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Abstract
Variational quantum algorithms have the potential for significant impact on high-dimensional
optimization, with applications in classical combinatorics, quantum chemistry, and condensed
matter. Nevertheless, the optimization landscape of these algorithms is generally nonconvex,
leading the algorithms to converge to local, rather than global, minima and the production of
suboptimal solutions. In this work, we introduce a variational quantum algorithm that couples
classical Markov chain Monte Carlo techniques with variational quantum algorithms, allowing
the former to provably converge to global minima and thus assure solution quality. Due
to the generality of our approach, it is suitable for a myriad of quantum minimization
problems, including optimization and quantum state preparation. Specifically, we devise a
Metropolis–Hastings method that is suitable for variational quantum devices and use it, in
conjunction with quantum optimization, to construct quantum ensembles that converge to Gibbs
states. These performance guarantees are derived from the ergodicity of our algorithm’s state space
and enable us to place analytic bounds on its time-complexity. We demonstrate both the
effectiveness of our technique and the validity of our analysis through quantum circuit simulations
for MaxCut instances, solving these problems deterministically and with perfect accuracy, as well as
large-scale quantum Ising and transverse field spin models of up to 50 qubits. Our technique stands
to broadly enrich the field of variational quantum algorithms, improving and guaranteeing the
performance of these promising, yet often heuristic, methods.

1. Introduction

Since the advent of the variational quantum eigensolver (VQE) [1, 2] and quantum approximate
optimization algorithm (QAOA) [3], quantum algorithms that function in tandem with classical machine
learning have garnered great interest. These variational quantum algorithms (VQAs) typically harness some
form of classical gradient descent to tackle a large-scale optimization problem on the exponential state space
of quantum hardware [4, 5]. Applications of these methods have included the optimization of NP-hard
combinatorial problems [6–10], the identification of eigenstates and energies in quantum chemistry
applications [11–13], and the study of condensed matter systems [14–16]. Much like their classical
counterparts, the above near-term quantum algorithms can be plagued by nonconvex optimization
landscapes, causing them to converge to suboptimal minima [17]. A variety of techniques have been
suggested to address this issue in NP-hard combinatorial optimization problems, such as: ‘warm starting’
procedures [18–20], composition with classical neural networks [21], multibasis encodings with bistable
convergence [9], and other techniques [10, 22, 23]. However, these methods offer few provable optimization
guarantees of practical utility. While optimization landscapes are known to become more convex with
high-depth [17], additional methods of mitigating nonconvexity should be explored as the adverse effect of
quantum noise [24, 25] and barren plateaus [26–30] on deep quantum networks is well-documented.

© 2022 The Author(s). Published by IOP Publishing Ltd
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In order to avoid the local minima convergence that plagues VQAs without increasing quantum circuit
depth, we introduce MCMC-VQA, a technique that adapts the ergodic exploration of classical Markov chain
Monte Carlo (MCMC) to guarantee the global convergence of quantum algorithms. As samples of ergodic
systems are representative of their underlying probability distribution, an ergodic VQA necessarily yields a
sample that contains states near the global minimum, also known as the ground truth. In particular, our
method combines the intrepid sampling of MCMCmethods with quantum optimization in order to create
and sample from a quantum ensemble that approximates a Gibbs state [31], whose most probable quantum
state is that which encodes the global minimum of the optimization problem. Optimization is then finalized
by carrying out standard extremization techniques (e.g. gradient descent) that are initialized with the lowest
energy state obtained during sampling. Assuming that the quantum circuit is expressive enough (i.e. has a
sufficiently intricate ansatz) to produce the distribution’s ground state, our method is analytically guaranteed
to return solutions close to this ground truth. In this work, the MCMCmethod that we focus on is the
Metropolis–Hastings algorithm, chosen due to its success in high-dimensional spaces and its suitability for
unnormalized probability distributions [32]. MCMC-VQA utilizes modified VQAs and their statistics as the
Metropolis–Hastings transition kernels (probabilistic transition maps) and quantum state energies as state
likelihoods. These quantities are then used to determine the viability of parameter updates. As the quantum
components of our algorithm rely on the same expectation value estimations requisite in the original loss
function, they do not represent an increase in quantum overhead. Likewise, our algorithm’s increase of
classical overhead is limited to the evaluation of probability density functions, the calculation of simple
functions of expectation value estimates, and the generation of pseudo-random numbers, and thus
represents a minimal amount of compute. MCMC-VQA represents a time-discrete, space-continuous
Markov chain, as the algorithm progresses in discrete VQA epochs (time steps) while training a
continuous-parameter quantum circuit. It can also be classified as a form of Stochastic Gradient Descent
MCMC [33, 34]. Although in this work we focus on VQE [2], the crux of our technique is a sampling process
that uses Markov chain Monte Carlo comparisons between states that are partially prepared using a
combination of gradient descent and stochastic noise. As such, our method is readily applicable to any
quantum algorithm that extremizes a loss function using a variational quantum circuit.

