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Despite extensive research efforts, few quantum algorithms for classical optimization demonstrate a realizable
quantum advantage. The utility of many quantum algorithms is limited by high requisite circuit depth and non-

convex optimization landscapes. We tackle these challenges by introducing a variational quantum algorithm that
benefits from two innovations: multibasis graph encodings using single-qubit expectation values and nonlinear
activation functions. Our technique results in increased observed optimization performance and a factor-of-two
reduction in requisite qubits. While the classical simulation of many qubits with traditional quantum formalism

is impossible due to its exponential scaling, we mitigate this limitation with exact circuit representations using
factorized tensor rings. In particular, the shallow circuits permitted by our technique, combined with efficient
factorized tensor-based simulation, enable us to successfully optimize the MaxCut of the 512-vertex DIMACS
library graphs on a single GPU. By improving the performance of quantum optimization algorithms while
requiring fewer quantum resources and utilizing shallower, more error-resistant circuits, we offer tangible

progress for variational quantum optimization.

DOI: 10.1103/PhysRevResearch.4.033142

I. INTRODUCTION

NP-hard optimization problems, such as Traveling Sales-
man and MaxCut, are central to a wide array of fields, such
as operational research, engineering, and network design [1].
Despite the classical nature of these problems, there is im-
mense interest in identifying variational quantum algorithms
(VQAs) that can solve them faster or more precisely than
any classical method, a concept known as quantum advantage
[2-5].

One popular VQA is the variational quantum eigensolver
(VQE), where energy minimization yields the ground state
of a problem-encoded Hamiltonian through variational up-
date (e.g., gradient descent minimization) of the quantum
circuit parameters [6—8]. The quantum approximate opti-
mization algorithm (QAOA) is a related protocol in which
unitary evolutions using both an initial and a problem-encoded
Hamiltonian are alternated in order to find a solution-encoded
ground state [9-13]. In addition to VQE and QAOA, nu-
merous other VQAs with distinct encoding strategies have
been considered in [14-16]. The optimization landscape of
VQAs can be quite favorable. For instance, the optimization
landscape of VQE for NP-hard optimization problems can
be made convex [8], such that it is absent of local min-
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ima and the algorithm is likely to obtain the ground truth.
While this deterministic finding of solutions is superior to
the performance of polynomial complexity classical algo-
rithms (e.g., Goemans-Williamson [17-19]), we emphasize
that this guarantee requires between polynomially and expo-
nentially many gates in the number of qubits n, as well as
a specific family of Ansdize [8]. Such circuit depths limit
the algorithms’ potential to demonstrate quantum advantage,
rendering them not only computationally inefficient, but also
highly susceptible to quantum noise [10,11,20] and barren
plateaus [21-26]. The effectiveness of local VQAs, or al-
gorithms where the quantum state update is limited to only
explicitly connected degrees of freedom (e.g., graph vertices
connected by an edge), is even more limited. Local VQAs
have demonstrably poorer performance than classical meth-
ods, e.g., the Goemans-Williamson algorithm, on particularly
challenging and large graph instances [27-29]. However, there
is evidence that these limitations may resolve with substantial
circuit depths [30,31].

The difficulty of classically simulating large-scale quan-
tum circuits is a central challenge to algorithm development.
This is because the traditional mathematical formalism of
quantum mechanics automatically represents the full Hilbert
space and thus scales exponentially in the number of qubits,
n, with matrix operators of size 22" operating on state vec-
tors of size 2”. When a quantum system does not occupy
the full Hilbert space, these intractable dimensions for quan-
tum network simulation can be remediated by employing a
factorized tensor formalism [32]. While many varieties of
decomposed tensors exist, tensor rings have proven particu-
larly popular in the quantum sciences due to their modularity
and rank structure, which have close parallels to quantum
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FIG. 1. Left: Multibasis encoding (MBE) of a graph. An n-vertex graph (blue) is represented as an Ising model. We reassign n/2 vertices
from o¢ (blue) to o* (red) operators, allowing us to map the graph to just n/2 qubits (here, a nearest-neighbor connected, blue/red tensor ring).
The MaxCut is obtained by optimizing this state via single-qubit measurements. Although tensor cores in the tensor ring formalism only share
bonds with neighboring cores, they effectively solve MaxCut graphs with diverse edge distributions. Right: Multibasis encoding (MBE) with
two distinct n-qubit graphs. Each graph is mapped to the classical Ising model, with G, (blue) encoded along the z basis (as is traditional) and
G (red) utilizing the x basis, resulting in an n-qubit quantum state (blue/red). This encoding is similar to MBE with a single graph, except that
the x and z bases independently encode two separate graphs and thus no cross terms between the z and x bases are required. Bottom: Overview
of our multibasis encoding approach for an n-vertex graph. To find MaxCut(G) variationally, the ceil(n/2)-qubit (here, 4-qubit) null input state
|0) (an MPS) is evolved under a parameterized quantum circuit U (an MPO), producing an output state |). U encodes a circuit of depth L
(here, L = 4; red box). After partial tracing, each qubit is measured independently in the x and z Pauli bases and a nonlinear activation function
(here, tanh) is applied. The MBE loss Lygg [Eq. (6)] is minimized via gradient descent. The x and z Pauli spin values of the resulting wave
function |v) are then rounded to &1 [see Eq. (8)]. This rounding makes states near the the global minimum of Lygg correspond to [v/) = [r,),

the MaxCut ground truth solution.

entanglement. In the tensor ring formalism, both quantum
states and quantum operators are represented in factorized
form by matrix product states (MPSs) and matrix product
operators (MPOs), respectively [33-35]. However, tensor for-
malism is often unsuitable for high-depth and connectivity
regimes, which are most commonly used in quantum op-
timization, since tensor rings quickly become prohibitively
large (high-rank/bond-dimension) when simulating deep or
complicated circuits [36]. Moreover, they are limited to only
nearest-neighbor interactions.

