.9) for F0N . Next, by Definition 3.2, for fixed λ, ν the partition function Gν/λ is a
rational function inw,θ, as well as in a finite subfamily of the parameters y and s. The
integral in the right-hand side of (5.6) is also a rational function of these parameters.
Therefore, in proving the proposition we are allowed to impose any open conditions
on the parameters, and then identity (5.6) would hold in general thanks to analytic
continuation.

Take the skew Cauchy identity (3.6) with μ = ∅ (and hence κ = ∅ in the right-
hand side, which eliminates the summation):

∑

ν

Gν/λ(w; y;θ; s)Fν(z; y; r; s) = Fλ(z; y; r; s)
M
∏

i=1

N
∏

j=1

zi − θ−2j w j

zi − w j
. (5.8)

In fact, both sides of (5.8) contain the same factor dependingon rwhich canbe canceled
out, see the determinantal formula for Fλ (3.12). In other words, (5.8) essentially does
not depend on r.

In (5.8), we assume that w, y, s, and z are such that

1. All z j belong to some contour γ ′ encircling all wi and all yi ;

2. For all z ∈ ′ and all j, k we have

∣

∣

∣

∣

∣

yk − s2k z

yk − z

yk − w j

yk − s2kw j

∣

∣

∣

∣

∣

< 1− δ < 1. This is the

condition which implies convergence in (5.8), see Proposition 3.7.

One readily sees that these restrictions onw, y, and s place them into a nonempty open
set, which is sufficient for analytic continuation.

Now, multiply both sides of (5.8) by

1

N !(2π i)N F∗ν (z; y; r; s)
∏

1≤i 	= j≤N (zi − z j )
∏N

i, j=1(r
−2
i zi − z j )
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and integrate over z ∈ (γ ′)N . Since the sum in the right-hand side of (5.8) converges
uniformly on the contours, we can interchange summation and integration and use the
biorthogonality of Proposition 5.4 to extract the coefficient Gν/λ(w; y;θ; s). After
simplification with the help of determinantal formulas (3.12) and (5.3), the integration
of the right-hand side of (5.8) yields the right-hand side of the desired identity (5.6).
Observe that the dependence on the ri ’s disappears, as it should be. Analytic contin-
uation then allows to remove the restrictions stated above in the proof, and we arrive
at the result.

5.4 Jacobi–Trudy type formulas for G�/� and G�

Using the contour integral representation for Gν/λ from Proposition 5.6, it is possible
to derive a Jacobi–Trudy type determinantal formula for these symmetric functions.

For m ≥ 1 define the shift operator shm acting on the sequences y, s as (shmy)i =
ym+i , (shms)i = sm+i . Also define for all l ∈ Z:

˜hl(w; y;θ; s) := 1l≥0
2π i

∮

γ ′

(s2l+1 − 1)yl+1
(yl+1 − s2l+1z)(y1 − z)

l
∏

j=1

s2j (y j − z)

y j − s2j z

M
∏

j=1

z − θ−2j w j

z − w j
dz,

(5.9)

where the integration is over a contour γ ′ around all the points y j and wi , leaving
outside the points y j s

−2
j . Observe that (5.9) is symmetric under simultaneous permu-

tations of (wi , θi ). Also denote

gl/k(w; y;θ; s) :=˜hl−k(w; shky;θ; shks). (5.10)

Proposition 5.7 Fix N ≥ 1. For any signatures λ, ν with N parts, and sequences of
complex numbers w, y,θ, s as in (5.5), we have

Gν/λ(w; y;θ; s) = det
[

g(νi+N−i)/(λ j+N− j)(w; y;θ; s)
]N

i, j=1. (5.11)

Remark 5.8 The shifts of the indices in y and s in (5.11) (see (5.10)) are the same as in
[72, 9th variation] (see also [85]), which makes our functions Gν/λ a particular case
of the Macdonald’s 9-th variation of the Schur functions.

Proof of Proposition 5.7 Observe that

1

2π i

∮

γ ′
dz ϕk(z | y; s)ψl(z | y; s)

M
∏

j=1

z − θ−2j w j

z − w j
=˜hl−k(w; shky;θ; shks).
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Thus, the proposition follows by applying Andréief identity (cf. [39])

1

(2π i)N

∮

γ ′
. . .

∮

γ ′
det[ fi (z j )]Ni, j=1 det[gi (z j )]Ni, j=1 dz1 . . . dzN

= N ! det
[

1

2π i

∮

γ ′
fi (z)g j (z) dz

]N

i, j=1

(5.12)

to the contour integral formula for Gν/λ (5.6). Indeed, here we can take fi (z) =
ϕλi+N−i (z | y; s) and g j (z) = ψν j+N− j (z | y; s)

M
∏

m=1

z − θ−2m wm

z − wm
. ��

Remark 5.9 Using Proposition 5.7, one can check that in the case of horizontally
homogeneous parameters y j ≡ 1, s j ≡ s the skew functions Gλ/ν(w; y;θ; s) turn
(up to a simple product factor) into the supersymmetric skew Schur functions in the

variables wi−1
wi−s−2
/

1−θ−2i wi

θ−2i wi−s−2 . In other words, identity (4.17) extends from the non-

skew case to the skew one.

For non-skew functions Gν there is a simplification of the formula of Proposi-
tion 5.7. Define

hk,p(w; y;θ; s) := 1

2π i

∮

γ ′
dz

ψk(z | y; s)
yp − z

M
∏

j=1

z − θ−2j w j

z − w j
, (5.13)

where ψk is given by (5.1), and the integration contour γ ′ surrounds all the points
y j , wi and leaves out all y j s

−2
j . Comparing (5.9) and (5.13), we see that˜hl = hl,1 for

l ≥ 0.

Proposition 5.10 (Proposition 1.7 from Introduction) Fix N ≥ 1. For any signature
ν with N parts, and sequences of complex numbers w, y,θ, s as in (5.5), we have

Gν(w; y;θ; s) =
∏

1≤i< j≤N

s−2i yi − y j
y j − yi

det
[

hνi+N−i, j (w; y;θ; s)
]N
i, j=1 .

(5.14)

Proof The integrand in the contour integral formula for Gν (5.7) contains the terms
which can be rewritten as a Cauchy determinant:

∏

1≤i< j≤N (zi − z j )
∏N

i, j=1(yi − z j )
= 1
∏

1≤i< j≤N (y j − yi )
det

[

1

yi − z j

]N

i, j=1
.

Combining this with the other determinant det[ψνi+N−i (z j )] in (5.7) and applying
Andréief identity (5.12), we arrive at the desired formula. ��

36Page 53 of 138



A. Aggarwal et al.

Part II Determinantal processes

In this part (accompanied by Appendix B) we develop determinantal point processes
based on the symmetric functions Fλ,Gλ from Part I. By analogy with Schur and
Macdonald processes [9, 90], we call them the FG processes. We compute the corre-
lation kernel for ascending FG processes (a particular subclass of FG processes) in a
double contour integral form.

6 FGmeasures and processes

6.1 Specializations

Fix the parameter sequences

y = (y1, y2, . . .), s = (s1, s2, . . .),

for which there exists ε > 0 such that

ε < y j < ε−1, ε < s j < 1− ε forall j . (6.1)

Under suitable restrictions on the other parameters, the values of Fλ,Gλ become
nonnegative. This leads to the following definition:

Definition 6.1 Let N ∈ Z≥1 and let x = (x1, . . . , xN ), r = (r1, . . . , rN ) be such that

0 < xi < y j < r−2i xi < s−2j y j , forall i, j . (6.2)

Under (6.1) and (6.2), one readily sees that all the vertex weightsW , ̂W (2.3), (2.4) are
nonnegative. This implies that the values of the symmetric functions Fλ/μ(x; y; r; s)
and Gλ/μ(x; y; r; s) are nonnegative.

We call (x; r) a nonnegative specialization, and denote this by ρ ∈ SpecN (where
N indicates the number of variables). When convenient, we denote the values of our
symmetric functions at ρ by Fλ/μ(ρ), Gλ/μ(ρ), and omit explicitly specifying their
overall dependence on y, s.

Remark 6.2 The vertex weightsW , ̂W (2.3), (2.4) depend only on differences between
the parameters x, y, r−2x, s−2y. Therefore, conditions xi , y j > 0 in (6.1)–(6.2) may
be dropped, but we keep them throughout this Part II for convenience of dealing with
various inequalities on the parameters.

The empty specialization ρ = ∅ ∈ Spec0 is nonnegative, and

Fλ/μ(∅) = 1λ=μ, Gλ/μ(∅) = 1λ=μ. (6.3)

For the function Gλ/μ, we also get the same delta function by substituting the zero
variables, namely, Gλ/μ(0, . . . , 0; y; r; s) = 1λ=μ. This is evident by looking at the
vertex weights W (2.3), as the weight of the vertex (1, 0; 0, 1) vanishes.
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For two specializations ρ = (x; r) and ρ′ = (x′; r′), denote by ρ ∪ ρ′ their union
(concatenation) with variables (x ∪ x′; r ∪ r′), as in Proposition 3.6.

In order to use the Cauchy identities, we need to make sure that the corresponding
infinite series converge:

Definition 6.3 Two nonnegative specializations ρ = (x; r) ∈ SpecN and ρ′ =
(w,θ) ∈ SpecM are called compatible (notation (ρ; ρ′) ∈ Comp) if there exists
δ > 0 such that
∣

∣

∣

∣

∣

s−2k yk − xi
yk − xi

yk − w j

s−2k yk − w j

∣

∣

∣

∣

∣

< 1− δ < 1 forall i, j andallsufficientlylarge k > 0.

(6.4)

Compatibility depends on the parameters (y; s), which are assumed fixed. Note also
that the relation (ρ; ρ′) ∈ Comp is not symmetric in ρ, ρ′.

Let us denote, for ρ = (x; r) ∈ SpecN , ρ
′ = (w,θ) ∈ SpecM ,

�(ρ; ρ′) :=
N
∏

i=1

M
∏

j=1

xi − θ−2j w j

xi − w j
,

Z(ρ) :=
N
∏

i=1
xi (r

−2
i − 1)

∏

1≤i< j≤N (r−2i xi − x j )(s
−2
i yi − y j )

∏N
i, j=1(yi − x j )

.

(6.5)

Thus, the Cauchy identities (Propositions 3.7 and 3.8) take the following form for two
compatible specializations ρ, ρ′:

∑

ν

Gν/λ(ρ
′)Fν/μ(ρ) = �(ρ; ρ′)

∑

κ

Gμ/κ(ρ′)Fλ/κ(ρ),

∑

ν

Fν(ρ)Gν(ρ
′) = �(ρ; ρ′) Z(ρ).

(6.6)

6.2 Probability distributions from Cauchy identities

Let T ≥ 1, N ≥ 0 be integers, and pick a nonnegative specialization

ρ = (x1, . . . , xN ; r1, . . . , rN ) ∈ SpecN

and variables (w1, θ1), . . . , (wT , θT ) such that each (wi , θi ) ∈ Spec1 is also a nonneg-
ative specialization in the sense of Definition 6.1. Assume that these specializations
are compatible in the sense of Definition 6.3, that is,

∣

∣

∣

∣

∣

xi − s−2k yk
xi − yk

w j − yk

w j − s−2k yk

∣

∣

∣

∣

∣

< 1− δ < 1 forall i, j and sufficiently large k > 0.

(6.7)
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Definition 6.4 The ascending FG process is a probability measure on sequences of
signatures λ(1), . . . , λ(T ) (each with N parts) defined by

AP(λ(1), λ(2), . . . , λ(T ))

= 1

Z
Gλ(1) (w1; y; θ1; s)Gλ(2)/λ(1) (w2; y; θ2; s) . . .

Gλ(T )/λ(T−1) (wT ; y; θT ; s)Fλ(T ) (ρ),

(6.8)

where the normalizing constant is equal to

Z = Z(ρ)

T
∏

j=1
�(ρ; (w j , θ j ))

=
N
∏

i=1
xi (r

−2
i − 1)

∏

1≤i< j≤N (r−2i xi − x j )(s
−2
i yi − y j )

∏N
i, j=1(yi − x j )

N
∏

i=1

T
∏

j=1

xi − θ−2j w j

xi − w j
.

(6.9)

This definition is parallel to a particular case of Schur processes [90], see also [9].
Later in Sect. 9 we connect ascending FG processes to a certain dimer model.

Remark 6.5 From the explicit formula for Fλ (Theorem 3.9) it is evident that Fλ(T )

divided by Z (6.9) does not depend on the parameters r j , and hence the whole ascend-
ing FG process is independent of these parameters, too.

Themarginal distribution of each λ( j) under the FG process has the following form:

Definition 6.6 Let the parameters (y; s) satisfying (6.1) be fixed. Let M, N ≥ 1, and
take nonnegative specializations ρ = (x; r) ∈ SpecN , ρ′ = (w;θ) ∈ SpecM such
that (ρ, ρ′) ∈ Comp. The FG measure is a probability distribution on signatures λ

with N parts with probability weights

M(λ) := Fλ(ρ)Gλ(ρ
′)

Z(ρ)�(ρ; ρ′) . (6.10)

Definition 6.6 is parallel to the definition of theSchurmeasure [86].Usingbranching
(Proposition 3.6) and the first relation of (6.6), we see that for every j = 1, . . . , T ,
the signature λ( j) (with N parts) is distributed as the FG measure with specializations
ρ = (x; r) ∈ SpecN and ρ′ = (w1, . . . , w j ; θ1, . . . , θ j ) ∈ Spec j .

6.3 Determinantal correlation kernel

Take a random sequence of signatures λ(1), . . . , λ(T ) distributed according to the
ascending FG process (6.8), and associate to it a random point configuration

S(T ) :=
T
⋃

t=1

({t} × S(λ(t))
)

(6.11)
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in {1, . . . , T } × Z≥1, where we use notation S(λ) from (3.1).
We are interested in correlation functions of the ascending FG process, which

are defined for any fixed finite subset A ⊂ {1, . . . , T } × Z≥1 as the probabil-
ities PAP

[

A ⊂ S(T )
]

. We show that the ascending FG process is determinantal,
that is, all its correlation functions are determinants of a certain correlation kernel
KAP(t, a; t ′, a′), 1 ≤ t, t ′ ≤ T , a, a′ ≥ 1. It has the following form:

KAP(t, a; t ′, a′) = 1

(2π i)2

∮

�y,θ−2w

du
∮

�y,w

dv
1

u − v

N
∏

k=1

(u − yk)(v − xk)

(u − xk)(v − yk)

× ya(1− s−2a )

v − s−2a ya

1

u − ya′

a−1
∏

j=1

v − y j

v − s−2j y j

a′−1
∏

j=1

u − s−2j y j

u − y j

t
∏

d=1

v − θ−2d wd

v − wd

t ′
∏

c=1

u − wc

u − θ−2c wc
,

(6.12)

where the integration contours are positively oriented circles one inside the other (the
u contour is outside for t ≤ t ′ while the v contour is outside for t > t ′); the u contour
encircles all the points yi , θ

−2
j w j and not xk ; and the v contour encircles all the points

yi , w j and not s
−2
k yk . Observe that KAP is independent of the r j ’s, which agrees with

Remark 6.5.

Theorem 6.7 (Theorem 1.8 from Introduction) The random point configuration S(T )

constructed from the ascending FG process is a determinantal point process with the
kernel KAP (6.12):

PAP

[

A ⊂ S(T )
] = det

[

KAP(ti , ai ; t j , a j )
]m
i, j=1 (6.13)

for any A = {(t1, a1), . . . , (tm, am)} ⊂ {1, . . . , T } × Z≥1.

Weprove Theorem 6.7 using an Eynard–Mehta type approach (e.g., see [20]) which
is possible due to determinantal formulas for our symmetric functions from Sect. 5.
This approach is quite standard and is deferred to Appendix B.

Moreover, in Sect. 8 below we discuss more general FG processes (having the
structure similar to the general Schur processes of [90]) and connect them to fermionic
operators in the Fock space (developed in Sect. 7).We employ this connection to obtain
a generating function for the correlation kernel. In Sect. 8.6 we check that the Fock
space approach leads to the same correlation kernel in the ascending case.
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Corollary 6.8 The FG measure (Definition 6.6) gives rise to a determinantal point
process S(λ) on Z≥1 with the correlation kernel

KM(a, a′) = 1

(2π i)2

∮

�y,θ−2w

du
∮

�y,w

dv

N
∏

k=1

(u − yk)(v − xk)

(u − xk)(v − yk)

M
∏

i=1

(u − wi )(v − θ−2i wi )

(v − wi )(u − θ−2i wi )

× 1

u − v

ya(1− s−2a )

v − s−2a ya

1

u − ya′

a−1
∏

j=1

v − y j

v − s−2j y j

a′−1
∏

j=1

u − s−2j y j

u − y j
,

(6.14)

with the integration contours are the same as in (6.12), and the u contour is outside
the v contour.

6.4 Horizontally homogeneousmodel and Schur measure

In the horizontally homogeneous case si = s, yi = 1 for all i ≥ 1, thanks to Proposi-
tion 4.10, the FG measure reduces to the Schur measure

PSchur(λ) = 1

Z
sλ

(

1− s2x1
s2(1− x1)

, . . . ,
1− s2xN
s2(1− xN )

)

sλ
(

{

s2(1− x j )

1− s2x j

}M

j=1

/{ s2(w jθ
−2
j − 1)

1− s2θ−2j w j

}M

j=1

)

(6.15)

for a suitable normalization constant Z , and
∣

∣
1−s2xi
1−xi

1−w j

1−s2w j

∣

∣ < 1 − δ < 1 for all i, j

(this condition follows from Definition 6.3). Therefore, by [20, 86] its determinantal
correlation kernel has a double contour integral form. Let us compare that expression
with Corollary 6.8.

First, we recall the correlation kernel of the Schurmeasure from [20, 86]. A function
that enters the kernel is

�Schur(U ) =
N
∏

i=1

1

1− 1−s2xi
s2(1−xi )U

︸ ︷︷ ︸

H1(U )

M
∏

j=1

1− s2(1−w j )

1−s2w j
U−1

1+ s2(θ−2j w j−1)
1−s2θ−2j w j

U−1
︸ ︷︷ ︸

1/H2(U−1)

,
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where H1, H2 are the generating functions associated with the two specializations of
the Schur functions in (6.15). The correlation kernel is then given by

KSchur(a, a′) = 1

(2π i)2

∮ ∮

dUdV

U − V

V a′−N−1

Ua−N

�Schur(U )

�Schur(V )
, a, a′ ∈ Z≥1.

(6.16)

The shifts by N+1 in a, a′ come from the fact that our encoding of the particle config-
urations inZ is different compared to the Schur measures. The integration contours are
such that |V | < |U | and the Taylor expansions of H1(U ), H1(V ), H2(U−1), H2(V−1)
on the contours are into suitable generating series in U and V , respectively:

∣

∣

∣

∣

1− s2xi
s2(1− xi )

U

∣

∣

∣

∣

< 1,

∣

∣

∣

∣

∣

s2(θ−2j w j − 1)

1− s2θ−2j w j
U−1
∣

∣

∣

∣

∣

< 1,

∣

∣

∣

∣

s2(1− w j )

1− s2w j
V−1
∣

∣

∣

∣

< 1,

for all i, j .
Let us change the variables in (6.16) as

U = u − 1

u − s−2
, V = v − 1

v − s−2
,

dUdV

U − V
= s2(s2 − 1)

(1− s2u)(1− s2v)

dudv

u − v
,

which yields

KSchur(a, a′) = 1

(2π i)2

∮ ∮

dudv

u − v

(1− s−2)
(u − s−2)(v − 1)

(

u − s−2

u − 1

)a (
v − 1

v − s−2

)a′

×
(

u − 1

v − 1

)N N
∏

i=1

v − xi
u − xi

M
∏

j=1

u − w j

v − w j

v − θ−2j w j

u − θ−2j w j
,

over the contours such that

∣

∣

∣

∣

v − 1

v − s−2
u − s−2

u − 1

∣

∣

∣

∣

< 1,

∣

∣

∣

∣

s−2 − xi
1− xi

u − 1

u − s−2

∣

∣

∣

∣

< 1,

∣

∣

∣

∣

∣

θ−2j w j − 1

s−2 − θ−2j w j

u − s−2

u − 1

∣

∣

∣

∣

∣

< 1,

∣

∣

∣

∣

1− w j

s−2 − w j

v − s−2

v − 1

∣

∣

∣

∣

< 1.

One can check that these conditions hold on the contour v around 1 and w, and the
contour u containing the v contour and also encircling w/θ2. Thus, our Corollary 6.8
reduces (up to the swap a ↔ a′ which does not affect the determinantal point process)
to the known kernel of the particular Schur measure (6.15).
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7 Fermionic operators

In this section we develop fermionic operators in the Fock space which serve as
inhomogeneous analogues of the operators employed in studying Schur measures and
processes in [86, 90].

7.1 Simplified commutation relations

Let V (k), k ∈ Z, be the two-dimensional complex space with basis e(k)
0 , e(k)

1 . We will
consider tensor products of the form

V [M,N ] := V (M) ⊗ V (M+1) ⊗ . . .⊗ V (N ), M ≤ N . (7.1)

As usual, when working with row operators (see the beginning of Sect. 2.3), we think
that each V (k) carries two parameters (yk, sk), k ∈ Z.

Remark 7.1 This is the first time when we allow the indices of the parameters (yk, sk)
to be nonpositive. However, when applying our computations to actual probability
measures, the indices of (y j , s j ) will always satisfy j ∈ Z≥1.

Recall the operators A, B,C, D (2.8) acting in each V (k). They depend on x, r ,
and also on the parameters (yk, sk) attached to V (k). We omit the latter in the notation,
and write A = A(x, r), and so on. Via (2.9), these operators also act on any tensor
products of the form V ([M,N ]). Our first observation is that with special values of the
parameters (x, r), the operators A, B,C, D satisfy certain simplified relations:

Proposition 7.2 For any x, z, t ∈ C we have2

B(x, t)B(z,
√

z/x) = 0 = B(z, t)B(x,
√

x/z);
C(x,
√

x/z)C(z, t) = 0 = C(z,
√

z/x)C(x, t),
(7.2)

and

B(z,
√

z/x)D(x,
√

x/z)+ D(z,
√

z/x)B(x,
√

x/z) = 0;
D(z,
√

z/x)C(x,
√

x/z) = C(z,
√

z/x)D(x,
√

x/z);
D(x,
√

x/z)A(z,
√

z/x)− C(x,
√

x/z)B(z,
√

z/x)

= D(z,
√

z/x)A(x,
√

x/z)+ B(z,
√

z/x)C(x,
√

x/z);
A(x,
√

x/z)D(z,
√

z/x)− B(x,
√

x/z)C(z,
√

z/x)

= A(z,
√

z/x)D(x,
√

x/z)+ C(z,
√

z/x)B(x,
√

x/z).

(7.3)

2 All square roots involved in identities in this proposition and throughout the section are always squared
in the action of the operators, so we do not need to specify the branches.
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Proof For (7.2), we use relations (2.10), (2.11). In particular, to get the first identity
in (7.2), take (x1, r1) = (z,

√
z/x) and (x2, r2) = (x, t), which implies (t−2x −

z)B(x, t)B(z,
√
z/x) = 0. All other identities in (7.2) are established in a similar

way.
Let us now turn to (7.3). For the first identity, use (2.14),

(x1 − x2)B(x2, r2)D(x1, r1) = (r−21 x1 − x2)D(x1, r1)B(x2, r2)

+x2(1− r−22 )D(x2, r2)B(x1, r1)

with (x1, r1) = (x,
√
x/z) and (x2, r2) = (z,

√
z/x), which yields

(x − z)B(z,
√

z/x)D(x,
√

x/z) = z(1− x/z)D(z,
√

z/x)B(x,
√

x/z),

and thus we obtain the first identity from (7.3) The second identity is analogous with
the help of (2.16). The last two identities follow in a similar way from (2.19) and
(2.20), respectively. ��

Recall that each subset T ⊆ {M, M + 1, . . . , N } (where M ≤ N ) corresponds to a
vector eT ∈ V [M,N ] defined as

eT = e(M)
kM

⊗ e(M+1)
kM+1 ⊗ . . .⊗ e(N )

kN
, ki = ki (T) = 1i∈T.

Also recall the inner product 〈·, ·〉 on tensor powers ofC
2 such as V [M,N ], under which

the vectors of the form eT are orthonormal.
Propositions 7.3, 7.7 and 7.6 below show that matrix elements of D(x,

√
x/z)B(z,√

z/x) and D(x,
√
x/z)C(z,

√
z/x) can be used to detect if two subsets of {M, . . . , N }

are different by a single element. This is summarized in Theorem 7.11 below.

Proposition 7.3 Fix nonzero x, z ∈ C; integers m ≥ 0 and M ≤ N; and two integer
sets

R = (r1 < r2 < . . . < rm), T = (t1 < t2 < . . . < tm < tm+1),
R, T ⊂ {M, M + 1, . . . , N } .

IfR is not a subset of T, then
〈

eR, D(x,
√

x/z)B(z,
√

z/x)eT
〉 = 0 = 〈eT, D(x,

√

x/z)C(z,
√

z/x)eR
〉

. (7.4)

Proof We only establish the first equality in (7.4), the second equality follows in a
similar manner. For convenience of notation, we set rm+1 = tm+2 = +∞ throughout
the proof.