While other works have introduced quantum subroutines for classical MCMCmethods that offer a
quadratic speedup for random walks [35–37] and sampling [38, 39], this manuscript takes the opposite
approach by designing a classical MCMC subroutine for quantum algorithms. Likewise, while classical
MCMCmethods have been used to simulate quantum computing routines [40, 41], our work is unique in
that it uses classical MCMC to enhance the performance of variational quantum algorithms. Similarly, while
the preparation of a Gibbs state on a variational quantum computer had been previously proposed via an
approximate Fourier series [42] and free energy minimization [43], and has been suggested since the release
of this work using time evolution [44] and efficient free energy minimization [45], these methods do not
employ MCMC techniques.

We briefly outline VQAs, focusing on VQE (figure 1, gray) for quantum optimization of MaxCut
problems, the quantum Ising model, and more general nonlocal transverse spin models. This choice of these
applications is motivated by the ample nonconvexity of the corresponding quadratic MaxCut loss functions
[9, 17], as well as the relevance of the Ising and other spin models for quantum chemistry and condensed
matter physics. VQAs are parameterized by input states |ψ⟩ and quantum circuit unitaries Ut = U(θ̂t), where
θ̂t are the variable parameters learned during epoch t − 1. Without loss of generality, we choose the n-qubit
input state as |0⟩=∏n−1

i=0 |0⟩ such that the output state is entirely defined by θ̂ and assume that the initial
parameters θ̂0 are randomly selected at the start of each new sequence of epochs.

MaxCut is a partitioning problem on undirected graphs Γ (figure 1, black), where edges ωi,ab connect the
ith pair of vertices va, vb, with vertex numbers a and b, respectively [46]. The goal is to optimally assign all
vertices va, vb ∈ {−1,1}, so as to maximize the objective function

maximize
1

2

∑

i

wi,ab (1− vavb) . (1)

In this work, we will consider a generalized form of the problem known as weighted MaxCut, in which wi

take arbitrary real values.
To solve MaxCut via VQE, a graph Γ is encoded in the Ising model Hamiltonian

H =
∑

i

ωi,abσaσb, (2)

2
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Figure 1. Diagram of the MCMC-VQA algorithm for VQE. VQE (gray, section 1) minimizes the loss function for each θ̂ by
calculating the expectation value Λ(θ̂) and updating θ̂ with gradient descent using∇Λ(θ̂). MCMC-VQA for the VQE algorithm

(blue, section 2) uses gradient descent with∇Λ(θ̂) and random noise ξΘr to produce candidate state θ̂ ′, but also calculates

probabilities P(θ̂) and P(θ̂ ′), as well as proposal probabilities G(θ̂ ′|θ̂) and G(θ̂|θ̂ ′). Using these distribution samples, the

acceptance probability A(θ̂ ′|θ̂) is calculated and compared to random uniform sample u ∼ U(0,1). If A(θ̂ ′|θ̂)> u, then θ̂ ′ → θ̂.

Otherwise, the MCMC-VQA algorithm restarts with the original θ̂. (Red) after the maximum number of MCMC-VQA epochs
(time steps) TMC have occurred, the sampled parameters with the lowest loss, θ̂min, are selected and the optimization completes
with a closing sequence of VQE epochs. Hamiltonian models (black insets, sections 1 and 3) MaxCut graphs in this work are
generated with normally distributed edge weights wi,ab. The objective is to minimize equation (1) by optimally assigning each pair
of vertices va, vb ∈ {−1,1}. MaxCut can be solved on a quantum computer by mapping va, vb → σa, σb and minimizing the
corresponding H. The quantum Ising model has nearest-neighbor (local) ZZ-coupling and an X-axis transverse field, as defined
in equation (4). In this work, we choose J > 0 such that the ordered phase is ferromagnetic. The transverse field spin model is a
more general (nonlocal) counterpart of the quantum Ising model, as defined in equation (5). In the limit of g → 0, the transverse
field reduces to the MaxCut Hamiltonian. See section 3 for Hamiltonian details.

where ωi,ab remains unchanged from the MaxCut objective function and va,vb → σa,σb for Pauli-Z spin
operators σa,σb. Maximizing the cut of Γ is then equivalent to minimizing the loss function

Λt = Λ(θ̂t) = ⟨0|(U†
t |H|Ut)|0⟩=

∑

i

ωi,ab⟨σaσb⟩t =
∑

i

µi
t, (3)

3
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where µi
t are the expectation values of the quadratic MaxCut terms. VQE circuit training updates parameters

θ̂ via gradient descent on Λt (figure 1), where the gradient of any θk
t ∈ θ̂t can be calculated as

∇kΛ(θ̂t) =
(

Λ(θ̂t + ϵk̂)−Λ(θ̂t − ϵk̂)
)