Due in part to these limitations, no simulation of more than
~100 qubits has demonstrated quantum optimization rivaling
that of classical methods, except on graphs with simple edge
distributions, e.g., regular graphs with edges only between
a small subset of nearest-neighbor vertices, such as toroid
graphs. (Here, “nearest-neighbor” vertices are defined as those
vertices closest in vertex numbers. Although the vertex num-
ber assignment can, in general, be arbitrary, the limitation of
edges between such vertices in certain graph types, e.g., regu-
lar graphs, can impose some graph structure.) This is also the
case in [37], where exact representations of general tensor ar-
chitectures with optimal contraction schemes are used. Other
large-scale implementations have focused on more restrictive
problems. For instance, QAOA MaxCut optimization with up
to 210 qubits has been achieved for 3-regular graphs with
randomly distributed edges [38]. QAOA MaxCut optimization

has also been implemented with several-thousand qubits when
optimizing over only a subset of a graphs total edges, a method
which did not yield high average performance [39]. Moreover,
large-scale optimization on NP-hard problems (e.g., MaxCut)
has not been explored using VQE.

Quantum computing contribution. This manuscript in-
troduces a different family of quantum algorithms. We
benchmark our techniques against VQE implementations us-
ing the same “circuit Ansatz,” a term that we use to reference
the structure of a quantum circuit, including its gate types,
gate order, and circuit depth. The gate type and gate or-
der used for all circuits in this work is provided in Figs. 1
(bottom) and 2, and the circuit depth is discussed in refer-
ence to each numerical simulation. When the same circuit
Ansatz is used, our algorithm outperforms VQE on a variety
of optimization tasks while requiring fewer qubits. Although
aspects of our algorithm may make it easier to simulate
classically, we emphasize that the algorithm is a quantum pro-
tocol that is classically intractable for large-scale problems. In
particular:

(i) We propose multibasis encodings (MBEs), a quantum
optimization algorithm that introduces additional constraints
(regularization), reducing its susceptibility to local minima in
the training landscape. We demonstrate our algorithm on the
MaxCut problem and empirically find that MBE outperforms
VQE by 5-7% when using the same circuit Ansatz.

033142-2



VARIATIONAL QUANTUM OPTIMIZATION WITH ...

PHYSICAL REVIEW RESEARCH 4, 033142 (2022)

H U|o)
Encoding the MaxCut problem in the Hamiltonian

[¥)=U]0) ¥) L= (V|H|T)

Quantum Circuit and Variational Optimization

FIG. 2. Overview of traditional MaxCut encoding and VQE using tensor ring factorizations, which are tensor train networks with periodic
boundary conditions. Left: A graph G with n vertices v;, v; and weights w;; is mapped into an n-qubit Hamiltonian H in MPO form. The
MPS ground state |1/,) of H encodes the solution to MaxCut(G). Right: To find MaxCut(G) variationally, the null input state |0) (an MPS) is
evolved under a parameterized quantum circuit U (an MPO), producing an output state |y). U encodes a circuit of depth L (here, L = 4; red
box) in this manuscript’s layer (block) pattern: one layer (block) of single-qubit y-axis rotations R, followed by a layer of CONTROL-Z gates
which alternate between even and odd qubits. The energy expectation value £ = E is minimized via gradient descent. The global minimum of

L corresponds to [/) = [r,).

(i) By doubling the amount of optimization features en-
coded into a single qubit, MBEs halve the number of qubits
required for a given optimization task. This is a valuable asset
for a developing field which has invested millions of dollars
and spent multiple decades to achieve ~50-qubit registers and
where additional coherence limitations emerge at scale [40].

(iii) By combining our MBEs with nonlinear activation
functions, we use relatively shallow quantum circuits to solve
MaxCut optimization problems for various graphs, including
graphs with random edge distributions. As variational quan-
tum heuristics tend to perform better with increasing circuit
expressivity (e.g., circuit depth), the relatively low requisite
circuit depths of MBE may indicate that their use of classical
nonlinearities (which are used to increase the expressivity
of classical networks) is a trade-off of quantum for classi-
cal expressivity. Furthermore, sampling ~5 initializations of
our MBE experiments on shallow circuits (depth L = 7 for
100-vertex graphs, such that L is approximately logarithmic
in the number of vertices) leads to optimal cut convergence
with near unit probability. This shallow-circuit, multishot
procedure is both more coherent and time efficient than de-
terministic convergence with deep circuits, which requires up
to an exponential number of parameters.

Large-scale simulation contribution. This work utilizes
tensor networks, developing software in order to simulate
practical quantum algorithms at an unprecedented scale.
Specifically:

(i) MBE’s ability to operate with relatively shallow circuits
enables us to use tensor networks with lower rank (bond
dimension). As the rank of a tensor structure determines the
time and memory complexity of its contraction, we can sim-
ulate high-accuracy implementations of MBE at considerable
scales.

(ii)) We develop TENSORLY-QUANTUM [41,42], a software
package for simulating efficient quantum circuits with de-
composed tensors on CPU and GPU. TENSORLY-QUANTUM is
based on the TENSORLYsoftware family [43].

(ii1) Using TENSORLY-QUANTUM on a single NVIDIA A100
GPU, we simulate solving a 512-vertex MaxCut problem
using MBE, which in our experiments demonstrates superior
performance over VQE with an identical circuit Ansatz. This

sets a record for the large-scale simulation of a successful
quantum optimization algorithm.

By introducing a variety of algorithms that improve the
observed optimization performance, require fewer qubits, and
operate on shallower, more error-resistant circuits, we offer
tools to increase the utility of variational quantum algorithms.