Since R is not a subset of T, there exists an index 1 ≤ n ≤ m such that either
tn < rn < tn+1, or tn+1 < rn < tn+2. Fix such n. Define setsR′ = R∩ (−∞, rn − 1]
and R′′ = R ∩ [rn,+∞), and similarly T′, T′′.
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First, assume that tn+1 < rn < tn+2. Then since |R′| = n − 1 = |T′| − 2, we have
using V [M,N ] = V [M,rn−1] ⊗ V [rn ,N ] and (2.9), picking B twice for the left tensor
product:

〈

eR, D(x,
√

x/z)B(z,
√

z/x)eT
〉

= 〈eR′ , B(x,
√

x/z)B(z,
√

z/x)eT′
〉〈

eR′′ ,C(x,
√

x/z)A(z,
√

z/x)eT′′
〉

.

The latter expression vanishes by identity (7.2) from Proposition 7.2.
Now let us assume that tn < rn < tn+1. Define sets R′0 = R ∩ (−∞, rn], R′′0 =

R∩[rn+1,+∞), and similarly T′0, T′′0. We have |R′0| = |T′0| = n, so with V [M,N ] =
V [M,rn ] ⊗ V [rn+1,N ], in the expansion (2.9) we need to take the D operator twice. We
have

〈

eR, D(x,
√

x/z)B(z,
√

z/x)eT
〉

= 〈eR′0 , D(x,
√

x/z)D(z,
√

z/x)eT′0
〉〈

eR′′0 , D(x,
√

x/z)B(z,
√

z/x)eT′′0
〉

.

In the first factor we apply (2.9) with V [M,rn ] = V [M,rn−1] ⊗ V (rn). Observe that
|R′| = n − 1 = |T′| − 1, so we obtain

〈

eR′0 , D(x,
√

x/z)D(z,
√

z/x)eT′0
〉

= 〈eR′ , D(x,
√

x/z)B(z,
√

z/x)eT′
〉〈

e(rn)
1 , D(x,

√

x/z)C(z,
√

z/x)e(rn)
0

〉

+〈eR′ , B(x,
√

x/z)D(z,
√

z/x)eT′
〉〈

e(rn)
1 ,C(x,

√

x/z)D(z,
√

z/x)e(rn)
0

〉

.

This expression vanishes thanks to the first two identities in (7.3). ��

7.2 Normalized operators

Let us now introduce normalizations of our operators A, B,C, D, which allow to take
the limit as M →−∞, N →+∞ without running into infinite products:

Definition 7.4 Fix x, r ∈ C. For M ≤ 0 ≤ N , define the normalized operators
A[M,N ](x, r), B[M,N ](x, r), C [M,N ](x, r), and D[M,N ](x, r) acting on V [M,N ] by

A[M,N ](x, r) = A(x, r)
∏0

i=M Wi (1, 1; 1, 1)∏N
j=1 Wj (0, 1; 0, 1)

= A(x, r)
0
∏

i=M

r2(yi − s2i x)

s2i (x − r2yi )

N
∏

j=1

y j − s2j x

s2j (y j − x)
;

B[M,N ](x, r) = B(x, r)
∏0

i=M Wi (1, 0; 1, 0)∏N
j=1 Wj (0, 1; 0, 1)

= B(x, r)
0
∏

i=M

yi − s2i x

yi − s2i r
−2x

N
∏

j=1

y j − s2j x

s2j (y j − x)
;
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C [M,N ](x, r) = C(x, r)
∏0

i=M Wi (1, 1; 1, 1)
= C(x, r)

0
∏

i=M

r2(yi − s2i x)

s2i (x − r2yi )
;

D[M,N ](x, r) = D(x, r)
∏0

i=M Wi (1, 0; 1, 0)
= D(x, r)

0
∏

i=M

yi − s2i x

yi − s2i r
−2x

.

HereWj are vertexweights (2.3)with the parametersWj (· · · ) = W (· · · | x; y j ; r; s j ).
Definition 7.5 Let us define expressions � j ,�

∗
j for j ∈ Z as follows:

� j (x, z) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

y j (1− s−2j )

x − s−2j y j

j−1
∏

k=1

x − yk

x − s−2k yk
, j > 0;

y j (1− s−2j )

x − s−2j y j

0
∏

k= j

x − s−2k yk
x − yk

, j ≤ 0,

�∗j (x, z) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

z − x

z − y j

j−1
∏

k=1

z − s−2k yk
z − yk

, j > 0;

z − x

z − y j

0
∏

k= j

z − yk

z − s−2k yk
, j ≤ 0.

Note that while � j (x, z) does not depend on z, it is convenient to keep the � j ,�
∗
j

notation uniform.

Proposition 7.6 Fix nonzero x, z ∈ C; integers m ≥ 0 and M ≤ N; and two integer
sets

R = (r1 < r2 < . . . < rm), T = (t1 < t2 < . . . < tm < tm+1),
R, T ⊂ {M, M + 1, . . . , N } .

If for some j ∈ {1, . . . ,m + 1} we have R = T \ {t j
}

, then

〈

eR, D[M,N ](x,
√

x/z)B[M,N ](z,
√

z/x)eT
〉 = (−1)m− j+1�∗t j (x, z). (7.5)

Proof Observe that by Definition 7.4,

D[M,N ](x,
√

x/z)B[M,N ](z,
√

z/x) = D(x,
√

x/z)B(z,
√

z/x)
N
∏

j=1

y j − s2j z

s2j (y j − z)
.

(7.6)

Therefore, it suffices to evaluate D(x,
√
x/z)B(z,

√
z/x). In the action of this operator

in the tensor product of the spaces V (k), whenever we see D(x,
√
x/z)D(z,

√
z/x),

36Page 63 of 138



A. Aggarwal et al.

we have

〈

e(k)
1 , D(x,

√

x/z)D(z,
√

z/x)e(k)
1

〉 = 〈e(k)
0 , D(x,

√

x/z)D(z,
√

z/x)e(k)
0

〉 = 1.

(7.7)

This means that nontrivial contributions to the left-hand side of (7.5) can only come
from the configuration to the right of t j . Without loss of the generality, wemay assume
that j = 1, and ri = ti+1 for i = 1, . . . ,m.

For any k, define Rk = R ∩ [M, k], and similarly for Tk . If k = ti for some
i = 2, . . . ,m + 1, we have by (2.9):

〈

eRk , D(x,
√

x/z)B(z,
√

z/x)eTk
〉

= 〈eRk−1, D(x,
√

x/z)B(z,
√

z/x)eTk−1
〉〈

e(k)
1 , D(x,

√

x/z)A(z,
√

z/x)e(k)
1

〉

+ 〈eRk−1 , B(x,
√

x/z)D(z,
√

z/x)eTk−1
〉〈

e(k)
1 ,C(x,

√

x/z)B(z,
√

z/x)e(k)
1

〉

.

(7.8)

The first identity in (7.3) states that the D and B operators can be swapped, producing
a negative sign. Applying this to the second summand in the right-hand side of (7.8),
we see that

(7.8) = 〈eRk−1 , D(x,
√

x/z)B(z,
√

z/x)eTk−1
〉

× 〈e(k)
1 ,
(

D(x,
√

x/z)A(z,
√

z/x)− C(x,
√

x/z)B(z,
√

z/x)
)

e(k)
1

〉

= 〈eRk−1 , D(x,
√

x/z)B(z,
√

z/x)eTk−1
〉

× 〈e(k)
1 ,
(

D(z,
√

z/x)A(x,
√

x/z)+ B(z,
√

z/x)C(x,
√

x/z)
)

e(k)
1

〉

,

where in the second equality we applied the third identity in (7.3). Now observe that
the operator C maps e(k)

1 to 0, and we can continue (evaluating the eigenaction of

D(z,
√
z/x)A(x,

√
x/z) on the vector e(k)

1 ):

(7.8) = s2k (z − yk)

yk − s2k z

〈

eRk−1 , D(x,
√

x/z)B(z,
√

z/x)eTk−1
〉

.

Now let us compute the same quantity if k /∈ T. Then we have by (2.9):

〈

eRk , D(x,
√

x/z)B(z,
√

z/x)eTk
〉

= 〈eRk−1, D(x,
√

x/z)B(z,
√

z/x)eTk−1
〉〈

e(k)
0 , D(x,

√

x/z)A(z,
√

z/x)e(k)
0

〉

= s2k (yk − z)

yk − s2k z

〈

eRk−1, D(x,
√

x/z)B(z,
√

z/x)eTk−1
〉

.
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We can now compute the action of D(x,
√
x/z)B(z,

√
z/x) by successively split-

ting off the tensor factors, each time we obtain the factor ± s2k (yk − z)

yk − s2k z
. The overall

number of negative signs is (−1)m , which translates to (−1)m− j+1 when dropping
the assumption j = 1. In the last step of the splitting, at k = t j , we have

〈

e(k)
0 , D(x,

√

x/z)B(z,
√

z/x)e(k)
1

〉 = s2k (x − z)

yk − s2k z
.

Recalling normalization (7.6), we get the desired identity. ��

Proposition 7.7 Fix nonzero x, z ∈ C; integers m ≥ 0 and M ≤ N; and two integer
sets

R = (r1 < r2 < . . . < rm), T = (t1 < t2 < . . . < tm < tm+1),
R, T ⊂ {M, M + 1, . . . , N } .

If for some j ∈ {1, . . . ,m + 1} we have R = T \ {t j
}

, then

〈

eT, D
[M,N ](x,

√

x/z)C [M,N ](z,
√

z/x)eR
〉 = (−1)M− j�t j (x, z). (7.9)

Proof The proof follows along the same lines as the proof of the previous Proposi-
tion 7.6. First we observe that (cf. Definition 7.4)

D[M,N ](x,
√

x/z)C [M,N ](z,
√

z/x)

= (−1)M+1D(x,
√

x/z)C(z,
√

z/x)
0
∏

i=M

yi − s2i x

s2i (yi − x)
. (7.10)

Thus, it suffices to evaluate D(x,
√
x/z)C(z,

√
z/x). In the action of this operator in

the tensor product of the spaces V (k), whenever we see D(x,
√
x/z)D(z,

√
z/x), we

may use (7.7). This means that nontrivial contributions to the left-hand side of (7.9)
can only come from the configuration to the left of t j . Without loss of the generality,
we may assume that j = m + 1, and ri = ti for i = 1, . . . ,m.

For any k, defineRk = [k, N ]∩R, and similarly for Tk . First, assuming that k = ti
for some i = 1, . . . ,m, we have by (2.9) and the second identity in (7.3):

〈

eTk , D(x,
√

x/z)C(z,
√

z/x)eRk

〉 = 〈eTk ,C(x,
√

x/z)D(z,
√

z/x)eRk

〉

= 〈e(k)
1 ,C(x,

√

x/z)B(z,
√

z/x)e(k)
1

〉〈

eTk+1, D(x,
√

x/z)C(z,
√

z/x)eRk+1
〉

+ 〈e(k)
1 , A(x,

√

x/z)D(z,
√

z/x)e(k)
1

〉〈

eTk+1 ,C(x,
√

x/z)D(z,
√

z/x)eRk+1
〉

.

(7.11)

36Page 65 of 138



A. Aggarwal et al.

We next have by (7.3):

(7.11) = 〈eTk+1 ,C(x,
√

x/z)D(z,
√

z/x)eRk+1
〉

× 〈e(k)
1 ,
(

A(x,
√

x/z)D(z,
√

z/x)+ C(x,
√

x/z)B(z,
√

z/x)
)

e(k)
1

〉

= 〈eTk+1,C(x,
√

x/z)D(z,
√

z/x)eRk+1
〉

× 〈e(k)
1 ,
(

A(z,
√

z/x)D(x,
√

x/z)− B(z,
√

z/x)C(x,
√

x/z)
)

e(k)
1

〉

= 〈eTk+1,C(x,
√

x/z)D(z,
√

z/x)eRk+1
〉〈

e(k)
1 , A(z,

√

z/x)D(x,
√

x/z)e(k)
1

〉

= s2k (x − yk)

yk − s2k x

〈

eTk+1 , D(x,
√

x/z)C(z,
√

z/x)eRk+1
〉

.

Here we used the fact that the C operator maps e(k)
1 to 0, and for the last equality we

evaluated the eigenaction on e(k)
1 .

Now assume that k /∈ T. Then we have

〈

eTk , D(x,
√

x/z)C(z,
√

z/x)eRk

〉 = 〈eTk ,C(x,
√

x/z)D(z,
√

z/x)eRk

〉

= 〈e(k)
0 , A(x,

√

x/z)D(z,
√

z/x)e(k)
0

〉〈

eTk+1,C(x,
√

x/z)D(z,
√

z/x)eRk+1
〉

= s2k (yk − x)

yk − s2k x

〈

eTk+1 , D(x,
√

x/z)C(z,
√

z/x)eRk+1
〉

.

We can now compute the action of D(x,
√
x/z)C(z,

√
z/x) by successively splitting

off the tensor factors. Each time we obtain the factor ± s2k (yk − x)

yk − s2k x
, and the overall

number of negative signs is (−1)m , which translates into (−1) j−1 upon passing to the
general case not assuming j = m + 1. In the last splitting, at k = tm+1, we have

〈

e(k)
1 , D(x,

√

x/z)C(z,
√

z/x)e(k)
0

〉 = yk(1− s2k )

yk − s2k x
.

Recalling normalization (7.10), we get the desired identity. ��

7.3 Fermionic operators in the Fock space

We now pass to the infinite volume limit as M → −∞ and N → +∞. As a result,
from the spaces V [M,N ] we get the Fock space F. By definition, F is spanned by the
vectors eT,

eT =
+∞
⊗

m=−∞
e(m)
km

, km = km(T) = 1m∈T,
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where T runs over semi-infinite subsets of Z. A subset T is called semi-infinite (also
sometimes referred to as densely packed towards −∞) if there exists C = C(T) > 0
such that i /∈ T for all i > C and i ∈ T for all i < −C .

In F, we can define an inner product under which the eT’s form an orthonormal
basis:

〈eT, eR〉 = 1T=R.

We do not need to consider convergence in F as all computations below are done in
terms of this inner product. For example, 〈v, eT〉 may be viewed as an operation of
picking a coefficient of eT in v, a formal infinite linear combination of the eR’s.

For a semi-infinite subset T, define

c(T) := #(T ∩ Z>0)− #(Z≤0 \ T), h j (T) := # {t ∈ T : t > j} . (7.12)

The quantity c(T) is called charge. Define the change operator c : F→ F on the basis
by c(eT) = c(T)eT, and then extend by linearity.

Clearly, c(T) can be any integer, andwe have the decomposition ofF into subspaces
with fixed charge:

F =
⊕

n∈Z

Fn, Fn = span {eT : c(T) = n} .

Thenormalizedoperators A[M,N ], B[M,N ],C [M,N ], andD[M,N ] fromDefinition7.4
admitmatrix element-wise infinite volume limits asM →−∞, N →+∞.Wedenote
the limiting operators by AZ(x, r), BZ(x, r),CZ(x, r), DZ(x, r). These operators act
in the Fock space F, more precisely,

AZ : Fn → Fn, BZ : Fn → Fn−1, CZ : Fn → Fn+1, DZ : Fn → Fn .

With this understanding, it is clear that the matrix elements like 〈eT, AZeR〉, and so
on, are well-defined for all possible values of the parameters (x; y; r; s), simply as
products (= suitable partition functions) of normalized weights as in Definition 7.4,
only finitely many of which differ from 1. See also Sect. 1.6 in Introduction for a
pictorial definition of these operators.

The operators AZ, BZ,CZ, DZ satisfy a number of commutation relations:

Proposition 7.8 We have

BZ(x1, r1)B
Z(x2, r2) = r−22 x2 − x1

r−21 x1 − x2
BZ(x2, r2)B

Z(x1, r1); (7.13)

DZ(x1, r1)D
Z(x2, r2) = DZ(x2, r2)D

Z(x1, r1); (7.14)

BZ(x1, r1)D
Z(x2, r2) = r−22 x2 − x1

x2 − x1
DZ(x2, r2)B

Z(x1, r1); (7.15)
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CZ(x1, r1)D
Z(x2, r2) = r−21 x1 − x2

r−21 x1 − r−22 x2
DZ(x2, r2)C

Z(x1, r1); (7.16)

BZ(x1, r1)C
Z(x2, r2) = r−22 x2 − r−21 x1

x2 − x1
CZ(x2, r2)B

Z(x1, r1). (7.17)

All identities are understood in the sense of matrix elements, for example, for (7.13)
we have

〈eT, BZ(x1, r1)B
Z(x2, r2)eR〉 = r−22 x2 − x1

r−21 x1 − x2
〈eT, BZ(x2, r2)B

Z(x1, r1)eR〉,
eR ∈ Fn, eT ∈ Fn−2.

Identities (7.13), (7.14) hold for arbitrary values of the parameters, but the other ones
require the following restrictions. For (7.15), we assume

⊕x1;x2 :
∣

∣

∣

∣

∣

(s−2j y j − x1)(y j − x2)

(s−2j y j − x2)(y j − x1)

∣

∣

∣

∣

∣

< 1− δ < 1 for sufficiently large j > 0. (7.18)

For (7.16), we assume

 r−21 x1;r−22 x2
:
∣

∣

∣

∣

∣

(s−2j y j − r−21 x1)(y j − r−22 x2)

(s−2j y j − r−22 x2)(y j − r−21 x1)

∣

∣

∣

∣

∣

< 1− δ < 1

for sufficiently small j ≤ 0. (7.19)

Finally, (7.17) holds under both conditions ⊕x1;x2 and  r−22 x2;r−21 x1
.

Proof All the desired identities follow from the Yang–Baxter equation (Proposi-
tion 2.4) applied to the operators A[M,N ], B[M,N ],C [M,N ], D[M,N ] (Definition 7.4),
after taking the limitM →−∞, N →+∞. This limit is straightforward for identities
(7.13) and (7.14) using (2.10) and (2.13), respectively. Let us explain how to obtain
the remaining identities.

For (7.15), we use (2.14) to write

B[M,N ](x1, r1)D[M,N ](x2, r2) = r−22 x2 − x1
x2 − x1

D[M,N ](x2, r2)B[M,N ](x1, r1)

+ (1− r−21 )x1
x2 − x1

D[M,N ](x1, r1)B[M,N ](x2, r2)
N
∏

j=1

y j − s2j x1

y j − x1

y j − x2
y j − s2j x2

.

Thanks to the assumptions, the second term (more precisely, its pairing with two
arbitrary vectors 〈eT, (· · · )eR〉) can be bounded in the absolute value by C(1 − δ)N ,
and hence vanishes as N →+∞.
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For (7.16), we write using (2.17):

C [M,N ](x1, r1)D[M,N ](x2, r2) = r−21 x1 − x2

r−21 x1 − r−22 x2
D[M,N ](x2, r2)C [M,N ](x1, r1)

+ x2(1− r−22 )

r−21 x1 − r−22 x2
D[M,N ](x1, r1)C [M,N ](x2, r2)

0
∏

i=M

yi − s2i r
−2
1 x1

r−21 x1 − yi

r−22 x2 − yi

yi − s2i r
−2
2 x2

.

Thanks to our assumptions, the second term vanishes in the infinite volume limit. ��
Finally, for (7.17), we write using (2.19):

B[M,N ](x1, r1)C [M,N ](x2, r2) = r−22 x2 − r−21 x1
x2 − x1

C [M,N ](x2, r2)B[M,N ](x1, r1)

+ x1(r
−2
1 − 1)

x2 − x1

(

D[M,N ](x2, r2)A[M,N ](x1, r1)

0
∏

i=M

yi − s2i r
−2
2 x2

yi − s2i x2

yi − x1/r21
x1 − yi/s2i

N
∏

j=1

s2j (y j − x1)

y j − s2j x1

−D[M,N ](x1, r1)A[M,N ](x2, r2)
0
∏

i=M

yi − s2i r
−2
1 x1

yi − s2i x1

yi − x2/r22
x2 − yi/s2i

N
∏

j=1

s2j (y j − x2)

y j − s2j x2

)

×
0
∏

i=M

yi − s2i x1

yi − s2i r
−2
1 x1

x2 − yi/s2i
yi − x2/r22

N
∏

j=1

yi − s2i x1

s2i (yi − x1)
.

Again, thanks to our assumptions, the terms involving the operators A, D vanish in
the infinite volume limit. ��
Definition 7.9 For each j ∈ Z, define the fermionic creation and annihilation opera-
tors ψ j , ψ

∗
j : F→ F on the basis by (and then extending by linearity):

ψ j eT =
{

(−1)h j (T)eT∪{ j}, j /∈ T;
0, j ∈ T,

ψ∗j eT =
{

(−1)h j (T)eT\{ j}, j ∈ T;
0, j /∈ T.

Clearly, ψ j : Fn → Fn+1 and ψ∗j : Fn → Fn−1. The operators ψi , ψ
∗
j satisfy the

anticommutation relations (that are easy to check directly)

ψkψ
∗
k + ψ∗k ψk = 1,

ψkψ
∗
� + ψ∗� ψk = ψ∗k ψ∗� + ψ∗� ψ∗k = ψkψ� + ψ�ψk = 0, k 	= �.

Moreover,

ψ jψ
∗
j eT = 1 j∈T eT. (7.20)
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Define the operators

�(x, z) = DZ(x,
√

x/z)CZ(z,
√

z/x)(−1)c,
�∗(x, z) = DZ(x,

√

x/z)BZ(z,
√

z/x), (7.21)

where c is the charge operator. Clearly, �(x, z) : Fn → Fn+1 and �∗(x, z) : Fn →
Fn−1. Let us record several relations for �,�∗:

Proposition 7.10 We have

BZ(x, r)�(u, ζ ) = −u − r−2x
u − x

�(u, ζ )BZ(x, r) under ⊕x;u,⊕x;ζ , u;r−2x ;
(7.22)

�(u, ζ )DZ(w, θ) = u − w

u − θ−2w
DZ(w, θ)�(u, ζ ) under  u;θ−2w; (7.23)

BZ(x, r)�∗(κ, v) = v − x

r−2x − v
�∗(κ, v)BZ(x, r) under ⊕x;κ ; (7.24)

�∗(κ, v)DZ(w, θ) = θ−2w − v

w − v
DZ(w, θ)�∗(κ, v) under ⊕v;w; (7.25)

�∗(κ, v)�(u, ζ ) = −�(u, ζ )�∗(κ, v) under ⊕v;u,⊕v;ζ , u;κ , u;v.
(7.26)

These identities are again understood in the sense of matrix elements in the standard
basis. For example, we have 〈eT, �∗(κ, v)�(u, ζ )eR〉 = −〈eT�(u, ζ )�∗(κ, v)eR〉
for all eT, eR ∈ Fn, n ∈ Z. Conditions ⊕ and  are defined in (7.18)–(7.19).

Proof These identities and the corresponding conditions immediately follow from
Proposition 7.8. Note the extra minus signs in (7.22) and (7.26) which arise from
commuting (−1)c with BZ. ��

The next statement is one of the key results on the operators � and �∗ in the Fock
space:

Theorem 7.11 (Theorem 1.13 from Introduction) As operators on F, we have

�(x, z) =
∑

j∈Z

� j (x, z)ψ j , �∗(x, z) =
∑

j∈Z

�∗j (x, z)ψ∗j ,

where the expressions � j ,�
∗
j are given in Definition 7.5. In particular, �(x, z) is

independent of z, which is evident from the formula for � j (x, z).

Proof This follows from Propositions 7.3, 7.7 and 7.6. Indeed, for ψ∗t j in Proposi-

tion 7.6 we have (−1)m+1− j = (−1)ht j (T), and for ψt j in Proposition 7.7 we have

(−1)M− j = (−1)c(R)+ht j (R). Here we used the fact that the charge of any m-subset
of {M, M + 1, . . . , N } for sufficiently small M and large N is equal to m− (M + 1).
This completes the proof. ��
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The next statement follows from the previous Theorem 7.11 and is a key ingredient
in getting determinantal correlation functions.We refer to [90, Lemma1] or [6, Lemma
B.1] for its proof which dates back to at least [42].

Proposition 7.12 (Wick’s determinant) Fix an integer k ≥ 1 and two sequences of
complex numbers

{

ai j
}

,
{

bi j
}

. Define the operators Ai = ∑ j∈Z
ai jψ j and Bi =

∑

j∈Z
bi jψ∗j (note that the operators Ai : Fn → Fn+1 and B j : Fn → Fn−1 are

well-defined for arbitrary coefficients ai j , bkl ). Then

〈

eZ≤0 , A1B1A2B2 . . . Ak BkeZ≤0
〉 = det
[

Mi j
]k
i, j=1 ,

Mi j =
{
〈

eZ≤0 , Ai B j eZ≤0
〉

, i ≥ j;
−〈eZ≤0 , Bj Ai eZ≤0

〉

, i < j .

7.4 Action of the9 operators

We now compute matrix elements of various products of the operators �(u, ζ ) and
�∗(κ, v) on the vectors eZ≤0 , eZ≤N from the Fock space F.

Lemma 7.13 Under  u;v (7.19), we have

〈

eZ≤0 , �(u, ζ )�∗(κ, v)eZ≤0
〉 = v − κ

u − v
.

Under ⊕v;u, we have

−〈eZ≤0 , �
∗(κ, v)�(u, ζ )eZ≤0

〉 = v − κ

u − v
.

Proof We only prove the first identity, the second is analogous. Observe that

〈

eZ≤0 , ψiψ
∗
j eZ≤0
〉 = 1i= j1i≤0.

Therefore, using Theorem 7.11 and Definition 7.5 we have

〈

eZ≤0 , �(u, ζ )�∗(κ, v)eZ≤0
〉 =

0
∑

j=−∞
� j (u, ζ )�∗j (κ, v)

=
0
∑

j=−∞

y j (1− s2j )

y j − s2j u

κ − v

y j − v

0
∏

k= j

yk − s2k u

s2k (yk − u)

s2k (yk − v)

yk − s2k v

= v − κ

u − v

0
∑

j=−∞

(

1− (y j − v)(y j − s2j u)

(y j − u)(y j − s2j v)

)

0
∏

k= j+1

yk − s2k u

yk − u

yk − v

yk − s2k v
= v − κ

u − v
.

