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ABSTRACT 
Early identification of rotating machinery faults is crucial to avoid catastrophic failures upon 
installation. Contact-based vibration acquisition approaches are traditionally used for the purpose of 
machine health monitoring and end-of-line quality control. In complex working conditions, it can be 
difficult to perform an accurate accelerometer based vibration test. Acoustic signals (sound pressure 
and particle velocity) also contain important information about the operating state of mechanical 
equipment and can be used to detect different faults. A deep learning approach, namely one-
dimensional Convolution Neural Networks (1D-CNN) can directly process raw time signals thereby 
eliminating the human dependance on fault feature extraction. An experimental research study is 
conducted to test the proposed 1D-CNN methodology on three different electric motor faults. The 
results from the study indicate that the fault detection performance from the acoustic-based 
measurement method is very effective and thus can be a good replacement to the conventional 
accelerometer-based methods for detection and diagnosis of mechanical faults in electric motors.  

 
1.    INTRODUCTION 
Electric motors play a crucial role in various industries, and it is critical for them to function safely and 
efficiently for extended periods. Often, machines are used until they break down, but this approach can 
lead to negative outcomes such as compromised safety, decreased production efficiency, and increased 
expenses for repairs. Therefore, it is crucial to incorporate intelligent, effective, and accurate fault 
diagnosis and quality control methods for electric motors.  

Presently, vibration measurements are the main method used for monitoring and diagnosing motor 
mechanical faults [1]. This technology has advantages, including inexpensive sensors and content rich 
information about equipment status. However, accelerometers mass load equipment and must be 
mounted to the structure. 
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Acoustic methods are useful when machinery cannot be accessed directly, as measurements can be 
taken from a distance without sensors being mounted on the machine. This can be particularly helpful 
in industrial settings where a contact based sensor installation is not feasible or when required to 
quality test a large sample of manufactured parts in a short time. Using acoustic techniques can greatly 
improve fault diagnosis in these scenarios. Most acoustic work in the past only focused on sound 
pressure measurements. Those measurements are negatively affected by background noise and noise 
from equipment in manufacturing plants. Acoustic particle velocity sensors [2] which can provide both 
magnitude and directional information can be useful to overcome this problem. 

Deep Learning (DL) has gained attention in many industries as it has demonstrated its potential in 
analyzing and identifying underlying data patterns eliminating human expertise dependence on feature 
extraction. It is being explored as a complement to physics-based models in several areas, including 
machine condition monitoring, fault diagnosis, complex manufacturing process modeling, and quality 
inspection [3]. Convolutional Neural Networks (CNNs) is a type of deep learning algorithm that has 
been widely used in image and signal processing tasks, including fault diagnosis. The importance of 
CNNs in fault diagnosis lies in its ability to automate the process of fault detection and diagnosis, 
which can save time, reduce costs, and improve the accuracy and reliability of the diagnosis. In recent 
years, 1D-CNNs [4] particularly demonstrated their ability in effectively analyzing and processing 
sequential time-series data directly. 

Acoustic particle velocity based measurements can be used together with 1D-CNNs for performing 
electric motor fault diagnosis. This method is attractive because the acoustic data in time domain from 
different motor fault types can be used directly to train a 1D-CNN model without the need to transform 
it to the frequency domain. This paper investigates the fault classification performance across four 
different electric motor conditions, where data is acquired using a motor fault simulator at multiple 
speeds. The results from this experimental study indicated comparable diagnosis when sound intensity 
data is used instead of traditional accelerometer data. 
 
2.    THEORY 
2.1.    Sound Intensity 
Sound intensity is a measure of the amount of sound energy passing through a given area per unit time. 
It is defined as the power per unit area, expressed in Watts per square meter (W/m²). Sound intensity is 
a vector quantity, meaning that it has both a magnitude and a direction. The measurement of sound 
intensity can be done using sound intensity probes. A PU probe [2] can capture both sound pressure 
and acoustic particle velocity at the same time using single device, across a wide frequency range from 
a few Hz up to 20k Hz.  

Instantaneous sound intensity is the time averaged product of the instantaneous sound pressure 𝑝𝑝(𝑡𝑡) 
and the corresponding instantaneous particle velocity 𝑢𝑢(𝑡𝑡) at the same position: 
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where 𝑇𝑇 is the period of the measurement. 