A. MaxCut optimization problems

The Maximum Cut problem, most commonly referred to as
MaxCaut, is a partitioning problem on unidirected graphs G =
(V,A), where V is a set of vertices (blue orbs in Fig. 2, left)
connected by edges A (black lines connecting orbs) [44]. The
objective is to optimally assign all vertices v;, v; € {—1, 1},
so as to maximize the edge weights w;; € A, where any such
assignment is referred to as a “cut.” In this work, we will con-
sider a generalized form of the problem known as weighted
MaxCut, in which w;; take arbitrary real values.

Two formulations of MaxCut exist: the NP-complete deci-
sion problem and the NP-hard optimization problem [45]. The
former seeks to determine if a cut of size ¢ or greater exists
for a given graph G, whereas the latter attempts to identify the
largest cut of G possible. Here we focus on the more general
optimization problem formulation, the ground truth, which we
denote as MaxCut(G). It is common practice to express the
objective function in its binary quadratic form [44]:

.. 1
maximize 3 Z w;;j(1 — vv;). (1)

j<i

B. VQE framework and tensor network formalism

To find the MaxCut of a given graph on a quantum com-
puter, it is convenient to minimize the equivalent summation,
> j<i Wijviv;. For a graph with n vertices v;, this reduces
the problem to finding the n-qubit wave function |i) that
minimizes the energy expectation value E = (y|H|y) of the
classical Ising model Hamiltonian,

n
H = Z wfjafaj?. 2)

Jj<i
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H is obtained by substituting vertices v; for the Pauli-Z
spin operators o/, as depicted in Fig. 2, and w;; = w;; is
a relabeling to specify the zz-spin interactions. As H con-
tains only terms in the z basis, its eigenvectors are classical
(zero-entanglement product states), such that [¢;) = @), |s),
where |s) € {|0), |1)}. Here we denote the lowest eigenvalue
or “ground-state” solution as |,), the qubits of which form
a bijection with the optimal v; of MaxCut(G). As Eq. (2) has
7, symmetry, |/,) is degenerate with the state X " |v,).

Figure 2 (right) depicts the VQE framework [6—8]. Equa-
tion (1) is optimized by defining the loss function £ = E and
varying the parameters # of a quantum circuit with unitary
U (), which acts on the input quantum state (Fig. 2, right).
Without loss of generality, we define the input state as the
n-qubit zero state [0) = ), |0), such that

ly) = U(H)]0). 3)

We decompose this unitary matrix U as A subunitaries
U (é) = ]_[,1(\ Uk(ék), where ék is the corresponding subset of
0 and Up(By) = ]_[;7=1 exp(—i@jo)Mk for generic Hermitian
operators W, and unitary matrices My. Thus, the gradient

21(0) = % of operator O with respect to any parameter

91 (S é is
£1(0) = i(0|UL W, U OUL1UR|0), )

where U and Uy are the compositions of unitaries U, with
k > 1 and k < [, respectively. Rather than using circuits with
extensive connectivity, we instead focus on one-dimensional
(1D) tensor ring circuits of n qubits. In particular, tensor
rings have periodic boundary conditions such that qubitn — 1
is connected to qubit 0. Such nearest-neighbor connectiv-
ity makes the circuit amenable to both near-term quantum
hardware [10,12] and simulation via decomposed tensors.
We accomplish this simulation with TENSORLY-QUANTUM
[41,42]. A nascent and expanding public software package,
TENSORLY-QUANTUM strives to leverage the structure of de-
composed tensors in order to simulate quantum machine
learning in the most efficient, nonapproximate manner pos-
sible. While tensor-ring-based tensor networks are typically
used for approximate inference and obtained by applying ten-
sor decomposition to dense state vectors and operators, we
build a low-rank but exact factorized representation of the
simulated quantum circuits. When judiciously constructed,
tensor simulations yield a low-rank quantum formalism that
permits enormous compression of state and operator spaces.
Although in the quantum sciences tensor methods are most
frequently associated with state approximations and trunca-
tions, such as the density matrix renormalization group [46],
here we advocate for their use in exact quantum simulation.
Similarly, due to their nearest-neighbor connectivity, tensor
ring factorizations in quantum computing have traditionally
been employed for locally connected optimization problems,
such as 3-regular MaxCut [47]; however, here we emphasize
their utility for general purpose optimization tasks.

To analyze VQE with tensor formalism, the Hamiltonian of
Eq. (2) is represented as an MPO H '/} with physical indices
B and y. The energy £ = E is then calculated with a single

large contraction (Fig. 2, right),

E= Y whybrigrayiayle, )
(B.y.8.€)

Wl = ot 2Ny e
(@)

is an n-qubit MPS of m cores and

UBYY — [ PovossBn-1,¥m-1 — Zuﬂo’yo b1 Yn
{a}

g, "7 Ty, 00
is the corresponding MPO unitary.

As we work in the absence of quantum noise, states |y)
display time-reversal symmetry and can be fully expressed
with real numbers [48]. We thus restrict our rotations to those
of the Pauli-Y generator ¢ and implement a simple, repeating
subunitary pattern of two layers, also known as blocks. The
pattern is illustrated in Fig. 2 (right): a row of parameterized
single-qubit rotations R, () (W = o0”) is followed by a row
of CONTROL-Z (CZ) gates, with the latter alternating control
between even and odd qubits. As each single-qubit rotation
is a 2 x 2 dense matrix and each two-qubit CONTROL-Z gate
is a rank-2 MPO of two eight-element cores, the memory
requirements of the uncontracted circuit representation scale
only linearly in both n and L. This is an up-to-exponential
reduction in classical memory resources compared to circuits
described in traditional quantum formalism. Likewise, a fac-
torized representation of the input state |0) in tensor ring form
requires exponentially fewer terms, as it is represented by a
rank-[]"_, I MPS with just n two-element cores.