/2ϵ by finite difference. As∇Λ(θ̂t)→ 0 in the vicinity of both global

and local minima, VQE training is prone to stagnation at suboptimal solutions.
In this work, we also explore the preparation of low-energy states of the quantum Ising and more general

nonlocal transverse field spin models (see figure 1). The quantum Ising model is defined as [47]

HQI =−J
∑

i,i+1

σz
i σ

z
i+1− g

∑

i

σx
i (4)

where the summation over σz terms is between nearest-neighbors only. Moreover, we assume a quantum
Ising model with periodic boundary conditions, resulting in a ring, rather than a chain, of qubit–qubit
interactions. Similarly, more general spin–spin interactions with transverse field can be described with the
Hamiltonian

HTF =−J
∑

i,j

σz
i σ

z
i+1− g

∑

i

σx
i (5)

where the indices i, j denote some specified set of two-qubit pairs, which are not necessarily
nearest-neighbors (i.e. which can be nonlocal interactions).

2. Results

In this section, we present our novel method for enhancing the performance of VQAs with classical MCMCs,
a technique that we dub MCMC-VQA. We start by briefly reviewing traditional MCMC, focusing on the
Metropolis–Hastings algorithm. Then, we introduce MCMC-VQA, derive its behavior, and verify our
findings with numerical simulations.

2.1. MCMC-VQAmethod
MCMC algorithms, such as Metropolis–Hastings, combine the randomized sampling of Monte-Carlo
methods with the Markovian dynamics of a Markov chain in order to randomly sample from a distribution
that is difficult to characterize deterministically [32]. MCMC is particularly useful for approximations in
high-dimensional spaces, where the so-called ‘curse of dimensionality’ can make techniques such as random
sampling prohibitively slow [48]. The core merit of MCMC techniques is their ergodicity, which guarantees
that all states of the distribution are eventually sampled in a statistically representative way, regardless of
which initial point is chosen. This representative sample is known as the unique stationary distribution π. In
particular, any Markov chain that is both irreducible (each state has a non-zero probability of transitioning
to any other state) and aperiodic (not partitioned into sets that undergo periodic transitions) will provably
converge to its unique stationary distribution π, from which it samples ergodically [49]. The mathematical
properties of ergodic Markov chains are well-studied, including analytic bounds for solution quality and
mixing time (number of epochs) [50, 51].

In order to obtain π for a distribution of interest, Metropolis–Hastings specifies the transition kernel
P(x ′|x), which is the probability that state x transitions to state x

′

. Typically, the Markov process is defined
such that transitions satisfy the detailed balance condition:

P(x)P(x ′|x) = P(x ′)P(x|x ′). (6)

When equation (6) holds, the chain is said to be reversible and is guaranteed to converge to a stationary
distribution. P(x ′|x) can be factored into two quantities

P(x ′|x) = G(x ′|x)A(x ′|x), (7)

where G(x ′|x) is the proposal distribution, or the conditional probability of proposing state x
′

given state x,
and A(x ′|x) is the acceptance distribution, or the probability of accepting the new state x

′

given state x. To
satisfy equation (6), the acceptance distribution is defined as

A(x ′|x) =min

(

1,
P(x ′)G(x|x ′)

P(x)G(x ′|x)

)

. (8)

Note that as only the ratio P(x ′)/P(x) is considered, the probability distribution need not be normalized. To
determine whether the candidate state x

′

or the current state xt should be used as the future state xt+1, a

4
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sample u is drawn from the uniform distribution U(0,1). If A(x ′|xt)⩾ u, then xt+1 = x ′ and we say that the
candidate state x

′

is accepted. Otherwise, xt+1 = xt and we say that x
′

is rejected.
We now present the MCMC-VQA method. Figure 1 contains a diagram of the algorithm (blue). In

particular, we focus on an ergodic Metropolis–Hastings algorithm, which is guaranteed to sample states near
global minima. We outline the algorithm both idealistically and experimentally, prove its ergodicity and
convergence, and verify these findings with numerical simulations.

As we seek the lowest energy eigenstate when solving for the low-lying states of Hamiltonians via VQE.
We define P(θ̂) as the Boltzmann distribution

P(θ̂a) = exp(−βΛa)/Z, Z =
∑

i

exp(−βΛi) , (9)

such that a state’s probability increases exponentially with decreasing loss function.
To calculate the proposal distribution G(θ̂ ′|θ̂t), we must consider the sampling statistics of VQAs. Due to

quantum uncertainty, a measurement mr
i(θ̂t) of operators ωi,abσaσb from equation (2) is a sample from a

distribution with mean µi
t and variance

(∆i
t)
2 = ω2i.ab[⟨(σaσb)

2⟩t −⟨σaσb⟩2t ] = ω2i,ab[1− (µi
t)
2]. (10)