In the last equality we used the fact that the infinite sum telescopes to 1 under  u;v .
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Proposition 7.14 Fix an integer m ≥ 1, and let ui , v j satisfy

{

 ui ;v j , i ≥ j;
⊕v j ;ui , i < j .

Then we have

〈

eZ≤0 , �(u1, ζ1)�
∗(κ1, v1) . . . �(um, ζm)�∗(κm, vm) eZ≤0

〉

=
m
∏

i=1
(κi − vi )

∏

1≤i< j≤m
(v j − vi )(ui − u j )

m
∏

i, j=1

1

v j − ui
.

Note that �(ui , ζi ) does not depend on ζi , and the ζi ’s are not present in the right-
hand side, as it should be.

Proof of Proposition 7.14 Employing Proposition 7.12 and Proposition 7.13, we have

〈

eZ≤0 , �(u1, ζ1)�
∗(κ1, v1) . . . �(um, ζm)�∗(κm, vm) eZ≤0

〉 = det

[

v j − κ j

ui − v j

]m

i, j=1
.

The determinant in the right-hand side factorizes thanks to the Cauchy determinant
formula, and we arrive at the desired identity. ��

8 Correlation kernel via fermionic operators

In this section we study a generalization of the ascending FG process introduced in
Sect. 6.2, and compute a generating function type series for its correlation kernel KP

using fermionic operators in the Fock space developed in Sect. 7 above.

8.1 General FG processes

The following definition is parallel to the definition of the Schur process introduced
in [90].

Assume that the parameters (y; s) satisfying (6.1) are fixed. Fix T ≥ 1 and variables
(xi ; ri ) and (wi ; θi ), i = 1, . . . , T , such that these specializations are nonnegative in
the sense of Definition 6.1 and are compatible as in Definition 6.3, i.e., the variables
satisfy (6.7). The FG process with this data is a probability measure on sequences of
signatures λ(1), μ(1), λ(2), . . . , μ(T−1), λ(T ) with probability weights

P(λ(1), μ(1), λ(2), μ(2), . . . , μ(T−1), λ(T )) := 1

Z
Gλ(1) (w1; θ1)Fλ(1)/μ(1) (x1; r1)

× Gλ(2)/μ(1) (w2; θ2) . . . Fλ(T−1)/μ(T−1) (xT−1; rT−1)
Gλ(T )/μ(T−1) (wT ; θT )Fλ(T ) (xT ; rT ),

(8.1)
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where the normalizing constant is computed using multiple applications of (6.6):

Z =
T
∏

i=1
xi (r

−2
i − 1)

∏

1≤i< j≤T (r−2i xi − x j )(s
−2
i yi − y j )

∏T
i, j=1(yi − x j )

∏

1≤i≤ j≤T

x j − θ−2i wi

x j − wi
.

(8.2)

Note that the number of parts in the signatures in (8.1) is fixed:λ(1) has T parts, and both
μ( j) andλ( j+1) have T− j parts, j = 1, . . . , T−1. In (8.1) and belowwhen convenient
we omit the notation y, s in the functions Fλ/μ(xi ; y; ri ; s), Gν/κ(wi ; y; θi ; s).
Remark 8.1 The FG process (8.1) reduces to the ascending FG process from Defini-
tion 6.4 as follows. Fix some 1 ≤ a ≤ T −1, setwa+1 = wa+2 = . . . = wT = 0, and
replace each of the specializations (x1; r1), . . . , (xa; ra) by∅, the empty specialization
(see (6.3)). We discuss the reduction to the ascending case in Sect. 8.6 below.

8.2 FG process via Fock space

Let us now express the probability weights under the FG process (8.1) through matrix
elements of our operators acting in the Fock space F. Fix a signature λ = (λ1 ≥
. . . ≥ λm ≥ 0), and let Iλ be the rank one projection in F onto the semi-infinite subset
corresponding to λ, that is, which acts as

IλeT =
{

eT, if T = {λ1 + m, λ2 + m − 1, . . . , λm + 1, 0,−1,−2, . . .} ;
0, otherwise,

for any semi-infinite T ⊂ Z.

Lemma 8.2 The probability weights of the FG process have the form

P(λ(1), μ(1), λ(2), μ(2), . . . , μ(T−1), λ(T )) = 1

Z

〈

eZ≤0 , B
Z(xT , rT )Iλ(T )

× DZ(wT , θT )Iμ(T−1) . . . Iλ(2) DZ(w2, θ2)Iμ(1) BZ(x1, r1)Iλ(1) DZ(w1, θ1)eZ≤T
〉

.

The normalizing constant (8.2) is

Z = 〈eZ≤0 , B
Z(xT , rT )DZ(wT , θT )BZ(xT−1, rT−1) . . .

DZ(w2, θ2)B
Z(x1, r1)D

Z(w1, θ1)eZ≤T
〉

.

Proof The matrix element 〈eZ≤0 , AeZ≤N 〉, where A is a product of BZ, DZ, and Iλ’s,
can be nonzero only if in the partition function representation of it the vertical arrows
in each position j ≤ 0 move vertically straight. The normalization of the operators
BZ, DZ on Z≤0 (Definition 7.4) ensures that this straight movement contributes the
total weight 1. Next, in the positive half-lineZ≥1, the operators DZ are not normalized
and thus yield vertex configurations for the functions Gλ/μ. The normalization of the
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operators BZ is equivalent to passing from the vertex weights W to the weights ̂W ,
see (2.5). Therefore, the action of the operators BZ yield vertex configurations for the
functions Fλ/μ. This shows the desired expressions for the probability weights of the
FG process and measures.

Remark 8.3 The matrix element representation for the probability weights of the FG
process in Lemma 8.2 is independent of (yk, sk), k ≤ 0, as it should be. ��

8.3 Extracting series coefficients

In the rest of this section, we abbreviate

�(u) := �(u, 0), �∗(v) := �∗(0, v).

Note that the operator �∗(v) is well-defined by setting κ = 0 in the expansion of
Theorem 7.11:

�∗(v) =
+∞
∑

j=1

⎛

⎝

v

v − y j

j−1
∏

k=1

yk − s2k v

s2k (yk − v)

⎞

⎠ψ∗j +
0
∑

j=−∞

⎛

⎝

v

v − y j

0
∏

k= j

s2k (yk − v)

yk − s2k v

⎞

⎠ψ∗j .

Therefore, we have for any semi-infinite subset T ⊂ Z and j ≥ 1:

ψ jψ
∗
j eT = 1 j∈T eT. (8.3)

The quantity 1 j∈T eT can also be written as
[

� j (u, 0)�∗j (0, v)
]

�(u)�∗(v) eT, where

the notation
[· · · ] means extracting the coefficient in the generating series (recall

Definition 7.5). The next two lemmas clarifywhat itmeans to extract such a coefficient.

Lemma 8.4 Let f (u) =∑i∈Z
ci�i (u, 0), where ci ∈ C. Then for any i ∈ Z we have

ci = 1

2π i

∮

f (u) du

u − yi

i−1
∏

k=1

u − s−2k yk
u − yk

, i ≥ 1;

ci = 1

2π i

∮

f (u) du

u − s−2i yi

0
∏

k=i+1

u − yk

u − s−2k yk
, i ≤ 0.

In both integrals the integration contour separates the families of the points {yk}k∈Z

and {s−2k yk}k∈Z, and goes around the yk’s in the positive direction. Moreover, the
series for f (u) must converge uniformly on the contour.

Proof This is essentially the single-variable biorthogonality (Lemma 5.1). Indeed, the
hypothesis of Lemma 8.4 allows to interchange summation and integration. Then one
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can show that for all m ∈ Z and i ≥ 1 we have

1

2π i

∮

�m(u, 0) du

u − yi

i−1
∏

k=1

u − s−2k yk
u − yk

= 1m=i .

Note that when m is nonpositive (the case not covered by Lemma 5.1), the u contour
has no poles outside (as all the poles are of the form u = yk and are inside), so the
integral vanishes. When i ≤ 0, we similarly have for all m ∈ Z:

1

2π i

∮

�m(u, 0) du

u − s−2i yi

0
∏

k=i+1

u − yk

u − s−2k yk
= 1m=i .

This completes the proof. ��
Lemma 8.5 Let g(v) =∑ j∈Z

d j�
∗
j (0, v), where d j ∈ C. Then for j ≥ 1 and j ≤ 0

we have, respectively,

d j =
y j (s

−2
j − 1)

2π i

∮

v−1g(v) dv

v − s−2j y j

j−1
∏

k=1

v − yk

v − s−2k yk
;

d j =
y j (s

−2
j − 1)

2π i

∮

v−1g(v) dv

v − y j

0
∏

k= j+1

v − s−2k yk
v − yk

.

In both integrals the integration contour separates the families of the points {yk}k∈Z

and {s−2k yk}k∈Z, and goes around the s
−2
k yk’s in the positive direction. Moreover, the

series for g(v) must converge uniformly on the contour.

Proof This is proven in the same way as Lemma 8.4. ��
Remark 8.6 Lemmas 8.4 and 8.5 imply linear independence of the products �i (u, 0)
�∗j (0, v) for all i, j ∈ Z. Therefore, the operation of extracting the coefficient

[

� j (u, 0)�∗j (0, v)
]

�(u)�∗(v) eT

discussed before Lemma 8.4 is indeedwell-defined and can be realized by Lemmas 8.4
and 8.5.

8.4 Correlation generating function

We are now in a position to compute a generating series type expression for the
correlations of the FG process. Denote

�(u; v) := �(uk)�
∗(vk) . . . �(u1)�

∗(v1).
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Applying �(u; v) to a vector eT (with semi-infinite T) produces a linear combi-
nation of terms 1{ j1,..., jk }∈T eT (corresponding to the desired k-point correlations),
together with some other terms. More precisely, each desired term 1{ j1,..., jk }∈T eT,
with ( j1, . . . , jk) ∈ Z

k≥1 distinct and ordered, arises from ψ jkψ
∗
jk

. . . ψ j1ψ
∗
j1
, where

each index jm comes from the pair of the generating functions �(um)�∗(vm). All the
other terms are “parasite” and should be excluded by extracting only the appropriate
coefficients as in Sect. 8.3. The generating function with all the terms put together has
an explicit product form:

Proposition 8.7 Take the following sequences of parameters for the generating series:

u j = (u j
1, . . . , u

j
k j

), v j = (v
j
1 , . . . , v

j
k j

), k j ≥ 0, j = 1, . . . , T .

Assume that for all possible indices m = 1, . . . , T , and i, j, α, β, the parameters
satisfy:

⊕xi ;w j , ⊕v
j
α ;wi

, ⊕
viβ ;r−2j x j

, ⊕x j ;uiα , ⊕
v
j
β ;ym , ⊕xi ;ym ,  

u j
α ;θ−2i wi

,  uiβ ;r−2j x j
,  uiβ ;x j ,

⎧

⎨

⎩

 y j ;xi ,  y j ;r−2i xi
, 1 ≤ i ≤ j ≤ T ;

⊕xi ;r−2j x j
, 1 ≤ j < i ≤ T ,

⎧

⎨

⎩

 
uiα ;v j

β

, i > j or i = j, α ≥ β;
⊕

v
j
β ;uiα , i < j or i = j, α < β,

(8.4)

see (7.18), (7.19) for the notation. Then we have

1

Z

〈

eZ≤0 , B
Z(xT , rT )�(uT ; vT )DZ(wT , θT )

× BZ(xT−1, rT−1) . . . �(u2; v2)DZ(w2, θ2)B
Z(x1, r1)�(u1; v1)DZ(w1, θ1)eZ≤T

〉

=
∏

1≤i≤ j≤T

k j
∏

α=1

(v
j
α − θ−2i wi )(u

j
α − wi )

(v
j
α − wi )(u

j
α − θ−2i wi )

∏

1≤i< j≤T

k j
∏

α=1

(u j
α − xi )(v

j
α − r−2i xi )

(u j
α − r−2i xi )(v

j
α − xi )

×
T
∏

m,i=1

ki
∏

α=1

(uiα − ym)(viα − xm)

(viα − ym)(uiα − xm)

×
T
∏

i=1

( ki
∏

α=1

viα

uiα − viα

∏

1≤α<β≤ki

(uiα − uiβ)(viα − viβ)

(viα − uiβ)(uiα − viβ)

)

∏

1≤i< j≤T

( ki
∏

α=1

k j
∏

β=1

(uiα − u j
β)(viα − v

j
β)

(viα − u j
β)(uiα − v

j
β)

)

,

where Z is given by (8.2). If k j = 0 for some j , we omit the operator �(u j ; v j ) in

the left-hand side; and in the right-hand side, the products
∏k j

α=1 are equal to 1, by
agreement.

Proof Throughout the proof, conditions (8.4) arise from recording all the required
commutations of the operators which are obtained in Sect. 7.3. Moreover, we use
Wick’s determinant (Proposition 7.14) which leads to the last condition on ui , v j in
(8.4).
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Observe that

�(y j )eZ≤ j−1 = eZ≤ j

j−1
∏

i=1

s2i (yi − y j )

yi − s2i y j
,

where j ≥ 1 (note the specific choice of the argument in �(·)). Therefore,

eZ≤T =
∏

1≤i< j≤T

yi − s2j y j

s2i (yi − y j )
�(yT ) . . . �(y1)eZ≤0 . (8.5)

First, we move each DZ(wi , θi ) to the left of �(ui ; vi ) and BZ(xi , ri ), j ≥ i .
Then we move each BZ(x j , r j ) to the right of �(ui ; vi ), i ≤ j . This leads, by
Proposition 7.10, to

BZ(xT , rT )�(uT ; vT )DZ(wT , θT ) . . .

�(u2; v2)DZ(w2, θ2)B
Z(x1, r1)�(u1; v1)DZ(w1, θ1)

= DZ(wT , θT ) . . . DZ(w1, θ1)�(uT ; vT ) . . . �(u1; v1)BZ(xT , rT ) . . . BZ(x1, r1)

×
∏

1≤i≤ j≤T

(

θ−2i wi − x j
wi − x j

k j
∏

α=1

θ−2i wi − v
j
α

wi − v
j
α

wi − u j
α

θ−2i wi − u j
α

u j
α − r−2i xi

u j
α − xi

v
j
α − xi

v
j
α − r−2i xi

)

.

(8.6)

Now, note that 〈eZ≤0 , D
Z(w, θ)eT〉 = 1T=Z≤0 . Thus, we may replace the D operators

on the left by any other D operators. So we have, using (8.5),

〈

eZ≤0 , D
Z(wT , θT ) . . . DZ(w1, θ1)�(uT ; vT ) . . .

�(u1; v1)BZ(xT , rT ) . . . BZ(x1, r1)eZ≤T
〉

=
∏

1≤i< j≤T

yi − s2i y j

s2i (yi − y j )

〈

eZ≤0 , D(r−2T xT , r−1T ) . . .

D(r−21 x1, r
−1
1 )�(uT ; vT ) . . . �(u1; v1)

× BZ(xT , rT ) . . . BZ(x1, r1)�(yT ) . . . �(y1)eZ≤0
〉

,

(8.7)

We chose the new D operators such that together with B(xi , ri ) they will lead to the
operators �∗, cf. (7.21). Now we commute again and have, using (7.23), (7.25), and
(7.15):

D(r−2T xT , r−1T ) . . . D(r−21 x1, r
−1
1 )�(uT ; vT ) . . .

�(u1; v1)BZ(xT , rT ) . . . BZ(x1, r1)

= �(uT ; vT ) . . . �(u1; v1)D(r−2T xT , r−1T ) . . .
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D(r−21 x1, r
−1
1 )BZ(xT , rT ) . . . BZ(x1, r1)

×
T
∏

i, j=1

k j
∏

α=1

u j
α − xi

u j
α − r−2i xi

v
j
α − r−2i xi

v
j
α − xi

= �(uT ; vT ) . . . �(u1; v1)
T
∏

i=1
DZ(r−2i xi , r

−1
i )BZ(xi , ri )

︸ ︷︷ ︸

�∗(r−2i xi ,xi )

×
T
∏

i, j=1

k j
∏

α=1

u j
α − xi

u j
α − r−2i xi

v
j
α − r−2i xi

v
j
α − xi

∏

1≤i< j≤T

r−2i xi − x j
xi − x j

.

Now in the matrix element (8.7) we have a total of T operators �∗(r−2i xi , xi ) in
front of the same number of operators�(y j ).We can commute these operators through
each other to form pairs of the operators as��∗. Thanks to (7.26), this only produces
the sign (−1)T (T+1)/2. Putting this together, for the computation of the matrix element
〈

eZ≤0 , (· · · )eZ≤0
〉

, we apply Proposition 7.14 with the variables

{ui } =
{

uiα : 1 ≤ i ≤ T , 1 ≤ α ≤ ki
}

∪ {ym : 1 ≤ m ≤ T } , ζi ≡ 0;
{κi } = {0 : 1 ≤ i ≤ T , 1 ≤ α ≤ ki } ∪

{

r−2i xi : 1 ≤ i ≤ T
}

;
{vi } =
{

viα : 1 ≤ i ≤ T , 1 ≤ α ≤ ki
}

∪ {xi : 1 ≤ i ≤ T } .

This produces the following expression for the final matrix element
〈

eZ≤0 , (· · · )eZ≤0
〉

:

T
∏

i=1
vi xi (1− r−2i )

T
∏

i, j=1

( ki
∏

α=1

k j
∏

β=1

1

v
j
β − uiα

ki
∏

α=1

1

x j − uiα

)

×
T
∏

m,i=1

(

1

xi − ym

ki
∏

α=1

1

viα − ym

)

∏

1≤i< j≤T
(yi − y j )(x j − xi )

×
∏

1≤i< j≤T

( ki
∏

α=1

k j
∏

β=1
(uiα − u j

β)(v
j
β − viα)

) T
∏

m,i=1

ki
∏

α=1
(uiα − ym)

×
T
∏

i=1

(

∏

1≤α<β≤ki
(uiα − uiβ)(viβ − viα)

) T
∏

i, j=1

ki
∏

α=1
(x j − viα).

Combining this with all the factors resulting from commutations at previous steps of
the proof, and with the denominator (8.2), we get the desired identity. ��
Remark 8.8 Recall that we assume that for some fixed ε > 0, we have ε < yi < ε−1
and ε < si < 1− ε for all i . One can check that there exist parameters for which all
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conditions (8.4) hold and the FG process is well-defined (see Definitions 6.1 and 6.3).
For example, we may take the following parameters:

yi ≈ 1, i ≥ 1; yi ≈ 0.9, i ≤ 0; si ≈ 0.25, i ≥ 1; si ≈ 0.95, i ≤ 0;
ri ≈ 0.84; θi ≈ 0.84; xi ≈ 0.8; wi ≈ 0.85.

(8.8)

Here “≈” means that the parameters are very close to the corresponding values (for
all i), but are allowed to be distinct. Given (8.8), one readily sees that ui , v j satisfying
(8.4) also exist.

8.5 Correlation kernel

We can now compute the correlation kernel for the FG process.

Theorem 8.9 The point process S(T ) (6.11) corresponding to the FG process (8.1)
is determinantal. That is, for any finite A = {(t, atα) : 1 ≤ t ≤ T , 1 ≤ α ≤ kt

} ⊂
{1, . . . , T } × Z≥1 we have

PP

[

A ⊂ S(T )
] = det

[

KP(t, atα; t ′, at
′

α′)
]

. (8.9)

Here the determinant is of size k1 + . . . + kT corresponding to 1 ≤ t, t ′ ≤ T ,
1 ≤ α ≤ kt , 1 ≤ α′ ≤ kt ′ . The kernel KP has the form

KP(t, a; t ′, a′) = [�a′(u, 0)�∗a(0, v)
] v

u − v

T
∏

m=1

(u − ym)(v − xm)

(v − ym)(u − xm)

×
t ′
∏

i=1

u − wi

u − θ−2i wi

t
∏

i=1

v − θ−2i wi

v − wi

t ′−1
∏

i=1

u − xi

u − r−2i xi

t−1
∏

i=1

v − r−2i xi
v − xi

.

(8.10)

Proof From Proposition 8.7 we see that PP

[

A ⊂ S(T )
]

is the coefficient

[

T
∏

t=1

kt
∏

α=1
�atα (u

t
α, 0)�∗atα (0, v

t
α)

]

∏

1≤i≤ j≤T

k j
∏

α=1

(v
j
α − θ−2i wi )(u

j
α − wi )

(v
j
α − wi )(u

j
α − θ−2i wi )

∏

1≤i< j≤T

(u j
α − xi )(v

j
α − r−2i xi )

(u j
α − r−2i xi )(v

j
α − xi )

×
T
∏

m,i=1

ki
∏

α=1

(uiα − ym)(viα − xm)

(viα − ym)(uiα − xm)
det

[

vtα

ut
′

α′ − vtα

]

,

where we used the Cauchy determinantal formula, and the last determinant is of the
same size as in (8.9). The dependence of the remaining expression is of a product form
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in the u j
α’s and v

j
β ’s, and we may put this product expression into the determinant.

Finally, the operation of extracting the series coefficient may also be placed inside the
determinant thanks to Andréief identity (5.12), see also [39].

8.6 Specialization to ascending FG processes

Let us nowspecialize the results for the general FGprocess (8.1) obtained in this section
to the case of the ascending process (Definition 6.4). Recall that in the latter case the
correlation kernel is computed via an Eynard–Mehta type approach (Theorem 6.7
proven in Appendix B). Our aim is to establish the following result whose proof
occupies the rest of this subsection:

Theorem 8.10 Specialize the correlation kernel for the general FG process (given
by Theorem 8.9 as a generating series coefficient) to the case of an ascending FG
process. Then the series coefficient can be extracted with the help of a double contour
integration, which results in the same expression (6.12) for the correlation kernel KAP

as the one obtained using the Eynard–Mehta type approach.

To match the notation, let us rename the parameter T in the general FG pro-
cess (8.1) to N + T , make the specializations (x1; r1), . . . , (xT ; rT ) empty, rename
(xT+1; rT+1), . . . (xT+N ; rT+N ) to (x1; r1), . . . (xN ; rN ), and set wT+1 = . . . =
wT+N−1 = wT+N = 0. Furthermore, in Proposition 8.7 let us take kT+N = . . . =
kT+1 = 0. One readily sees as in the proof of Proposition 8.7 that the correlation
generating function becomes

1

Z

〈

eZ≤0 , B
Z(xN , rN ) . . . BZ(x1, r1)�(uT ; vT )DZ(wT , θT )

×�(uT−1; vT−1)DZ(wT−1, θT−1) . . .

DZ(w2, θ2)�(u1; v1)DZ(w1, θ1)eZ≤N
〉

= det

[

vtα

ut
′

α′ − vtα

]

∏

1≤i≤ j≤T

k j
∏

α=1

(v
j
α − θ−2i wi )(u

j
α − wi )

(v
j
α − wi )(u

j
α − θ−2i wi )

T
∏

i=1

ki
∏

α=1

N
∏

m=1

uiα − ym
viα − ym

viα − xm
uiα − xm

,

(8.11)

where Z is now given by (6.9), and the determinant is the same as in Sect. 8.5, that is,
of size k1 + . . .+ kT such that 1 ≤ t, t ′ ≤ T , 1 ≤ α ≤ kt , 1 ≤ α′ ≤ kt ′ .

Identity (8.11) holds under assumptions (8.4) on the parameters which are quite
restrictive. In fact, some of these assumptions are artifacts of our proof of Proposi-
tion 8.7 and can be removed:
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Lemma 8.11 Identity (8.11) holds under the weaker assumptions

⊕xi ;w j , ⊕v
j
α;wi

, ⊕x j ;uiα ,  
u j

α;θ−2i wi
,

⎧

⎨

⎩

 
uiα;v j

β

, i > j or i = j, α ≥ β;
⊕

v
j
β ;uiα , i < j or i = j, α < β,

(8.12)

where we use notation (7.18), (7.19).

Proof Since the right-hand side of (8.11) is rational, it suffices to show that under
(8.12) the left-hand side of (8.11) converges. After establishing this, we may drop the
unnecessary conditions from (8.4).

Observe that possible infinite summations in the left-hand side of (8.11) may arise
in two cases. Either one of the operators DZ or� adds a vertical arrow at some L ≥ 1,
and then one of the following operators BZ or �∗ removes it; or one of the operators
DZ or �∗ removes a vertical arrow at some L ≤ 0, and one of the following operators
� adds it back. There are no operators � to the left of BZ, so removals of the arrows
at L ≤ 0 by BZ cannot be compensated and thus do not contribute to the left-hand
side of (8.11).

We now use Definition 7.4 and W (2.3) for BZ, DZ and Theorem 7.11 for �,�∗.
We see that at sufficiently large L ≥ 1, the combination of DZ(w, θ) and BZ(x, r)

produces a factor
∏L

i=m
x−s−2i yi
x−yi

w−s−2i yi
w−yi

, where m is fixed and L grows. This factor is
summable over L under ⊕x;w. All other pairs of operators are considered similarly.
Namely, for L ≥ 1, pairs of operators lead to conditions as follows:

⎛

⎝

DZ(w, θ), �∗(v)

�(u), BZ(x, r)
�(u), �∗(v)

⎞

⎠ leadsto

⎛

⎝

⊕v;w
⊕x;u
⊕v;u

⎞

⎠

And for L ≤ 0, we have

(

DZ(w, θ), �(u)

�∗(v), �(u)

)

leadsto

( u;θ−2w
 u;v

)

.

