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Characterizing superradiant dynamics in atomic arrays via a camulant expansion approach
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Ordered atomic arrays with subwavelength lattice spacing emit light collectively. For fully inverted atomic
arrays, this results in an initial burst of radiation and a fast buildup of coherences between the atoms at initial
times. Based on a cumulant expansion of the equations of motion, we derive exact analytical expressions for the
emission properties and numerically analyze the full many-body problem resulting in the collective decay process
for unprecedented system sizes of up to a few hundred atoms. We benchmark the cumulant expansion approach
and show that it correctly captures the cooperative dynamics resulting in superradiance. For fully inverted arrays,
this allows us to extract the scaling of the superradiant peak with particle number. For partially excited arrays
where no coherences are shared among atoms, we also determine the critical number of excitations required for
the emergence of superradiance in one- and two-dimensional geometries. In addition, we study the robustness of
superradiance in the case of non-unit filling and position disorder.
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I. INTRODUCTION

The interaction of dense atomic ensembles with light gives
rise to a plethora of interesting many-body effects. One
paradigmatic example is Dicke superradiance [1,2], a phe-
nomenon in which the atoms in a totally inverted pointlike
sample synchronize and emit light coherently. This results in
the cooperative speedup of the atomic decay process and the
emergence of a superradiant radiation burst [see Fig. 1(c)].
Various aspects of Dicke superradiance have been studied
[3-8] and experimentally observed for a broad variety of
platforms, ranging from atomic gases [9-15] to solid-state
systems such as quantum dots [16,17], nitrogen-vacancy cen-
ters [18], and two-dimensional materials [19].

Over the past few years, ordered atomic arrays with sub-
wavelength lattice spacing have emerged as a promising
platform to study collective light-matter coupling in free
space. In the few excitation limit, these systems naturally
exhibit collective superradiant and subradiant states [20]. Var-
ious aspects of this low-excitation regime were studied in
detail in recent years [20-31]. However, analyzing the coop-
erative dynamics for large system sizes in the multiexcitation
regime is challenging due to the rapidly growing Hilbert
space. This restricts the study of ordered atomic ensembles
with multiple excitations to very small systems of about ten
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atoms, for which the full solution of the open-system master
equation is still feasible by means of Monte Carlo wave func-
tion (MCWF) methods [32-34].

For fully inverted atomic ensembles, it has been recently
shown that the existence of a superradiant burst can simply
be determined from the the statistics of the first two emit-
ted photons [34-37]. This method does not require us to
propagate the equations of motion in time, and therefore it
enables the efficient analysis of very large systems (up to 10°
atoms). It provides, however, no information about the decay
dynamics, such as the magnitude of the superradiant peak or
the existence of subradiance at late times. Alternatively, re-
cent theoretical studies have developed an effective two-atom
description of the many-body system capable of capturing su-
perradiance in inverted three- and two-dimensional ensembles
[38-40].

In this work, we employ cumulant expansions of the op-
erator expectation values governing the system’s dynamics to
characterize the decay process of dipole-dipole coupled arrays
of atoms [41-44]. Based on neglecting high-order quantum
correlations, cumulant or cluster expansions drastically re-
duce the degrees of freedom used to describe the system.
As opposed to MCWF methods [45,46], which require 2V
variables to describe an N-atom array, the cumulant expansion
up to order n contains only ~N" terms (see the sketch in
Fig. 1). To this end, we derive the equations of motion for
second- and third-order cumulant expansions in Sec. I, which
provide analytical insights into the mechanisms leading to
superradiance. We then benchmark the formalism in Sec. III
by comparing the resulting dynamics with that predicted by
MCWE. We demonstrate that cumulant expansions capture
the early dynamics resulting in a superradiant burst with re-
markable accuracy, and we find that they allow us to simulate
unprecedented system sizes of up to a few hundred atoms,
more than one order of magnitude larger than with MCWEF.
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FIG. 1. Schematic illustration of the theoretical approach.
(a) The EM vacuum mediates interactions among emitters trapped
in a periodic array. Superradiant dynamics is characterized for fully
or partially excited arrays where no coherences are shared among
emitters at ¢+ = (. (b) The complexity of the system can be reduced
by truncating the number of equations of motion via a cumulant
expansion of multiorder correlators. (c¢) This approach allows the
characterization of superradiant dynamics for large system sizes.
The bottom panel shows the total emission rate y,,/(NIg) for two
exemplary time evolutions obtained by numerically solving the equa-
tions of motion resulting from a third-order cumulant expansion for a
chain of N = 196 atoms and two different lattice spacings a = 0.3X¢
(solid line) and @ = 0.5A (dashed line).

Based on these insights, we then employ this formalism to
unveil new insights into the physics of superradiant emission
(Sec. IV). In particular, we characterize the magnitude of the
superradiant peak, and we analyze its scaling as a function of
lattice spacing and atom number for large one-dimensional
and two-dimensional inverted arrays in Sec. IVA. We ad-
ditionally demonstrate that the enhanced atomic decay in
inverted systems originates from a fast buildup of coher-
ences among atoms. Hence, a natural question arises: what
is the critical fraction of excited emitters required for this
cooperative synchronization effect to occur if the atoms do
not share coherences at initial times? In Sec. IV B, we an-
alytically determine this critical condition for incoherently
partially inverted arrays, and further compute the value of the
superradiant peak versus excitation fraction using cumulant
expansions. Finally, we extend the study to atomic arrays with
finite filling fractions in Sec. IV C and with position disorder
in Sec. IV D.