Similarly, the two qubit terms from equations (4) and (5) result in (∆i
t)
2 = J2[1− (µi

t)
2], where

µi
t = ⟨σz

i σ
z
i+1⟩t and µi

t = ⟨σz
i σ

z
j ⟩t, respectively. Likewise, for the single-qubit terms (∆i

t)
2 = g2[1− (µi

t)
2]

where µi
t = ⟨σx

i ⟩t. The Central Limit Theorem asserts that, assuming at least M ≈ 30 independent and

identically distributed measurements (shots) mr
i(θ̂t), an estimate of the loss function Λt is the statistic

lt ∼N
(

Λt, (∆
Λ
t )

2
)

, where (∆Λ
t )

2 =
∑

i(∆
i
t)
2/M [52, 53]. As precise expectation values usually require far

more than 30 measurements (shots), this criterion is easily satisfied. Similarly, ∀θk
t ∈ θ̂t and assuming small

parameter shifts ε, the gradient∇kΛt =
(

Λ(θ̂t + ϵk̂)−Λ(θ̂t − ϵk̂)
)

/2ϵ is the statistic

dklt ∼N
(

∇kΛt, [∆
2
Λ(θ̂t + ϵk̂)+∆2

Λ(θ̂t − ϵk̂)]/4ϵ2
)

. The variance of this distribution can be simplified by

noting that to first order in ε, the parameter shifted Pauli operators are σ±k
a = σa(θ̂± ϵk̂) = σa ± ιak, where

σa = σa(θ̂) and ιak = (∂⟨σa⟩/∂θk)ϵ. We can then simplify the sum∆i(θ̂t + ϵk̂)2+∆i(θ̂t − ϵk̂)2 = 2∆i(θ̂t)
2 by

noting that

∆i(θ̂t + ϵk̂)2 = ⟨(ωi,abσ
±k
a σ±k

b )2⟩− ⟨ωi,abσ
±k
a σ±k

b ⟩2, (11a)

⟨(σ+k
a σ+k

b )2⟩+ ⟨(σ−k
a σ−k

b )2⟩= 2+O(ι2), (11b)

⟨σ+k
a σ+k

b ⟩2+ ⟨σ−k
a σ−k

b ⟩2 = 2⟨σaσb⟩+O(ι2). (11c)

Now, up to first order in ι, we can derive the gradient’s distribution

dklt ∼N
(

∇kΛt, ∆
2
Λ(θ̂t)/2ϵ

2
)

. (12)

Standard gradient descent would propose the candidate state θ̂ ′ = θ̂− η∇Λt, however MCMC-VQA
adds a normally distributed random noise termΘr ∼N (0,1) with scale parameter ξ in order to expand the
support of the proposal distribution G(θ̂ ′|θ̂t). This specifies

G
(

θ̂ ′|θ̂t

)

=
∏

k

G
(

θ̂ ′|θ̂t

)

k
, G

(

θ̂ ′|θ̂t

)

k
= pdf

[

N
(

η∇kΛ(θ̂t), ξ
2+ η2

(∆Λ
t )

2

2ϵ2

)]

(

θ̂t − θ̂ ′
)

, (13)

where the notation pdf
[

N
(

µ,σ2
)]

(x) denotes the probability density function at point x of a normal
distribution with mean µ and variance σ2. It follows that the acceptance distribution is given by

A
(

θ̂ ′|θ̂t

)

=min



1,
P
(

θ̂ ′
)

G
(

θ̂t|θ̂ ′
)

P
(

θ̂t

)

G
(

θ̂ ′|θ̂t

)



 . (14)

We note that G(θ̂t|θ̂ ′) is obtained by simply exchanging θ̂t and θ̂ ′ in equation (13). A random uniform
sample u ∼ U(0,1) is then drawn for comparison, such that θ̂t+1 = θ̂ ′ if A(θ̂ ′|θ̂t)> u and θ̂t+1 = θ̂t

otherwise.

5
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Figure 2. Example MaxCut trajectories with inverse thermodynamic temperature β= 0.8 (left) and β= 0.2 (right). Each color is
a distinct trajectory representing a unique random initialization. The first four-hundred time steps are MCMC-VQA epochs
(Markovian epochs), which are then followed by a closing sequence of VQE epochs (beginning at the vertical red dashed line). As
discussed in section 2.1 and illustrated in figure 1, at the beginning of the closing VQE epochs, each trajectory is initialized with
the best parameters θ̂min found during the Markovian epochs. At lower temperature (β= 0.8), trajectories become trapped in
local minima and such that reaching ergodicity is a lengthy process. Conversely, the high-temperature (β= 0.2) trajectories
rapidly reach burn-in, generating θ̂min that lead to near perfect convergence during the VQE closing sequence. As a deterministic
algorithm initiated near an extremum, VQE converges rapidly, leveling-off at the bottom of the minimum within a few epochs
(time steps). See section 3 for simulation details.