Finally, note that the two different cases in (8.12) are due to the fact that when �

comes before or after �∗, only the case L ≥ 1 or L ≤ 0, respectively, may lead to
infinite sums. ��

Fix afinite set A = {(t, atα) : 1 ≤ t ≤ T , 1 ≤ α ≤ kt
}

, and denote k = k1+. . .+kT
(this is the size of A). Arguing as in the proof of Theorem 8.9, we see that PAP[A ⊂
S(T )], the correlation function of the ascending FG process, is equal to the coefficient
by
∏T

t=1
∏kt

α=1 �atα (utα, 0)�∗atα (0, v
t
α) in the expansion of the right-hand side of (8.11).

By Lemmas 8.4 and 8.5, this coefficient can be extracted with the help of a 2k-fold
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contour integral

1

(2π i)2k

( T
∏

i=1

ki
∏

α=1

∮

�y,∗
duiα

∮

�s−2 y,∗
dviα

)

T
∏

t=1

kt
∏

α=1

( yatα (s−2atα
− 1)

v − s−2atα
yatα

1

u − yatα

atα−1
∏

j=1

v − y j

v − s−2j y j

u − s−2j y j

u − y j

)

× det

[

1

ut
′

α′ − vtα

]

T
∏

i=1

ki
∏

α=1

N
∏

m=1

uiα − ym
viα − ym

viα − xm
uiα − xm

∏

1≤i≤ j≤T

k j
∏

α=1

(v
j
α − θ−2i wi )(u

j
α − wi )

(v
j
α − wi )(u

j
α − θ−2i wi )

.

(8.13)

Here each contour uiα goes around all yk in the positive direction and leaves all s
−2
k yk

outside, while each contour v j
β encircles all s−2k yk and leaves all yk outside. Moreover,

the contoursmight encircle some of the other poles uiα = v
j
β , u

i
α = xk , uiα = θ−2k wk , or

v
j
β = wk of the integrand. These additional residues are not yet specified because Lem-
mas 8.4 and 8.5 involve series expansions and not actual rational functions. Therefore,
we need to determine which of these additional poles the contours in (8.13) encircle.
This is done in the next statement.

Proposition 8.12 The correlation function PAP[A ⊂ S(T )] is equal to the 2k-fold
contour integral (8.13), where:

• the integration contour for each uiα is positively oriented, encircles all yk, θ
−2
k wk ,

and does not encircle any of xk;
• the integration contour for each v

j
β is negatively oriented, encircles all yk, wk , and

does not encircle any of s−2k yk;

• the contour uiα contains the contour v
j
β for i > j or i = j , α ≥ β; and the v

j
β

contains uiα otherwise.

Proof First, let us take the parameters close to each other as follows:

yi ≈ y, i ∈ Z; si ≈ s, i ∈ Z; ri ≈ r; θi ≈ θ; xi ≈ x; wi ≈ w, (8.14)

where

∣

∣

∣

∣

x − s−2y
x − y

∣

∣

∣

∣

<

∣

∣

∣

∣

w − s−2y
w − y

∣

∣

∣

∣

,

and the nonnegativity of the specializations (Definition 6.1) holds. In (8.14), “≈”
means that the parameters are very close to the corresponding values (for all i), but are
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all distinct. One can check that such a choice of x, r , w, θ, y, s exists, for example,
y = 1, s = 0.25, x = 0.3, r = 0.5, w = 0.43, θ = 0.64.

Under (8.14), conditions ⊕a;b and  a;b are essentially the same since there is no
difference between (y j , s j ) with negative and positive indices. Consider the map (and
its inverse)

U �→ � = �(U ) := U − s−2y
U − y

, � �→ U = U (�) = y(s−2 −�)

1−�
.

Clearly,�maps y j close to∞, and s−2j y j close to 0.We also see that conditions (8.12)

are satisfied if the variables uiα, v
j
β are chosen so that |�(x)| < |�(uiα)| < |�(w)|,

|�(x)| < |�(v
j
β)| < |�(w)|, |�(uiα)| < |�(θ−2w)|, and
{

|�(uiα)| < |�(v
j
β)|, i > j or i = j, α ≥ β;

|�(v
j
β)| < |�(uiα)|, i < j or i = j, α < β.

We claim that the integration contours for uiα , v
j
β satisfying all the required conditions

exist. Indeed, one can simply take uiα = U (ciαe
−it ), v j

β = U (d j
βe

it ), where 0 < t < 2π
and

{

0 < ciα < d j
β, i > j or i = j, α ≥ β;

0 < d j
β < ciα, i < j or i = j, α < β.

In particular, the radii ciα, d j
β are interlacing in a certain way. Since these radii can be

arbitrarily close to each other, this can be achieved. Note the different orientation of
the u and the v contours which is due to the fact that � maps y to infinity. This agrees
with Lemmas 8.4 and 8.5 in that the uiα contours must go around all y j in the positive

direction, and the v
j
β contours must go around all s−2j y j in the negative direction. Both

families of contours should separate {yk} from {s−2k yk}.
Moreover, inequalities for |�(uiα)| and |�(v

j
β)| listed above imply that the integra-

tion contours are as described in the claimof the proposition.Therefore, byLemmas8.4
and 8.5, in the case when all the similarly named parameters are close to each other as
in (8.14), we may extract the desired coefficient PAP[A ⊂ S(T )] from the right-hand
side of (8.11) by means of integration over the 2k contours described above in the
proof.

To complete the proof in the general case, we use analytic continuation. First, a
straightforward a priori argument (like in [19, Lemma 8.10]) shows that under⊕xi ;w j

(for all i, j), any correlation function PAP[A ⊂ S(T )] of the FG process is a rational
function depending on a finite subset of the parameters of the process (the size of the
subset depends on A). Second, the 2k-fold contour integral (8.13) over the contours
described above in the proof is also a rational function because it is a finite sum of
residues of the integrand. These two rational functions are equal on an open full-
dimensional subset in the finite-dimensional space of the parameters that they depend
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on. Therefore, these functions are equal in general, provided that the correlation func-
tion PAP[A ⊂ S(T )] is well-defined (i.e., under ⊕xi ;w j ) and the 2k-fold integral is
taken over the same residues as before the analytic continuation. ��

By applying Andréief identity (5.12) (see also [39]), the 2k-fold contour integral
(8.13) (over the contours described in Proposition 8.12) is rewritten as a determinant

PAP

[

A ⊂ S(T )
] = det
[

KAP(t, atα; t ′, at
′

α′)
]

of the correlation kernel KAP(t, a; t ′, a′) given by the double contour integral (6.12).
The determinant is of size k, indexed by 1 ≤ t, t ′ ≤ T with 1 ≤ α ≤ kt , 1 ≤ α′ ≤ kt ′ .
Let us add two remarks:

• The sign difference in the term 1−s−2a between (8.13) and the kernel KAP (6.12),
is due to reversing the direction of the v contour.

• The conditions 
uiα;v j

β

and⊕
v
j
β ;uiα in (8.12) depending on the relative order of the

indices (i, α) and ( j, β) translate to  u;v for t ′ ≥ t and ⊕v;u for t ′ < t in the
double contour integral kernel KAP(t, a; t ′, a′).
Overall, we see that for the ascending FG process, the fermionic operator approach

developed in Sects. 7 and 8 and the Eynard–Mehta type approach from Appendix B
produce the same correlation kernel KAP. This completes the proof of Theorem 8.10.

Part III Random Tilings

In this part we represent determinantal point processes from Part II as a certain inho-
mogeneous dimer model (which can also be viewed as a model of random domino
tilings), and study the bulk asymptotic behavior of the model.

9 Dimers and domino tilings

In this section we interpret the ascending FG process defined in Sect. 6 as a noninter-
secting path model and a dimer model, and prove Theorem 1.9 from Introduction.

9.1 Layered five vertex model

Let us take six vertex weights w6V(i1, j1; i2, j2) as in Fig. 12, top. Assume that
they are free fermionic, that is, a1a2 + b1b2 = c1c2. Moreover, let c1 	= 0.

Define two families of five vertex weights, w′5V and w5V, as in Fig. 12, middle and
bottom, respectively. One readily sees that these vertex weights also satisfy the free
fermion condition.

The six vertex configuration can be replaced by a vertical concatenation of two
five vertex configurations [98, Section 4.7]. Let us recall the construction. Consider
a stacked two-vertex configuration with the weight w′5V at the top, and weight w5V

36 Page 84 of 138



Free fermion six vertex model: symmetric functions…

Fig. 12 The six vertex weights and two families of five vertex weights

at the bottom. Then we claim that these two five vertex weights produce the same
partition function as w6V:

Lemma 9.1 For any fixed I1, I2, J1, j2, j ′2 ∈ {0, 1}, we have
∑

j1, j ′1,k∈{0,1}
w5V(I1, j1; k, j2) w′5V(k, j ′1; I2, j ′2) 1 j1+ j ′1=J1 = w6V(I1, J1; I2, j2 + j ′2).

In particular, if j2 + j ′2 is greater than 1, then the left-hand side vanishes.

Proof This is done by a straightforward verification. Let us illustrate just two cases.
First, for I1 = I2 = J1 = 1, we have two configurations to be considered separately
(as they correspond to different exit boundary conditions ( j2, j ′2)):

weight of = a2 · 1 = a2, weight of =
a2
c1

· c1 = a2.

Second, for I1 = 0, J1 = 1, I2 = 1, we have two configurations to be considered
together (as they have the same ( j2, j ′2)):

weight of + weight of =
a2
c1

· a1 + b2
c1

· b1 = c2.

All other cases are obtained similarly.

Lemma 9.1 implies that the ascending FG processAP(λ(1), . . . , λ(T )) (6.8) can be
realized as a partition function of a path configuration in Z≥1 × IT ,N , where

IT ,N = {1, 1′, . . . , T , T ′, T + 1, (T + 1)′, . . . , T + N , (T + N )′}. (9.1)
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Fig. 13 Top: A path configuration under an FG process with N = T = 2, where λ(1) = (0, 0) and
λ(2) = (3, 1). Bottom: One of the possible path configurations under the five vertex realization of the FG
process, which corresponds to the particular six vertex configuration given at the top. The index j in y j , s j
is the horizontal coordinate

Namely, take the vertex weights at the odd horizontals (numbered 1 ≤ i ≤ T + N ) to
be W5V, 1 ≤ i ≤ T or ̂W5V, T + 1 ≤ i ≤ T + N , and the vertex weights at the even
horizontals (numbered by i ′, 1 ≤ i ≤ T + N ) to be W ′

5V or ̂W5V in a similar way.
Here W5V, W′

5V are constructed from the six vertex weights W (2.3) as in Fig. 12,
and similarly ̂W5V, ̂W ′

5V are constructed from ̂W (2.4). The boundary conditions in
Z≥1 × IT ,N , are the same as the boundary conditions for the ascending FG process:
there are N paths entering from below, and these N paths exit far to the right through
the topmost N odd horizontals. See Fig. 13 for an illustration.

Proposition 9.2 With the above notation, the joint distribution of the arrow configura-
tions in the layered five vertex model as in Fig.13, bottom, joining horizontals i ′ and
i + 1, 1 ≤ i ≤ T , is the same as the joint distribution of S(λ(i)), 1 ≤ i ≤ T , under
the ascending FG process (6.8). (Here we are using notation S(λ) from (3.1).)

Note that the paths in the layered five vertex model are drawn to be nonintersecting
(as in Fig. 13, bottom). This allows to identify this model with a dimer model in
Sect. 9.2 below.
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Fig. 14 Graph in Z≥1 × IT ,N (with T = N = 2) and a dimer covering corresponding to the layered five
vertex configuration in Fig. 13, bottom. The paths of the layered five-vertex model are shown in green

Fig. 15 Illustration of the correspondence between five vertex path configurations and dimer configurations
at two different types of layers

9.2 Dimermodel

Consider a layered bipartite graph GT ,N with vertices Z≥1× IT ,N (cf. (9.1)) in which
edges connect the following vertices:

( j, i)− ( j, i ′), ( j, i)− ( j − 1, i ′),
( j, i ′)− ( j, i + 1), ( j, i ′)− ( j + 1, i + 1),

where j ≥ 1 and1 ≤ i ≤ T+N . In addition, removevertices (1, 1), (2, 1), . . . , (N , 1)
from the graph together with all edges incident to these vertices. See Fig. 14 for an
illustration. This graph is equivalent to a particular case of a rail-yard graph [7].

Then we construct a one-to-one mapping from the layered five vertex configuration
to a dimer covering (i.e., a perfect matching) of the graph GT ,N . This is done layer by
layer as in Fig. 15. Recall that the probability weight of a particular dimer covering
is proportional to the product of the weights of all edges that are covered. We refer
to [43, 58, 65] for basics on dimer models on bipartite graphs. Note that due to the
behavior of the five vertex paths far to the right, in our dimer covering far to the right
we will almost surely see only dimers ( j, i)− ( j, i ′) for 1 ≤ i ≤ T , and only dimers
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Fig. 16 Edge weights in the dimer model representing the layered five vertex model from Fig.13, bottom.
The left four weights correspond to the lower T rows, so 1 ≤ i ≤ T . The right four weights appear in the
upper N rows, and there we have 1 ≤ i ≤ N

Fig. 17 Dimer weights in the proof of Proposition 9.3

( j, i) − ( j − 1, i ′) for T + 1 ≤ i ≤ T + N . This also follows from the form of our
edge weights:

Proposition 9.3 Under the identification between the layered five vertex model and
the dimer model as in Figs.14 and 15, the probability measure (coming from the FG
process) is equivalent to the dimer model with the edge weights given in Fig.16.

Proof From the identification between the five vertex paths and the dimer covering
(see Fig. 15), using the six to five vertex conversion table in Fig. 12, we obtain dimer
weights as in Fig. 17.

The concrete values of a1, a2, b1, b2, c1, c2 depending on the coordinates ( j, i) are
equal to W (2.3) or ̂W (2.4), as depicted in Fig. 13.

One readily sees that in the W part, the weights in Fig. 17 produce the left four
weights in Fig. 16, as desired.

In the ̂W part (containing the parameters x j , r j ) let us in additionmultiply the dimer
weights around each vertex ( j, i ′) by

c1( j + 1, i)

c1( j, i)
= xi − y j

xi − y j+1
.

This does not change the dimer model on finite subgraphs (cf. [58, Section 3.10]), but
makes the weight of each edge ( j, i) − ( j − 1, i ′) to be 1. This agrees with the fact
that such dimers appear infinitely often in the full dimer model on our infinite graph.
This leads to the right four weights in Fig. 16, and so we are done. ��

9.3 Random domino tilings

The representation of the FG process as a dimermodel on a bipartite graph described in
Sect. 9.2 is useful for asymptotic analysis (performed below in this part), mainly due to
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the clear dependence of the edge weights on the Cartesian coordinates in the plane, cf.
Figure16. Here we provide its equivalent interpretation as an inhomogeneous domino
tiling model.

In the lattice in Fig. 14, shift each row i ′ to the right by 1
2 . This transforms the lattice

into a subset of the square lattice, see Fig. 18, left. Then rotate the whole picture 45◦
clockwise, and interpret dimers as 1 × 2 dominoes. In this way, the ascending FG
process (6.8) is represented as a random domino tiling of the half-infinite strip with
the zigzag boundary and with N additional unit squares removed from the top of the
southwest part of the boundary. The corresponding domino tiling is given in Fig. 18,
right. The domino weights are inhomogeneous and, moreover, depend on the parity
of the coordinates. The weights are also given in Fig. 18. Note that this domino tiling
model and the weights are the same as in Figs. 2 and 3 from Introduction, up to a
rotation by 45◦. Thus, we have completed the proof of Theorem 1.9.

Random domino tilings (in particular, of the Aztec Diamond) is a classical subject
in combinatorics and probability [23, 26, 30, 65]. Our model in Fig. 18 is a particular
case of a larger family of domino tilings, the steep tilings of an infinite strip [10].
While our inhomogeneous domino weights are more general than that in steep tilings,
the latter allow for more general boundary conditions which are not yet available
in our FG process setup. Moreover, in steep tilings one can prescribe an arbitrary
sequence ∈ {+,−}2� of asymptotic domino directions at infinity (i.e., the directions
of the shaded dominoes in Fig. 18 repeating infinitely many times). We remark that
different asymptotic directions of dominoes may be modeled in our setup by passing
to the fully general FG processes (Sect. 8.1), but we will not consider this generality
in the present work.

Below in this Part III we discuss bulk asymptotics of the inhomogeneous domino
tiling model displayed in Fig. 18 coming from ascending FG processes.

Remark 9.4 (Noncolliding lattice walks) When wi = y j for all i, j , one of the dimer
weights vanishes, see the left part of Fig. 16. Thus, in the bottom T double rows in
Fig. 14 we can erase the edges carrying the zero weight. In this way we obtain the
hexagonal lattice. Therefore, when wi ≡ y j , one can interpret the dimer model as a
model of N noncolliding lattice walks as in, e.g., [62] (see also [45] for an equivalent
lozenge tiling picture). The endpoints of these noncolliding latticewalks are distributed
according to the probability weights coming from Fλ(x; y; r; s). On the other hand,
the bulk asymptotics of our dimer model would lead to a certain class of random
lozenge tilings of the whole plane. We briefly discuss these measures in Sect. 11.

10 Asymptotics in the bulk

10.1 Scaling. Global parameters and local sequences

In this section we perform bulk asymptotic analysis of the correlation kernel
KAP(t, a; t ′, a′) (6.12). By “bulk asymptotics” we mean the scaling around a global
position far from the boundary of the system, such that discrete lattice structure is
preserved. More precisely, take N → +∞ to be an independent parameter going to
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Fig. 18 Mapping from the dimer model in Fig. 14 with weights given in Fig. 16 to domino tilings of a
half-strip. The dominoes which are repeated infinitely many times in the down-right direction are shaded

infinity, and set for the variables in the kernel:

T � N , t = 
τN�, t ′ = t +�t, a = 
αN�, a′ = a +�a, (10.1)

where τ, α ∈ R>0, �t,�a ∈ Z are fixed. Note that since the kernel KAP does not
depend on T , we just need to take T large enough so that t, t ′ ≤ T could grow linearly
with N .

Remark 10.1 Along with the bulk limit behavior, dimer models typically possess other
interesting scaling limits. In particular, the limit at the edge of the liquid region (cf.
Figure19 below) should bring the Airy kernel or its multiparameter deformations
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obtained in [18].We do not anticipate new determinantal kernels at the edge in the case
of generic inhomogeneous parameters, but it would be interesting to probe whether
special choices of the parameters lead to interesting phase transitions in the edge
behavior. We leave this question out of the scope of the present paper.

As we aim to capture a nontrivial lattice limit in the bulk, wemay set the parameters
xi , wi , θi , y j , s j of the ascending FG process to be constant outside a finite neighbor-
hood of the global position. Let this neighborhood be of size L ∈ Z≥1, and later (in
Sect. 11) we also take the cutoff L to infinity. While this restricts the generality of the
global limit shape and global fluctuations (such as the Gaussian Free Field fluctua-
tions, cf. [57, 92]), this specialization does not restrict the local lattice behavior. More
precisely, set xi = x∗ for all i = 1, . . . , N ,

wi =
{

w∗, |i − 
τN�| > L;
w◦i−
τN�, |i − 
τN�| ≤ L,

θi =
{

θ∗, |i − 
τN�| > L;
θ◦i−
τN�, |i − 
τN�| ≤ L,

(10.2)

and similarly

y j =
{

y∗, | j − 
αN�| > L;
y◦j−
αN�, | j − 
αN�| ≤ L,

s j =
{

s∗, | j − 
αN�| > L;
s◦j−
αN�, | j − 
αN�| ≤ L.

(10.3)

In other words, we have passed to the global parameters x∗, w∗, θ∗, y∗, s∗, and the
local sequences {w◦i }, {θ◦i }, {y◦j }, {s◦j } with |i |, | j | ≤ L . For convenience, let us also
write w◦i = w∗ for |i | > L , and similarly for y◦j , θ◦i , s◦j . Both the global parameters
and the local sequences are fixed and do not depend on N .

All the parameters of the ascending FG process must satisfy (6.1), (6.2), and (6.4) in
order for the process to be well-defined as a probability distribution (6.8) on sequences
of signatures. Under the scaling assumptions (10.2)–(10.3), these conditions read

x∗ < y j , wi < y j < θ−2i wi < s−2j y j ,

∣

∣

∣

∣

x∗ − s−2∗ y∗
x∗ − y∗

w∗ − y∗
w∗ − s−2∗ y∗

∣

∣

∣

∣

< 1− δ < 1

(10.4)

for all i, j . Here we have dropped the assumptions xi , wi , y j > 0, cf. Remark 6.2. The
ascending FG process does not depend on the parameters ri , so there are no conditions
on the ri ’s.

The last inequality in (10.4) is needed for the convergence of the series for the
normalizing constant (6.9) in the FG process weights (which in general is guaranteed
by (6.4)). Clearly, the convergence of this series is determined only by the global
parameters.

By taking x∗ sufficiently small (close to −∞), we see that the last inequality in
(10.4) follows from w∗ < y∗ < s−2∗ y∗ and hence hold automatically. Therefore, we
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may and will assume that the global parameters satisfy

x∗ < w∗ < y∗ < θ−2∗ w∗ < s−2∗ y∗. (10.5)

10.2 Steepest descent

Let us rewrite the correlation kernel KAP (6.12) in the following form adapted to the
scaling regime from Sect. 10.1:

KAP(t, a; t ′, a′)

= 1

(2π i)2

∮ ∮

EN (u)/EN (v) du dv

u − v

ya(1− s−2a )

v − ya

1

u − s−2a′ ya′

∏a′
c=1

u−s−2c yc
u−yc

∏a
c=1

u−s−2c yc
u−yc

∏t ′
c=1

u−wc

u−θ−2c wc
∏t

c=1
u−wc

u−θ−2c wc

,

(10.6)

where

EN (u) := (u − x∗)−N
N
∏

k=1
(u − yk)

a
∏

c=1

u − s−2c yc
u − yc

t
∏

c=1

u − wc

u − θ−2c wc
.

In (10.6) both integration contours are positively oriented simple curves. The u and
v contours encircle, respectively, all the points y∗, y◦i , θ−2∗ w∗, (θ◦i )−2w◦i and all the
points y∗, y◦i , w∗, w◦i , and no other poles of the integrand except u = v. For the latter
pole, the u contour is outside the v contour for �t = t ′ − t ≥ 0, and inside for
�t < 0. The integration contours exist thanks to (10.4). The ratios

∏a′
c=1 /
∏a

c=1 and
∏t ′

c=1 /
∏t

c=1 in (10.6) outside of EN are finite products (which later will depend only
on local sequences of parameters).

Our aim is to perform the steepest descent analysis of KAP based on critical points
of

SN (u) := 1

N
logEN (u),

following [87, Sections 3.1, 3.2]. Namely, if for all N large enough on the integration
contours we have

$ (SN (u)− SN (v)) < 0 (10.7)

(here and below$ and % stand for the real and imaginary parts, respectively), then the
integral containing eN (SN (u)−SN (v)) goes to zero exponentially with N . We achieve
(10.7) by deforming the original u and v integration contours so that they pass through
complex conjugate critical points z, z̄ of SN (u) (first, we need to show that such critical
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points exist). In the process of deforming the contours to those with (10.7), certain
residues will survive and contribute to the limit of KAP. Observe that this argument
works for arbitrary branches of the logarithms in logEN (u).

Since the integration contours in (10.6) can be chosen bounded, we have

SN (u) = − log(u − x∗)+ (1− α) log(u − y∗)+ α log(u − y∗/s2∗)
+ τ log(u − w∗)− τ log(u − w∗/θ2∗ )+ remainder =: S(u)+ remainder,

(10.8)

where |remainder| < C(L)/N . The constant C(L) independent of N comes from two
sources. First, we dropped the integer parts in a ≈ αN , t ≈ τN in EN . Second, in EN

we have replaced the local parameters y j−
αN�, | j | ≤ L (see (10.2)–(10.3)), by y∗,
and similarly for wi , θ

−2
i , s−2j y j . We see that the critical points of SN (u) are close (as

N →+∞) to the critical points of S(u). One can check that the critical point equation
S′(u) = 0 reduces to a cubic polynomial equation in u. Indeed, the terms containing
u4 cancel out because the sum of the coefficients by all the logarithms is zero.

10.3 Moving the contours

Let us fix global parameters satisfying (10.5), and investigate the behavior of the
function S(u) given by (10.8). The cubic polynomial equation for the critical points
of S(u) reads

(

αy∗(s−2∗ − 1)− τw∗(θ−2∗ − 1)+ y∗ − x∗
)

u3 + c2u
2 + c1u + c0 = 0,

(10.9)

for certain polynomial functions c0, c1, c2 of the global parameters x∗, w∗, θ∗, y∗, s∗
whose explicit expressions we omit for shorter notation.

Definition 10.2 Denote byL the region in the plane (α, τ ) ∈ R
2≥0 where the discrimi-

nant of the cubic (10.9) is negative (see Fig. 19 for an example). InL the cubic equation
has two nonreal complex conjugate roots. Denote by z = z(α, τ ) the root belonging
to the upper half plane.

Lemma 10.3 The map z : L→ C is a diffeomorphism between L and the open upper
half plane. The region L is unbounded.

Proof For each (α, τ ) ∈ L, there is a unique root z(α, τ ) in the upper half plane,
so the map z is injective. Substituting u = X + iY into the cubic equation (10.9) for
S′(u) = 0, wemay find (α, τ ) as rational functions of (X , Y ). These rational functions
define the map z−1 : C → L.