II. MODEL

We consider an ensemble of N identical two-level atoms
that interact with the vacuum electromagnetic field in free

space. Applying the Markov approximation and integrating
out the field degrees of freedom (see Fig. 1), one obtains the
equations of motion for the atomic operators in the Heisenberg
picture [47,48],

ao i . . A A
— =71, 014 L©O) + F(O). M

Here, A and E(O), respectively, describe the coherent and
incoherent dipole-dipole coupling mediated by the vacuum
field,

= > 66, )
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where 6% = |e;)(g;| and 6 = |g;)(e;| are the raising and

lowering operators for atom i, which is located at r;. Addi-
tionally, the coherent J;; and dissipative I";; couplings between
atoms i and j are obtained from the Green’s tensor for a point
dipole in vacuum G, given in Appendix A, as

3y

Jij —ilij/2 = — d'G(r;;, wo)d, (€))

where wy = 27 ¢/ corresponds to the transition wavelength
of the emitters, d corresponds to their transition dipole mo-
ment, and r;; = r; — r; corresponds to the vector connecting
atoms i and j. Here, I';; = I'y is given by the spontaneous
decay rate of a single atom in vacuum, and the Lamb-shift J;;
is included in the definition of wy. For the remainder of this
work, we consider a transition dipole moment perpendicular
to the array. Note that similar results are obtained for other
polarizations.

Finally, the last term in Eq. (1), F (0), describes the quan-
tum Langevin noise arising from vacuum fluctuations [47].
Assuming white noise for F (0), the expectation value (F (0))
vanishes. Since we are ultimately interested in averages over
atomic operators (O), we drop this term in the following
discussion to simplify notation.

In this work, we consider initial states where N.x. atoms
are incoherently excited at ¢ = 0,

[Ts%12, 5)

ieE

1ublncoh

where |g) is the state with all atoms in the ground state, and
E denotes the set of initially excited atoms. The two-particle
correlations (6ieg&fe) vanish for these states. Hence, no co-
herences are shared among atoms at initial times even for
partially excited arrays. Such states can be prepared by either
using a spatially incoherent light source to excite the atomic
atomic array or by imposing a random detuning pattern over
the duration of the excitation pulse.

The equations of motion of the relevant first- and second-

order operators &/, 6/°6%, and 6{°6{° can be readily
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obtained from Eq. (1),
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Operators of order n, i.e.,involving n products of individual
atomic operators, are generally coupled to operators of order
n + 1. This leads to a coupled set of differential equations for
system operators up to order N, where N denotes the particle
number.

A. Cumulant expansion

The number of equations needed to fully describe the
system grows exponentially with atom number, limiting the
system sizes that can be numerically simulated to about 16
atoms. To study larger systems, one can take expectation
values of the equations of motion in Eq. (6) and truncate the
set of equations by approximating averages of higher-order
operators with combinations of averages of lower-order ones
(see Fig. 1). This method is known as cumulant or clus-
ter expansion [41-44]. For initial states given by Eq. (5),
only the three second-order operators given in Eq. (6) de-
velop nonzero expectation values (6;°), (6:°6¢), (6;°67)
during the time evolution. Approximating the three-operator
averages in Eq. (6) as (6°6,°6) = (6¢)(6,%6¢), one ob-
tains a closed set of differential equations for the first- and
second-order expectation values, which correspond to the
second-order cumulant expansion (see Appendix B).

A similar procedure can be used to derive the third-order
cumulant expansion of the atomic system, which additionally
includes the expectation values (6/°6{°6{¢) and (66 ggakge).
The explicit form of the corresponding equations of motion is
presented in Appendix C.

B. Emission properties

While a recent theoretical work [44] focused on employing
a cumulant expansion approach to determine two-time corre-
lation functions, we focus here on characterizing the emission
properties of the atomic array. In fact, the equations of motion
corresponding to the second-order cumulant expansion pro-
vide a powerful tool to elucidate the fundamental mechanisms
resulting in superradiance.

The decay process of the atomic ensemble can be charac-
terized by the excited-state population

pexc(t) = Z (aiee)(t)

i

)

(

and the total emission rate of the system

d
Epexc(t) = 1-‘0 Z (a[ee) + Z 1“[],(6;—’&’6—;?6)' (8)

i, j#i

ytot(t) = -

Equation (8) provides a very nice intuitive picture on the
underlying mechanisms resulting in superradiance. For inde-
pendent particles (I';; = 0), the emission rate is proportional
to the individual atom decay rate I'y. For interacting particles,
however, the term o I';; (6,46 ]ge) modifies the emission rate,
and it can eventually result in a superradiant burst if the
interactions [';; and pair correlations (6;67°) are sufficiently
large.