II. MULTIBASIS ENCODING (MBE)

Algorithm. MBE encodes variables into two (or more)
qubit axes and evaluates the multivariable interactions in the
loss function as the product of single-qubit terms. MBE for
weighted graphs is depicted in Fig. 1 (left). An n-vertex graph
G is expressed similarly to the Ising model Hamiltonian in
Eq. (2), save that only the first ceil(n/2) vertices are mapped
to the z axis (blue), while the second floor(n/2) vertices are
mapped to the x axis (red), thus enabling n vertices to be
encoded into only ceil(n/2) qubits [Fig. 1 (bottom)]. If n
is odd, then the x axis of the nth qubit is unneeded, as it
is absent from the loss function and can go unmeasured. In
this work, the vertex order is taken to be that of the pub-
licly available BigMac and DIMACS graph data files [49,50],
which is arbitrary due to the random or symmetric distribution
of graph edges. In future work, more sophisticated vertex
partitionings can be explored, such as mappings that reflect
graph topology. MBE halves the number of qubits required
for a given optimization, providing a meaningful decrease in
quantum hardware overhead.

In order to optimize both axes as independent vertices, we
must make several alterations to standard VQE. To begin, the
Hamiltonian formed by the product of the MBE encoding op-
erators would be an unsuitable loss function, as the quantum
ground state it would encode would not correspond to the
classical MaxCut of G. We instead focus on the products of
single-qubit measurements (o;*) and {(o7°), such that 67" and o
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operators are simultaneously optimized. This yields the MBE
loss function
n/2
LMBE = Z w”Z tanh

j<i

(o7)) tanh ({o7))

n/2

+ Z w’”‘ tanh

j<l

(o) tanh ({o77))

n/2

- Z wi tanh ((07)) tanh ((07)). (6)

where tanh(x) is trivially implemented on the classical
computer controlling gradient descent. This procedure is
graphically depicted in Fig. 1 (bottom) for the four-qubit en-
coding of an n = 8 vertex graph. For a detailed example, let us
consider an n = 4 vertex graph with three edges: one joining
vertices 1 and 2 with weight w;,, one joining vertices 3 and 4
with weight w34, and one joining vertices 1 and 3 with weight
w13. The MaxCut of this graph can be optimized using VQE
by encoding it into the four-qubit Ising model Hamiltonian,

H = wy0{0; + w4050, + w3003,

and extremizing for the ground state. We can instead use MBE
with only two qubits to optimize for the MaxCut of this graph.
Specifically, we minimize the two-qubit MBE loss function,

Lyipe = wi tanh ({o7)) tanh ((05))
+ w tanh ((o7)) tanh ({03))
+ wf} tanh (o)) tanh ((07)),

and round our results, as detailed in Eq. (8). We again empha-
size that as Eq. (6) is comprised of distinct Pauli strings that
are independently measured on separate circuit preparations
(i.e., one set of preparations/measurements to estimate the z-
axis expectation values and one for the x axis), the uncertainty
principle is not violated for wf}‘ with j = i. The projection
of high-dimensional quantum data into a lower-dimensional
representation has also been explored in [51,52], and the uti-
lization of two, rather than a single, quantum bases has proven
useful in other quantum machine learning algorithms [53].
The inclusion of the nonlinear activation function tanh(x)
disincentives the extremization of one basis at the expense
of another, which could otherwise occur because the optimal
values of both o7 and o cannot be linearly encoded by a
single quantum state due to the normalization condition of the
Bloch sphere of each qubit i:
(o) + o) < 1. ™

l

where equality holds for real-valued pure states. As the gra-
dient of tanh(x) reduces near the =1 poles (inset Fig. 3, top),
full optimization of one axis at the expense of the other is
discouraged. The optimal cuts are deduced by a rounding pro-
cedure (detailed below), which assigns integer vertex values,
but does not affect the optimization process [loss function,
parameter update, or the normalization condition of Eq. (7)].
In this manner, MBE is a dual-axis quantum analog to linear
programming relaxations [54]. Furthermore, the normaliza-
tion constraint of Eq. (7) means that Lypg can only ever

Mean(C)/MaxCut(G) Ave. Entang.

n=>512
n=100
n=38
0.8 T
0 50
Epochs
Mean(C)/MaxCut(G) L/E
1.0 1.0
0.8 T . T
0 50 100 0 50 100

Epochs Epochs

FIG. 3. Top right: Average cut (ratio of cut obtained with largest
known solution) C convergence (left) for both MBE (solid lines)
and VQE using the same circuit Ansatz (i.e., gate types, gate order,
and circuit depth; dashed lines) with L =7 (n = 8, 100) and L = 13
(n = 512). We note that in these experiments with n = 8, 100, MBE
significantly outperforms VQE using the same gate Ansarz. While
VQE with n = 512 was prohibitively memory inefficient to simulate
for comparison, MBE with n = 512 outperforms VQE with n = 8, a
system 1/64th of its size, as well as the leading single-shot classical
algorithm (Table II). Top left: Average entanglement entropy for
two-qubit subpartitions (maximum value per qubit is 1) vs frac-
tion of calculated MaxCut convergence for nonlinear loss functions.
Product state formation occurs because minimizing Lypg maximizes
(07)* + (07)*. Inset: tanh(x) nonlinear activation function further
disincentivizes the maximization of one axis at the expense of the
other. Bottom: Average cut (ratio of cut obtained with largest known
solution) C convergence (left) and raw loss function £ (right) with
both two-graph MBE (solid lines) and VQE using the same circuit
Ansatz (dashed lines) for n = 8, 20, and 100. MBE improves the
calculated MaxCut convergence C, although its ability to satisfy
by the two encoded Ising models is limited by the normalization
condition of Eq. (7). This is remedied by the rounding procedure
of Eq. (12).

partially descend into local minima and is better equipped
to escape their regions of attraction. The robustness of MBE
against local minima is likely partially attributable to its use of
global optimization [27,28], such as the global optimization
of single-qubit states and the interdependence between the
generally unrelated z- and x-axis encoded vertices. We note
that we have, for simplicity, neglected both external fields
and y-basis interactions in Eq. (6); however, the addition of
y-basis terms could immediately be used to both improve the
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algorithm’s performance as well as simultaneously optimize
three (rather than two) graph vertices. Finally, we indicate
that the use of nonlinear loss functions, which are known to
increase the expressivity of classical neural networks, may
contribute to the success of MBE with relatively shallow
quantum circuits (compared, e.g., in this manuscript to VQE
of the same circuit Ansatz). That is, the nonlinear loss func-
tions also increase the expressivity classically, rather than with
higher quantum entanglement and correlation alone.