After TMC epochs of the above Markovian process, MCMC-VQA implements a short series of traditional
VQA epochs for rapid convergence to the nearest minimum. In particular, these closing VQA epochs are
initialized with θ̂min, the parameter set of lowest expectation value Λmin found during the
Metropolis–Hastings phase. In this manner, MCMC-VQA can be considered a ‘warm starting’ procedure
[18–20], but with ergodic guarantees.

Example MCMC-VQA trajectories are shown in figure 2 with inverse thermodynamic temperatures
β= 0.8 and β= 0.2. The details of all simulations are given in section 3. Our algorithm combines the
gradient descent-based optimization of VQE with a Markovian process that escapes local minima. Such
exploration is significantly greater at the higher-temperature β= 0.2, where rather than settling into distinct
loss function basins from which escape is relatively rare, the trajectories display the trademark ‘burn-in’
behavior of ergodic Markov chains. By the time that the closing VQE epochs are applied, the ergodic β= 0.2
MCMC-VQA chains have sampled states sufficiently near the global minimum and converge to the
groundtruth nearly uniformly.

Figure 3(left) displays the average accuracy 1−α (where α is the average error, blue), and standard
deviation (gray) of MaxCut solutions with MCMC-VQA as a function of β. Dashed lines represent the
performance of traditional VQE on the same set of graphs and circuit ansatz. We note that all simulated β
values outperform traditional VQE. Until β ∼ 0.2, higher temperature MCMC-VQA chains have higher
accuracy and better convergence, as their more permissive temperature parameter biases the acceptance
distribution towards accepting the candidate states. However, performance decreases at very high
temperatures, for which the MCMC-VQA chains are no longer appreciably biased towards energy
minimization and the algorithm becomes more like random sampling than intrepid gradient descent.
Likewise, the optimal amount of parameter update noise ξ is inversely proportional to β (figure 3, right), as
higher temperatures permit more radical deviations from standard gradient descent.

Figure 4 demonstrates the effectiveness of MCMC-VQA on large-scale (50-qubit) quantum Ising (local,
left blue) and transverse spin model (nonlocal, left dark gray) interactions. In both cases, MCMC-VQA
outperforms VQE considerably, providing greater benefit in the ordered phases |g|< |J|, as well as local
models, the later of which is likely due to the local ansatze of the quantum circuits in this manuscript. In all
cases, the benefits of MCMC-VQA for larger systems (n= 50) are considerably greater than those for smaller
systems (n= 10, left black), even when the same number of Markovian (sampling) epochs and sampled
parameters are used (see section 3 for simulation details). The exploration of local minima by MCMC-VQA
leads to the population of lower energy states of diverse Hamiltonians with higher probability than
traditional initialization, including for large models and relatively few Markovian epochs (figure 4, right).

6
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Figure 3. (Left, blue) Average MCMC-VQA accuracy (1−α, for average error α) for MaxCut vs inverse thermodynamic
temperature β. Nearly perfect average accuracy is obtained for properly tuned hyperparameter β (here, β≈ 0.2). At low
temperature (large β), the algorithm mixes slowly, only partially approximating ergodicity in TMC = 400 Markovian epochs. This
partial convergence results in lower accuracy, which approaches that of traditional VQE (blue dashed line) in the limit of large β.
Conversely, for high temperature (small β), the algorithm is insufficiently biased towards low-energy solutions, which renders its
gradient descent inefficient and reduces its accuracy. (Center, blue) Average MCMC accuracy vs noise parameter ξ for inverse
temperature β= 0.2, where ξ is the gradient descent noise parameter (θ̂ ′ = θ̂− η∇Λt + ξΘr) and each trajectory undergoes
TMC = 400 Markovian epochs. Larger noise parameters ξ generate more intrepid sampling and thus more rapid mixing, resulting
in higher accuracies until the optimal value of ξ is surpassed (see right panel). (Left, gray) The standard deviation of MCMC-VQE
accuracy vs β. Higher standard deviation directly corresponds with lower accuracy. As discussed above, at high β, this is due to
runs trapped in local minima (see figure 2), while at low β, this stems from the lack of energy-preferred convergence. (Right)
Optimal value of ξ vs β. As higher temperatures generate more permissive acceptance distributions A(θ̂ ′|θ̂), the optimal values of
ξ also increase with temperature as they lead to more efficient mixing in the low-β limit. We note that for any finite β, too large of
noise parameter ξ will result in the proposition of unlikely candidate states and thus inefficient state updates. See section 3 for
simulation details.

For a sufficient number of Markovian epochs, the trajectory becomes ergodic, and convergence to the
minimum becomes guaranteed (see section 2.3 and figure 5).