The existence of a radiation burst can be predicted from the
derivative of the total emission rate at t = 0 [37]. For initial

states given by Eq. (5), we obtain

ytotO = _F() Z Aee + Z Fljrjl

i,j#i
(6)y + (6

where (0)0 = (O)(t =0). For po1,0 > 0, the emission rate
initially increases, and the dynamics consequently result in
a superradiant peak. For yi0r 0 < 0, on the other hand, yio
initially decreases, indicating that the dissipative interactions
between emitters cannot build the amount of coherences
required for the appearance of a burst. For an initially
fully inverted system with (6¢)¢ = (6/6{)o =1, Eq. (9)
reduces to

Voo = —NT3 + Z T (10)

i j#i

and is identical to the expressions derived in Ref. [37], as well
as to the expression obtained via the two-photon correlation
function in Ref. [34]. Note that both Egs. (9) and (10) are ex-
act, as second-order cumulants perfectly capture two-photon
processes at initial times.

While typically sufficient when studying the decay of
fully inverted systems or partially excited coherent spin-states
[34], this criterion can fail to identify radiation bursts for
more general initial conditions. One example is incoherently
driven, partially excited arrays, whose initial states are in a
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FIG. 2. Comparison between the dynamics obtained via cumu-
lant expansion of orders 1-3 and the solution of the full master
equation for a chain of N = 10 atoms with lattice spacing a = 0.14,.
(a) Excited-state population pe (), (b) average pair correlations, and
(c) total emission rate yio/(NIg). The inset in panel (c) represents
the total emission rate at late times in logarithmic scale. The atoms
are considered to be polarized in the direction perpendicular to the
lattice plane throughout this work.

superposition of dark and bright states as it is presented in
Ref. [49]. In this case, strong coherent dipole-dipole interac-
tions J;; can generate a net population transfer from subradiant
to superradiant states. This phenomenon, which is triggered
by the Hamiltonian evolution of the system, only shows sig-
natures in the emission rate for # > 0. Consequently, it cannot
be captured by Eq. (9), which relies solely on the dissipative
couplings and the atomic properties at zero time.

III. BENCHMARKING CUMULANT EXPANSIONS

When simulating the dynamics of coupled spin systems,
there is always a tradeoff between the maximum number of
particles that can be numerically simulated and the accuracy
of the resulting dynamics. Increasing the order of the cumu-
lant expansion, for example, reduces the former and generally
improves the latter. In this section, we study which expansion
order is required to correctly capture the evolution of the
atomic ensemble. This analysis can only be performed for
small system sizes, for which a full solution of the master
equation is possible.

In Fig. 2, we plot the dynamic properties of a fully in-
verted ten-atom chain with lattice spacing a = 0.11( using
first-order (gray dotted line), second-order (blue dash-dotted
line), and third-order (red solid line) cumulant expansions, as
well as the solution of the full master equation (black dashed).
Third-order cumulants exhibit very good agreement with the
exact time evolution and properly capture the magnitude of the
superradiant peak (maximum of yo/N), while second-order
cumulants slightly overestimate it. The outburst of radiation is
accompanied by a buildup of the atomic coherences (6;%67)
at early times due to the repeated application of the same
bright jump operators [34]. At late times, however, the per-
formance of the cumulant expansion worsens. In particular,
the second-order cumulant expansion fails to correctly predict

S
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FIG. 3. Benchmarking the cumulant expansion method. (a) Max-
imum value of the superradiant peak for a fully inverted chain of
atoms with lattice spacing @ = 0.1X, as a function of atom number.
(b) Value of the superradiant peak for an N = 10 atom chain as a
function of lattice spacing. The insets in panels (a) and (b) show
the relative error between the exact master equation solution and
the cumulant expansions in percent. (c),(d) Magnitude of the sub-
radiant population pg, i.e.,the excited population left in the array
by the time the instantaneous decay rate Yinsy = Yiot/(Pexcl0) = 0.1,
as a function of (c) particle number and (d) lattice spacing. Same
parameters as in panels (a) and (b).

the late dynamics [see the inset in Fig. 2(c)], and the third-
order cumulant expansion sometimes results in unphysical
behaviors such as growing excitation number in the absence
of drive [44]. This poor performance at late times can be
attributed to the population of subradiant states during the
decay process. These states are typically highly entangled, and
therefore contain many high-order inter-atom coherences that
lead to destructive interference of the electromagnetic field
emitted by different atoms. Consequently, an expansion that
neglects higher-order coherences performs worse in predict-
ing these quantities. For very large system sizes (N > 100)
and small lattice spacings, the cumulant expansion can also
result in unphysical behaviors such as a growing excited-state
population in the absence of drive.

Finally, it is worth noting that the first-order cumulant
expansion, commonly referred to as the mean-field approxi-
mation, simply results in an independent exponential decay
of the atomic ensemble (without a buildup of the atomic
coherences) and does not capture either super- or subradiance.

To benchmark the accuracy of cumulant expansions of
different orders, we compare two figures of merit of the
decay of inverted atomic arrays as a function of particle
number N and lattice spacing a. In Fig. 3(a), we plot the
maximum emission rate or magnitude of the superradiant
peak, max(yt/N), as a function of particle number N for
a one-dimensional chain with lattice spacing a = 0.1X¢. The
inset shows the error made by second-order (blue circles) and
third-order (red diamonds) cumulant expansions, defined as
AP = max(yS™)/ max (™€) — 1, in percent. Not sur-
prisingly, third-order cumulant expansions are more accurate
than second-order ones and, more importantly, their error does
not grow linearly with N. Figure 3(b) demonstrates that the ac-
curacy worsens considerably with decreasing lattice spacing.
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This effect can be attributed to the rapidly growing energy
shifts, which generate correlations between atoms.