As minimizing Eq. (6) under the constraints of Eq. (7) can-
not yield classical solutions to Eq. (1), we define a rounding
procedure for the classification and scoring of a cut C for a
graph G:

Wi
Cmpe(9;G) = Z %[1 = R((o7)R((o5))]
M2
+ 30 21— Rl (o))

n/2 X

+ 3 =R DR ®

where the classically implemented function R rounds the mea-
sured expectation values to £1. We note that this scoring
is our true, or computational, MaxCut estimate, as it is the
MaxCut assignment which results from projecting the qubit
measurements of our quantum state from the [—0.76, 0.76]
codomain of our linear programming relaxation [tanh(x) acti-
vation function] back into the 1 codomain of MaxCut nodes.

III. RESULTS

In this section, we empirically validate our approach’s
performance by solving the MaxCut problem on a diverse
set of graphs with up to 512 vertices. We first introduce
the experimental settings and implementation details before
presenting the results for two scenarios: (i) using MBE to
solve n-vertex MaxCut problems with only n/2 qubits, and (ii)
using MBE to encode two separate MaxCut graph instances
in a single circuit. In addition to having an inherently lower
quantum hardware overhead, both implementations of MBE
demonstrate superior optimization performance.

Figure 3 (top) illustrates the average performance (ratio of
cut obtained with largest known solution) of both MBE and
VQE circuits for graphs of n = 8, 100 vertices and the MBE
circuit alone for n = 512. In this manuscript, we use VQE
circuits with the same gate Ansdgrze as the MBE circuits, as
detailed in Fig. 2 and the referencing text. The n = 512 graph
with VQE using the same circuit Ansatz was too memory
inefficient for evaluation on a single NVIDIA A100 GPU.
The simulations were completed using TENSORLY-QUANTUM,
which runs on a PYTORCH [56] backend and implements ten-
sor contractions with OPT-EINSUM [57]. The n = 8 instances
are complete [all-to-all, n(n — 1)/2-edge] graphs for which
we calculated the exact ground truth through brute force
computation, the n = 100 graphs are the first three 0.9 den-
sity weighted (4455-edge) MaxCut graphs (cataloged as the
w09-100 instances) from the extensively studied Biq Mac

library [49], and the n = 512 graph is the pm3-8-50 instance
of the DIMACS library [50]. While the pm3-8-50 graph
is relatively sparse (1536 edges), its edges are not limited
to nearest-neighbor vertices (where nearest-neighbor vertices
are defined by the closest vertex numbers and the limitation
of edges between such vertices imposes some graph struc-
ture). Like other recent works [22,58], we implement simple
entanglement-based pretraining prior to the MBE algorithm.
Shallow circuits of depth L =7 (n = 8 and n = 100 graphs)
and L = 13 (n = 512 graph) are selected in order to adopt
a protocol that is suitable for near-term quantum devices;
however, the performance of the larger graphs (n = 100, 512)
increases with moderately deeper circuits.

In our experiments, MBE consistently demonstrates a
5%—7% average performance increase (ratio of average cut
obtained with largest known solution) across all n, as seen
in Fig. 3 (top). We emphasize that not only does the MBE
algorithm achieve larger cuts with higher frequency than
VQE using the same circuit Ansatz, it simultaneously solves
MaxCut(G) with half the required qubits and parameters,
as summarized in Table I. As quantum state space scales
exponentially in n, this factor-of-two reduction in required
qubits remains significant for quantum computing at scale.
Even with shallow circuit-depth growth, such that L in-
creases only moderately from the 100-vertex BigMac graphs
(L =7) compared to the 512-vertex DIMACS graph (L =
13), MBE outperforms the leading single-shot classical al-
gorithm (Table II). Specifically, this observed requisite depth
is only a sublogarithmic increase in L compared to n, i.e.,
log,(512)/13 < log,(100)/7. MBE achieves an average cut
of ~95% of the largest known solution [59]. MBE also out-
performs the classical algorithm in terms of the largest cut
obtained for any given run, with ~98% accuracy from just
30 total runs compared to ~97% accuracy from 100 total
runs. These performance increases may be greater for deeper
circuits; however, our current contraction algorithm yields a
maximum MBE circuit depth of L = 13 for 512-vertex graphs
on a single GPU. As the simulation of these networks is ulti-
mately memory bound, with memory requirements growing
exponentially with circuit depth (as bond dimension grows
with quantum correlations/entanglement), implementations of
the algorithm are generally not classically tractable at scale.
For instance, causal/lightcone-based methods for simplifying
the simulation of a circuit become intractable for sufficiently
complex circuits, and the implementation of MBE for larger
system sizes requires distributed programming with consid-
erable classical resources [60]. The simulation of deeper
circuits could be provided by tensor contraction backends
with improved memory management, such as the cuTensor
library, while implementations of this scale on quantum hard-
ware are consistent with the projections for moderate-term
quantum devices. Although computational benchmarking for
optimization problems has been demonstrated for thousands
of qubits [39], to our knowledge, MBE with n =512 ap-
pears to be the largest simulation of successful quantum
optimization algorithms on graphs that are not limited to edges
between nearest-neighbor vertices (where nearest-neighbor
vertices are defined by the closest vertex numbers and the
limitation of edges between such vertices imposes some graph
structure).
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TABLE 1. Comparison of single-graph MBE and VQE using the same circuit Ansatz (i.e., gate types, gate order, and circuit depth) for
n = 100 vertex graphs for circuits of depth L = 7. MBE requires half the number of qubits and parameters as VQE, yet produces significantly
better solutions (higher cut C), both on average and with higher probability.