MCMC-VQA’s ability to navigate local minima without increasing circuit depth makes it a useful
alternative to deep-circuit ansatze, which are known to cause barren plateaus and noise-induced barren
plateaus. In the case of barren plateaus, increasing circuit depth increases the concentration of measure,
causing the gradient∇kΛ(θ̂) and gradient variance var(∇kΛ(θ̂)) of any parameter θk to approach 0 and 2−n,
respectively [26]. Likewise, in the case of noise-induced barren plateaus, quantum noise effects obscure the
gradient, causing∇kΛ(θ̂) to shrink proportional to 2−L for circuit depth L [25]. In addition to serving as an
alternative to deeper circuits for local minima mitigation, MCMC-VQA provides parameter-update
Langevin noise that has been proven to combat barren plateaus and demonstrated to increase circuit
trainability [27]. Specifically, when training a circuit with barren plateaus using MCMC-VQA, the parameter
update increments (θ̂ ′ − θ̂)k between the initial state θ̂k candidate state θ̂ ′k remain normally distributed with

an unbiased mean∇kΛ(θ̂) = 0, however they maintain a finite variance var(∇kΛ(θ̂)) = ξ2 rather than
approaching 2−n.

2.2. Implementation of MCMC-VQA on quantum hardware
As discussed above, the loss function Λt is not precisely determined on actual quantum hardware, but rather
estimated as a statistic lt =

∑

i qi
t, where qi

t =
1
M

∑M
r=1mr

i(θ̂t). As a result, the variance of a single observable
measurement (∆i

t)
2 is estimated by (δi

t)
2 = ω2i,ab[1− (qi

t)
2], while that of the total loss function (∆Λ

t )
2 is

estimated by (δΛt )
2 =

∑

i(δ
i
t)
2/M =

∑

iω
2
i,ab[1− (qi

t)
2]/M, for M-measurements per observable.

Alternatively, the variances could be directly estimated from the standard deviations of expectation value
statistics. We then define a(θ̂ ′|θ̂t), the acceptance distribution on quantum hardware, as

a(θ̂ ′|θ̂t) =min

(

1,
p(θ̂ ′)g(θ̂t|θ̂ ′)
p(θ̂t)g(θ̂ ′|θ̂t)

)

, (15a)

p(θ̂)∝ exp(−βlt), (15b)

7
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Figure 4. (Left, blue) The relative average accuracy between MCMC-VQA and VQE energy minimization for large-scale (n= 50)
local, ferromagnetic Quantum Ising models vs the magnitude of transverse field g. At g = 0, the quantum Ising model reduces to
its classical counterpart, which has identical Hamiltonian structure the implementation of MaxCut on a variational quantum
computer. While MCMC-VQA provides marked improvement for both ordered (|g|< |J|) and disordered (|g|> |J|) phases, it is
particularly advantageous for navigating the single-axis dominated minima of the former. The g = 0 (MaxCut) energy
minimization for nonlocal spin models with both n= 10 (light gray) and n= 50 (dark gray) qubits illustrates the feasibility of
MCMC-VQA for large system sizes, with n= 50 performing significantly better than n= 10. All systems benefit from
MCMC-VQA, such that all performance ratios are greater than the red dashed at line at αMCMC = αVQE. (Right) Energy
histogram for the performance of VQE and MCMC-VQA on nonlocal spin models of n= 50 qubits with g = 0 and g = 0.25J.
MCMC-VQA’s exploration of local minima reduces the proportion of trajectories that settle in low-lying states, shifting the
ensemble of trajectories towards lower energy states. See section 3 for simulation details.

g(θ̂ ′|θ̂t) =
∏

k

g(θ̂ ′|θ̂t)k, (15c)

g(θ̂ ′|θ̂t)k = pdf

[

N
(

ηdklt, ξ
2+ η2

(δΛt )
2

2ϵ2

)]

(

θ̂t − θ̂ ′
)

. (15d)

MCMC-VQA does not increase the quantum complexity of VQAs (number of operations carried out on
quantum hardware), as the expectation values that comprise Λ(θ̂) are calculated in the same fashion as they
would be for the unmodified quantum variational algorithm and the analysis of MCMC-VQA is designed to
as to be general for limited precision (e.g. shot noise). Moreover, the additional classical overhead of
MCMC-VQA is minimal, as the acceptance probability and its components are computed classically with
simple arithmetic, probability density function calculations, and pseudo-random number sampling.

2.3. Proof of ergodicity
If a Metropolis–Hastings algorithm is irreducible and aperiodic, then the resulting Markov chain is provably
ergodic [49]. That is, it will explore all areas of the probability distribution, converging on average to the
Markov process’ unique stationary distribution, which includes the global minimum of the solution space.
Moreover, as we have chosen to sample from the Boltzmann distribution of the loss function, we sample
from states near optimal solutions with exponentially higher probability. In what follows, we demonstrate
the ergodicity of our method. We note that the resultant Markov chain is ergodic with respect to the
accessible distribution, such that the true ground state can only be obtained if the quantum circuit ansatz is
sufficiently expressive (i.e. capable of preparing the ground state).