Another relevant quantity that characterizes the decay pro-
cess of the ensemble is the subradiant population pgy,, that
is, the amount of excitation left in the atomic array once the
system enters the subradiant regime. This occurs once the
instantaneous decay rate Yinst = Viot/ (Pexc[0) goes below 0.1,
as defined in Ref. [49]. Again, third-order cumulants provide
an excellent estimate of this quantity, while second-order cu-
mulants fail to capture it. The larger errors of second-order
cumulants when estimating pg,, as opposed to max(yio/N)
are due to the fact that the former contains information of
the decay process until times much longer than the radiation
burst, where subradiant evolution starts to dominate. Still, pgyp
largely depends on the superradiant dynamics and is therefore
accurately captured by the third-order cumulant expansions
[49], even if the subsequent subradiant evolution is not [see
the inset of Fig. 2(c)].

IV. SUPERRADIANCE

Having elucidated the accuracy with which second- and
third-order cumulant expansions capture superradiance, we
now investigate the conditions under which this phenomenon
emerges in one- and two-dimensional atomic arrays, as well as
the magnitude of the radiation burst reached by the ensemble
of emitters.

A. Fully inverted arrays

Superradiant emission is typically studied in fully inverted
arrays, where all atoms have been initially excited by an
intense laser drive. In this scenario, the existence of a burst
as a function of system size and lattice spacing can be in-
ferred from Eq. (10) [34-37]. This condition is only based
on the structure of the equations of motion at + = 0, and no
predictions on the resultant time evolution can be made. Here,
we use the cumulant expansions approach outlined above to
extend previous studies [34-37,39,40,44] on superradiance in
ordered subwavelength arrays by analyzing the time evolu-
tion leading to superradiance. This allows us to quantify the
magnitude of the superradiant peak for system sizes of a few
hundred atoms, compatible with state-of-the-art experiments.

In Fig. 4 we determine the superradiant regime for different
particle numbers and lattice spacings for a chain of atoms
[Fig. 4(a)] and a square lattice [Fig. 4(b)]. We calculate the
time evolution for a certain set of parameters (N and a) by
solving the cumulant equations up to second order, and we
determine the maximum of the total emission rate, which is
plotted as a color code in Figs. 4(a) and 4(b). A superradiant
peak occurs if max(y,o1) > Ny, that is, if the maximum emis-
sion rate is larger than that of independent decay. The white
solid line separates the regime where a superradiant burst
occurs from the regime where no cooperative enhancement
of the atomic emission takes place, and it coincides with the
critical value obtained from Eq. (10). The results presented
in Figs. 4(a) and 4(b) demonstrate that the transition between
both regimes is not sharp, and they suggest that lattice spac-
ings well below the ones predicted in Refs. [34-37] [white
lines in Figs. 4(a) and 4(b)] are required to experimentally
observe the initial speedup of radiation.
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FIG. 4. (a),(b) Maximum emission rate max(y,/NI'¢) for (a) an
atomic chain and (b) a two-dimensional square lattice as a function
of particle number N and spacing a/A, obtained via a second-order
cumulant expansion. The white solid line separates the region where
a superradiant burst is observed from the region where no superra-
diance occurs. (¢),(d) Scaling of the superradiant peak as a function
of particle number for (c) a chain and (d) a square lattice for dif-
ferent lattice spacings. (e) Exponent B characterizing the power-law
dependence of the superradiant peak with particle number, o« N”, for
a square lattice. The values are obtained from the linear fits in panel
(d), shown as dash-dotted lines.

Figures 4(c) and 4(d) show the scaling of the superradiant
peak with particle number for a 1D chain and a square lattice,
respectively (obtained with a third-order cumulant expan-
sion). We find that the maximum emission rate saturates for
N — oo for a one-dimensional chain, whereas it increases as
o N* for a two-dimensional configuration. Performing linear
fits of the curves shown in Fig. 4(d), we find that the exponent
B increases for decreasing lattice spacing until it saturates for
a/io — O [see Fig. 4(e)]. It is worth noting that the values
of B found in this work are consistent with those reported in
Ref. [39].

B. Partially inverted arrays

For fully inverted arrays, the mechanism resulting in su-
perradiance relies on the fast buildup of coherences between
pairs of atoms [see Eq. (8) and Fig. 2(b)]. The natural ques-
tion arises: how many atoms need to be excited for these
coherences to build up fast enough and for a superradiant
burst to occur? For that, we consider atomic ensembles driven
by an incoherent driving field, such that only Ny randomly
selected emitters are excited. This type of initial state, where
(6/%67°)o = 0, can be generally described by Eq. (5). In the
inset of Fig. 5(a), we show in gray the emission rate for
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FIG. 5. (a) Value of the superradiant peak as a function of the
initial incoherent excitation fraction for N = 36 atoms. Magenta
diamonds correspond to a one-dimensional chain and cyan diamonds
to a two-dimensional square lattice, both with spacing a/1y = 0.1.
The inset shows the time evolution of 100 trajectories, each of them
corresponding to a different, random initial distribution of 30 excita-
tions. The blue curve indicates the average over all trajectories and is
used to determine the magnitude of the superradiant peak shown in
the main figure. The vertical dashed and dash-dotted lines correspond
to the critical excitation fraction, determined by Eq. (12) for atomic
chains and two-dimensional lattices, respectively. (b),(c) Critical ex-
citation, obtained via Eq. (12), as a function of particle number for
(b) one-dimensional and (c) two-dimensional arrays with different
lattice spacings. For a/A¢y — 0 the system approaches the Dicke case
(black dashed line). The blue circles (a/A¢g = 0.1), red diamonds
(a/ro = 0.15), yellow crosses (a/ro = 0.2), and green hexagons
(a/Xo = 0.25) are obtained numerically and show a good agreement
with the analytical result.