Method Depth No. Vertices No. Qubits No. Param Mean(C)/MaxCut(G) PC>T)
VQE L=17 100 100 400 0.921 12.5%
MBE (Ours) L=17 100 50 200 0.971 50.0%

MBE’s improved performance on optimization problems
is due to the two-axis constraint on each qubit, which only
permits convergence to local minima that are bistable points
for both the z and x axes. This is in contrast with the
monostable (e.g., only stable along the z axis) condition of
VQE. Convergence to a local minima with bistability requires
the concurrence of a zero gradient for both independently
parametrized axes at a single, nonoptimal point in parameter
space. As Lyge is best extremized by larger (0%}, the circuit
will tend towards satisfying the equality in Eq. (7). As this
corresponds to entanglement-free qubits, there is a systematic
disentanglement of the circuit into product states throughout
training (Fig. 3, top right). To understand this process, note
that for the general wave function

l9) = «]0:0,) + B10;1,) + y[1,0,) +8]1;1,)

describing any two qubits i and r, the left-hand side of Eq. (7)
for qubit i can be written as

(07 +(07) = 1B+ 1) + (@ — 8Y1(B — y)* + (@ +8)*].
)

In this form, we note that Eq. (7) is maximized when the
concurrence (entanglement [61,62]) is minimized, and vice
versa, driving the wave function towards product states as
training progresses. Once disentanglement nears completion,
the equality in Eq. (7) begins to hold and for any 6, and qubit
i, such that

(07)8: (0F) = (o7} (o). (10)

where g, are the gradients as given by Eq. (4). As (a‘f )y =0is
unfavorable for the optimization of Ly, both axes of each
qubit i/ must be bistable with respect to each angle 6, in order
for the update of that parameter to halt.

In this manner, MBE is a sort of quantum analog to alter-
nating minimization in classical algorithms [63], but which
uses both quantum superposition and classical nonlinearity
to minimize two cost functions simultaneously, rather than

TABLE II. Comparison of single-graph MBE with circuits of
depth L = 13 and the leading single-shot classical relaxation heuris-
tic [55], with comparable parameters, for n = 512 vertex graphs.
MBE produces improved solutions (higher cut C), both on average
and in the most successful run.

Mean(C)/ Max(C)/
Method MaxCut(G) MaxCut(G)
Classical relaxation 0.939 0.969
MBE (Ours) (L = 13) 0.948 0.978

one sequentially. Alternating minimization has also proven
useful in QAOA protocols [15,64-66], as have other pertur-
bations such as filtered measurements [67]. Because Lypg
is calculated from single-qubit measurements, it is a form
of measurement-based quantum computation [68—70]. MBE,
like many of the most useful optimization algorithms, is a
heuristic. Unlike polynomial-time approximation algorithms
such as Goemans-Williamson [17], heuristic algorithms such
as MBE are not guaranteed to obtain any specific approxi-
mation ratio for generic problems. Moreover, many existing
approximation algorithms are conjectured to have approxi-
mation ratios that are already optimal [71]. For instance, the
Unique Games Conjecture asserts that the 0.878 approxima-
tion ratio of Goemans-Williamson for MaxCut is optimal [19],
meaning that efficient algorithms could not exceed this ratio
[72]. Despite this lack of guarantees, heuristic algorithms
often outperform approximation algorithms in practice.

MBE can also encode two distinct n-vertex graphs into a
single register of n qubits and solve their two MaxCuts in
parallel. This is equivalent to the simplified case of w;} =
0Vi, j < ninEgs. (6) and (8) using n qubits, yielding

o;) tanh ({o7))

LMBE = Z w" tanh

+Zw"xtanh tanh ((0F) (A1)
and
Gunet®: 6) = 3 21~ R(7))R((o7)]
£ k(RG] a2

The average performance of MBE for solving two n-vertex
graphs in parallel vs that of VQE with the same circuit Ansatz
solving a single graph is displayed in Fig. 3 (bottom) for
graphs of n = 8, 20, and 100 vertices with L =7. Forn = 8
and n = 20, we generate exact solutions to complete (all-
to-all) graphs through brute force computation, whereas the
n = 100 graphs are again the first three 0.9 density weighted
MaxCut graphs from the Biq Mac library [49]. While for
this fixed L, both VQE and two-graph MBE suffer decreasing
performance with increasing n, two-graph MBE consistently
demonstrates a 5%—7% average performance increase across
n. We again note that the performance for large-n graphs
increases with greater L.

We emphasize that not only does the two-graph MBE
algorithm find larger cuts more often than VQE when using
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the same circuit Ansatz, it simultaneously solves MaxCut(G)
for two graphs G, rather than only one as with VQE.
Applications that require MaxCut optimization typically re-
quire the evaluation of numerous graph instances, making
parallel programming via MBE a useful technique. To pro-
vide an example, MaxCut is used to process graphics for
image segmentation. As image data sets typically require
hundreds of thousands, if not millions, of images, the factor-
of-two speedup furnished by MBE offers a substantial and
practical advantage. The parallel computation of multiple
MaxCut values is also a special case of the qubit-efficient
single-graph version, which enjoys the same robustness to
local minima and further demonstrates the generality of the
technique.