One can check that the image under z−1 of the real line (corresponding to Y = 0)
is precisely the curve where the discriminant of (10.9) vanishes, i.e., the boundary
of L. Moreover, an explicit computation shows that the discriminant of (10.9) has the
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L

Fig. 19 In the shaded region the discriminant of the cubic equation (10.9) is negative.We also sketch possible
lattice path behavior under the FG process. The parameters in the figure are equal to x∗ = 1

2 , w∗ = 2
3 , s∗ =

1
2 , y∗ = 9

10 , and θ∗ = 4
5

form −(rationalexpression)2Y 2, so it is manifestly negative for all (α, τ ) expressed
through (X ,Y ) with Y 	= 0. Since Y enters z−1 only as Y 2, we see that z−1 : C → L

is two-to-one and in particular maps the upper half plane toL. As z and z−1 are clearly
differentiable, z is indeed a diffeomorphism.

To see that the regionL is unbounded, one can check that the boundary point (α, τ )

of L corresponding to (X ,Y ) = (x∗, 0) is at α = τ = +∞. ��
Fix (α, τ ) ∈ L. Let us look at the steepest descent integration contours %S(u) =

%S(z(α, τ )). Since S(u) involves logarithms, let us now choose their branches to have
cuts in the lower half plane, so that S(u) is holomorphic in the upper half plane and
up to the real line except the 5 points (10.5).

Lemma 10.4 The second derivative S′′(z(α, τ )) at the critical point is nonzero.

Proof Fix a point z = X+iY in the upper half plane, and substituteα and τ as functions
of (X ,Y ) under z−1 (see the proof of the previous Lemma 10.3) into S′′(X + iY ).
One can check that the resulting rational expression in X ,Y ∈ R (with complex
coefficients) does not vanish unless Y = 0, which is outside the upper half plane. ��

By Lemma 10.4, the behavior of S(u) at the critical point z is exactly quadratic.
Therefore, there are four half-contours with %S(u) = %S(z) leaving z. On two of them
we have$S(u) < $S(z), u 	= z, and on the other twowe have$S(v) > $S(z), v 	= z.
Going around z these half-contours interlace. Let us denote these contours as read in
the clockwise direction around z by �−1 , �+1 , �−2 , �+2 . See Fig. 20 for an illustration.

Lemma 10.5 We have limR→+∞$S(Reip) = 0, uniformly in p ∈ [0, π ].
Proof Taylor expanding each logarithm in S (10.8), we have

$ log(Reip − c) = log R − c

R
cos p + O(R−2),

where O(R−2) is uniform in p. Since the coefficients by the logarithms in (10.8) sum
to 0, the behavior of $S(Reip) is not log R but O(R−1), uniformly in p. ��
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Fig. 20 Steepest descent contours�±1,2 in the upper half plane. The four half-contours intersect at the critical
point z. In the shaded regions we have $(S(u) − S(z)) > 0. The graph corresponds to α = τ = 3

2 and
other parameters as in Fig. 19

By Lemma 10.5, the half-contours �±1,2 cannot escape to infinity because on them
the real part of S grows to+∞ or decays to−∞. Since the function S is holomorphic
in the upper half plane, these half-contours must end at the real line. More precisely,
each of these contours must end at one of the logarithmic singularities (10.5) of S. The
signs of $S at these singularities are

$S(x∗) = +∞, $S(w∗) = −∞, $S(y∗) = (α − 1)∞,

$S(θ−2∗ w∗) = +∞, $S(s−2∗ y∗) = −∞. (10.10)

We see that �−1 must end at s−2∗ y∗; �+1 must end at y∗ if α > 1 or at θ−2∗ w∗; �−2 must
end at y∗ if α < 1 or at w∗; and �+2 must end at x∗.
Lemma 10.6 Assume that the parameters of the ascendingFGprocess are as described
in Sect.10.1. Then

• The u contour in (10.6) can be deformed, without picking residues other than
at u = v, to a positively oriented contour which crosses the real line at s−2∗ y∗,
coincides with �−1 till z, then with �−2 till a small neighborhood of the real line,
then crosses R again between x∗ and all y j . Then the contour extends to the lower
half plane symmetrically.

• The v contour in (10.6) can be deformed, without picking residues other than at
v = u, to a positively oriented contour which crosses the real line between sup y j
and inf s−2j y j , in a small neighborhood of R joins �+1 and coincides with it till z,

then coincides �+2 till the real line which it crosses again at x∗. Then the contour
extends to the lower half plane symmetrically.

Moreover, on the new contours we have $ (S(u)− S(v)) ≤ 0, with equality only for
u = v = z.
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Let us denote the new contours afforded by Lemma 10.6 by �st
u , �st

v , see Fig. 21
for an example. They are positively oriented simple closed curves in the full complex
plane.

Proof of Lemma 10.6 Let the new contours �st
u , �st

v coincide with the steepest descent
ones except in a small neighborhood of R. In the neighborhood of R, let us change the
steepest descent contours �±1,2 such that $ (S(u)− S(v)) ≤ 0 still holds on the new
contours �st

u , �st
v . Moreover, we would like the contour deformation from the con-

tours (10.6) to �st
u , �st

v , to not pick any residues at poles w◦i , y◦j , (θ◦i )−2w◦i , (s◦j )−2y◦j .
coming from the local parameters (call these the local residues). Thanks to (10.10)
and the previous statements in this subsection, such a contour deformation does not
cross the poles (10.5) coming from the global parameters.

Let us now show the absence of local residues. On the right, the original v contour
crossed R between y j and s−2j y j . The steepest descent contour �+1 crosses R at y∗
or θ−2∗ w∗. In the latter case, we let �st

v coincide with �+1 . In the former case, we
may need to change the contour (in a small neighborhood of R) so that it is still
around all the y j ’s (this case is illustrated in Fig. 21). As the y j ’s are all to the left of
θ−2∗ w∗ and $S(θ−2∗ w∗) = +∞, the new contour still satisfies $S(v) > $S(z). Since
v = (θ◦i )−2w◦i are not poles of the integrand, this deformation does not pick any local
residues. Then the new v contour joins �+1 and follows it till z, then follows �+2 till x∗
where it crosses the real line. We see that the new v contour is still around all y j , wi ,
and not s−2j y j , so no local residues are picked.

The argument for the u contour is similar. On the right, the original u contour
crossed the real line between θ−2i wi and s

−2
j y j , and can be deformed to coincide with

�−1 which crosses R at s−2∗ y∗ without picking local residues at (θ◦i )−2w◦i (there are
no poles at u = s−2j y j ). On the left, the original u contour crossed R between x∗ and
y j . The steepest descent contour �−2 can cross the real line at w∗ or y∗. In the former
case, we simply make the new u contour coincide with �−2 and cross R at w∗. In the
latter case, we deform the u contour in a neighborhood of R so that it still encircles
all y j . As the y j ’s are all to the right of w∗ and $S(w∗) = −∞, on the new u contour
we have $S(u) < $S(z).

We see that the desired contour deformation exists, with $ (S(u)− S(v)) ≤ 0 on
the new contours. ��

10.4 Asymptotics of the kernel

In the previous Sect. 10.3 we showed how to deform the integration contours for the
correlation kernel KAP (10.6) to the steepest descent contours �st

u , �st
v . It remains to

collect the residues at u = v arising from this deformation. Denote by It,a;t ′,a′(u, v)

the integrand in the double contour integral in (10.6).

Lemma 10.7 The double contour integral in (10.6) is equal to

− 1

2π i

∫ z

z̄
Res
u=v

It,a;t ′,a′(u, v) dv + 1

(2π i)2

∮

�st
u

du
∮

�st
v

dv It,a;t ′,a′(u, v),

(10.11)

36 Page 96 of 138



Free fermion six vertex model: symmetric functions…

Fig. 21 Deformation of the integration contours in the proof of Lemma 10.6. The shaded region is where
$S(v) > $S(z), and the v contour must be inside this region. The u poles on R are x∗, y j , and θ−2i wi , and

the v poles on R are wi , y j , s
−2
j y j . We need to modify the new v contour so that in a neighborhood of R

it diverges from �+1 and encircles all y j ’s

where in the single integral the arc from z̄ to z is as follows:

• If �t = t ′ − t ≥ 0, the arc crosses the real line to the left of w∗ and all w◦i ;
• If �t < 0, the arc crosses the real line between θ−2∗ w∗, (θ◦i )−2w◦i and
s−2∗ y∗, (s◦j )−2y◦j .

Proof This follows by considering the contour deformation in two cases. For �t ≥ 0,
the u contour is around the v one, so we pick the residue at u = v and integrate it over
the left portion of �st

v , which is �+2 and its symmetric copy in the lower half plane.
When �t < 0, we integrate minus the residue at u = v over the right portion of the
contour �st

v . ��
Recall that the number of local parameters differing from the global ones partici-

pating in (10.11) is at most 2L , see Sect. 10.1. Therefore, in (10.11) the double contour

integral decays to zero. More precisely, this rate of decay is bounded by C(L) · N− 1
2 ,

where C(L) is independent of N . All of this contribution comes from a small neigh-
borhood of z, and outside of a finite neighborhood of z the decay is exponential in
N .

The surviving term in (10.11) given by the single integral is a new determinantal
correlation kernel on Z

2:

K z
2d(t, a; t′, a′) := −

1

2π i

∫ z

z̄
Res
u=v

It+
τN�,a+
αN�;t′+
τN�,a′+
αN�(u, v) dv

= − 1

2π i

∫ z

z̄

y◦a (1− (s◦a )−2) dv

(v − y◦a )(v − (s◦a′)−2y
◦
a′)

∏a′
c=−∞

v−(s◦c )−2 y◦c
v−y◦c

∏a
c=−∞

v−(s◦c )−2 y◦c
v−y◦c

∏t′
c=−∞

v−w◦c
v−(θ◦c )−2w◦c

∏t
c=−∞

v−w◦c
v−(θ◦c )−2w◦c

,

(10.12)
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where t, a, t′, a′ ∈ Z are fixed and the integration contours are as in Lemma 10.7.
Note that the ratios of the products from−∞ in the second line in (10.12) are actually
finite.

Recalling the scaling in Sect. 10.1, we see that the kernel K z
2d is independent of N

and depends on the following data:

• Cutoff L ∈ Z≥1;
• Four local sequences {w◦i }, {θ◦i }, {y◦j }, {s◦j }, |i |, | j | ≤ L;
• Four global parameters w∗, θ∗, y∗, s∗, where in (10.12) we use the notation w◦i =

w∗ for |i | > L , and similarly for θ◦i , y◦j , s◦j ;• Complex number z in the upper half plane.

We call K z
2d the (two-dimensional) inhomogeneous discrete sine kernel and discuss it

in detail in Sect. 11 below.

Remark 10.8 Note that with the cutoff L , the kernel K z
2d defines a determinantal pro-

cess on the whole plane Z
2, but its parameters w◦i , θ◦i , y◦j , s◦j only vary in a window

of size 2L . In Sect. 11.1 below we take the limit L → +∞, and arrive at a fully
inhomogeneous kernel with parameters varying in the full plane.

Let us summarize the notation and establish the main result of this section.
Fix a cutoff parameter L ∈ Z≥1 and four local sequences {w◦i }, {θ◦i }, {y◦j }, {s◦j },
|i |, | j |, satisfying w◦i < y◦j < (θ◦i )−2w◦i < (s◦j )−2y◦j for all i, j . Take global
parameters x∗, w∗, y∗, θ∗, s∗ satisfying (10.5), where x∗ is sufficiently close to −∞,
w∗ ∈ (minwi ,maxwi ), y∗ ∈ (min y j ,max y j ), θ∗ ∈ (min θi ,max θi ), and s∗ ∈
(min s j ,max s j ). This ensures that the ascending FG process (6.8) with the param-
eters given in (10.2)–(10.3) exists thanks to (10.4). Fix a complex number z in the
upper half plane.

Recall from Definition 10.2 the region L in the plane (α, τ ) ∈ R
2≥0 determined

by x∗, w∗, θ∗, y∗, s∗. Let (α, τ ) = (α(z), τ (z)) be the image of our point z under the
diffeomorphism from the upper half plane to L (Lemma 10.3).

We take the scaling (10.1) of T , N , t, t ′, a, a′ determined by (α, τ ). Take the
ascending FG process and let its parameters xi , wi , θi , y j , s j behave as defined in
(10.2)–(10.3). That is, xi = x∗ are all the same, the parameters wi , θi vary for i in the
L-neighborhood of τN , and y j , s j vary for j in the L-neighborhood of αN . Outside
these neighborhoods the parameters are constant. Adopt the notation w◦i = w∗ for
|i | > L , and similarly for the other three families θ◦i , y◦j , s◦j .

Theorem 10.9 (Theorem 1.11 from Introduction) Under the scaling and assumptions
described before the theorem, the correlation kernel KAP (given by (6.12) or (10.6)) of
the ascending FG process converges to the two-dimensional inhomogeneous discrete
sine kernel (10.12):

lim
N→+∞ KAP(t+ 
τN�, a+ 
αN�; t′ + 
τN�, a′ + 
αN�) = K z

2d(t, a; t′, a′),

where t, a, t′, a′ ∈ Z are fixed.
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Proof Fix (α, τ ) as the image of z under the diffeomorphism from the upper half
plane to L. Let us look at the N -dependent kernel KAP (10.6) and consider the
critical point zN (α, τ ) (in the upper half plane) of the N -dependent function SN (u)

(10.8). Compared to S(u), SN (u) may depend on local parameters w◦i , θ◦i , y◦j , s◦j , but
recall that the difference is bounded by C(L)/N . Therefore, zN is close to the critical
point z(α, τ ) from Definition 10.2.

Let us deform the integration contours in (10.6) to coincide, outside a neighborhood
of zN (which at the same time is a neighborhood of z), with the contours �st

u , �st
v

described in Lemma 10.6. In this neighborhood, let the contours pass through zN
along the steepest descent directions. Thanks to Lemma 10.6, this deformation of
contours does not cross any poles at xi , wi , y j , θ

−2
i wi , s

−2
j y j which could lead to

residues. The only residues which this deformation of contours could produce are at
u = v, and these residues are accounted for in Lemma 10.7.

After the contour deformation, KAP becomes a sum of a single integral from
z̄N (α, τ ) to zN (α, τ ) and a double integral. In the N →+∞ limit, the double integral
disappears, and the single integral turns into an integral from z̄ to z, which is precisely
the two-dimensional inhomogeneous sine kernel K z

2d. This completes the proof. ��

11 Inhomogeneous discrete sine kernel

In this section we discuss the two-dimensional inhomogeneous discrete sine kernel
K z
2d defined by (10.12), and consider its many degenerations to known correlation

kernels. In particular, we prove Theorem 1.12 from Introduction. For simplicity, in
this section we drop the “◦” notation from the parameters wi , θi , y j , s j of the kernel.

11.1 Definition of the kernel

It is convenient to introduce the following inhomogeneous analogues of power func-
tions to write down the kernel K z

2d:

Definition 11.1 (Inhomogeneous powers) For any two sequences b = {bi }i∈Z and
c = {ci }i∈Z, define the following “inhomogeneous powers”:

Pn,n′(u | b; c) :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

n′
∏

j=n+1

u − b j

u − c j
, n < n′;

1, n = n′;
n
∏

j=n′+1

u − c j
u − b j

, n > n′,

n, n′ ∈ Z. (11.1)

We will now define the kernel K z
2d depending on four sequences of parameters

w = {wi }, θ = {θi }, y = {y j }, s = {s j }, i, j ∈ Z, (11.2)
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and on a point z in the upper half complex plane. Assume that the parameter sequences
satisfy

supi wi < inf j y j ≤ sup j y j < inf i θ
−2
i wi ≤ supi θ

−2
i wi < inf j s

−2
j y j . (11.3)

Definition 11.2 The two-dimensional inhomogeneous extended sine kernel is defined
as follows:

K z
2d(t, a; t ′, a′) = −

1

2π i

∫ z

z̄

ya(1− s−2a )

(u − ya)(u − s−2a′ ya′)

Pa,a′(u | s−2y; y)Pt,t ′(u | w;θ−2w) du, (11.4)

where t, a, t ′, a′ ∈ Z. The integration contour is an arc from z̄ to z which crosses the
real line

• To the left of all wi when �t = t ′ − t ≥ 0;
• Between θ−2i wi and s−2j y j when �t < 0.

This integration arc exists thanks to (11.3).

The kernel (11.4) is the same as (10.12), up to changes in notation and the removal
of the cutoff parameter L ∈ Z≥1.

Theorem 11.3 (Theorem 1.12 from Introduction) Under the assumptions (11.3) and
for any z in the upper half plane with %z > 0, the kernel K z

2d (11.4) defines a deter-
minantal random point process on Z

2.

Proof We show using Theorem 10.9 that the determinantal point process defined by
K z
2d arises as a limit of a determinantal randompoint process coming froman ascending

FG process.
Given the data (11.2) satisfying (11.3), pick global parameters x∗ ∈ (−∞, inf wi ),

w∗ ∈ (inf wi , supwi ), y∗ ∈ (inf y j , sup y j ), θ∗ ∈ (inf θi , sup θi ), and s∗ ∈
(inf s j , sup s j ). For any cutoff L ∈ Z≥1, define truncated local parameter sequences

w
(L)
i =
{

wi , |i | ≤ L;
w∗, |i | > L,

θ
(L)
i =
{

θi , |i | ≤ L;
θ∗, |i | > L,

y(L)
j =
{

y j , | j | ≤ L;
y∗, | j | > L,

s(L)
j =
{

s j , | j | ≤ L;
s∗, | j | > L.

(11.5)

Taking x∗ smaller if necessary, one canmake sure that (10.4) holds. Thus, the ascending
FG process (6.8) with global parameters x∗, w∗, θ∗, y∗, s∗ and local sequences (11.5)
is well-defined. Take the scaling location (α, τ ) corresponding to z as in Lemma 10.3.
Applying Theorem 10.9, we see that the kernel K z,(L)

2d with the L-truncated parameter
sequences (11.5) is the bulk lattice limit of the kernel KAP of the FG process. There-
fore, in the L-truncated case the kernel K z,(L)

2d indeed defines a stochastic process.
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Now observe that for any t, a, t ′, a′ ∈ Z and L > max{|t |, |a|, |t ′|, |a′|}, the matrix
element K z

2d(t, a; t ′, a′) (11.4) does not depend on L or the global parameters involved

in the truncation (11.5). Therefore, as L → +∞, the matrix elements of K z,(L)
2d

stabilize to those of K z
2d. This implies that K z

2d also defines a stochastic process, as
desired. ��

In fact, our conditions on the parameters wi , θi , y j , s j of the inhomogeneous dis-
crete sine kernel are natural in the following sense:

Lemma 11.4 Conditions (11.3) are equivalent to the fact that the domino weights
depending on wi , θi , y j , s j (given in Fig.18, (a)) are positive and separated from zero
and infinity.

Proof For fixed i1, j1 the positivity of the domino weights depending only on
wi1, θi1 , y j1 , s j1 is equivalent to either wi1 < y j1 < θ−2i1

wi1 < s−2j1 y j1 or wi1 > y j1 >

θ−2i1
wi1 > s−2j1 y j1 . Let us pick i2 	= i1, j2 	= j1, and for wi2 , θi2 , y j2 , s j2 we have

similarly one of the two strings of inequalities. If, say, wi1 < y j1 < θ−2i1
wi1 < s−2j1 y j1

but wi2 > y j2 > θ−2i2
wi2 > s−2j2 y j2 , then at i = i1, j = j2 one readily sees that both

possibilities

wi1 < y j2 < θ−2i1
wi1 < s−2j2 y j2 or wi1 > y j2 > θ−2i1

wi1 > s−2j2 y j2

lead to a contradiction.
Therefore, it must be either wi < y j < θ−2i wi < s−2j y j or wi > y j > θ−2i wi >

s−2j y j simultaneously for all i, j . If it’s the latter, observe that the domino weights are
invariant under the simultaneous sign flips wi �→ −wi , y j �→ −y j for all i, j , which
turns the conditions with “>” into those with “<”. Thus, we see that picking the “<”
sign in all conditions does not restrict the generality. ��

Thus, by Theorem 11.3 and Lemma 11.4, the kernel K z
2d defines a bona fide

stochastic determinantal point process on Z
2 for a maximally generic open family

of parameters. Moreover, setting some of the domino weights in Fig. 18, (a) to zero
also leads to a stochastic process via a straightforward limit transition. In the rest of
this section we compare the kernel K z

2d to similar known kernels, in one and then in
two dimensions.

11.2 Discrete sine kernel in one dimension

In one-dimensional slices (corresponding to fixing t = t ′ ∈ Z), the process is indepen-
dent of t , and the kernel (11.4) becomes an inhomogeneous analogue of the discrete
sine kernel:

K z
1d(a, a′) = − 1

2π i

∫ z

z̄

ya(1− s−2a )

(u − ya)(u − s−2a′ ya′)
Pa,a′(u | s−2y; y) du. (11.6)

The integration contour passes to the left of all y j .
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The kernel K z
1d is clearly not translation invariant, and the density function is given

by

ρa = K z
1d(a, a) = − 1

2π i

∫ z

z̄

ya(1− s−2a ) du

(u − ya)(u − s−2a ya)
= 1

2π i

∫ Va(z)

Va(z̄)

dv

v
= arg Va(z)

π
,

where we used the change of variables

v = Va(u) := u − ya

u − s−2a ya
. (11.7)

This change of variables swaps the lower and upper half planes, hence the minus sign
in front of the integral disappears. The integration in v is over an arc crossing the real
line to the right of the origin.

In the homogeneous case ya = y, sa = s for all a ∈ Z, the change of variables
Va = V does not depend on a, and the density ρa ≡ ρ = 1

π
arg V (z) is constant. We

see that (11.6) essentially becomes the usual discrete sine kernel:

K z
1d, hom(a, a′) = 1

2π i

∫ V (z)

V (z̄)

dv

va
′−a+1 = |V (z)|a−a′ sin

(

πρ(a′ − a)
)

π(a′ − a)
, a, a′ ∈ Z.

(11.8)

The factor |V (z)|a−a′ is a so-called “gauge transformation”, and can be removed from
the kernel without changing the determinantal process. The discrete sine kernel in one
dimension and the corresponding determinantal point process were obtained in [15]
as a bulk limit of Plancherel random partitions. This point process arises from many
other discrete determinantal point processes as a lattice (bulk) scaling limit.

11.3 Periodic discrete sine kernel in one dimension

The fully inhomogeneous kernel K z
1d(a, a′) (11.6) on Z can be specialized to a k-

periodic kernel on Z, for any k ≥ 2 (the case k = 1 leads to the discrete sine kernel
(11.8)). Here let us consider the case with k = 2, and take a further degeneration.
Namely, set

yi = s2i ci , ci = c01i≡0mod 2 + c11i≡1mod 2,

and after that send si → 0. This leads to the following kernel:

[

K1d(2n, 2n′) K1d(2n, 2n′ + 1)
K1d(2n + 1, 2n′) K1d(2n + 1, 2n′ + 1)

]

= 1

2π i

∫ z

z̄

[

c0
1−c0/u c0

c1
(1−c0/u)(1−c1/u)

c1
1−c1/u

]

(

(

1− c0
u

)(

1− c1
u

)

)�n du

u2
,

(11.9)
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where the integration contour crosses the real line to the left of 0, and �n = n′ − n.
Here the matrix form is just a shorthand for four different integral expressions for the
matrix elements of the kernel, depending on the parity. The kernel (11.9) is invariant
under translations by 2Z, but not by Z if c0 	= c1.

This correlation kernel (11.9) in the 2Z periodic case has appeared (together with
its Z-translation invariant extension into the second dimension) in [76, Theorem 3.1]
in the study of plane partitions with weights periodic in one direction. See also an
extension to the arbitrary kZ× Z periodic case in [77, Theorem 4.2].

Note also that kZ × Z periodic kernels from [77] also arise as particular cases of
the determinantal kernels for Gibbs ensembles of nonintersecting paths from [22] or
as a bulk limit from the periodic Schur process [16]. Indeed, the setup of [22] allows
for fully inhomogeneous parameters in one direction (but requires full Z translation
invariance in the second direction). Therefore, in one-dimensional slices the point
processes from [22] produce all our one-dimensional kernels K z

1d (11.6) with the most
general parameters.

11.4 Two-dimensional homogeneous kernel

Let us proceed to discussing two-dimensional kernels. First, let us identify the fully
homogeneous case K z

2d (11.4). That is, let wi = w for all i ∈ Z, and similarly for
θ, y, s. Recall the change of variables Va(u) (11.7) which is independent of a in the
homogeneous case, and we denote it simply by V (u). We have

K z
2d, hom(t, a; t ′, a′) = (const)�t

2π i

∫ V (z)

V (z̄)

(

v − V (w)

v − V (θ−2w)

)�t dv

v�a+1 , (11.10)

where �t = t ′ − t , �a = a′ − a, and the integration contour crosses the real line
between V (w) and 1 for �t ≥ 0, and to the left of V (θ−2w) for �t < 0.

The correlation kernel K z
2d, hom can be identified with the bulk limiting kernel in

the liquid phase of the model of random domino tilings of the Aztec diamond, when
the dominoes are mapped to a determinantal process on Z

2. The one-dimensional sine
kernel for the Aztec diamond model was obtained in [52, Theorem 2.10], and the
two-dimensional bulk kernel may be read off from the more general theory of [65], or
deduced as a bulk limit from [53, (2.21)].

Moreover, K z
2d, hom also arises as a particular member of the family of extensions of

the one-dimensional discrete sine kernel constructed in [22]. Namely, to get (11.10),
one should alternate the “alpha” and the “beta” factors, (1− α+v)−1 and (1+ β+v),
in [22, (2)].

Setting w = y, that is, V (w) = 0, turns the correlation kernel K z
2d, hom (11.10) (up

to a gauge factor which does not change the determinantal process) into the incomplete
beta kernel introduced in [90]. The incomplete beta kernel is the determinantal kernel
of the ergodic translation invariant Gibbs measure on lozenge tilings of the plane
(viewed as a determinantal process on Z

2, cf. Remark 9.4), which is unique up to
specifying the slope. The slope is a two-dimensional real parameter which can be
mapped (in our notation) to the point z in the upper half plane. We refer to [65, 95] for
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further details. Universality of the incomplete beta kernel in the model of uniformly
random lozenge tilings in general domains was established recently in [2].