different initialization of a square lattice with 36 atoms, 30 of
which are initially excited. While the exact magnitude of the
burst depends on the specific configuration of excited atoms,
one can extract a characteristic peak size by averaging over all
trajectories (thick blue line). The resulting average peak size
is then plotted as a function of the fraction of excited atoms,
Nexe ‘= Nexe/N, in Fig. 5(a). We find that there is a critical
excitation fraction, n<i, required to obtain a superradiant burst
both for atomic chains and two-dimensional arrays, which
depends both on system size and the specific geometry.

One can analytically compute nit by averaging Eq. (9)
over all possible configurations of excited atoms. Defining
Nge = N — Ny as the number of deexcited atoms, we obtain
an average derivative of the emission rate at t = 0 equal to
(for details, see Appendix D)

Y 3N, 2Nge(Nge — 1
Voo = — Nexe T3 + (1 _ 2Vde de (Nge ))

N NN —1)
X j{: ;i 11

n,m#n

A superradiant burst is observed for .0 > 0, that is, for

1 n 1 n N—-1
Nexe = = AnT .
2 2N 2 Zn,m;én FU FJ’/F(%

12)

This analytical result shows perfect agreement with the
numerically obtained results [see the vertical dashed and dash-
dotted lines in Fig. 5(a)].

In the Dicke limit @ — 0, where all emitters are located at
the same spatial position, all dissipative couplings are equal to
the spontaneous decay rate, i.e.,I',, = I'g Vm, n, and Eq. (12)
results in n¢tt = 1/2 4+ 1/N. That is, an excitation fraction
larger than one-half, i.e.,Nxc > N/2 + 1, is required to ob-
serve a burst. This can be intuitively understood by realizing
that the symmetric Dicke state with maximum decay rate
corresponds to the state where half of the atoms are excited.
Hence, an initially fully inverted system dynamically evolves
into states with higher and higher decay rates while cascad-
ing down the Dicke ladder, which ultimately results in the
appearance of a superradiant emission peak. Once half of
the atoms are deexcited, this trend reverses and the system
starts populating states with decreasing decay rates, causing
the peak to vanish. If only half (or less) of the atoms are
excited initially, the system will never decay into states with a
larger decay rate than the initial one, and the atomic ensemble
is bound to decay exponentially without the emergence of a
burst.

The analytical result in Eq. (12) provides insight into the
role of the lattice geometry and dimensionality for arbitrary
system sizes. For extended arrays of arbitrary dimension,
the sum in the denominator of Eq. (12) is always smaller
than for the Dicke case, and a larger excitation fraction is
needed to attain superradiance. In one-dimensional arrays,
the critical excitation fraction tends to a constant for large
particle number, as shown in Fig. 5(b). In two-dimensional
arrays [see Fig. 5(c)], however, it decays logarithmically
with system size N, limy_, ng(ié/N ~1/24+A/ ln(«/ﬁ), and
eventually reaches the Dicke limit for infinite systems. For
completeness, it can be shown that this scaling is improved
in three-dimensional lattices, where limy_, oo nSit /N ~ 1/2 +
A x N™'3 [36,37]. Figures 5(b) and 5(c) also show that a
larger excitation fraction is needed to attain superradiance in
atomic chains than in a square lattice for equal atom number
N and lattice spacing a, as well as the fact that smaller values
of a result in a smaller nSfit,

Hence, Fig. 5 and Eq. (12) show that there exists a well-
defined critical light intensity of the excitation pulse for
which superradiance emerges. It is worth noting, however,
that Eq. (12) can fail to identify superradiant bursts triggered
by the Hamiltonian dynamics at times later than t = 0 (for
details, see Refs. [38,49]). While these may result in super-
radiant peaks appearing for ne. < 0.5, they require strong
coherent couplings J;; or large dephasing or Doppler broaden-
ing and therefore do not typically appear for lattice spacings
a 2 0.1) considered in Fig. 5.

Finally, it is worth noting that, in experimental implemen-
tations of superradiance, the excitation pulse might not be able
to fully invert the atom system. Our results show that super-
radiance is reasonably robust to finite excitation fraction, as a
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FIG. 6. (a) Value of the superradiant peak for finite filling frac-
tions n for a fully inverted array. Magenta diamonds correspond to
a one-dimensional chain and cyan diamonds to a two-dimensional
square lattice, both with spacing a/Ay = 0.1. (b),(c) Critical filling
fraction to observe a superradiant peak, obtained via Eq. (14), as
a function of particle number for (b) one-dimensional and (c) two-
dimensional arrays with different lattice spacings. For a/Ay — 0,
the system approaches the Dicke case (black dashed line). The blue
circles (a/Ao = 0.1), red diamonds (a/A¢ = 0.15), yellow crosses
(a/}o = 0.2), and green hexagons (a/Xy = 0.25) are obtained nu-
merically and show a good agreement with the analytical result.

radiation outburst still occurs at low enough lattice spacings
even if only 90% or less of the atoms are initially excited.