While in an ideal world optimization algorithms would
produce optimal solutions (ground truths) with 100% prob-
ability, NP-hard problems such as MaxCut cannot be solved
deterministically on a classical device in polynomial time
unless P = NP [73], which is often considered unlikely. As a
result, approximate and heuristic algorithms are intensely re-
searched. Although they lack performance guarantees, many
heuristic methods can exceed the performance of polynomial-
time algorithms when they are implemented using greater
than a polynomial amount of computational resources. We
note that these findings are not in conflict with complexity
conjectures such as P # NP [73] and the Unique Games Con-
jecture [71], as they specifically refer to implementations that
exceed polynomial time. For instance, studies have indicated
that it requires up to an exponential number of parameters
and specific Ansdtze to formulate VQE with a convex loss
function, such that it is robust against local minima and likely
to converge to the global minimum during gradient descent
[8]. This is an impractical quantity, reaching ~2% (~25'")
parameters for the n = 100 (n = 512) graphs considered here.
Similarly, it has long been known that as the number of
parameterized evolutions p — oo in QAOA, ideal adiabatic
computing can be obtained [9]. In contrast, the cumulative
effects of probabilistic sampling (that is, running the randomly
initialized circuit multiple times) lead to high-confidence con-
vergence with markedly few repetitions r. In what follows, we
reason that a probabilistic sampling of various shallow MBE
circuit initializations is a more efficient alternative. As larger
values of C are a direct certificate of superior optimization,
there should be no preference for less efficient single-shot
techniques. Furthermore, shallow implementations are partic-
ularly important for near-term quantum devices, which are
prohibitively susceptible to noise at even moderate circuit
depth.

Figure 4 (top) displays the probability that an optimal
cut, which we define as C > T = 0.97 x MaxCut(G), will
be found for n = 100 graphs with both MBE and VQE. For
depth L =7, MBE produces an optimal cut with upwards
of 50% probability for both the single-graph (n vertices in
n/2 qubits; Fig. 4, top left) and double-graph (two n vertex
graphs in n qubits; Fig. 4, top right) protocols. In contrast,
VQE using the same circuit Ansatz produces optimal cuts
with just 12.5% probability. Furthermore, the likelihood of
obtaining an optimal cut with MBE increases considerably
with moderate circuit depth, rising to approximately 80%
for L = 13 (left). We note that L = 1 circuits (right) obtain

P(C>T) P(C>T)

0.8 1 0.5
0.61 0.4 1

0.3 1
0.4 1

0.2 1
0.2 1 014
0.0 1 0.0 1

0 100 200 300 0 100 200
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1.0 1 ) I ——
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0= === ==
0.4
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FIG. 4. Top left: The probability P(C > T) that cut C of an
n =100 graph is optimal using MBE with L = 13 (light green),
MBE with L =7 (dark green), and VQE with L =7 (black). In-
creasing the depth from L =7 to L = 13, while still shallow for
n = 100, markedly improves the performance of these experiments.
Top right: P(C > T') of n = 100 graphs using two-graph MBE with
L =7 (light green), two-graph MBE with L =1 (dark green), and
VQE with L =7 (black). While the L =1 case is entanglement
free, it benefits from MBE’s two-axis constraints. Bottom left: The
probability of achieving an optimal cut (C > T) of an n = 100 graph
with r = 5 repeats using two-graph MBE with L = 7 (light green),
two-graph MBE with L =1 (dark green), and VQE with L =7
(black). For the shallow L = 7 MBE circuit, five repetitions produce
nearly deterministic results with less than 200 epochs. Bottom right:
Number of n = 20 graphs with identified optimal cuts from the set of
10 instances and r = 10 repeats using two-graph MBE (green), and
VQE (black). MBE not only successfully optimizes all (vs 90%) of
G, it solves twice as many graphs in the same number of epochs.

optimal cuts with probability 0.36, tripling the convergence
rate of standard VQE under the same Ansatz structure with
1/7th the circuit depth. As circuits with L = 1 are comprised
of only local rotations without control gates, the totality of
the performance is due to mutual constraints on multibasis
superpositions, and not due to quantum entanglement. Like
other entanglement-free formulations [74-76], this renders
the circuit efficient for classical simulation and indicates that
algorithms for a simulated superposition with multibasis con-
straints may hold promise as “quantum-inspired” classical
algorithms. However, we note that quantum implementa-
tions are still of interest because other entanglement-free
relaxations are known to suffer decreased performance with
increasing circuit width n [8]. Furthermore, MBE with even
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modest entanglement and circuit depth markedly increases the
probability of optimal convergence.

Figure 4 (bottom, left) shows the probability of obtaining
at least one optimal cut for n = 100 graphs with L = 7 and
r =5, which nears 97% in fewer than 100 training steps for
two-graph MBE circuits. For r = 10, convergence is greater
than 99.9% and the 4nr = 4000 parameters utilized for 10
repetitions still pale in comparison to the exponentially many
required by deep-circuit techniques. As VQE with the same
circuit Ansatz but n = 100 produces optimal cuts only 12.5%
of the time, MBE is four times more effective than VQE for
probabilistic optimization.

MBE also demonstrates superior performance over VQE
with the same circuit Ansatz in terms of the diversity of
tenable graphs (Fig. 4, bottom right). For r = 10, not only
does two-graph MBE find optimal solutions for all of the
complete n = 20 graphs tested (compared to 90% for VQE),
its parallel implementation doubles the number of MaxCut
instances optimized.

Simulation considerations. Numerically, Lypg is more
compact for large or dense graphs, where the MPO H quickly
becomes cumbersome. However, for the single-qubit mea-
surements required for Lypg, contraction with a simple,
single-qubit operator needs to occur n times. In order to ef-
ficiently compute n single-qubit measurements on large, exact
tensor networks without either reconstructing an exponen-
tially large (2"/?) space or contracting over the full network
~n times, we use an efficient partial trace-based contraction
scheme in which we construct & distinct reduced density ma-
trix operators,

,5}\1_,{5}’ (13)

3 wihgbryty

(B.v.0¢K}

where K is the kth set of kept indices. K should be sufficiently
small so that the 2K elements of p; remain numerically
tractable. For each o, |K| smaller partial traces are done to
isolate single-qubit density matrices p,, with which we take
the single-qubit expectation values of Eq. (11),

(05) =Trt[o} pg]. (14)

where ¢ = z, x.