11.5 Other dimer models with periodic weights

We see that our two-dimensional inhomogeneous sine kernel K z
2d (Definition 11.2)

generalizes the bulk lattice distributions arising in domino and lozenge tilings. Our
generalization allows for inhomogeneous parameters in both lattice directions.

By taking the parameters to be periodic (as in Sect. 11.3 but in both directions),
one gets doubly periodic determinantal kernels with periods kZ × mZ for arbitrary
k,m ≥ 1. When both k,m > 1, the explicit form of the doubly periodic kernels is
new. For m = 1, the kZ× Z periodic kernels appeared in [16, 22, 76, 77].

While in principle our doubly periodic kernels fall into the general framework of
[65], rewriting the general double integral formula for the kernel from [65, Theorem
4.3] in an arc integral form as in K z

2d (11.4) is a nontrivial transformation. Moreover,
the fully inhomogeneous (non-periodic) kernels in both directions do not immediately
follow from the general theory of [65]. It might be possible to obtain non-periodic
fully inhomogeneous kernels as limits of the periodic ones from [65], but the double
integral form of the latter kernels does not seem well-suited for such a limit transition.

Observe that our two-dimensional inhomogeneous discrete sine kernel K z
2d corre-

sponds only to the liquid (also called rough) phase of our path ensembles / domino
tilings coming from the ascending FG processes. In the rough phase one expects the
variance of the height difference to grow logarithmically with the distance [65]. This
behavior is proven in many cases, and the fluctuations are identified with the Gaussian
Free Field, cf. [43, 57, 92].

The liquid phase local behavior described by K z
2d should be contrasted with that in

the gaseous (also called smooth) phase in which the height differences have bounded
variance [65]. The gaseous phase is present in doubly periodic (in particular, 2Z× 2Z

periodic) domino tilings [11, 25, 28], see also, e.g., [24] for a discussion of the case
of lozenge tilings. We see that our dimer edge weights (see Fig. 18) do not produce
gaseous phases. This is because our weights are not fully generic like in, e.g., [25],
and instead depend on the parameters in quite a special way. In particular, in the
2Z× 2Z periodic case we have verified that the domino weights are gauge equivalent
(in the sense of [58, Section 3.10]), in a nontrivial way, to weights periodic in only
one direction. This seems to be the reason for not seeing gaseous phases in the bulk
of ascending FG processes.
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Part IV Appendix

A Formulas for F� andG�

Here we employ the row operators (defined in Sect. 2.3) to get explicit formulas for
the partition functions Fλ and Gλ of the free fermion six vertex model, and thus prove
Theorems 3.9 and 3.10. This Appendix accompanies Sect. 3 and employs algebraic
Bethe Ansatz type computations. They follow [19, Section 4.5] (but are more involved
in the case of Gλ), see also Part VII and in particular Appendix VII.2 of [56].

A.1 Proof of Theorem 3.9

A.1.1 Recalling the notation

Throughout this subsection we fix a signature λ = (λ1, . . . , λN ≥ 0) with N parts,
and sequences

x = (x1, . . . , xN ), y = (y1, y2, . . .), r = (r1, . . . , rN ), s = (s1, s2, . . .).

Recall (Definition 3.3) that the function Fλ(x; y; r; s) is the partition function of the
free fermion six vertex model with weights ̂W (2.4) and with boundary conditions
determined by λ.

In this subsection we prove Theorem 3.9 stating that Fλ is given by the determi-
nantal expression (3.12) involving the functions ϕk(x) (3.11). For convenience, let us
explicitly reproduce the desired formula here:

Fλ(x; y; r; s) =
( N
∏

i=1
xi (r

−2
i − 1)

∏

1≤i< j≤N

r−2i xi − x j
xi − x j

)

× det

[

1

yλ j+N− j+1 − xi

λ j+N− j
∏

m=1

ym − s2mxi
s2m(ym − xi )

]N

i, j=1
.

(A.1)

For the proof we will need the row operators ̂A, ̂B, ̂C, ̂D defined by (2.22)–(2.23).
These operators are built from the weights ̂W , depend on two numbers x, r and the
sequences y, s, and act (from the right) on tensor products of two-dimensional spaces
V (k) = span{e(k)

0 , e(k)
1 } � C

2. To the signature λ we associate the element eS(λ) in

the (formal) infinite tensor product V (1) ⊗ V (2) ⊗ . . ., where we take e(k)
1 in the k-th

place if and only if k ∈ S(λ) and e(k)
0 otherwise, see Sect. 3.1. For example, the empty

signature ∅ (which has 0 parts) corresponds to e∅ = e(1)
0 ⊗ e(2)

0 ⊗ . . ..
By Proposition 3.4, Fλ(x; y; r; s) is the coefficient of eS(λ) in e∅

̂B(xN , rN ) . . . ̂B(x1
, r1), and for the proof of Theorem 3.9 we proceed to evaluate this coefficient. One of
ourmain tools is the Yang–Baxter equation stated as a family of commutation relations
between the operators (see Proposition 2.5).
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A.1.2 Action on a tensor product of two spaces

The crucial part of the argument is to consider the action of ̂B(xN , rN ) . . . ̂B(x1, r1)
on a tensor product of two spaces, V1 ⊗ V2. Using the second identity from (2.23),
namely, (v1 ⊗ v2)̂B = v1̂D ⊗ v2̂B + v1̂B ⊗ v2̂A, we see that

̂B(xN , rN ) . . . ̂B(x1, r1) =
∑

I⊆{1,...,N }
XI(x; r)⊗ YI(x; r), (A.2)

where

XI(x; r) = XN (I; xN , rN )XN−1(I; xN−1, rN−1) . . . X1(I; x1, r1),
YI(x; r) = YN (I; xN , rN )YN−1(I; xN−1, rN−1) . . . Y1(I; x1, r1),

Xi (I; xi , ri ) =
{

̂D(xi , ri ), i ∈ I;
̂B(xi , ri ), i /∈ I,

Yi (I; xi , ri ) =
{

̂B(xi , ri ), i ∈ I;
̂A(xi , ri ), i /∈ I.

Now, using the commutation relations (2.26)–(2.27) from Proposition 2.5, we move
all the operators ̂B to the right in both XI and YI, which allows to rewrite (A.2) as

∑

I∪J={1,...,N }
I ′∪J ′={1,...,N }

cI ;I ′(x; r) ̂D(x jN−k , r jN−k ) . . . ̂D(x j1 , r j1)̂B(xik , rik ) . . . ̂B(xi1 , ri1)

⊗ ̂A(x j ′N−m , r j ′N−m ) . . . ̂A(x j ′1 , r j ′1)
̂B(xi ′m , ri ′m ) . . . ̂B(xi ′1 , ri ′1),

(A.3)

for some rational functions cI ;I ′(x; r), where we have denoted |I | = k and |I ′| = m,
defined J = {1, . . . , N } \I and J ′ = {1, . . . , N } \I ′, and ordered the indices such
that iα < iβ, i ′α < i ′β, jα < jβ , and j ′α < j ′β for all α < β. Here we also employed

the commutativity of ̂A (2.24) and ̂D (2.28). In fact, here one can already see from
(2.26)–(2.27) that m = N − k, but we will get this relation (and a stronger relation
between the sets I , I ′, J , J ′) in the next Lemma A.2.

Remark A.1 Let us make an important observation about the coefficients cI ;I ′(x; r).
Namely, these coefficients are computed using only the commutation relations for the
operators ̂A, ̂B, ̂C, ̂D, and we argue that the cI ;I ′(x; r)’s do not depend on the order
of applying the commutation relations. This property is based on the fact that for

generic parameters (x, r), there exists a representation of

[

̂A(x, r) ̂B(x, r)
̂C(x, r) ̂D(x, r)

]

sub-

ject to the same commutation relations, and a highest weight vector (annihilated
by ̂C and an eigenfunctions of ̂A, ̂D) v0 in that representation, such that vectors
(

∏

k∈K ̂B(xk, rk)
)

v0, with K ranging over all subsets of {1, 2, . . . , N }, are linearly

independent. This fact is a corollary of [41, Lemma 14]: our operators are based on
the free fermion six vertex weights, and the cited paper deals with more general eight
vertex case.
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Therefore, if we apply the commutation relations in two ways and get different
coefficients cI ;I ′(x; r) in (A.3), then we can apply these commutation relations in the
above highest weight representation, which contradicts the linear independence.

Lemma A.2 We have cI ;I ′(x; r) = 0 if I ∩ I ′ 	= ∅ or J ∩ J ′ 	= ∅.

Proof The two claims with I ∩ I ′ 	= ∅ and J ∩ J ′ 	= ∅ are analogous, so we only
prove the first one.

Suppose I ∩ I ′ 	= ∅. Since the operators ̂B(x, r) commute up to a scalar factor
(see (2.25)), we may assume that I ∩ I ′ & N by permuting terms in the left-hand side
of (A.2).

Observe that no summand in (A.2) with XN (I; xN , rN ) = ̂D(xN , rN ) (i.e., N ∈ I)
contributes to a nonzero value of cI ;I ′(x, r). Indeed, in this case the operator ̂D(xN , rN )

is the leftmost term in XI, and thus it does not get involved in the commutation
relations of the form (2.26), which means that one cannot obtain ̂B(xN , rN ) from this
term. Similarly, no summand in (A.2) with YN (I; xN , rN ) = ̂A(xN , rN ) (i.e., N /∈ I)
contributes to a nonzero value of cI ;I ′(x; r).

However, for any I ⊂ {0, 1}N we either have XN (I; xN , rN ) = ̂D(xN , rN ) or
YN (I; xN , rN ) = ̂A(xN , rN ), and so we cannot obtain ̂B(xN , rN ) in both tensor
factors. Therefore, terms with I ∩ I ′ 	= ∅ are zero. ��

Wesee that in (A.3) itmust be I = J ′ and I ′ = J , andwemay abbreviate cI ;I ′ = cI .
We thus rewrite (A.2)–(A.3) as

̂B(xN , rN ) . . . ̂B(x1, r1)

=
∑

I∪J={1,...,N }
cI (x; r) ̂D(x jN−k , r jN−k ) . . . ̂D(x j1 , r j1)̂B(xik , rik ) . . . ̂B(xi1 , ri1)

⊗ ̂A(xik , rik ) . . . ̂A(xi1 , ri1)̂B(x jN−k , r jN−k ) . . . ̂B(x j1 , r j1).

(A.4)

Wewill nowevaluate the coefficients cI (x; r). First, set I = {N − k + 1, N − k + 2, . . .
, N }. Then the operator

̂D(xN−k, rN−k) . . . ̂D(x1, r1)̂B(xN , rN ) . . . ̂B(xN−k+1, rN−k+1)
⊗ ̂A(xN , rN ) . . . ̂A(xN−k+1, rN−k+1)̂B(xN−k, rN−k) . . . ̂B(x1, r1)

(A.5)

might come from (A.2) only for I = {1, 2, . . . , N − k}, in which case

XI(x; r)⊗ YI(x; r)
= ̂B(xN , rN ) . . . ̂B(xN−k+1, rN−k+1)̂D(xN−k, rN−k) . . . ̂D(x1, r1)

⊗̂A(xN , rN ) . . . ̂A(xN−k+1, rN−k+1)̂B(xN−k, rN−k) . . . ̂B(x1, r1).

In the first term, we use the commutation relation (2.26) to place the ̂D operators on
the left and extract the coefficient cI (x; r) of (A.5). We have thus established:
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Lemma A.3 For I = Ik := {N − k + 1, N − k + 2, . . . , N }, the rational function cI
is equal to

cIk (x; r) =
N−k
∏

i=1

N
∏

j=N−k+1

r−2i xi − x j
xi − x j

.

We are now in a position to compute cI (x; r) for arbitrary I ⊂ {1, . . . , N } of
size k (where k is also arbitrary) by permuting the ̂B operators in the left-hand
side of (A.2) thanks to the commutation relation (2.25). For each such I , let σ be
a permutation of {1, . . . , N } which is increasing on the intervals {1, . . . , N − k} and
{N − k + 1, . . . , N }, and sends {N − k + 1, N − k + 2, . . . , N } to I .

Lemma A.4 With the above notation, we have

cI (x; r) = sgn(σ )
∏

1≤i< j≤N

r−2i xi − x j
xi − x j

∏

i, j∈I
i< j

(

r−2i xi − x j
xi − x j

)−1

∏

i, j /∈I
i< j

(

r−2i xi − x j
xi − x j

)−1
. (A.6)

Proof The claim follows from the fact that

cI (x; r) = cIk (σ (x); σ(r))
∏

j≤N−k, i≥N−k+1
σ(i)<σ( j)

r−2σ(i)xσ(i) − xσ( j)

r−2σ( j)xσ( j) − xσ(i)
,

which in turn holds thanks to (2.25) via induction on the length of the permutation σ

(which is the minimal number of elementary transpositions required to represent σ as
their product). Then we can further simplify:

cIk (σ (x); σ(r))
∏

j≤N−k, i≥N−k+1
σ(i)<σ( j)

r−2σ(i)xσ(i) − xσ( j)

r−2σ( j)xσ( j) − xσ(i)

=
∏

i∈I , j /∈I

xi − r−2j x j

xi − x j

∏

i∈I , j /∈I i< j

x j − r−2i xi

xi − r−2j x j

=
∏

i∈I , j /∈I
(xi − x j )

−1 ∏

i, j∈I , i< j

(x j − r−2i xi )
−1

∏

i, j /∈I , i< j

(x j − r−2i xi )
−1 ∏

1≤i< j≤N
(x j − r−2i xi ),
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which leads to the desired right-hand side of (A.6). The signature of the permutation
σ arises by turning xi − x j into x j − xi for each pair i /∈ I , j ∈ I with i > j . ��

A.1.3 Completing the proof

We are now in a position to prove the determinantal formula (A.1), which final-
izes the proof of Theorem 3.9. The goal is to express the coefficient of eS(λ) in
e∅
̂B(xN , rN ) . . . ̂B(x1, r1). We are going to repeatedly apply identity (A.4) (with the

coefficients cI (x; r) given by (A.6)) to vectors of the form e(m)
0 ⊗ v, m = 1, 2, . . ..

Observe that e(m)
0
̂B(x, r)̂B(x ′, r ′) = 0. Therefore, any nonzero summand in (A.4)

must have |I | ≤ 1. Moreover, when I = {i} has one element, any such nonzero
contribution to the coefficient of eS(λ) should have i ∈ S(λ) = {λN + 1, λN−1 +
2, . . . , λ1 + N }. Therefore, each step of the repeated application of (A.4) for which
we choose |I | = 1 corresponds to a number from 1 to N (indicating which element
of S(λ) is selected), and these numbers must be distinct. We encode this information
by a permutation τ ∈ SN . Using the facts that

c∅(x; r) = 1, c{k}(x; r) = (−1)N−k
k−1
∏

i=1

r−2i xi − xk
xi − xk

N
∏

j=k+1

r−2k xk − x j
xk − x j

,

e(m)
0
̂A(x, r) = e(m)

0 , e(m)
0
̂B(x, r) = x(1− r2)

r2(ym − x)
e(m)
1 ,

e(m)
0
̂D(x, r) = ym − s2mx

s2m(ym − x)
e(m)
0 ,

we see that the coefficient of eS(λ) in e∅
̂B(xN , rN ) . . . ̂B(x1, r1) is equal to

∏

1≤i< j≤N

r−2i xi − x j
xi − x j

∑

τ∈SN

sgn(τ )

N
∏

k=1

⎛

⎝

xτ(k)(r
−2
τ(k) − 1)

yλk+N−k+1 − xτ(k)

λk+N−k
∏

m=1

ym − s2mxτ(k)

s2m(ym − xτ(k))

⎞

⎠ .

Note that the prefactor
∏

1≤i< j≤N
r−2i xi−x j
xi−x j arises by taking the product of the c{k}’s

over all k = 1, . . . , N , but in this product for each next term the number N of variables
decreases by one. Therefore, we end up with a product over i < j instead of over all
pairs i 	= j . This completes the proof of Theorem 3.9.

A.2 Proof of Theorem 3.10

A.2.1 Recalling the notation

Throughout this subsection we fix M, N ≥ 1, a signature λ = (λ1 ≥ . . . ≥ λN ≥ 0)
with N parts, and sequences of complex parameters

x = (x1, . . . , xM ), y = (y1, y2, . . .), r = (r1, . . . , rM ), s = (s1, s2, . . .).
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Recall from Definition 3.2 the function Gλ(x; y; r; s) = Gλ/0N (x; y; r; s) which is
the partition function of the free fermion six vertex model with weights W (2.3) and
with boundary conditions determined by λ.

Our aim is to prove Theorem 3.10 which gives an explicit formula for Gλ (3.14) in
terms of a sum over a pair of permutations. The argument is longer than in the case of
Fλ from Appendix A.1 but also involves manipulations with row operators. Namely,
we utilize the operators A, B,C, D given by (2.8)–(2.9). They are built from the vertex
weights W and depend on x, r and the sequences y, s. These operators act (from the
left) on tensor products of two-dimensional spaces V (k) = span{e(k)

0 , e(k)
1 } � C

2,
where k ≥ 1. Recall (Sect. 3.1) that to λ we associate the vector eS(λ) in the finitary

subspace V of the infinite tensor product V (1) ⊗ V (2) ⊗ . . ., where we take e(k)
1 in the

k-th place if and only if k ∈ S(λ) and e(k)
0 otherwise, see Sect. 3.1. Let us also set

e[1,N ] = e(1)
1 ⊗ . . .⊗ e(N )

1 ⊗ e(N+1)
0 ⊗ e(N+2)

0 ⊗ . . . . (A.7)

Equip all tensor products of the spaces V (k) with the inner product defined by
〈eT, eT′ 〉 = 1T=T′ (here we use the notation eT as in (3.2)). Then by Proposition 3.4
we have

Gλ(x; y; r; s) =
〈

eS(λ), D(xM , rM ) . . . D(x2, r2)D(x1, r1)e[1,N ]
〉

.

We will compute the above coefficient of eS(λ) in the action of the product of the
D operators using the Yang–Baxter equation stated in Proposition 2.4 as a series of
commutation relations between the operators A, B,C , and D.

Remark A.5 Sometimes, to shorten some formulas in the proofs, we will use notation
Ai , Bi ,Ci , or Di for A(xi , ri ), B(xi , ri ),C(xi , ri ), and D(xi , ri ), respectively.

A.2.2 Action of D operators on a two-fold tensor product

The next two statements, Lemmas A.6 and A.7, are parallel to the computations with
the row operators performed in Appendix A.1.2 in the proof of the formula for Fλ.

Lemma A.6 Let σ ∈ SM be a permutation. Then

C(xσ(M), rσ(M)) . . .C(xσ(1), rσ(1))

= C(xM , rM ) . . .C(x1, r1)
∏

1≤i< j≤M
σ( j)<σ(i)

r−2σ( j)xσ( j) − xσ(i)

r−2σ(i)xσ(i) − xσ( j)
.

Proof This is proven by induction on the length of the permutation σ using the com-
mutation relation (2.11) between the C operators. ��
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Lemma A.7 As operators on a tensor product of two spaces V1 ⊗ V2, we have

D(xM , rM )D(xM−1, rM−1) . . . D(x1, r1)

=
∑

I⊆{1,...,M}

(

∏

i∈I, j /∈I

r−2i xi − x j

r−2i xi − r−2j x j

)

B(xik , rik ) . . . B(xi1 , ri1)

D(x jM−k , r jM−k ) . . . D(x j1 , r j1)

⊗ D(x jM−k , r jM−k ) . . . D(x j1 , r j1)C(xik , rik ) . . .C(xi1 , ri1).

(A.8)

Here I = (i1 < . . . < ik) and J = {1, . . . , M} \I = ( j1 < . . . < jM−k).

Proof In the proof we use the shorthand notation for the operators from Remark A.5.
By the last identity in (2.9), the action of DM . . . D1 on V1 ⊗ V2 is given by

∑

K⊆{1,...,M}
XK ⊗ YK, (A.9)

where XK = XM (K) . . . X1(K), YK = YM (K) . . . Y1(K), with

Xi (K) =
{

Bi , i ∈ K;
Di , i /∈ K,

Yi (K) =
{

Ci , i ∈ K;
Di , i /∈ K.

Next, by repeated use of relations (2.15) and (2.17), the sum (A.9) can be expressed
in the form

∑

I ,I ′⊆{1,...,M}
hI ;I ′(x; r) Bik . . . Bi1DjM−k . . . Dj1 ⊗ Di ′m . . . Di ′1C j ′M−m . . .C j ′1,

(A.10)

where hI ;I ′(x; r) are rational functions in x = (x1, . . . , xM ) and r = (r1, . . . , rM ),
and the indices are

I = (i1 < . . . < ik), I ′ = (i ′1 < . . . < i ′m),

J = I c = ( j1 < . . . < jM−k), J ′ = (I ′)c = ( j ′1 < . . . < j ′M−m).

By looking at relations (2.15), (2.17) closer, one can already see that m = M − k
in (A.10). By Remark A.1, the coefficients hI ;I ′(x; r) are independent of the order in
which we apply the commutation relations between the operators A, B,C, D to get
from (A.9) to (A.10).

By the same argument as in Lemma A.2, one can show that hI ;I ′(x; r) = 0 if
I ∩ I ′ 	= ∅ or J ∩ J ′ 	= ∅. Thus, it must be that I = J ′ and J = I ′, and we may

36Page 111 of 138



A. Aggarwal et al.

rewrite hI (x; r) = hI ;I ′(x; r). This implies that we may write (A.10) as

∑

I∪J={1,...,M}
hI (x; r) Bik . . . Bi1DjM−k . . . Dj1 ⊗ DjM−k . . . Dj1Cik . . .Ci1 .

(A.11)

It remains to evaluate the coefficients hI (x; r) in (A.11). This is simpler than for the
case of Fλ considered in Appendix A.1.2. First, assume that I = Ik := {1, 2, . . . , k}.
In this case, applying (2.15) and (2.17) to a term XK ⊗ YK in (A.9) only gives rise to
a nonzero multiple of Bk · · · B1DM · · · Dk+1⊗ DM · · · Dk+1Ck · · ·C1 as a summand
only ifK = Ik . Indeed, otherwise let k0 = minKc ≤ k. In any expression of XK⊗YK
as a linear combination of Bik · · · Bi1DjM−k · · · Dj1 ⊗ DjM−k · · · Dj1Cik · · ·Ci1 , one
needs to commute Dk0 to the right through Xk0−1, . . . , X1, which implies that j1 ≤
k0 ≤ k. Therefore, it must be K = Ik .

For K = Ik , the only way of obtaining Bk · · · B1DM · · · Dk+1 ⊗ DM · · · Dk+1Ck

· · ·C1 from XK⊗YK is through using (2.15) to commute each Dj to the right of each
Bi . This produces a factor of (r

−2
i xi−x j )/(r

−2
i xi−r−2j x j ) for each such commutation,

and so

hIk (x; r) =
∏

i∈Ik , j /∈Ik

r−2i xi − x j

r−2i xi − r−2j x j
.

Finally, to get hI for general I , observe that the operators Di commute by (2.13),
and therefore hσ(Ik )(x; r) = hIk (σ (x); σ(r)), which are precisely the coefficients in
the claimed identity in the present lemma, where σ takes Ik to an arbitrary I . This
completes the proof. ��

For the next proposition, recall the notation d = d(λ) ≥ 0 which is the inte-
ger such that λd ≥ d and λd+1 < d + 1, and μ = (μ1 < μ2 < . . . <

μd) = {1, . . . , N }\(S(λ) ∩ {1, . . . , N }). Also consider the N -fold tensor product
V (1) ⊗ . . .⊗ V (N ), and take the following vectors in this space

eSN (λ) := e(1)
m1
⊗ e(2)

m2
⊗ . . .⊗ e(N )

mN
, e[1,N ] = e(1)

1 ⊗ e(2)
1 ⊗ . . .⊗ e(N )

1 ,

(A.12)

where mi = 1i∈S(λ), and with e[1,N ] we are slightly abusing the notation, cf. (A.7).
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Proposition A.8 With the above notation, for any vectors v1, v2 ∈ V (N+1)⊗V (N+2)⊗
. . . we have

〈

eSN (λ) ⊗ v2, D(xM , rM ) . . . D(x2, r2)D(x1, r1)(e[1,N ] ⊗ v1)
〉

=
M
∏

j=1

N
∏

k=1

yk − s2k r
−2
j x j

yk − s2k x j

∑

I⊆{1,...,M}
|I|=d

〈

v2,

(

∏

j /∈I
D(x j , r j )

)

C(xid , rid ) . . .C(xi1 , ri1)v1

〉

×
∏

i∈I, j /∈I

r−2i xi − x j

r−2i xi − r−2j x j

∏

i, j∈I, i< j

r−2i xi − x j

r−2i xi − r−2j x j

×
∑

σ∈Sd

sgn(σ )

d
∏

j=1

( s2μ j
xiσ( j)

(

r−2iσ( j)
− 1
)

yμ j − s2μ j
r−2iσ( j)

xiσ( j)

N
∏

k=μ j+1

s2k
(

r−2iσ( j)
xiσ( j) − yk

)

yk − s2k r
−2
iσ( j)

xiσ( j)

)

,

(A.13)

where I = (i1 < . . . < id).

The right-hand side of (A.13) vanishes if d(λ) > M . Observe that the same is true
for the left-hand side. Indeed, a single D operator moves at most one vertical arrow
somewhere to the right, and d is the number of gaps (sites with no vertical arrows)
among {1, . . . , N } in the configuration encoded by eSN (λ), so d should not be larger
than M .