C. Finite filling fractions

Typically, experimental implementations of atomic arrays
also suffer from a finite filling fraction of the lattice. In
Ref. [21], for example, which demonstrated that a two-
dimensional array with subwavelength spacing can reflect
incident beams of low intensities, approximate filling frac-
tions of 90% were achieved. Here, we show that superradiance
for fully inverted arrays is very robust to missing atoms and
that large superradiant bursts can still be achieved for filling
fractions much lower than those attainable in state-of-the-art
experiments.

Figure 6(a) shows a similar analysis to that performed in
the previous section. Now, however, that all atoms are initially
excited and only a fraction 1 = Njjeq/N of the N available
lattice sites is populated by an excited atom. In other words,
the lattice contains My = N — Nsjeq holes or missing atoms.
Figure 6 shows the average magnitude of the peak for one- and
two-dimensional arrays with N = 36 lattice sites as a function
of the filling fraction 5. The peak values are again obtained by
averaging over time evolutions for 100 random distributions
of holes. The magnitude of the peak slowly decreases with
diminishing 7, and finally reaches zero at a critical filling
fraction fzggg that depends on the properties of the atomic
ensemble.

Again, we can estimate 1" by averaging y, over all
possible configurations of missing atoms (for details, see Ap-
pendix E)

- 2Nnol  Npol (Vpot — 1)
Vioro = —Naneal§ + <1 — 2 e

N NN — 1)

i,j#i

On average, a burst occurs for o0 > 0, that is, for

1 N—1

> — . (14)
N X Tyli/T§

n

In the Dicke limit, Eq. (14) reduces to the well-known ex-
pression n > 2/N, i.e.,Njeq > 2. For two atoms, the decay
rates from |ee) to (|eg) + |ge))/~/2 and from (|eg) + |ge))/v/2
to |gg) are both 2I'y. The two-atom system therefore decays
faster than in vacuum, but it cannot develop a superradiant
burst. For this to occur, the system needs to dynamically ac-
cess states with larger and larger decay rates while cascading
down the Dicke ladder, which naturally occurs for ensembles
with three or more atoms. Additionally, it is straightforward to
check that ¢t = 1/2 + /2. Thus, the scalings presented
in Sec. IV B also hold for the case of missing atoms.

It is worth noting that the excitation fraction needed to
observe a peak is considerably larger in the case of partially
excited configurations, presented in Sec. IV B, than in the
case of missing atoms or holes. The main difference between
both scenarios consists in the fact that the latter remains a
fully inverted system while the former does not. That is, an
inverted array with missing atoms can simply cascade down
the whole ladder of superradiant states by repeated action of
the brightest jump operator—which is now weaker than in a
perfect array—and can therefore attain a burst even for very
small filling fractions. However, this is not the case for inco-
herent partially inverted arrays, whose initial state is already
a superposition of bright and dark states in an intermediate
sector of the state space (see also Ref. [49]) and therefore
has a reduced likelihood to quickly build up the necessary
correlations to create a superradiant burst.

D. Position disorder

Another potential imperfection that might influence the
superradiant burst in realistic setups is disorder in the atomic
positions. This can either be due to some distortion in the
underlying trapping potential or due to atomic motion in the
respective trapping potentials.

To take position disorder into account, we sample the mod-
ified atomic positions from a normal distribution Ny (rg, o),
where o denotes its standard deviation and ry denotes the
positions of the disorderless array. We then average over 100
different excitation and disorder patterns and plot the deter-
mined peak height in Fig. 7. We find that the effect of disorder
remains small as long as o is below 0.la/X¢, but rapidly
increases for larger o (see the green curves in Fig. 7). Still,
these results suggest that superradiance is very robust against
position disorder.
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FIG. 7. Effect of position disorder, sampled from a Gaussian
distribution with standard deviation o = (0.01, 0.05, 0.1, 0.2)a (blue
circles, red diamonds, orange crosses, green squares) for a chain
(a) and a square lattice (b) of N = 16 atoms and averaged over 50 dif-
ferent lattice configurations and initial excitation distributions. The
dashed lines show the result for a perfect lattice without position dis-
order. The insets exhibit the difference A = max{yo/(NT'¢)}o=0 —
max{y.t/(NTo)}|, between the zero disorder case and the disordered
systems. Disorder affects superradiance if o > 0.1a.

V. CONCLUSIONS

We performed a numerical and analytical in-depth analysis
of superradiance in ordered atomic arrays based on a cumulant
expansion approach. This formalism captures with remarkable
accuracy the early-time dynamics where the level of entan-
glement between atoms is sufficiently small. This allowed
us to simulate the open system dynamics of dipole-dipole
coupled quantum emitters for reasonably large particle num-
bers, and to gain insights into the physics behind super- and
subradiance. In particular, we identify the scaling of the super-
radiant peak with particle number both for one-dimensional
and two-dimensional arrays. Additionally, we show that there
exists a critical excitation fraction above which a superradi-
ant burst occurs, and we demonstrate that superradiance is a
robust phenomenon that prevails in the presence of position
disorder and finite filling and excitation fraction.