2.2.    1D-Convolutional Neural Networks (1D-CNNs) 
DL is a learning structure that utilizes both multilayer artificial neural networks and specialized 
network architectures to learn hierarchical representations of input data [5]. The early layers of the 
networks learn low-level features, while the later layers combine these features to create high-level 
representations of the objects being analyzed. Since DL models have many free parameters, specialized 
architectures like CNNs have been developed to exploit known structures in the input data. CNNs have 
been particularly successful in image processing because they use convolutions to search for smaller 



patterns within larger inputs, creating new channels that represent extracted patterns. These outputs are 
compressed using pooling, which reduces the number of parameters to be tuned and improves 
computational efficiency. DL models use hierarchical stacks of convolutional and pooling layers as 
feature extraction layers and end with a fully-connected network for classification or regression on the 
learned features.  

CNNs have shown remarkable performance in recognizing images which are 2-dimensional inputs, 
while 1D-CNNs [4] have been proven effective in handling sequential inputs like vibration signals. 
The convolution operation for 1D inputs and kernels can be expressed as: 
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where 𝑥𝑥 is the input signal of length 𝑁𝑁 and 𝑤𝑤 is the convolutional kernel of length 𝐿𝐿. The kernel moves 
across the input signal by a stride 𝑆𝑆𝑐𝑐, which indicates the number of data points it moves per step. To 
ensure that the bounds of 𝑛𝑛 remain within the original signal length (including zero-padded regions on 
the sides of the input), the values can be set accordingly. Once the convolutional output 𝑦𝑦𝑐𝑐(𝑛𝑛) is 
obtained, it can be passed through an activation function like the rectified linear unit (ReLU) to 
introduce nonlinearity as follows: 

𝑦𝑦𝑎𝑎(𝑛𝑛) = max�0,𝑦𝑦𝑐𝑐(𝑛𝑛)�  (3) 
where 𝑦𝑦𝑎𝑎(𝑛𝑛) is the output of the activation function subjected to pooling. The maximum value within a 
sliding window of length 𝑀𝑀 is commonly selected using a technique called Max pooling: 
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The stride 𝑆𝑆𝑝𝑝 defines the spacing between adjacent pooling windows as they move across the features 
obtained from convolutional operations. By stacking multiple convolutional and pooling layers in 
sequence, a feature extraction network can be constructed, and its outputs can be fed into a multilayer, 
fully-connected network for final classification. To train CNNs, traditional backpropagation techniques 
like stochastic gradient descent (SGD) and the RMSProp-based Adam algorithm can be employed. 
 
3.    DATA ACQUISITION – MOTOR FAULT SIMULATOR 
This section describes the experimental setup that was used for present analysis. This research study 
used a SpectraQuest motor fault simulator [6] to generate a dataset featuring four distinct motor 
conditions, which includes a healthy motor (Good) and three mechanically faulty motors. The first 
fault corresponds to a bowed rotor (BR) , while the second involves a built-in rotor unbalance (BRU) 
that results from an unequal weight distribution about its rotating centerline. The third faulty motor 
incorporates a bearing (BF) with a hole on the outer race. 

To facilitate data acquisition, two acoustic transducers, a microphone, and a PU probe were installed 
to detect acoustic signals. The microphone was positioned half a meter away from the motor, while the 
PU probe was placed just 0.5in above the motor, measuring pressure and particle velocity 
simultaneously in the upward (+Z) direction. Additionally, two accelerometers were mounted, one 
placed on the top (+Z) and the other on the side (+Y) of the motor for measuring vibration. The 
accelerometers were included in the experiments for comparison with the acoustic sensors in terms of 
fault detection performance. Vibration and acoustic measurements were collected at sampling rates of 
12800 Hz and 25600 Hz, respectively. Data acquisition was performed using Siemens SCADAS 
hardware and TestLab software, at five constant speeds: 1000, 1500, 2000, 2500, and 3000 RPM, 
resulting in a total of 20 distinct operating conditions. Each of these operating conditions was recorded 
for a duration of 60 seconds and saved as WAV files. The WAV files were subjected to min-max 
normalization to bring them within the range of [0, 1], and then divided into windows of 512 points, in 
order to prepare the data for use in the 1D-CNN. The test setup can be seen in Figure 1. Finally, all the 



collected data is partitioned with a goal to use 70% of the signals for training data, 15% for validation 
data and 15% for testing data, respectively. 