IV. MBE FOR OTHER OPTIMIZATION PROBLEMS

MBE can be directly adapted to numerous quantum algo-
rithms for optimization tasks by (1) distributing the problem
variables into multiple bases of the available qubits (e.g.,
distributing the variables from n qubits in the z basis alone to
n/2 qubits in the z and x bases, respectively), (2) replacing
the multiqubit expectation values in the loss function with
the products of single-qubit expectation values and nonlinear
activation functions, and (3) classifying the final variable as-
signment by rounding the postoptimization spin values to the
nearest allowable integer.

As an example, we detail the adaptation of MBE to the NP-
hard m-node Traveling Salesman problems. The preexisting
variational quantum implementation is detailed in [77]. The
encoding requires m> qubits, one for each node i and each

step p. The objective function,

C= Zw”Z I_U 1p+l]>

+KXP: <1 - Z [1- (afp>]/2>2
+ KZ (1 - X,,: [1- (a,.fp)]/2>2, (15)

minimizes the distances w;; between nodes i and j as
weighted two-qubit interactions between adjacent Traveling
Salesman steps p. In addition, the regularizing terms (propor-
tional to K) constrain each step to include exactly one node,
and constrain each node to be visited at exactly one step.

MBE can encode this problem by making minor mod-
ifications to the typical implementation above. The only
changes are applying nonlinear activation functions (i.e.,
tanh[ (o] )] instead of (o} )) and substituting the product of
two s1ngle qubit observables for two- qublt observables (i.e.,
tanh[(o} )]tanh[( +1)] instead of (o 07 . )). Once the
optimizatlon of the 01rcu1t is completed, the best path found by
the algorithm can be read out by selecting the highest valued
spin for each Traveling Salesman step p.

V. DISCUSSION

In this manuscript, we introduced multibasis encoding
(MBE), a technique for quantum optimization algorithms.
In our experiments, MBE’s performance on a diverse set
of graphs exceeds that of VQE using the same circuit
Ansatz. MBE also provides meaningful efficiency improve-
ments over other VQAs that encode one variable per qubit for
classical optimization problems, potentially closing the gap
between near-term implementations and quantum advantage
by reducing the overhead of quantum algorithms, such as a
factor-of-two decrease in required qubits, which can readily
be extended to a factor of three with the inclusion of the y
basis. While simulated using classically tractable Ansdtze, the
performance of our algorithm benefits from increased circuit
depth. As the classical simulation complexity increases expo-
nentially in circuit depth, this indicates that MBEs may enjoy
meaningful quantum advantages at scale. Furthermore, when
we extend our definition of accuracy to encompass probabilis-
tic sampling of various circuit initializations, the effectiveness
of MBE in our experiments was likewise strong.

MBE can be expanded to a broad framework of multi-axis
qubit encodings, which would include any nonlinear quan-
tum loss function that permits the optimization of multiple,
mutually regularizing observables on a single qubit. These
findings are likely to spur additional research in efficient
qubit encodings and the application of our techniques to re-
lated algorithms. These include algorithms with high circuit
depth or high circuit connectivity, which have broad enough
light cones such that they are fundamentally intractable
on classical hardware, and thus require quantum hardware.
Since deeper circuits are attainable with more efficient ten-
sor contraction methods or distributed computing efforts, this
work encourages further development of large-scale quantum
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simulation with tensor methods. Most critically, as these sim-
ulations are ultimately memory bound, the implementation
of MBE at scale constitutes a strong candidate for quantum
advantage.

We also leverage the powerful tensor techniques packaged
in TENSORLY-QUANTUM to complete large-scale simulations of
effective optimization algorithms on a single, consumer-grade
GPU. Here we have produced what appears to be the largest
to-date simulation of a quantum optimization algorithm with
randomly distributed graphs that rivals classical performance.
Such a successful and large-scale implementation demon-
strates that simple and low-rank tensor representations are
sufficient to model various techniques in quantum machine
learning, and to do so without truncation or approximation.
Finally, through the use of large-scale graphs, we demon-
strate that the global qubit connectivity and high entanglement
capacity lacked by both the MPS formalism and linearly con-
nected near-term quantum devices do not preclude quantum
optimization routines.
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APPENDIX A: INTUITION FOR MBE

Our MBE protocol uses a loss function which is inspired
by, but not equivalent to, the long-range, ZX Hamiltonian,

H, = Z wiiofof + Z w;iolo} + Z wiiofo;.
j<i j<i j#i

The key difference between Eq. (Al) and MBE is that

MBE utilizes the product of single-qubit measurements and

nonlinear activation functions to encode separate vertices into
the z and x bases [as explained in Egs. (6) and (8)].

(AD

APPENDIX B: INITIALIZATION

As an initialization procedure for the MBE, we restrict
the amount of entanglement between groups of qubits and
the untrained weights. We heuristically note that this leads to
mildly improved performance and hypothesize that it may be
due to the deleterious effects of random entanglement on bar-
ren plateaus and problem convexity, as explained in the main
text. In particular, for the n = 100, 512 (n = 8, 20) cases, we
pretrain up to five blocks of two qubits each by minimizing
their entanglement with the remainder of the circuit until it is
less than 15% (0.05%) of its maximal value, which can be
done experimentally through state tomography or balanced
single-qubit measurements, or until some maximal pretrain
step limit is exceeded. Judiciously setting @ is an alternative
method that also satisfies our constraint. Despite this initial
entanglement minimization, the qubits become rapidly entan-
gled during the learning process, as illustrated in Fig. 3(a).
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