The results presented here are expected to be readily ob-
servable in various state-of-the-art platforms, ranging from
atomic tweezers [50] and optical lattices of cold atoms [21]
to solid-state platforms such as two-dimensional materials
[19,51] or vacancy centers in crystals [18]. Our work also
paves the way towards efficiently calculating dynamic light
emission patterns from atomic arrays, as well as towards
devising novel schemes to prepare multiexcitation subradi-

J

(010,053) =

(01)(0203) + (02)(0103) + (03)(0,0,) —

ant states [49]. Finally, the existence of a critical excitation
fraction to attain superradiance exhibits a certain resemblance
with the superradiant transition in the driven dissipative Dicke
model [52-55]. Exploring this connection is an exiting avenue
for future work.
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APPENDIX A: GREEN’S FUNCTION

The Green’s function for a point dipole in free space used
in Eq. (4) can be written in Cartesian coordinates as [56,57]

_ eikr - i 1 5
"y kr (k)2 )P

3i 3 \rarp 8apdP(r)
S Sapl )
" ( Pt (k,)z) ] LEETEI

(AD)

Gaﬁ (l‘, a))

where k = w/c,r = |r|,and o, B = x, y, 2.
APPENDIX B: SECOND-ORDER CUMULANT EXPANSION

For initial states with no correlations as defined in Eq. (5),
the only nonzero expectation values of first- and second-order
operators att = 0 are

(6”)0 —0)= 1 if atom i is excited, (Bla)
i 77710 otherwise;

n e nce 1 if atom i and j are excited,

(676 )t = 0) = {O otherwise. (B1D)

Using Eq. (1), one can show that the only additional expec-
tation values that become nonzero during the evolution of the
system are (6,6 ]ge) This confirms that Eq. (6) is sufficient to
describe the dynamics of the atomic ensemble up to second
order.

Taking expectation values in Eq. (6) and replacing averages
over third-order operators by [41,43]

2(01){(02)(0s), (B2)

one obtains a closed set of differential equations for the second-order cumulants

5: (67¢) = —To(67) + ; {(l.lm - —)(&%gf) + (—iJ,-n - %)(&fga;’e)}, (B3a)
d ~regage\ 1—1 A €8 A ge Fjl 4’\66’\66 Aee o Aee Aee
E(Ui 9j ) = —To(é; 9 )+ 7( (6r67¢) — (67) — (65°) + iu((65°) — (67))
A CZ A op A ee F Ae e ~ee
Y {(ujﬁ )( 6465)(2(6) — 1)+( sz+7)( 56)(2 )_1)}, (B3b)

n#i, j
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r

F"' ~ree\[regn . jn ~ree\[re€8 n ge
21)(0,. ose5%) + (-u,-n - 71)((% Vo)

d
66} = —aro(si6) + 3 K”’”

neti, j
. Fni A ee ,\eg,\ge . Fin A ee Aeg,\gg
+ | iJ — BN <0j )(O’n lop )+ —iJy, — BN <aj )(ai lops ) . (B3c)

APPENDIX C: THIRD-ORDER CUMULANT EXPANSION

The third-order cumulant expansion is obtained by deriving the Heisenberg equations of motion for operators up to third order

and replaci

ng the averages of fourth-order operators by lower-order ones via the rule [41,43]

(010,0504) = (01)(0,0304) + (02)(010304) + (03)(010:04) + (04)(010,03) + (010,)(0304) + (0,05)(0,04)
)

+ (0104)(0,05) — 2(01)(0:)(0304) — 2(01)(03)(0:04) — 2(01)(04)(0,03) — 2(0,)(03)(0,04
—2(02)(04)(0103) — 2(05)(04)(010,) + 6(01)(0,)(03)(Os). (CDhH

For the initial states given in Eq. (5), the nonzero expectation values at = 0 are those given in Eq. (B1) plus

Again, one

nce A ce nce 1 ifatomsi, j, and k are excited,
(6; 0; 0y )t =0)= ) €2)
0 otherwise.

g5 ge s eg 5 ge
can show that the decay process only couples these expectation values of populations with (6; ) and (67°6,°6;").

Performing the expansion in Eq. (C1), one finally obtains the third-order cumulant expansion

d
e

d
dt(

d Fin A €8 A oe
dt(Aee = —FO ee + Z {(Jm - _) rfgage> <_i~[in - 7)(05 go—;;{ >}’ (C3a)

n#i

d A €8 A ge A €8 A ge F'i Aee nee ~ee ~ee . A~ ee A~ ee
S (676 = L0676 + —=(4{o7°67) — (61) = (67°) + i ((6]°) = (67))

+ Y {(ilj,, + Fé”)(z(&;%;’ga—,fe) —(6%6%)) + ( iJi + %)(2(&;85;%56) - (a,fg&fe))}, (C3b)

n#i,j
d ee ~ee eepsee . F”i ~reenegage . Fi" Aee A8 age . .
T (67°6]) = —20o(6°6] B iy = = )(65°6:56%) + ( —idm — 7 )(6§°67°61) + (i & Dy (C3c)
n#i, j
lﬂni e ~ Aee neg gl
6°65°61) = —3To(66(°6) + Z {(iJm» — 7>(<6f6)(6,feé,fg6ig)—i—(a,f"’)(ofea,fgof)
n#i, j.k