2.3.1. Irreducibility
The VQAMetropolis–Hastings Markov chain is irreducible if ∀θ̂a, θ̂b ∈ [0,2π], ∃T,{θ̂1, θ̂2, . . . , θ̂T} such that

p(θ̂1|θ̂a)p(θ̂b|θ̂T)
T−1
∏

i=1

p(θ̂i+1|θ̂i)> 0. (16)

That is, the Markov chain is irreducible if, for any two points in parameter space θ̂a, θ̂b, there exists a series of
transitions of any length T such that θ̂a → θ̂b with non-zero probability [54]. While this definition of
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irreducibility is sufficient, we will instead focus on the yet more powerful condition of strong irreducibility. A
Markov chain is strongly irreducible if

g(θ̂a|θ̂b)> 0,∀θ̂a, θ̂b, (17)

meaning that all points in parameter space have a non-zero probability of transitioning to all other points
[55]. This condition is then equivalent to

g(θ̂b|θ̂a)k =
(2π)−1/2

√

ξ2+ η2(δΛa )
2/2ϵ2

exp

[

−
(

θk
a − θk

b − ηdkla
)2

2(ξ2+ η2(δΛa )
2/2ϵ2)

]

> 0, ∀k, (18)

where we note that δ2Λ(θ̂t)∝ 1/M.
Equation (17) is satisfied, at least technically to some tolerance, ∀θ̂a, θ̂b. Although g(θ̂b|θ̂a)k may become

very small, it will generally retain a non-zero probability for virtually all transitions, and the chain will be
strongly irreducible, albeit perhaps slow to convergence. More precise arguments can be made in the limit of
large ξ, where to first order in small 1/ξ, g(θ̂b|θ̂a)k → 1/

√
2πξ and all transitions become equally likely.

While this extreme ξ limit is too random to result in efficient gradient descent, it illustrates a concrete
transition to irreducibility with increasing ξ. Moreover, due to the uncertainty introduced by finite statistics
dkla and (δΛa )

2, sampling of the proposition kernel g(θ̂b|θ̂a)k can allow for otherwise unlikely transitions.

2.3.2. Aperiodicity
In the case of strong irreducibility argued above (equation (17)), aperiodicity is automatically satisfied.
Assuming only the weaker irreducibility of equation (16), it is sufficient to show that [54]

a(θ̂a|θ̂a)g(θ̂a|θ̂a) = g(θ̂a|θ̂a) =
(2π)−1/2

√

ξ2+ η2(δΛa )
2/2ϵ2

exp

[

−(ηdkla)
2

2(ξ2+ η2(δΛa )
2/2ϵ2)

]

> 0. (19)

As long as η ̸≫ ξ, equation (19) holds for all but singular points θ̂a.

2.4. Mixing time
The mixing time τ of a Markov chain is the number of epochs required to reach a certain threshold of
convergence. For an ergodic, discrete-time Markov chain, τ is analytically bounded by

τ ⩽
2

Φ2
ln

(

1

αMC
√
π∗

)

, (20)

where αMC = |S−π| is the distance between the Markov chain’s sampled distribution S and the true
stationary distribution π, π∗ is the probability of the least likely (maximum energy) state of π, and Φ is the
conductance or ‘Cheeger constant’ of the Markov process [50]. The conductance can be understood as the
minimum of normalized ergodic flows between all possible partitions of the state space.

Figure 5 demonstrates that the performance of MCMC-VQA is consistent with the theoretical
predictions of ergodic Markov chains (equation (20)). That is, the time dependence of MCMC-VQA
optimization error α follows the same ln(1/α) scaling as the distribution distance αMC in equation (20).
Moreover, least-squares analysis of figure 5 data reveals a β-dependent scale factor that is proportional to
ln(1/

√
π∗), which is consistent with the Boltzmann distribution p(θ̂a)∝ exp(−βΛa) from which our

method samples. This temperature-dependent time-complexity further verifies that MCMC-VQA is an
ergodic Markov process that successfully samples from the target distribution.

3. Numerical simulations

The simulations in this work are done using a modified version of TensorLy-Quantum, an open-source
software package for quantum circuit simulation using factorized tensors [56, 57]. TensorLy-Quantum
specializes in exact tensor contraction, such that the simulations are carried out without truncation or
approximation.