Proof of Proposition A.8 In this proof we use the shorthand notation for the operators,
see Remark A.5. As a first step, we consider how the action of the product of the
D and C operators like in the right-hand side of (A.13) acts on tensor products.
Fix an integer n > 0, a subset H = {h1, h2, . . . , hk} ⊆ {1, . . . , M}, and u, w ∈
V (n+1) ⊗ V (n+2) ⊗ . . .. Then we have

〈

e(n)
1 ⊗ w,

(

∏

j /∈H
Dj

)

Chk · · ·Ch1

(

e(n)
1 ⊗ u
)

〉

=
〈

e(n)
1 ,

(

∏

j /∈H
Dj

)

Ahk · · · Ah1e
(n)
1

〉〈

w,

(

∏

j /∈H
Dj

)

Chk · · ·Ch1u

〉

.

(A.14)
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and

〈

e(n)
0 ⊗ w,

(

∏

j /∈H
Dj

)

Chk · · ·Ch1

(

e(n)
1 ⊗ u
)

〉

=
∑

i /∈H

〈

e(n)
0 , Bi

(

∏

j /∈H∪{i}
Dj

)

Ahk · · · Ah1e
(n)
1

〉

〈

w,

(

∏

j /∈H∪{i}
Dj

)

CiChk · · ·Ch1u

〉

×
∏

j /∈H∪{i}

r−2i xi − x j

r−2i xi − r−2j x j
.

(A.15)

Indeed, observe that C(x, r) maps e(n)
1 to 0, so by the third statement in (2.9) we have

Chk . . .Ch1(e
(n)
1 ⊗ u) = Ahk . . . Ah1e

(n)
1 ⊗ Chk . . .Ch1u.

When applying a product of the Dj ’s to this vector, a nonzero term with e(n)
1 in the

first tensor factor may appear only if we act each time by the operators D on both
tensor factors, see the fourth statement in (2.9). This (together with the fact that 〈·, ·〉
is multiplicative with respect to the tensor product) leads to (A.14). For (A.15), we
use Lemma A.7 expressing the action of a product of the Dj ’s on a tensor product,

and observe that a nonzero term with e(n)
0 in the first tensor factor may appear only if

|I| = 1 in the right-hand side of (A.8).
The action of all the operators on e(n)

1 in the right-hand sides of (A.14)–(A.15) is
explicit by (2.8) and (2.3):

〈

e(n)
1 ,

(

∏

j /∈H
Dj

)

Ahk · · · Ah1e
(n)
1

〉

=
∏

k∈H

s2n (xk − r2k yn)

r2k (yn − s2n xk)

∏

j /∈H

yn − s2nr
−2
j x j

yn − s2n x j
;

〈

e(n)
0 , Bi

(

∏

j /∈H∪{i}
Dj

)

Ahk · · · Ah1e
(n)
1

〉

= s2n xi (r
−2
i − 1)

yn − s2n xi

∏

k∈H

s2n (xk − r2k yn)

r2k (yn − s2n xk)

∏

j /∈H∪{i}

yn − s2nr
−2
j x j

yn − s2n x j
.
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This means that we can continue our identities as

(A.14) =
〈

w,

(

∏

j /∈H
Dj

)

Chk · · ·Ch1u

〉

∏

k∈H

s2n (xk − r2k yn)

r2k (yn − s2n xk)

∏

j /∈H

yn − s2nr
−2
j x j

yn − s2n x j
;

(A.15) =
∑

i /∈H

〈

w,

(

∏

j /∈H∪{i}
Dj

)

CiChk · · ·Ch1u

〉

s2n xi (r
−2
i − 1)

yn − s2n xi

∏

k∈H

s2n (xk − r2k yn)

r2k (yn − s2n xk)

×
∏

j /∈H∪{i}

yn − s2nr
−2
j x j

yn − s2n x j

∏

j /∈H∪{i}

r−2i xi − x j

r−2i xi − r−2j x j
.

(A.16)

Now we can evaluate

〈

eSN (λ) ⊗ v2, D(xM , rM ) . . . D(x2, r2)D(x1, r1)(e[1,N ] ⊗ v1)
〉

by repeatedly using (A.16). Start with H = ∅, and apply the first identity in (A.16)
for each n /∈ μ = {1, . . . , N } \S(λ), and the second identity in (A.16) for each n ∈ μ.
Each application of the latter involves choosing an index i /∈ H. This freedom is
encoded by the data (I, σ ), where I = {i1 < i2 < . . . < id} ⊆ {1, . . . , M} and
σ ∈ Sd , such that at each step when n = μk ∈ μ we remove the index iσ(k). For each
fixed (I, σ ) we have the following factors in the resulting expansion:

• The inner product term
〈

v2,
(
∏

j /∈I
Dj

)

Cid . . .Ci1v1

〉
∏

1≤α<β≤d : σ(β)<σ(α)

r−2iσ(β)
xiσ(β)

− xiσ(α)

r−2iσ(α)
xiσ(α)

− xiσ(β)

, where the last factor comes from reordering the C operators

thanks to Lemma A.6.

• The factor
∏

i∈I, j /∈I

r−2i xi − x j

r−2i xi − r−2j x j

∏

1≤α<β≤d

r−2iσ(α)
xiσ(α)

− xiσ(β)

r−2iσ(α)
xiσ(α)

− r−2iσ(β)
xiσ(β)

arises by

applying the second identity in (A.16) for each n ∈ μ. Reordering the denom-
inator in the second factor gives

∏

1≤α<β≤d
1

r−2iσ(α)
xiσ(α)

− r−2iσ(β)
xiσ(β)

= sgn(σ )
∏

i, j∈I, i< j

1

r−2i xi − r−2j x j
.

• The product
∏d

j=1
s2μ j

xiσ( j) (r
−2
iσ( j)

− 1)

yμ j − s2μ j
xiσ( j)

is composed of one factor per each appli-

cation of the second identity in (A.16) corresponding to n = μ j ∈ μ.
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• The product
∏d

j=1
∏N

n=μ j+1
s2n (xiσ( j) − r2iσ( j)

yn)

r2iσ( j)
(yn − s2n xiσ( j) )

arises from both identities in

(A.16) which contain the same products over k ∈ H.

• Finally, the product

(

∏N

n=1
∏M

j=1
yn − s2nr

−2
j x j

yn − s2n x j

)(

∏d

j=1
∏N

n=μ j

yn − s2n xiσ( j)

yn − s2nr
−2
iσ( j)

xiσ( j)

)

arises from the products over j /∈ H or j /∈ H ∪ {i} in
(A.16).

Combining all the terms yields the desired identity.

A.2.3 Commutation of the operators C and D

In this subsection we establish one of the key formulas concerning the commutation
of the operators C and D. We fix M, N ≥ 1 and sequences of complex numbers

x = (x1, . . . , xN ), r = (r1, . . . , rN ), w = (w1, . . . , wM ), θ = (θ1, . . . , θM ).

Proposition A.9 We have

D(xN , rN ) . . . D(x1, r1)C(wM , θM ) . . .C(w1, θ1)

=
∑

I⊆{1,...,N }
H⊆{1,...,M}
|I|+|H|=M

C(xik , rik ) . . .C(xi1 , ri1)C(whM−k , θhM−k ) . . .C(wh1, θh1)

∏

j /∈H
D(w j , θ j )

∏

j /∈I
D(x j , r j )

×
∏

i∈I
(1− r−2i )xi

∏

i∈I, j /∈I

r−2j x j − xi

x j − xi

∏

h∈H, j /∈H

1

w j − wh

∏

h∈H, j /∈I

r−2j x j − wh

x j − wh

∏

i∈I, j /∈H

1

xi − w j

×
∏

i, j∈I, i< j

(r−2i xi − x j )
∏

i,h∈H, h<i

1

θ−2i wi − wh

∏

1≤i< j≤M
(θ−2j w j − wi ).

(A.17)

Here I = (i1 < . . . < ik) and H = (h1 < . . . < hM−k).

Recall that the operators D(x j , r j ) commute by (2.13), so we can write their prod-
ucts in any order. This is not the case for the operators C(w j , θ j ), which is why their
order in (A.17) must be specified explicitly.

The rest of this subsection is devoted to the proof of Proposition A.9. As a first step,
let us establish the claim for M = 1:
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Lemma A.10 (Proposition A.9 for M = 1)We have

D(xN , rN ) . . . D(x1, r1)C(w, θ) = C(w, θ)D(x1, r1) . . . D(xN , rN )

N
∏

j=1

r−2j x j − w

x j − w

+
N
∑

i=1

(

C(xi , ri )D(w, θ)
∏

j 	=i
D(x j , r j )

)

(1− r−2i )xi
xi − w

∏

j 	=i

r−2j x j − xi

x j − xi
.

(A.18)

Proof The first term containing C(w, θ)D(x1, r1) . . . D(xN , rN ) may only arise if we
are picking the first summand in (2.16) for each commutation. This produces the

desired product
∏N

j=1
r−2j x j−w

x j−w
as a prefactor.

Now let us explain how to get the summand in the second sum corresponding to i =
1. Thanks to the commutativity of the D(x j , r j )’s, the formof the other summands then
would follow. To get the term containing C(x1, r1)D(w, θ)D(x2, r2) . . . D(xN , rN ),
we must pick the second summand in (2.16) once, when moving C(w, θ) to the left of

D(x1, r1). This produces C(x1, r1)D(w, θ)
(1−r−21 )x1

x1−w
. After that, we move C(x1, r1)

to the left of all the other D(x j , r j )’s, always picking the first summand in (2.16). This
produces the desired identity.

We now consider the general case M, N ≥ 1 of (A.17). First, repeatedly using
relations (2.11), (2.13), and (2.16), we have

D(xN , rN ) . . . D(x1, r1)C(wM , θM ) . . .C(w1, θ1)

=
∑

I,H
C(xik , rik ) . . .C(xi1 , ri1)C(whM−k , θhM−k ) . . .C(wh1 , θh1)

×
∏

j /∈H
D(w j , θ j )

∏

j /∈I
D(x j , r j )RI;H(w; x;θ; r),

(A.19)

where the sum is taken over I ⊆ {1, . . . , N } andH ⊆ {1, . . . , M}, such that |I| = k,
|H| = M − k, and k is arbitrary (see (A.17)). Here RI;H are some rational functions
which we will now evaluate.
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Lemma A.11 (Evaluation of RI;H in a special case) LetH = {1, 2, . . . , M − k}, and
I = (i1 < . . . < ik) ⊆ {1, . . . , N } with |I| = k be arbitrary. Then

RI;H(w; x;θ; r) =
∏

i∈I
(1− r−2i )xi

∏

i∈I, j /∈I

r−2j x j − xi

x j − xi

∏

h∈H, j /∈H

1

w j − wh

∏

h∈H, j /∈I

r−2j x j − wh

x j − wh

×
∏

i∈I, j /∈H

1

xi − w j

∏

i, j∈I, i< j

(r−2i xi − x j )

∏

i,h∈H, h<i

1

θ−2i wi − wh

∏

1≤i< j≤M
(θ−2j w j − wi ).

(A.20)

Proof From the left-hand side of (A.19), we apply (2.16) (together with permutation
relations (2.11), (2.13) for the operators C, D) to move all the operators C to the left
of all the operators D. The operator

C(xik , rik ) . . .C(xi1 , ri1)C(wM−k, θM−k) . . .C(w1, θ1)

M
∏

j=M−k+1
D(w j , θ j )

∏

j /∈I
D(x j , r j )

may arise, after a sequence of applications of Lemma A.10, only if there exists a
permutation σ ∈ Sk such that the following two conditions are met:

• When moving each C(wM−k+ j , θM−k+ j ), 1 ≤ j ≤ k, to the left, turn
(wM−k+ j , θM−k+ j ) into (xiσ( j) , riσ( j) ). This corresponds to picking the second
summand in (2.16), and this swapping of parameters may happen only once per
each C operator.

• When moving each C(w j , θ j ), 1 ≤ j ≤ M − k, to the left, we always pick the
first summand in (2.16), and the parameters (w j , θ j ) stay the same throughout the
exchanges.

Tobe able to put all the coefficients together, denoteσt (I) = (iσ(t), iσ(t+1), . . . , iσ(k)
)

for each 1 ≤ t ≤ k. Then, for each integer 1 ≤ j ≤ k, when attempting to commute
C(wM−k+ j , θM−k+ j ) to the left of

∏

h /∈σ j+1(I)

D(xh, rh)
k
∏

h= j+1
D(wM−k+h, θM−k+h),
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we obtain

C
(

xiσ( j) , riσ( j)

)
∏

h /∈σ j (I)

D(xh, rh)
k
∏

h= j

D(wM−k+h, θM−k+h).

By Lemma A.10, this contributes a factor of

(

1− r−2iσ( j)

)

xiσ( j)

xiσ( j) − wM−k+ j

M
∏

h=M−k+ j+1

θ−2h wh − xiσ( j)

wh − xiσ( j)

∏

h /∈σ j (I)

r−2h xh − xiσ( j)

xh − xiσ( j)

. (A.21)

This deals with the first case above when we swap the parameters between C and D
operators.

In the second case when we do not swap the parameters, each C(w j , θ j ) for 1 ≤
j ≤ M − k must be commuted to the left of

∏

h /∈I D(xh, rh)
∏M

h=M−k+1 D(wh, θh),
which contributes

∏

h /∈I

r−2h xh − w j

xh − w j

M
∏

h=M−k+1

θ−2h wh − w j

wh − w j
. (A.22)

Observe that

k
∏

j=1

(

1− r−2iσ( j)

)

xiσ( j) =
∏

i∈I
(1− r−2i )xi ;

k
∏

j=1

∏

h /∈σ j (I)

r−2h xh − xiσ( j)

xh − xiσ( j)

=
∏

i∈I, h /∈I

r−2h xh − xi
xh − xi

∏

1≤h< j≤k

r−2iσ(h)
xiσ(h)

− xiσ( j)

xiσ(h)
− xiσ( j)

,

(A.23)

Now, combining the product of (A.21) over 1 ≤ j ≤ k and (A.22) over 1 ≤ j ≤
M − k, and using (A.23), we see that the desired coefficient depending on σ ∈ Sk is
equal to

∏

i∈I
(1− r−2i )xi

∏

i∈I, h /∈I

r−2h xh − xi
xh − xi

M−k
∏

j=1

(

∏

h /∈I

r−2h xh − w j

xh − w j

M
∏

h=M−k+1

θ−2h wh − w j

wh − w j

)

×
∏

1≤h< j≤k

r−2iσ(h)
xiσ(h)

− xiσ( j)

xiσ(h)
− xiσ( j)

k
∏

j=1

(

1

xiσ( j) − wM−k+ j

M
∏

h=M−k+ j+1

θ−2h wh − xiσ( j)

wh − xiσ( j)

)

.

(A.24)

Note that this is the coefficient of the operator

C(xiσ(k) , riσ(k) ) . . .C(xiσ(1) , riσ(1) )C(wM−k, θM−k) . . .C(w1, θ1)

36Page 119 of 138



A. Aggarwal et al.

M
∏

j=M−k+1
D(w j , θ j )

∏

j /∈I
D(x j , r j ),

andpermuting thefirst k of theC operators to thedesiredorderC(xik , rik ) . . .C(xi1 , ri1)
results in an additional factor

∏

1≤α<β≤k
σ(β)<σ(α)

r−2iσ(β)
xiσ(β)

− xiσ(α)

r−2iσ(α)
xiσ(α)

− xiσ(β)

, (A.25)

by Lemma A.6.
This implies that the full coefficient RI;H(w; x;θ; r) equals to the sum of (A.24)

times (A.25) over all σ ∈ Sk . We have

∏

1≤h< j≤k

r−2iσ(h)
xiσ(h)

− xiσ( j)

xiσ(h)
− xiσ( j)

∏

1≤α<β≤k
σ(β)<σ(α)

r−2iσ(β)
xiσ(β)

− xiσ(α)

r−2iσ(α)
xiσ(α)

− xiσ(β)

= sgn(σ )
∏

i, j∈I, i< j

r−2i xi − x j
xi − x j

.

Therefore, the summation over σ amounts to computing the determinant:

∑

σ∈I
sgn(σ )

k
∏

j=1

(

1

xiσ( j) − wM−k+ j

M
∏

h=M−k+ j+1

θ−2h wh − xiσ( j)

wh − xiσ( j)

)

= det

[

1

xiβ − wM−k+α

M
∏

h=M−k+α+1

θ−2h wh − xiβ
wh − xiβ

]k

α,β=1
.

(A.26)

We have already computed this determinant (up to renaming the variables) in (3.9),
and so

(A.26) =
∏

i∈I, j /∈H

1

xi − w j

∏

i, j /∈H, i< j

(θ−2j w j − wi )
∏

i, j∈I, i< j

(xi − x j ),

where we recalled that H = {1, 2, . . . , M − k}. Combining this with the remainder
of (A.24), we arrive at the desired expression (A.20), thus concluding the proof of
Lemma A.11. ��
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Finally, to get RI;H for generalH, we can permute the C operators in the left-hand
side of (A.17) thanks to (2.11). More precisely, the two expressions

C(wM , θM ) . . .C(w1, θ1)
∏

1≤i< j≤M

1

θ−2j w j − wi
,

C(whM−k , θhM−k ) . . .C(wh1, θh1)
∏

i, j∈H, i< j

1

θ−2j w j − wi

are symmetric in (wi , θi ), 1 ≤ i ≤ M , and (wh, θh), h ∈ H, respectively. Defining

̂RI;H(w; x;θ; r) = RI;H(w; x;θ; r)
∏

i, j∈H, i< j (θ
−2
j w j − wi )

∏

1≤i< j≤M (θ−2j w j − wi )
, (A.27)

we see that for any permutation τ ∈ SM we have ̂RI;τ(H)(τ (w); x; τ(θ); r) =
̂RI;H(w; x;θ; r). The renormalization in (A.27) cancels out with the two last fac-
tors in RI;{1,...,M−k} in (A.20). This together with the symmetry of (A.27) implies that
RI;H for general H is given by the same formula. We have thus completed the proof
of Proposition A.9.

A.2.4 Action of C operators on a two-fold tensor product

In this subsection we perform computations with row operators acting on tensor prod-
ucts which are parallel to those in Appendices A.1.2 and A.2.2, but now involve the
C operators.

Lemma A.12 Let x = (x1, . . . , xM ), r = (r1, . . . , rM ). On any tensor product V1⊗V2
we have:

C(xM , rM ) . . .C(x1, r1)

=
∑

I⊆{1,...,M}
C(xik , rik ) . . .C(xi1 , ri1)A(x jM−k , r jM−k ) . . . A(x j1 , r j1)

⊗ C(x jM−k , r jM−k ) . . .C(x j1 , r j1)D(xik , rik ) . . . D(xi1 , ri1)

×
∏

i∈I, j∈J

1

xi − x j

∏

1≤i< j≤M
(r−2j x j − xi )

∏

i, j∈I, i< j

1

r−2j x j − xi

∏

i, j∈J, i< j

1

r−2j x j − xi
,

(A.28)

where I = (i1 < . . . < ik) and J = {1, . . . , M} \I = ( j1 < . . . < jM−k).

Proof In the proof we use the shorthand notation for the operators from Remark A.5.
Due to (2.9), relations in Proposition 2.4, and an argument identical to the beginning
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of the proof of Lemma A.7, we see that the left-hand side of (A.28) can be written in
the form

∑

I⊆{1,...,M}
hI(x; r)Cik . . .Ci1 A jM−k . . . A j1 ⊗ C jM−k . . .C j1Dik . . . Di1,

where the notation I,J is as in (A.28).
We first evaluate hI in the special case I = Ik = {M − k + 1, . . . , M − 1, M}.

The contribution containing the operatorCM . . .CM−k+1AM−k . . . A1⊗CM−k . . .C1
DM . . . DM−k+1 may arise only if we use (2.16) in the second tensor factor to commute
all C j , j /∈ Ik , to the left of all Di , i ∈ I, without swapping their arguments. Each

such commutation gives rise to the factor
r−2i xi−x j
xi−x j . Therefore,

hIk (x; r) =
M
∏

i=M−k+1

M−k
∏

j=1

r−2i xi − x j
xi − x j

=
∏

i∈Ik , j /∈Ik

1

xi − x j

∏

1≤i< j≤M
(r−2j x j − xi )

∏

i, j∈Ik , i< j

1

r−2j x j − xi

∏

i, j /∈Ik , i< j

1

r−2j x j − xi
.

(A.29)

Next, thanks to (2.11) the three expressions

CM . . .C1
∏

1≤i< j≤M (r−2j x j − xi )
,

Cik . . .Ci1
∏

i, j∈I, i< j (r
−2
j x j − xi )

,
C jM−k . . .C j1

∏

i, j /∈I, i< j (r
−2
j x j − xi )

are symmetric in the pairs (xi , ri ) of variables they depend on (where 1 ≤ i ≤ M ,
i ∈ I, and i /∈ I, respectively). Therefore, the function

̂hI(x; r) = hI(x; r)
∏

i, j∈I, i< j (r
−2
j x j − xi )

∏

i, j /∈I, i< j (r
−2
j x j − xi )

∏

1≤i< j≤M (r−2j x j − xi )

satisfies ̂hτ(I)(x; r) = ̂hI(τ−1(x); τ−1(r)) for any permutation τ ∈ SM . Together
with (A.29) this shows that for any Iwe havêhI(x; r) =∏i∈I, j /∈I(xi − x j )−1, which
implies the claim. ��

In the next proposition, let e0 = e(i1)
0 ⊗e(i2)

0 ⊗· · ·⊗e(in)
0 ∈ V (i1)⊗V (i2)⊗· · ·⊗V (in)

for any integers i1 < i2 < · · · < in . Moreover, fix M ≥ 1, N ≥ 0, and T =
(t1 < t2 < . . . < tM ) ⊂ Z≥1. Define the vector eT;N = e(N+1)

m1 ⊗ e(N+2)
m2 ⊗ · · · ∈

V (N+1) ⊗ V (N+2) ⊗ · · · , where mi = 1 if i ∈ T, and 0 otherwise.
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Proposition A.13 With the above notation we have

〈

eT;N ,C(xM , rM ) · · ·C(x1, r1) e0
〉 =
∏

1≤i< j≤M

r−2j x j − xi

xi − x j

×
∑

σ∈SM

sgn(σ )

M
∏

j=1

( yt j+N
(

1− s2t j+N

)

yt j+N − s2t j+N xσ( j)

t j+N−1
∏

i=N+1

s2i
(

yi − xσ( j)
)

yi − s2i xσ( j)

)

,

where the inner product is taken in the space V (N+1) ⊗ V (N+2) ⊗ . . ..

Observe that this formula is determinantal, and is in fact equivalent to the deter-
minantal formula for Fλ from Theorem 3.9 proven in Appendix A.1, up to swapping
horizontal arrows with empty horizontal edges, and renormalizing. Here, however, we
present an independent proof which is more convenient given our previous statements.

Proof of Proposition A.13 In the proof we use the shorthand notation for the operators
from Remark A.5. Fix n > N and vectors v1, v2 ∈ V (n+1) ⊗ V (n+2) ⊗ . . .. By
Lemma A.12, we have

〈

e(n)
0 ⊗ v2,CMCM−1 · · ·C1e0

〉 = 〈e(n)
0 , AM AM−1 · · · A1e

(n)
0

〉〈v2,CMCM−1 · · ·C1e0〉;
〈

e(n)
1 ⊗ v2,CMCM−1 · · ·C1e0

〉 =
M
∑

i=1

〈

e(n)
1 ,Ci AM · · · Ai+1Ai−1 · · · A1e

(n)
0

〉

× 〈v2,CM · · ·Ci+1Ci−1 · · ·C1Die0〉

×
∏

j 	=i

1

xi − x j

i−1
∏

j=1
(r−2i xi − x j )

M
∏

j=i+1
(r−2j x j − xi ).

(A.30)

These quantities can be computed as follows:

Die0 = e0;
〈

e(n)
0 , AM AM−1 · · · A1e

(n)
0

〉 =
M
∏

j=1

s2n (yn − x j )

yn − s2n x j
;

〈

e(n)
1 ,Ci AM · · · Ai+1Ai−1 · · · A1e

(n)
0

〉 = yn(1− s2n )

yn − s2n xi

∏

j 	=i

s2n (yn − x j )

yn − s2n x j
,
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using the definition of the operators (2.8) and formulas for the vertex weightsW (2.3).
Therefore, (A.30) is continued as

〈

e(n)
0 ⊗ v2,CMCM−1 · · ·C1e0

〉 = 〈v2,CMCM−1 · · ·C1e0〉
M
∏

j=1

s2n (yn − x j )

yn − s2n x j
;

〈

e(n)
1 ⊗ v2,CMCM−1 · · ·C1e0

〉 =
M
∑

i=1
〈v2,CM · · ·Ci+1Ci−1 · · ·C1e0〉

× yn(1− s2n )

yn − s2n xi

∏

j 	=i

s2n (yn − x j )

yn − s2n x j

∏

j 	=i

1

xi − x j

i−1
∏

j=1
(r−2i xi − x j )

M
∏

j=i+1
(r−2j x j − xi ).