+ <&f'36;fe)(6fg5ige) _ z(a;e)(alfex&;gaige)) + (—iJ,-n — %) ((6;e>(3;eaieg35e> + (5:e><3;e5i€855e)

+(67°6¢)6:65) — 267 )6:°)6465) + (i < )+ (i < k)}, (C3d)
~ee negage Aeg/\eg ge . I‘ij A el negage . Fki Ace nCgage
—(676,°6; ) —2F0( 6; )+ —iJij — BN <aj 6;°6; )+ iJyi — EX (ak 6,°6; >
IV
i (676~ (61707 ) + 2 oreoiva) — (o:7077) ~ 5176)
0 | (= ) ozorfosior) + oot Yoiar)
nati, j.k

R L R e )

ity + L ) o Yogtaizal) + 2oy ortaizal) + 2o oiral)
r

i + = | (26706676, ) + 2667676k ) + 2676 )6 76,))

J

(
(
+ (i = 3 ) loreNostossar) + oreaizar)
(50+3)
(

—iJy — F;‘" ) (4{67e)6ecNek65) + (65°6756%)) } (C3e)
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where (a <> b) indicates that an additional term appears equal to the previous one but with indexes a and b swapped.

APPENDIX D: CRITICAL FRACTION OF EXCITED ATOMS

Let us consider an ensemble of N atoms. At the initial time, Ny, of them are excited, while the remaining Nge = N — Nexc are
deexcited (see Sec. IV B). We label as £ and D the set of excited and deexcited atoms, respectively. We consider incoherently
A ce A

excited arrays, such that (6/¢)o = 1 if i € £ and zero otherwise, and (66;)o = 1 if i, j € £ and zero otherwise. The derivative
of the total emission rate for any configuration, given in Eq. (9), can be expressed as

, a*
Viot,0 = — Z dtz( ,-ee) ) DD
d2 ~ee 2| ~ee F’JFJl ~ree aee ~ee ~ee
_d7(0i o = —T5(67)y + Z B (4(67°67°)y — (67)y +(67),)- (D2)
J#i
If all atoms are excited, one simply obtains —j—;(&f’e)o =-Ti+> i+ LijIji- In the presence of deexcited atoms, one gets
instead |
d* )
—dﬂ(qf;g)o 2+ Zr,,r,, - 1.52r,;,-r_,~,-, (D3)
JF#i jeb
d2
— a6l =053 Tyl (D4)
je&

Plugging these expressions into Eq. (D1), we obtain
Voo = —TGNexe + Z Z Il =3 Z Z Ll +2 Z Z Li;Lji. (D5)
i ji €D j#i i€D jeD,j#i
We further average over all possible configurations of Ny, deexcited atoms. We label the deexcited atoms with indexes

to ay,,, each of them taking values from 1 to N. Noting that no two indexes can be equal, the total number of permutations is
N!/(N — Ng)!. Then, the average derivative of the total decay rate can be written as

Vo0 = —TNexe + > > Tyl = 3% + 25, (D6)
i
where ¥, and X, are

N — Nge)!
R DI SN B BT

o] 0(275(1] N #Oll ..... OtN 1[ED j#l

de

N — Ng)!
= ( N!de) Z Z Z Z Loy iljo, + -+ Z F“NdefFj“Nde

ar aFa) 0Ny, e 0Ny 1 \ JF JFoNg,
(N — Nde)'
=Noem—r— 2o 2 TeTien | D00 20
o jHFo o Fo 0N, FOL s ANy —
Nd
CD ) ®

i j#i

N — Nge)!
s D SDIEEED DI B LTI

o) arFa) N, FOL 5Ny, -1 IED JED, j#i

(N — Nge)!
- Tde Z Z o Z (FalaZFO‘Zal +oeet FalaNde F"‘Nde“l + Fa2“3 FO‘WZ +- )

a1 apFa 0N, FEOL 5oy ON

=Nde(Nde - I)WZ Z Fa]azraza] Z Z

a1 o3 Fa, 0Ny, O s 0Ny 1

_ Nde(Nde - 1) Rl

and they finally result in Eq. (11) of the main text.
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APPENDIX E: CRITICAL FILLING FRACTION

Let us consider an array with N lattice positions, Ngied
of which are occupied and Ny, = N — Njjieq are empty (see
Sec. IV C). Labeling F and H as the set of filled and empty
lattice sites, we can compute the derivative of the total emis-
sion rate in a similar manner as in Appendix D. Now, the
second-order derivatives of the population in lattice site i read

d2 A ee 2
_dt2( ze]—') _F Z Fl]F]H (ED)
JEF j#i
d2 ’\Ee
dt2< ze?—t)o =0. (E2)

Note that the population at the lattice site of a missing atom
is always zero, and so is its second derivative. The population

in a filled lattice site, on the other hand, is equal to that of an
alternative, fully inverted system containing only Ngjeq atoms
at the occupied positions.

Then, Yot,0 can be written as

Viot,0 = =T Nsiiea + Z Z Iyl
ieF jeF,j#i

= — I3 Niitea + Z Z Lyl
i jti
_ZZZFijrji+Z Z Uil (E3)
ieH j#i ieH jeH,j#i
which takes the same form as Eq. (D5) but with different
prefactors. Using Eqs. (D7) and (D8), one readily finds the

average derivative of the total emission rate, given in Eq. (13)
of the main text.
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