The MaxCut instances optimized in this work are generated from ten graphs. Each graph has ten vertices
and an equal number of randomly selected edges, which are randomly generated from the unit normal
distribution. Such graphs are equivalent to the Gilbert model of random graphs [58]. The number of edges
was chosen to be equal to that of vertices as this ratio is observed to pose high difficulty for randomMaxCut
problems of this model [59, 60]. Likewise, the number of two-qubit interactions in the quantum Ising and
transverse field spin models was chosen to be equal to the number of qubits (n= 50), in accordance with the
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Figure 5. Average accuracy vs Markovian epochs for three different β values. Gray dots are the average MCMC-VQA accuracy
1−α, and blue curves are a least squares fit of this data to the analytical accuracy of an ergodic Markov chain 1−αMC(τ), with
theoretical mixing time τ (see equation (20)). The analytical time-dependence of αMC matches the observed scaling of α (R2 ∼ 1)
for low values of inverse temperature β = 0.2,0.6, affirming that MCMC-VQA is an ergodic Markov chain at sufficiently high
temperatures, and thus guaranteeing convergence to the global minimum. Furthermore, the ratio of observed scale parameters
between MCMC-VQA simulations with different β values is consistent with the analytic dependence τ ∝ ln(1/

√
π∗)

(equation (20)) on the least likely state π∗ ∝ exp(−βΛmax) (equation (9)). This functional dependence on temperature further

supports our claims of ergodically sampling from P(θ̂) and thus deterministically converging to the global minimum.

definition of the former and in order to provide a more consistent comparison between the models. While
the quantum Ising model topology is uniquely defined, five random transverse field models were studied.

All numerical simulations in this work are done using the Hamiltonians described above, with twenty
randomly initialized runs completed for each graph. The quantum circuits for MaxCut use one
parameterized rotation per vertex. The quantum circuits for the quantum Ising and transverse field models
use two parameterized rotations per qubit, however only 10 parameters undergo Markovian update per
Markovian epoch such that the same amount of computational overhead is used in the MCMC optimization
of the n= 50 and the n= 10 graphs alike and the favorable scaling of MCMC-VQA is demonstrated. We
illustrate our work using circuits with relatively few parameters, because their optimization landscape is
especially nonconvex and thus prone to convergence in local minima [17], however MCMC-VQA can be
used with arbitrary parameterization. The circuit gates are alternated between a layer of single-qubit
parameterized rotations (angles θ̂) about the y-axis and a layer of two-qubit control-Z gates. For each
method (VQE or MCMC-VQA) and set of hyperparameters, a variety of learning rates are scanned so that
numerical comparisons could be drawn against the optimal performance of each algorithm. All VQE
sequences for MaxCut consisted of 100 epochs of vanilla gradient descent. This quantum Ising and transverse
field spin models were optimized over 400 Markovian epochs with a 200 epoch VQE closing sequence in the
MCMC-VQA case, or 600 VQE epochs for the VQE comparison. MCMC-VQA epochs (time steps) with
rejected samples were still counted as a completed epoch and did not result in an extra step. Figure 2 shows
an ensemble of trajectories whereas figures 3–5 are the average over the optimal learning rate for all MaxCut
graphs with 20 random initializations each and all spin model graphs with 40 initializations each. For
simplicity, we take the large M limit, assuming many measurements and precise expectation values.

4. Discussion

In this work, we have introduced MCMC-VQA: a novel variational quantum algorithm that harnesses
classical Makov chains to obtain analytic convergence guarantees for parameterized quantum circuits. As
ergodic Markov chains representatively sample a target probability distribution, they identify regions near
the global minimum with high probability. We present MCMC-VQA, both from a theoretical and practical
perspective, prove its ergodicity, and derive its time-complexity (mixing time) as a function of both accuracy
and inverse thermodynamic temperature. Focusing on MaxCut optimization within the VQE framework due
to its plentiful local minima and on the formation of low-energy states for the quantum Ising and transverse
field spin model Hamiltonians due to their relevance to quantum chemistry [11–13] and condensed matter
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physics [14–16], we employ a reversible Metropolis–Hastings Markov process suitable for variational
quantum circuits. We demonstrate the ergodicity of our method and the validity of our analytical findings,
ultimately observing the capacity of MCMC-VQA to not only outperform traditional VQAs, but to do so
with up to perfect and deterministic convergence.

In future research, MCMC-VQA should be studied for an even wider variety of different applications,
quantum algorithms, and Markov processes. This manuscript’s study of canonical quantum models could be
furthered by study of more intricate quantum systems, such as the identification of molecular groundstates
[11–13]. In such applications, exploration of the loss function landscape is of the upmost importance, as
even simple quantum Hamiltonians, such as the transverse field Ising model, are known to acutely struggle
with premature convergence to local, rather than global, minima. Similarly, our technique could be extended
to QAOA [3] or any of the numerous VQAs that have been proposed in recent years. Finally, tens of MCMCs
have been devised over the past 70 years, each with their own advantages, with variations featuring Gibbs
sampling [61], parallel tempering [62], and independence sampling [63]. These methods could be
substituted for Metropolis–Hastings in order to produce algorithms with lower computational overhead and
faster mixing times. In short, varieties of MCMC-VQA can be developed for a broad spectrum of variational
quantum algorithms to both improve and guarantee performance.
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