 
Figure 1: Motor fault simulator & measurement sensor set-up.  

 
4.   1D-CNN BASED FAULT DIAGNOSIS 
The network architecture flowchart of the 1D-CNN model designed for this study is shown in Figure 2. 
The collected dataset as described in Section 3 is used to pass through a series of convolution, pooling, 
and batch normalization layers. A total of 3 convolutional layers and 3 pooling layers were used to 
compute a total of 4096 features. Those features are then flattened through two fully connected layers 
where 4096 features are narrowed down to 64 features, and lastly, there are 4 outputs corresponding to 
four motor condition probabilities, which are used to calculate the multi-class classification accuracy. 



 
Figure 2: 1D-CNN network architecture for feature extraction and fault classification. 

 
Three 1D-CNN models are trained, Model-1 uses the accelerometers data from +Z and +Y 

directions to serve as a reference for comparison, Model-2 with two acoustic sensor inputs (sound 
pressure from microphone 0.5m away from motor, sound intensity waveform calculated from 
measured sound pressure and acoustic particle velocity waveforms collected using PU probe placed 
about 0.5in above the motor in +Z direction) and finally a Model-3 with just one acoustic sensor input 
comprised of a sound intensity waveform measured and calculated from PU probe alone. The training 
loss, validation loss and validation accuracy metrics are employed to verify the performance of the 
proposed network. The network is then trained until there is no significant decrease in the validation 
loss. Figure 3 shows how the aforementioned metrics improved over 50 epochs/iterations. An elbow 
shape within the loss curves indicates convergence of the respective model.  



 
Figure 3: 1D-CNN models Training progression. 

 
The final training loss, validation loss, and validation accuracy values for Model-1, Model-2 and 

Model-3 are summarized in Table 1, Table 2, and Table 3, respectively. While the final test accuracy 
obtained for Model-1 is 99.78%, Model-2 and Model-3 demonstrated test accuracies of 95.93% and 
97.71%. The results from Model-3 in comparison to Model-2 confirmed that acoustic data from PU 
probe (sound pressure and particle velocity in +Z direction) alone is sufficient and in fact better than 
Model-2 which uses an additional acoustic measurement point from another microphone 0.5m away 
from motor. 

Table 1: Model-1 (Top Vib +Z, Side Vib +Y) results. 

Dataset Data Split 
(%) Loss Accuracy  

(%) 
Train 70 0.0002 -- 

Validation 15 0.002 99.94 
Test 15 -- 99.78 



 
Table 2: Model-2 (Top Sound intensity +Z [P, U +Z], 0.5m away P) results. 

Dataset Data Split 
(%) Loss Accuracy  

(%) 
Train 70 0.0028 -- 

Validation 15 0.1553 95.58 
Test 15 -- 95.93 

 
Table 3: Model-3 (Top Sound intensity +Z [P, U +Z]) results. 

Dataset Data Split 
(%) Loss Accuracy  

(%) 
Train 70 0.0023 -- 

Validation 15 0.0777 97.64 
Test 15 -- 97.71 

 
The t-distributed stochastic neighbor embedding (t-SNE) technique is used in this study to gain a 

better understanding of the learning characteristics of the 1D-CNN model. t-SNE transforms high-
dimensional data similarities into probabilities, allowing projection into a 2D space and enabling easier 
interpretation about the importance of the extracted features. The t-SNE plot (see Figure 4) for Model-
3 shows that the features from the same motor condition cluster together to facilitate easy 
classification. 

 
Figure 4: t-SNE (t-distributed Stochastic Neighbor Embedding) feature distribution. 



 
5.    CONCLUSIONS 
In this paper, a method based on acoustic signals and 1D-CNN for fault diagnosis on electric motors is 
designed. The acoustic signals of electric motors measured using a PU probe (sound pressure and 
acoustic particle velocity simultaneously) can be used directly to calculate sound intensity waveforms, 
which can be directly fed into the 1D-CNN model in time domain. The method is verified 
experimentally using a dataset acquired from a four mechanical motor conditions. The fault 
classification results indicated excellent performance demonstrating that the proposed acoustic (non-
contact) method is a promising alternative to conventional accelerometer-based (contact) acquisition 
techniques used when performing either predictive maintenance related machine health tests or quality 
assessments near the end of the production line.  
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