(A.31)

Nowwe can evaluate 〈eT;N ,CM . . .C1e0〉 by repeatedly applying (A.31). Through-
out these applications, we use first or second identity in (A.31), respectively, for each n
belonging or not belonging to the set {t1 + N , t2 + N , . . . , tM + N }. In the latter case,
for n = N+ t j , we choose which index i = i j ∈ {1, . . . , M} to remove. These choices
are encoded by a permutation σ ∈ SM as i j = σ( j). This leads to the desired claim,
where, in particular, sgn(σ ) arises from reordering the denominators xσ(i) − xσ( j) to
xi − x j over all 1 ≤ i < j ≤ M . ��

A.2.5 Completing the proof

To finalize the proof of Theorem 3.10, let us recall the formula to be established. Fix
an arbitrary signature λ = (λ1 ≥ . . . ≥ λN ≥ 0). Let d = d(λ) ≥ 0 denote the integer
such that λd ≥ d and λd+1 < d + 1. Denote by � j = λ j + N − j + 1, j = 1, . . . , N ,
the elements of the set S(λ). Moreover, we define μ = (μ1 < μ2 < . . . < μd) =
{1, . . . , N }\(S(λ) ∩ {1, . . . , N }). Our goal is to show that

Gλ(x; y; r; s) =
M
∏

j=1

N
∏

k=1

yk − s2k r
−2
j x j

yk − s2k x j

∑

I,J⊆{1,...,M}
|I|=|J|=d

∏

i∈I
1≤ j≤M

(r−2i xi − x j )
∏

i∈I
j∈Ic

1

r−2i xi − r−2j x j

×
∏

i, j∈I
i< j

1

r−2i xi − r−2j x j

∏

i∈Ic
j∈J

(r−2i xi − x j )
∏

i∈Jc

j∈J

1

xi − x j

∏

i, j∈J
i< j

1

x j − xi

×
∑

σ,ρ∈Sd

sgn(σρ)

d
∏

h=1

( y�h
(

1− s2�h
)

y�h − s2�h x jρ(h)

�h−1
∏

i=N+1

s2i
(

yi − x jρ(h)

)

yi − s2i x jρ(h)

)

×
d
∏

m=1

(

s2μm

yμm − s2μm
r−2iσ(m)

xiσ(m)

N
∏

k=μm+1

s2k
(

r−2iσ(m)
xiσ(m)

− yk
)

yk − s2k r
−2
iσ(m)

xiσ(m)

)

.

(A.32)
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where I = (i1 < i2 < . . . < id) and J = ( j1 < j2 < . . . < jd).
Recall that

Gλ(x; y; r; s) =
〈

eSN (λ) ⊗ eS>N (λ), D(xM , rM ) . . . D(x2, r2)D(x1, r1)(e[1,N ] ⊗ e0)
〉

,

where we have split the vectors into eSN (λ), e[1,N ] ∈ V (1) ⊗ . . .⊗ V (N ) (cf. (A.12)),
and the remaining two vectors belong to V (N+1)⊗ V (N+2)⊗ . . .. Note that the vector
eS>N (λ) has exactly d tensor components of the form e(k)

1 , and the other components

are of the form e(k)
0 . We can use Proposition A.8 to write:

〈

eSN (λ) ⊗ eS>N (λ), D(xM , rM ) . . . D(x2, r2)D(x1, r1)(e[1,N ] ⊗ e0)
〉

=
M
∏

j=1

N
∏

k=1

yk − s2k r
−2
j x j

yk − s2k x j

∑

I⊆{1,...,M}
|I|=d

〈

eS>N (λ),

(

∏

j /∈I
D(x j , r j )

)

C(xid , rid ) . . .C(xi1 , ri1)e0

〉

×
∏

i∈I, j /∈I

r−2i xi − x j

r−2i xi − r−2j x j

∏

i, j∈I, i< j

r−2i xi − x j

r−2i xi − r−2j x j

×
∑

σ∈Sd

sgn(σ )

d
∏

j=1

( s2μ j
xiσ( j)

(

r−2iσ( j)
− 1
)

yμ j − s2μ j
r−2iσ( j)

xiσ( j)

N
∏

k=μ j+1

s2k
(

r−2iσ( j)
xiσ( j) − yk

)

yk − s2k r
−2
iσ( j)

xiσ( j)

)

.

(A.33)

Let us denote

DIc :=
∏

i /∈I
D(x j , r j ), CI := C(xid , rid ) . . .C(xi1 , ri1),

and use similar notation in what follows. In particular, in all such products of the C
operators the indices are decreasing from left to right. Employ Proposition A.9 to write

DIcCI =
∑

K⊆Ic,H⊆I
|K|+|H|=d

CKCHDI\HDIc\K

×
∏

k∈K
(1− r−2k )xk

∏

i∈K∪H, j∈Ic\K

r−2j x j − xi

x j − xi

∏

h∈H, j∈I\H

1

x j − xh

∏

i∈K, j∈I\H

1

xi − x j

×
∏

i, j∈K, i< j

(r−2i xi − x j )
∏

i,h∈H, h<i

1

r−2i xi − xh

∏

i, j∈I, i< j

(r−2j x j − xi ).
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Let us insert this into (A.33). Observe that all operators D preserve the vector e0. Thus,
we can continue the computation as

〈

eSN (λ) ⊗ eS>N (λ), D(xM , rM ) . . . D(x2, r2)D(x1, r1)(e[1,N ] ⊗ e0)
〉

=
M
∏

j=1

N
∏

k=1

yk − s2k r
−2
j x j

yk − s2k x j

∑

I⊆{1,...,M}
|I|=d

∏

i, j∈I
(r−2i xi − x j )

∏

i∈I
j∈Ic

r−2i xi − x j

r−2i xi − r−2j x j

∏

i, j∈I
i< j

1

r−2i xi − r−2j x j

×
∑

K⊆Ic,H⊆I
|K|+|H|=d

〈

eS>N (λ),CKCHe0
〉
∏

k∈K
(1− r−2k )xk

∏

i∈K∪H, j∈Ic\K

r−2j x j − xi

x j − xi

×
∏

h∈H, j∈I\H

1

x j − xh

∏

i∈K, j∈I\H

1

xi − x j

∏

i, j∈K, i< j

(r−2i xi − x j )
∏

i,h∈H, h<i

1

r−2i xi − xh

×
∑

σ∈Sd

sgn(σ )

d
∏

j=1

( s2μ j

yμ j − s2μ j
r−2iσ( j)

xiσ( j)

N
∏

k=μ j+1

s2k
(

r−2iσ( j)
xiσ( j) − yk

)

yk − s2k r
−2
iσ( j)

xiσ( j)

)

.

Now we are going to apply Proposition A.13 to compute the remaining inner
product. Recall that eS>N (λ) has exactly d tensor components equal to e(m)

1 , for
m ∈ {�1, . . . , �d}. Denote (x ′1, . . . , x ′d) = (xh1 , . . . , xh|H| , xk1 , . . . , xk|K|), where
h1 < . . . < h|H|, k1 < . . . < k|K|. Then we have

〈

eS>N (λ),CKCHe0
〉 = (−1) d(d−1)

2
∏

i, j∈H, i< j

r−2j x j − xi

xi − x j

∏

i, j∈K, i< j

r−2j x j − xi

xi − x j

×
∏

i∈H, j∈K

r−2j x j − xi

xi − x j

∑

ρ∈Sd

sgn(ρ)

d
∏

j=1

( y� j

(

1− s2� j

)

y� j − s2� j
x ′ρ( j)

� j−1
∏

i=N+1

s2i
(

yi − x ′ρ( j)

)

yi − s2i x
′
ρ( j)

)

.

(A.34)

The sign (−1) d(d−1)
2 arises from the fact that the t j ’s in PropositionA.13 are increasing,

while the � j ’s in (A.34) are decreasing, so the sign of ρ has to be multiplied by

(−1) d(d−1)
2 . This allows to continue our computation as follows:

〈

eSN (λ) ⊗ eS>N (λ), D(xM , rM ) . . . D(x2, r2)D(x1, r1)(e[1,N ] ⊗ e0)
〉
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= (−1) d(d−1)
2

M
∏

j=1

N
∏

k=1

yk − s2k r
−2
j x j

yk − s2k x j

×
∑

I⊆{1,...,M}
|I|=d

∏

i∈I
1≤ j≤M

(r−2i xi − x j )
∏

i∈I
j∈Ic

1

r−2i xi − r−2j x j

∏

i, j∈I
i< j

1

r−2i xi − r−2j x j

×
∑

K⊆Ic,H⊆I
|K|+|H|=d

∏

i∈Ic
j∈K∪H

(r−2i xi − x j )
∏

i /∈K∪H
j∈K∪H

1

xi − x j

∏

i, j∈H
i< j

1

xi − x j

∏

i, j∈K
i< j

1

xi − x j

∏

i∈H
j∈K

1

xi − x j

×
∑

σ,ρ∈Sd

sgn(σρ)

d
∏

j=1

( y� j

(

1− s2� j

)

y� j − s2� j
x ′ρ( j)

� j−1
∏

i=N+1

s2i
(

yi − x ′ρ( j)

)

yi − s2i x
′
ρ( j)

)

×
d
∏

j=1

( s2μ j

yμ j − s2μ j
r−2iσ( j)

xiσ( j)

N
∏

k=μ j+1

s2k
(

r−2iσ( j)
xiσ( j) − yk

)

yk − s2k r
−2
iσ( j)

xiσ( j)

)

.

Upon denoting J = K ∪ H = ( j1 < . . . < jd), we arrive at the desired statement
(A.32). Note that reordering the indices in (x ′1, . . . , x ′d) in the increasing order leads
to an extra ± sign coming from sgn(ρ), but this sign is compensated by writing

∏

i, j∈H, i< j

1

xi − x j

∏

i, j∈K, i< j

1

xi − x j

∏

i∈H, j∈K

1

xi − x j
= ±

∏

i, j∈J, i< j

1

xi − x j

(A.35)

(equivalently, one may refer to the symmetry as in the proof of Lemma A.12). Finally,

replacing xi − x j in (A.35) with x j − xi absorbs the sign (−1) d(d−1)
2 . This completes

the proof of Theorem 3.10.

B Correlation kernel via Eynard–Mehta approach

Here we prove Theorem 6.7 on the determinantal structure of the FG measures and
processes. We employ an Eynard–Mehta type approach based on [20], see also [31].

B.1 Representation of the ascending FG process in a determinantal form

Recall the notation of the ascending FG process (6.8) from Sect. 6.2. Throughout
Appendix B we omit the notation y, s in the functions Gμ/κ(wi ; y; θi ; s) and other
similar quantities.
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Here we use the determinantal formulas for the functions Fλ (Theorem 3.9) and
Gμ, Gν/λ to rewrite the probabilities (6.8) in a determinantal form. The formulas
for Gμ and Gν/λ are of Jacobi–Trudy type and follow from Cauchy identities and
biorthogonality as in Sect. 5.4.

Recall the notation (3.11):

ϕk(x) = 1

yk+1 − x

k
∏

j=1

y j − s2j x

s2j (y j − x)
, k ≥ 0.

By Theorem 3.9, we have

Fλ(ρ) = const · det [ϕλ j+N− j (xi )
]N
i, j=1 , (B.1)

where the constant is independent of λ (we adopt this convention for all such constants
throughout Appendix B, and will denote all of them by const).

Next, recall the functions ψk (5.1):

ψk(x) =
yk+1(s2k+1 − 1)

yk+1 − s2k+1x

k
∏

j=1

s2j (y j − x)

y j − s2j x
, k ≥ 1.

For (w;θ) = (wa, . . . , wb; θa, . . . , θb), a ≤ b, let us define a slight generalization of
(5.13):

hk,p(w;θ) := 1

2π i

∮

�y,w

dz
ψk(z)

yp − z

b
∏

j=a

z − θ−2j w j

z − w j
, k ≥ 0, p ≥ 1,

where the integration contour �y,w is positively oriented, surrounds all yi , w j , and
leaves out all s−2i yi . The function Gλ(1) in (6.8) has the following determinantal form
(with a = b = 1 in hk,l ):

Gλ(1) (w1; θ1) = const · det[h
λ

(1)
i +N−i, j (w1; θ1)

]N
i, j=1. (B.2)

Finally, recall the functions˜hl (5.9) and gl/k (5.10):

gl/k(w;θ) =˜hl−k(w; τky;θ; τks) = 1l≥k
2π i

∮

�y,w

dz ϕk(z)ψl(z)
b
∏

j=a

z − θ−2j w j

z − w j
,

where the integration contour is around y j , wi and not s−2j y j , and (w;θ) =
(wa, . . . , wb; θa, . . . , θb) with a ≤ b. The skew functions in (6.8) take the follow-
ing determinantal form:

Gλ(t)/λ(t−1) (wt ; θt ) = det
[

g
(λ

(t)
i +N−i)/(λ(t−1)

j +N− j)
(wt ; θt )

]N
i, j=1. (B.3)
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We observe that when evaluated at a single pair of variables (w; θ), both hk, j (for
k ≥ j) and gl/k become explicit:

Lemma B.1 We have

hk, j (w; θ) =

⎧

⎪

⎨

⎪

⎩

w(1− θ−2)ψk(w)

y j − w
, k ≥ j;

anon − productexpression, k < j,

gl/k(w; θ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

w(1− θ−2)ϕk(w)ψl(w), l > k;
θ−2w − s−2k+1yk+1

w − s−2k+1yk+1
, l = k;

0, l < k.

Proof For hk, j with k ≥ j , the only pole inside the contour is z = w, which leads
to the desired formula. The exact form of the functions hk, j with k < j is not very
explicit (apart from the original contour integral expression), but they are not involved
in our computations.

For gl/k , in the case l = k, the only singularity outside the contour is z = s−2k+1yk ,
and for l > k the only singularity inside the contour is z = w. The respective residues
in these two cases lead to the desired formulas. For l < k, there are no singularities
outside the integration contours, and the integral vanishes. ��

Putting together (B.1), (B.2), and (B.3), we get:

Proposition B.2 The probability weights under the ascending FG process (6.8) have
the following product-of-determinants form. For �

(t)
j := λ

(t)
j + N + 1− j , we have

AP(λ(1), λ(2), . . . , λ(T ))

= const · det[h
�
(1)
i −1, j (w1; θ1)

]

T
∏

t=2
det
[

g
(�

(t)
i −1)/(�(t−1)

j −1)(wt ; θt )
]

det
[

ϕ
�
(T )
j −1(xi )

]

,

where all determinants are taken with respect to 1 ≤ i, j ≤ N, and const is a
normalizing constant which does not depend on the �( j)’s.

B.2 Application of the Eynard–Mehta theorem

The formof the probabilityweights as inPropositionB.2puts the ascendingFGprocess
into the domain of applicability of the Eynard–Mehta theorem (see, for example, [31],
[20,Theorem1.4]). To express the determinantal correlationkernel of the point process

{(t, �(t)
j ) : t = 1, . . . , T , j = 1, . . . , N } ⊂ {1, . . . , T } × Z≥1,

�
(t)
j = λ

(t)
j + N + 1− j, (B.4)
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one first needs to invert the N × N “Gram matrix” given by

Mi j =
∑

a1,...,am≥0
ha1,i (w1; θ1)ga2/a1(w2; θ2) . . . gaT /aT−1(wT ; θT ) ϕaT (x j ).(B.5)

Note that by Lemma B.1, this series converges absolutely under the condition (6.7).

Proposition B.3 We have

Mi j = 1

yi − x j

T
∏

t=1

x j − θ−2t wt

x j − wt
. (B.6)

The proof is based on the following lemma:

Lemma B.4 Let
∣

∣

u−s−2j y j
u−y j

v−y j
v−s−2j y j

∣

∣ < 1 − δ < 1 for all sufficiently large j ≥ 1. Then

we have

∞
∑

k=0
ϕk(u)ψk(v) = 1

u − v
.

Proof We have

∞
∑

k=0
ϕk(u)ψk(v) =

∞
∑

k=0

1

u − yk+1
yk+1(1− s−2k+1)
v − s−2k+1yk+1

k
∏

j=1

u − s−2j y j

u − y j

v − y j

v − s−2j y j

=
∞
∑

k=0

1

u − v

(

1− u − s−2k+1yk+1
u − yk+1

v − yk+1
v − s−2k+1yk+1

)

k
∏

j=1

u − s−2j y j

u − y j

v − y j

v − s−2j y j
,

and the sum telescopes to 1/(u − v) if it converges (which holds under the condition
in the hypothesis). ��
Proof of Proposition B.3 We represent ha1,i as an integral over z1, and each gat/at−1 as
an integral over zt , 2 ≤ t ≤ T . Initially all the integration variables belong to the same
contour �y,w. However, in order to apply Lemma B.4 under the integrals, we need to
have the following conditions on the contours for all sufficiently large k ≥ 1:

∣

∣

∣

zt+1 − s−2k yk
zt+1 − yk

zt − yk

zt − s−2k yk

∣

∣

∣ < 1− δ < 1,
∣

∣

∣

x j − s−2k yk
x j − yk

zT − yk

zT − s−2k yk

∣

∣

∣ < 1− δ < 1,

where t = 1, . . . , T − 1, j = 1, . . . , N . Clearly, under certain restrictions on the
parameters, such contours exist. Moreover, we may also choose them to be nested: z1
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around all yk and wt , zB around zA if B > A, and all contours must leave outside all
the points s−2k yk . On these contours, we have by Lemma B.4:

Mi j = 1

(2π i)T

∮

. . .

∮

1

yi − z1

dz1 . . . dzT
(x j − zT )(zT − zT−1) . . . (z2 − z1)

T
∏

t=1

zt − θ−2t wt

zt − wt
.

This integral is computed as follows. First, for zT there is a single pole zT = x j
outside the contour (and the integrand has the zero residue at infinity). Taking the
residue clears the denominator x j − zT and substitutes zT = x j . After that, we repeat
the procedure for zT−1, . . . , z1, which leads to the desired formula.

Finally, the restrictions on the parameters under which the contours exist are lifted
by an analytic continuation, since Lemmas B.1 and B.4 imply that the summation in
(B.5) produces an a priori rational function. ��

The matrix M = [Mi j ]Ni, j=1 is readily inverted:

Lemma B.5 We have, for i, j = 1, . . . , N,

M−1
i j =

1

xi − y j

∏N
k=1(xi − yk)(y j − xk)

∏

k 	=i (xi − xk)
∏

k 	= j (y j − yk)

T
∏

t=1

xi − wt

xi − θ−2t wt

= 1

(2π i)2

∮

�xi

dξ

∮

�y j

dη
1

ξ − η

N
∏

k=1

(ξ − yk)(η − xk)

(ξ − xk)(η − yk)

T
∏

t=1

ξ − wt

ξ − θ−2t wt
,

(B.7)

where the contours for ξ and η are small nonintersecting positively oriented circles
around xi and y j , respectively, which do not include any other poles of the integrand.

Proof The first expression forM−1
i j is obtained using the Cauchy determinant, since all

minors (and hence all cofactors) of M are determinants of similar form. The contour
integral expression corresponds to taking residues at the simple poles ξ = xi and
η = y j .

By the Eynard–Mehta theorem as in [20, Theorem 1.4], the correlation kernel
of the determinantal point process (B.4) on {1, . . . , T } × Z≥1 takes the form (the
shifts a + 1, a′ + 1 correspond to the shifts in the determinantal representation in
Proposition B.2):

KAP(t, a + 1; t ′, a′ + 1)

= −1t>t ′
∑

αt ′+1,...,αt−1≥0
gαt ′+1/a′(wt ′+1; θt ′+1) . . .gαt−1/αt−2 (wt−1; θt−1)ga/αt−1(wt ; θt )

+
N
∑

i, j=1
M−1

j i

∑

α1,...,αt−1≥0
hα1,i (w1; θ1)gα2/α1

(w2; θ2) . . .ga/αt−1(wt ; θt )

×
∑

βt ′+1,...,βT≥0
gβt ′+1/a′(wt ′+1; θt ′+1) . . .gβT /βT−1(wT ; θT )ϕβT (x j ). (B.8)
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The iterated sums over the α j ’s in the first and the second terms are finite and thus con-
verge, and the sum over the β j ’s is infinite but converges under (6.7), see Lemma B.1.

B.3 Computation of the kernel

Let us now compute all the sums in (B.8), and arrive at the resulting formula for the
correlation kernel.

For the first summand arising when t > t ′, we pass to the nested contours (zB
around zA if B > A) as in the proof of Proposition B.3. We obtain

∑

αt ′+1,...,αt−1≥0
gαt ′+1/a′(wt ′+1; θt ′+1) . . . gαt−1/αt−2(wt−1; θt−1)ga/αt−1(wt ; θt )

= 1

(2π i)t−t ′
∮

. . .

∮

ϕa′(zt ′+1)ψa(zt )
dzt ′+1 . . . dzt

(zt ′+2 − zt ′+1) . . . (zt−1 − zt−2)(zt − zt−1)
t
∏

i=t ′+1

zi − θ−2i wi

zi − wi
, (B.9)

where we extended the sum over the α j ’s to all α j ≥ 0 under the integral, and the
infinite sums under the integral are computed using Lemma B.4. Next, deforming the
contours zt−1, zt−2, . . . , zt ′+1 (in this order) to infinity, each integration in zi picks
up a residue at a single pole outside the integration contour at zi = zt . This leaves a
single integral:

(B.9) = 1

2π i

∮

�y,w

dz ϕa′(z)ψa(z)
t
∏

i=t ′+1

z − θ−2i wi

z − wi
. (B.10)

Arguing in a similar manner, we can compute

∑

α1,...,αt−1≥0
hα1,i (w1; θ1)gα2/α1

(w2; θ2) . . . ga/αt−1(wt ; θt )

= 1

(2π i)t

∮

. . .

∮

ψa(zt )

yi − z1

dz1 . . . dzt
(z2 − z1)(z3 − z2) . . . (zt − zt−1)

t
∏

d=1

zd − θ−2d wd

zd − wd

= 1

2π i

∮

�y,w

ψa(z) dz

yi − z

t
∏

d=1

z − θ−2d wd

z − wd
,

and
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∑

βt ′+1,...,βT≥0
gβt ′+1/a′(wt ′+1; θt ′+1) . . . gβT /βT−1(wT ; θT )ϕβT (x j )

= 1

(2π i)T−t ′
∮

. . .

∮

ϕa′(zt ′+1)
x j − zT

dzt ′+1 . . . dzT
(zt ′+2 − zt ′+1) . . . (zT−1 − zT−2)(zT − zT−1)

T
∏

c=t ′+1

zc − θ−2c wc

zc − wc

= ϕa′(x j )
T
∏

c=t ′+1

x j − θ−2c wc

x j − wc
.

In the latter computation we pick the residues at zT = x j , . . . , zt ′+1 = x j (in this
order), which is the only pole outside the corresponding integration contour. Finally,
we take the last two quantities, multiply by M−1

j i , and sum as in (B.8). Using (B.7),
we have

N
∑

i, j=1

1

(2π i)2

∮

�x j

dξ

∮

�yi

dη
1

ξ − η

N
∏

k=1

(ξ − yk)(η − xk)

(ξ − xk)(η − yk)

T
∏

t=1

ξ − wt

ξ − θ−2t wt

× 1

2π i

∮

�y,w

ψa(z) dz

yi − z

t
∏

d=1

z − θ−2d wd

z − wd
ϕa′(x j )

T
∏

c=t ′+1

x j − θ−2c wc

x j − wc

= 1

(2π i)3

∮

�x

dξ

∮

�y

dη

∮

�y,w

dz
1

η − ξ

1

η − z

N
∏

k=1

(ξ − yk)(η − xk)

(ξ − xk)(η − yk)

× ya+1(1− s−2a+1)
z − s−2a+1ya+1

1

ya′+1 − ξ

a
∏

j=1

z − y j

z − s−2j y j

a′
∏

j=1

ξ − s−2j y j

ξ − y j

t
∏

d=1

z − θ−2d wd

z − wd

t ′
∏

c=1

ξ − wc

ξ − θ−2c wc
.

Toobtain the latter expressionwe substituted x j = ξ , yi = η, and changed the contours
�x , �y for these variables to encircle all xk’s or all yk’s, respectively, while leaving all
other poles outside. Observe now that the only pole in η outside the integration contour
which produces a nonzero residue is at η = z. Indeed, the residue at η = ξ eliminates
all poles inside the ξ contour, and thus vanishes. Therefore, wemay continue the above
computation as follows:

= 1

(2π i)2

∮

�x

dξ

∮

�y,w

dz
1

z − ξ

N
∏

k=1

(ξ − yk)(z − xk)

(ξ − xk)(z − yk)

× ya+1(1− s−2a+1)
z − s−2a+1ya+1

1

ξ − ya′+1

a
∏

j=1

z − y j

z − s−2j y j

a′
∏

j=1

ξ − s−2j y j

ξ − y j
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t
∏

d=1

z − θ−2d wd

z − wd

t ′
∏

c=1

ξ − wc

ξ − θ−2c wc
.

Let us drag the ξ contour through infinity, so that now it encircles the z contour �y,w,
and also all the points θ−2i wi . This leads to an extra minus sign.

Finally,we need to add the additional summand (B.10) if t > t ′. In this case, observe
that dragging the z contour so that it is outside of the ξ contour produces the same
expression as (B.10), but with the opposite sign. Moreover, we need to undo the shifts
a + 1, a′ + 1 corresponding to the determinantal representation in Proposition B.2.
Renaming the integration variables as ξ = u, z = v leads to the final expression for
the correlation kernel of the ascending FG process:

KAP(t, a; t ′, a′) = 1

(2π i)2

∮

�y,w,θ−2w

du
∮

�y,w

dv
1

u − v

N
∏

k=1

(u − yk)(v − xk)

(u − xk)(v − yk)

× ya(1− s−2a )

v − s−2a ya

1

u − ya′

a−1
∏

j=1

v − y j

v − s−2j y j

a′−1
∏

j=1

u − s−2j y j

u − y j

t
∏

d=1

v − θ−2d wd

v − wd

t ′
∏

c=1

u − wc

u − θ−2c wc
.

where the u contour is outside for t ≤ t ′, and the v contour is outside for t > t ′. This
completes the proof of Theorem 6.7 in the ascending FG process case.
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